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Abstract—The linear antenna array design problem is one
of the most important in electromagnetism. When designing
a linear antenna array, the goal of the designer is to achieve
the “minimum average side lobe level” and a “null control”
in specific directions. In contrast to the existing methods that
attempt to minimize a weighted sum of these two objectives
considered here, in this paper our contribution is twofold.
First, we have considered these as two distinct objectives which
are optimized simultaneously in a multi-objective framework.
Second, for directivity purposes, we have introduced another
objective called the “maximum side lobe level” in the design
formulation. The resulting multi-objective optimization problem
is solved by using the recently-proposed decomposition-based
Multi-Objective Particle Swarm Optimizer (dMOPSO). Our
experimental results indicate that the proposed approach is able
to obtain results which are better than those obtained by two
other state-of-the-art Multi-Objective Evolutionary Alg orithms
(MOEAs). Additionally, the individual minima reached by
dMOPSO outperform those achieved by two single-objective
evolutionary algorithms.

I. I NTRODUCTION

Antenna arrays play an important role in detecting and
processing signals arriving from different directions. Nowa-
days, antenna arrays are preferred because the use of a
single element has several limitations in terms of directivity
and bandwidth. Antenna arrays overcome such defects by
associating each antenna element to different electrical and
geometrical configurations, so that it can have its beam-
pattern modified with an amplitude and phase distribution
called the weights of the array. After post-processing the
antenna outputs, the signals are weighted and summed to
give the antenna array beam-pattern. On the other hand, the
antenna array pattern synthesis problem consists of finding
weights that satisfy a set of specifications on the beam pat-
tern. Antenna arrays have found several applications in radar,
sonar, radio, and third generation wireless communication
systems [4, 7, 20].

The main goal in the design of an antenna array structure
is to find the positions of the array elements that produce a
radiation pattern as a whole that closely matches the desired
pattern [19]. Recently, the synthesis of linear array elements
separated in a non-linear fashion has become immensely
popular among researchers working in electromagnetism.

Current mathematical programming techniques have several
limitations, including the fact that most of them are likelyto
get trapped in local optimal points and are highly sensitive
to the initial search point. For this reason, several researchers
have opted for the use of metaheuristics (mainly, evolutionary
algorithms) to reduce the Side Lobe Levels (SLLs) and
the Null Control (NC) from the designed arrays (see for
example [2, 3, 12, 21, 22]). Such techniques are a suitable
alternative to the conventional methods because of their
ability to deal with difficult problems featuring complex
landscapes. Most of these approaches tackle the objectives
simultaneously creating a single objective function by taking
a weighted sum of the objective functions. Clearly, when
using such a weighted sum method, the solution obtained
will depend on the values of the specified weights, and
determining such weights is not an easy task.

Motivated by the inherent multi-objective nature of the
linear antenna design problem and to avoid the problems
associated with the use of weighted sum approaches, in
this paper, we present a multi-objective formulation of the
problem of our interest and we adopt a recent approach called
decomposition-based Multi-Objective Particle Swarm Opti-
mizer (dMOPSO) for solving it. In contrast to the plethora
of works which consider only the average SLL and NC as the
objective functions, we consider here an additional objective
(maximum SLL) in order to increase the overall directivity
of the antenna array. As we will see later in this paper, the
solutions obtained by dMOPSO outperform those obtained
by two other state-of-the-art multi-objective evolutionary
algorithms (MOEAs). Additionally, the individual minima
obtained by dMOPSO also outperform those obtained by
two single-objective evolutionary algorithms reported inthe
specialized literature.

The remainder of this paper is organized as follows.
Section II provides the basic concepts adopted in this paper,
as well as the multi-objective formulation of the problem of
our interest. In Section III, we provide a short description
of the multi-objective particle swarm optimizer adopted in
this work. Section IV shows the results obtained in our
experimental study. In Section V, we give a brief discussion
of the results obtained. Finally, in Section VI, we provide



our conclusions and some possible paths for future research.

II. BASIC CONCEPTS ANDPROBLEM FORMULATION

A. Notions of Multi-Objective Optimization

An unconstrained multi-objective optimization problem
(MOP), can be stated as follows1:

min
x∈Ω

{F (x)} (1)

whereΩ defines the search space andF is defined as the
vector of the objective functions:

F : Ω → R
k, F (x) = (f1(x), . . . , fk(x))T

wherefi : R
n → R is an unconstrained function.

In multi-objective optimization, it is desirable to produce
a set of trade-off solutions representing the best possible
compromises among the objectives (i.e., solutions such that
no objective can be improved without worsening another).
In order to describe the concept of optimality in which we
are interested, the following definitions are introduced [14].

Definition 1. Let x, y ∈ Ω; we say thatx dominates y

(denoted byx ≺ y) if and only if, fi(x) ≤ fi(y) and
F (x) 6= F (y).

Definition 2. Let x⋆ ∈ Ω; we say thatx⋆ is a Pareto optimal
solution, if there is no other solutiony ∈ Ω such thaty ≺ x⋆.

Definition 3. The Pareto Optimal Set PS is defined by:

PS = {x ∈ Ω|x is a Pareto optimal solution}

Definition 4. The Pareto Optimal Front PF is defined by:

PF = {F (x)|x ∈ PS}

The main goal of a MOEA is to generate as many
(different) elements of the Pareto optimal set as possible,
while maintaining a distribution of solutions as uniform as
possible along the Pareto front.

B. Multi-Objective Formulation of the Problem

An antenna array is a configuration of individual radiating
elements that are arranged in an space and can be used to
produce a directional radiation pattern. For a linear antenna
array, let us assume that we have2N isotropic radiators
placed symmetrically along thez-axis (the array geometry
is shown in Fig. 1). The array factor in the azimuth plane
can be written as:

AF (φ) = 2
N

∑

n=1

In cos [k · zn · cos(φ) + ϕn] (2)

whereIn is the excitation amplitude,k = 2π
λ

is the wave
number,zn is the location of thez-th element,ϕn defines
the phase andφ represents the angle measured from the array
line.

1Without loss of generality, we assume minimization

Assuming an uniform excitation of amplitude and phase
(i.e., In = 1 and ϕn = 0 for all the elements), the array
factor can be written as:

AF (φ) = 2

N
∑

n=1

In cos [k · zn · cos(φ)] (3)

The main goal of the optimizer is to find the locations
zn of the array elements that will result in an array beam
with minimum Side Lobe Level (SLL) and nulls at specific
directions but subject to certain constraints. In an antenna
array, if the adjacent elements are located very near, then that
can lead to mutual coupling effects. On the other hand, if they
are located very far, then, occurrence of grating lobes can
take place. Therefore, the distance among adjacent elements
needs to be constrained. The constraints which are considered
for normalizing the element spacingzn is given by:

0.5 ≤ zn+1 − zn ≤ 1, n ∈ [1, N − 1]

The first element along the positivez-axis needs to be
placed such that it is neither too close nor too far from the
first element on the negativez-axis. Therefore, the constraint
for the first element is given by:

0.3 ≤ z1 ≤ 0.5

In contrast with most of the design formulations of an-
tenna arrays which consider only the Average Side Lobe
Level (ASLL)–see for example [5, 17], we consider here an
additional objective function for the side lobe suppression:
the Maximum Side Lobe Level (MSLL). This objective func-
tion is considered for directivity purposes. The directivity of
an antenna array is an important parameter to be considered
during the design stage, since the design is considered to be
more efficient if the directivity is increased. In this study,
besides the ASLL reduction we have also given special
emphasis on reducing the two maximum lobes: the adjacent
lobe on theleft side (MSSL1) and the adjacent lobe on the
right side (MSLL2). This ensures that the energy contents is
mostly confined to the maximum lobe, thereby increasing the
directivity of the entire array. Then, the two cost functions
(i.e., ASLL and MSLL) to be minimized are mathematically
stated as:

fASLL =
∑

i

1

∆φi

φui
∫

φli

|AF (φ)|2dφ (4)

fMSLL = |AF (φMSLL1)| + |AF (φMSLL2)| (5)

whereMSLL1 and MSLL2 are two lobes by the side of
the MSLL.

As these two objective functions are not conflicting, a
weighted sum of these objectives could be taken. Therefore,
we define the overall objective function for the side lobe
suppressionfSLL as a weighted sum of the above objectives,
denoted by:

fSLL = α · fSLA + β · fMSL (6)



Fig. 1. Symmetrically placed linear array.

whereα = 0.2 and β = 0.1, and the null controlfNC is
defined as:

fNC =
∑

k

|AF (φk)|2 (7)

In this way, equations (6) and (7) are considered as
two distinct objectives that are simultaneously optimizedin
a multi-objective framework. A MOEA will allow us to
find out the right balance between the two above objec-
tive functions. When a MOEA is used, we obtain a set
of solution which represent the best compromises among
such objectives. Therefore, a MOEA will allow us greater
flexibility in designing a linear antenna array than single-
objective evolutionary approaches, which provide only one
optimal solution per run, which might not completely satisfy
the designer’s needs.

III. T HE MULTI -OBJECTIVE PARTICLE SWARM

OPTIMIZER

A Pareto optimal solution to a MOP, under some mild
assumptions, can be an optimal solution to a scalar optimiza-
tion problem in which the objective is an aggregation of all
the objective functionsfi’s. Therefore, an approximation of
the Pareto optimal front can be achieved by decomposing
a MOP into several single-objective optimization problems.
This is the main motivation behind current decomposition-
based MOEAs [15, 18, 23, 24].

Recently, Zapotecas and Coello [23] proposed a novel
decomposition-based Multi-Objective Particle Swarm Opti-
mizer (dMOPSO). This MOEA employs a decomposition
framework similar to the one adopted by MOEA/D [24].
However, a (µ + λ)-selection mechanism (selecting the best
solution to each subproblem) is employed instead of a mech-
anism to update a neighborhood as adopted in MOEA/D.

In dMOPSO, a swarm ofN particlesP = {x1, . . . , xN} is
randomly initialized. Each particle possesses a flight velocity
vi and an ageai, both of which are initially set to zero.
Along the flight circuits, a particle tries to minimize one of
the subproblems in which the MOP is decomposed. Each
subproblem is defined by a weighted vectorλ according to
the Penalty Boundary Intersection (PBI) approach, which is
stated as [24]:

minimize: g(x|λ, z⋆) = d1 + θd2 (8)

Pareto Optimal Front

Attainable Objective Set

Fig. 2. Illustration of the Penalty Boundary Intersection (PBI) approach.

such that:

d1 =
||(F (x) − z

⋆)T
λ||

||λ||
andd2 =

˛

˛

˛

˛

˛

˛

˛

˛

(F (x) − z
⋆) − d1

λ

||λ||

˛

˛

˛

˛

˛

˛

˛

˛

wherex ∈ R
n, z⋆ = min{fi(x)|x ∈ Ω} andλ ∈ Λ, beingΛ

a well-distributed set of weighted vectors previously defined.
In this way, a Pareto optimal point is reached by minimizing
a subproblem defined by the weighted vectorλ. Fig. 2 shows
the illustration of the PBI approach.

At each cycle, dMOPSO tries to find the best solution to
each subproblem. Thus, theglobal best set (Gbest) is defined
in a natural way by storing the solutions that minimize each
subproblem and these solutions are identified at each cycle.
The personal best xpb,i of the ith particle, represents the
best solution provided by the particle to theith subproblem.
Since, at the beginning, a particle does not have a previous
movement, the best personal position is initialized with the
same position as the particle, i.e.,xpb,i = xi.

Once the global best set has been defined, the velocity
and the position of each particle are updated according to
the traditional PSO flight equations:

vt+1
i = wvt

i + c1r1(xpb,i − xt
t) + c2r2(xgb,i − xt

i)
xt+1

i = xt
i + vt+1

i
(9)

wherew ≥ 0, c1, c2 ≥ 0, r1, r2 ∈ (0, 1), vi, xpb,i andxgb,i

represent the velocity, the personal best and the global best
position for theith particle, respectively.

In dMOPSO, a reinitialization mechanism based on the
age of each particle is employed. This mechanism provides



diversity along the flight circuits. When a particle does not
improve its personal position in a flight cycle, then the
particle increases (by one) its age. On the other hand, if
a particle exceeds a certain age threshold (Ta), the particle
(including, its velocity, its age and its personal best) is
reinitialized according to the following equation:

xt+1
i (j) = N

(

xgb,i(j) − xpb,i(j)

2
, |xgb,i(j) − xpb,i(j)|

)

(10)
whereN(m, σ) represents a random number using a normal
distribution with meanm and sigmaσ. As in [23], in our
experiments we useTa = 2.

The solutions contained inGbest at the final generation,
are reported as an approximation to the Pareto set. For a
detailed description of dMOPSO, the interested reader is
referred to [23].

IV. EXPERIMENTAL STUDY

In order to assess the performance of dMOPSO, we
compared its results with respect to those generated by the
Nondominated Sorting Genetic Algorithm II (NSGA-II) [6]
and the Multi-Objective Particle Swarm Optimizer based on
Decomposition (MOPSO/D) [18].

A. Performance Measures

For comparing results, we adopted the performance mea-
sures described next.

1) R2 Indicator (IR2): The R2 indicator (IR2) proposed
in [9] quantifies the distance between the nondominated set
or a reference setR and an approximation of the nondom-
inated setA given by an algorithm. Mathematically, it can
be expressed as:

IR2(A) =

∑

λ∈Λ
u∗(λ, R)

|Λ|
(11)

whereR is a reference set,u∗ is the maximum value reached
by the utility function u with the weight vectorλ, on an
approximation setA, i.e., u∗ = max

y∈A
uλ(y). Λ denotes the

set of weight vectorsλ ∈ R
k.

Here, we employed the augmented Tchebycheff function
as the utility functionu. For each test problem, the reference
vectorR was defined by using the minimum values of each
objective found by all the algorithms.

2) Hypervolume difference to a reference set (IH̄ ): The
Hypervolume (IH ) indicator was proposed by Zitzler [25].
This performance measure is Pareto compliant [26] and
quantifies the approximation of nondominated solutions to
the Pareto optimal front. The hypervolume corresponds to
the non-overlapped volume of all the hypercubes formed by
a reference pointr (given by the user) and each solutionp in
the Pareto set approximationA. It is mathematically defined
as:

IH(A) = Λ





⋃

p∈A

{x|p ≺ x ≺ r}



 (12)

whereΛ denotes the Lebesgue measure andr ∈ R
k denotes

a reference vector being dominated by all valid candidate
solutions inA.

Here, we consider the hypervolume difference to a refer-
ence setR (commonly, the Pareto optimal front), and we
will refer to this indicator asIH̄ , which is defined as:

IH̄(A) = IH(R) − IH(A)

where smaller values correspond to higher quality as opposed
to the original Hypervolume indicatorIH(A).

Since we solve a real-world problem, we do not know the
Pareto optimal front. Therefore, for each design problem,
we executed all the algorithms for a considerably large
number of generations, and the union of all the nondominated
solutions obtained was used as the reference setR for
this performance measure. For computingIH , the reference
vectorr was defined by using the maximum values of each
objective function found by all the algorithms over all the
runs in each test problem.

B. Multi-Objective Evolutionary Approaches

For each design problem, we performed 30 independent
runs with each algorithm. Each run was restricted to 700
generations. For each problem, we used a population size
N = 100. Therefore, we performed 70,000 fitness function
evaluations for each test problem.

Since dMOPSO and MOPSO/D are two decomposition-
based algorithms, we used the same scalarization function
for a fair comparison, i.e., we used the PBI approach with
θ = 5. For all the algorithms (dMOPSO, MOPSO/D and
NSGA-II), the parameters were set as the best suited para-
metric set-up chosen with guidelines from their respective
references, see [6, 18, 23]. Since the solutions obtained for
each MOEA are not always nondominated, we extracted the
best compromise solutions by using the fuzzy membership
function based method outlined in [1].

As we mentioned before, the performance of each MOEA
was evaluated using the two performance measures previ-
ously defined (IR2 and IH̄ ). The results are summarized in
Tables I, III and V. Each table displays the best, the worst,
the average value, as well as the standard deviation of each
performance measure, for each test instance. For an easier
interpretation, the best results are presented inboldface for
each performance measure and test problem adopted.

C. Single-Objective Evolutionary Approaches

The individual minima found by each MOEA, i.e., the
minimum value reached at each objective function (fSLL

and fNC), were compared with respect to those achieved
by two single-objective bio-inspired algorithms: a standard
Particle Swarm Optimizer (PSO) [11] and an elitist Genetic
Algorithm (GA) [8]. For each design problem, we performed
30 independent runs with each single-objective evolutionary
approach. Both algorithms were tested using a population
size of 100 individuals. As in the multi-objective evolution-
ary approaches, each run was restricted to 70,000 fitness
function evaluations (i.e., 700 generations). However, since



we used the single-objective evolutionary approaches for
minimizing separately each objective function, we divided
the computational cost for each objective, i.e., we employed
350 generations (35,000 fitness function evaluations) for each
one.

The PSO algorithm was tested using the traditional inertia
equations. The inertia weightw was set linearly decreasing
from 0.9 to 0.4. The flight constraintsc1 andc2 were set in
2. The GA was implemented using a roulette-wheel selection
mechanism, one-point crossover and an adaptive feasible
mutation operator [13].

The results obtained by each algorithm are reported in
Tables II, IV and VI. Each table displays the individual
minima and the directivity (in decibels (dB)) obtained by
each algorithm for each test problem. The best result for
each adopted test problem is presented inboldface.

D. Test Problems and Numerical Results

In our study, we compared the performance of the above
mentioned MOEAs in three different test problems. In the
following, we describe these design problems and their
corresponding numerical results are also presented.

1) Example 1: In the first example we have designed a
22-element array having minimum SLL in bands [0°, 82°]
and [98°, 180°] with one null in the direction 81°.

Table I provides the results achieved by the multi-objective
evolutionary approaches (i.e., dMOPSO, MOPSO/D and
NSGA-II) with the adopted performance measures (IR2 and
IH̄ ). From this table, it is possible to see that the best values
for both indicators are obtained by dMOPSO. That means
that dMOPSO obtained a better approximation to the Pareto
optimal front than MOPSO/D and NSGA-II. These results
are validated in Fig. 3, where we show the bi-dimensional
Pareto front obtained by all the MOEAs. The figure clearly
indicates that by using dMOPSO, it is possible to achieve
better trade-off solutions between the two conflicting objec-
tives, namelyfSLL andfNC . In Table II, we have provided
the individual minima values and the value of directivity for
the linear antenna array obtained by the considered single-
objective evolutionary algorithms (i.e., PSO and GA). From
this table, we can see clearly that the individual minima
obtained by dMOPSO is considerably better than those
obtained by the single-objective evolutionary approaches.
Finally, Fig. 4 plots the normalized power (in dB) versus
the elevation angle (in degrees) for all the algorithms over
the design corresponding to Example 1.

2) Example 2: In the second example we have increased
the number of elements of the array thereby considering a
26-element array having minimum SLL in bands [0°,82°]
and [98°, 180°] which has one null in the direction 20°.

In Table III, the performance measures adopted for the
comparison of the MOEAs are reported. For both, theIR2

and the IH̄ indicators, the best values were obtained by
dMOPSO. Fig. 5 shows the bi-objective Pareto front obtained
by the MOEAs tested here. From this figure, it is possible
to see that dMOPSO achieved a better approximation to the
Pareto optimal front than the two other MOEAs, although the

TABLE I
BEST, WORST, MEAN AND STANDARD DEVIATIONS OF THE

PERFORMANCE MEASURES(IR2 AND I
H̄

) ACHIEVED BY EACH MOEA
FOR EXAMPLE 1

Metric Value Type MOPSO/D NSGA-II dMOPSO

IR2

Best 5.76E-007 4.36E-005 1.72E-007
Worst 7.66E-005 8.72E-004 6.63E-005
Mean 3.86E-005 1.87E-004 1.65E-005
Std. Dev 1.65E-005 5.83E-005 1.84E-005

I
H̄

Best 5.87E-006 4.87E-005 3.28E-006
Worst 1.54E-004 7.54E-004 9.78E-005
Mean 8.20E-005 2.87E-004 6.62E-005
Std. Dev 4.29E-005 9.87E-005 2.68E-005

TABLE II
INDIVIDUAL MINIMA AND DIRECTIVITY ACHIEVED BY EACH

ALGORITHM FOR EXAMPLE 1

Algorithms fSSL fNC Directivity (dB)
dMOPSO 0.1056 0.0231 17.587
NSGA-II 0.1672 0.0476 17.282

MOPSO/D 0.1352 0.0532 17.354
GA 0.1852 0.1054 16.192
PSO 0.1762 0.0976 16.823
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Fig. 3. Best solutions obtained by dMOPSO, MOPSO/D and NSGA-II for
Example 1
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Fig. 4. Array patterns obtained for Example 1
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Fig. 5. Best solutions obtained by dMOPSO, MOPSO/D and NSGA-II for
Example 2

distribution was not better. However, a better distribution of
solutions is relevant only when there is a good approximation
to the Pareto front. In Table II, we can see that the individual
minima values obtained by dMOPSO are better than those
obtained by the single-objective evolutionary approaches.
Fig. 6 shows the normalized power versus elevation angle
plot for all the algorithms over the design corresponding to
Example 2.

TABLE III
BEST, WORST, MEAN AND STANDARD DEVIATIONS OF THE

PERFORMANCE MEASURES(IR2 AND I
H̄

) ACHIEVED BY EACH MOEA
FOR EXAMPLE 2

Metric Value Type MOPSO/D NSGA-II dMOPSO

IR2

Best 6.83E-007 5.75E-006 3.57E-007
Worst 2.63E-004 8.03E-004 9.02E-005
Mean 5.98E-005 1.76E-004 3.10E-005
Std. Dev 3.82E-004 1.65E-004 8.35E-005

I
H̄

Best 5.20E-005 1.07E-004 2.66E-005
Worst 8.13E-004 3.76E-003 5.67E-004
Mean 4.98E-004 9.24E-004 1.65E-004
Std. Dev 2.63E-004 5.83E-004 3.76E-004

TABLE IV
INDIVIDUAL MINIMA AND DIRECTIVITY ACHIEVED BY EACH

ALGORITHM FOR EXAMPLE 2

Algorithms fSSL fNC Directivity (dB)
dMOPSO 0.1130 0.0012 17.9230
NSGA-II 0.1575 0.0543 17.7540

MOPSO/D 0.1334 0.0234 17.8320
GA 0.1865 0.0965 16.0030
PSO 0.1623 0.0887 16.7240

3) Example 3: In the third example, we consider a 26-
element array having minimum SLL in bands [0°, 82°] and
[98°, 180°] which has two nulls in the direction 12°and 60°.

For this design instance, Table V shows the results ob-
tained by the MOEAs. The best values for both indicators
(IR2 andIH̄ ), were obtained by dMOPSO. In Fig. 7, the bi-
objective Pareto front achieved by the MOEAs is presented.
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Fig. 6. Array patterns obtained for Example 2

As it is possible to see, dMOPSO achieved a better approxi-
mation to the Pareto optimal front than the other MOEAs. In
Table VI, the individual minima values are reported. From
this table, we can see that dMOPSO not only obtained better
results in terms of the indicators adopted here, but also
obtained individual minima that outperformed those obtained
by the single-objective evolutionary approaches. Finally,
Fig. 8 shows the normalized power versus elevation angle
plot for all the algorithms over the design corresponding to
Example 3.

TABLE V
BEST, WORST, MEAN AND STANDARD DEVIATIONS OF THE

PERFORMANCE MEASURES(IR2 AND I
H̄

) ACHIEVED BY EACH MOEA
FOR EXAMPLE 3

Value Type MOPSO/D NSGA-II dMOPSO

IR2

Best 6.86E-007 5.05E-006 3.01E-007
Worst 8.13E-005 4.83E-004 7.75E-005
Mean 2.06E-005 3.45E-005 1.01E-005
Std. Dev 8.63E-005 9.27E-005 5.82E-005

I
H̄

Best 1.76E-005 8.20E-005 1.03E-005
Worst 6.43E-005 6.65E-004 5.33E-005
Mean 3.97E-005 2.47E-004 2.06E-005
Std. Dev 4.54E-006 5.92E-006 1.87E-006

TABLE VI
INDIVIDUAL MINIMA AND DIRECTIVITY ACHIEVED BY EACH

ALGORITHM FOR EXAMPLE 3

Algorithms fSSL fNC Directivity (dB)
dMOPSO 0.1452 0.0154 17.8240
NSGA-II 0.1593 0.0197 17.6920
MOPSO/D 0.1557 0.0203 17.5630
GA 0.1825 0.0431 17.0320
PSO 0.1733 0.0511 17.2130

V. D ISCUSSION OFRESULTS

According to the results presented in Tables I to VI,
dMOPSO has clearly shown its superiority in terms of the
performance measures considered here. These tables provide
a quantitative assessment of the performance of dMOPSO
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in terms of theIR2 and IH̄ indicators. That means that
the solutions obtained by dMOPSO constitute a better ap-
proximation to the Pareto optimal front than the solutions
obtained by either MOPSO/D or NSGA-II. As it is possible
to see in Tables II, IV and VI, dMOPSO also reached
better values for the individual minima than those reported
by two single-objective evolutionary approaches. It is worth
noting that dMOPSO was not the only MOEA capable to
obtaining good individual minima. In fact, the other two
MOEAs also achieved better individual minima than those
obtained by the single-objective evolutionary approaches. We
believe that this good performance of the MOEAs evaluated
in our experimental study can be attributed to their diversity
maintenance mechanism, which allows a better exploration
of different regions of the search space than that provided
by a single-objective optimizer. In the case of NSGA-II,
this diversity is provided by its crowded-comparison operator
[6], which promotes the exploration of regions of the Pareto
front which contain isolated solutions. In the case of MOEAs

based on decomposition (i.e., dMOPSO and MOPSO/D),
the algorithms try to minimize different problems defined
by a well distributed set of weighted vectors and the PBI
approach. In other words, the solutions are guided by each
weighted vector, and the parameterθ enforces the search in
a specific direction, providing diversity in the search. The
single-objective evolutionary algorithms adopted don’t have
a similar mechanism to maintain diversity and are simply
guided by the aim of improving, as much as possible, the
best solution obtained so far.

VI. CONCLUSIONS ANDFUTURE WORK

In this work, we have incorporated an additional objective
function (called the Maximum Side Lobe Level (MSLL))
into the linear antenna array design problem which has been
formulated as a bi-objective optimization problem. The two
objectives considered here, are optimized simultaneouslyin
a multi-objective framework. Then, a MOEA is adopted as
our search engine. Our results indicate that MOEAs provide
greater flexibility in the linear antenna array design problem,
by producing a set of solutions from which the designer
can choose the most preferred one according to his/her
own particular preferences. In our study, we adopted one of
the recently developed variants of PSO for multi-objective
optimization called dMOPSO, which was developed by two
of the co-authors of this paper. The adopted algorithm has
been tested in three different instances of the design problem
of our interest. The results obtained by dMOPSO were
compared with respect to those obtained by two state-of-the-
art MOEAs, namely NSGA-II and MOPSO/D. Additionally,
the individual minima obtained were compared with respect
to those attained by two single-objective algorithms (a PSO
approach and an elitist GA).

The results indicate that dMOPSO outperforms all the
other approaches with respect to which it was compared
(including the single-objective techniques). In fact, allthe
MOEAs adopted were able to outperform the individual
minima obtained by the single-objective optimizers used
in our study, giving evidence of the benefits of the more
diversified search that they perform.

As part of our future work, we are interested in having
more control of the array pattern by using dMOPSO for op-
timizing the excitation amplitude and phase of each element
in the array. We also aim to investigate the use of dMOPSO
in other (more complex) antenna design problems which are
currently modeled as single-objective optimization problems.
Additionally, we are also interested in hybridizing dMOPSO
with direct search methods available in the mathematical
programming literature (e.g., Hooke-Jeeves [10] or Nelder-
Mead [16] method) aiming to improve its performance. The
idea is to use the evolutionary strategy to explore the search
space as a whole and the mathematical programming method
to exploit promissory regions within it (acting as a local
search engine).



ACKNOWLEDGMENTS

The second author acknowledges support from CONACyT
through a scholarship to pursue graduate studies at the Com-
puter Science Department of CINVESTAV-IPN. The third
author gratefully acknowledges support from CONACyT
project no. 103570.

REFERENCES

[1] M. A. Abido. A Niched Pareto Genetic Algorithm for
multiobjective environmental/economic dispatch.Inter-
national Journal of Electrical Power & Energy Systems,
25(2):97–105, February 2003.

[2] F. Ares-Pena, J. Rodriguez-Gonzalez, E. Villanueva-
Lopez, and S. Rengarajan. Genetic algorithms in the
design and optimization of antenna array patterns.IEEE
Transactions on Antennas and Propagation, 47(3):506–
510, March 1999.

[3] Y. Cengiz and H. Tokat. Linear antenna array design
with use of genetic, memetic and tabu search optimiza-
tion algorithms.Progress In Electromagnetics Research
C, 1:63–72, 2008.

[4] S. Chandran. Adaptive Antenna Arrays: Trends and
Applications (Signals and Communication Technology).
Springer Verlag, 2004.

[5] A. Chowdhury, R. Giri, A. Ghosh, S. Das, A. Abra-
ham, and V. Snasel. Linear antenna array synthesis
using fitness-adaptive differential evolution algorithm.
In 2010 IEEE Congress on Evolutionary Computation
(CEC’2010), pages 1–8, july 2010.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan.
A Fast and Elitist Multiobjective Genetic Algorithm:
NSGA–II. IEEE Transactions on Evolutionary Compu-
tation, 6(2):182–197, April 2002.

[7] L. Godara. Handbook of Antennas in Wireless Com-
munications. CRC Press, Inc., Boca Raton, FL, USA,
2001.

[8] D. E. Goldberg. Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1989.

[9] M. P. Hansen and A. Jaszkiewicz. Evaluating the quality
of approximations to the non-dominated set. Technical
report, Institute of Mathematical Modeling, Technical
University of Denmark, 1998.

[10] R. Hooke and T. A. Jeeves. “direct search” solution of
numerical and statistical problems.J. ACM, 8(2):212–
229, 1961.

[11] J. Kennedy and R. C. Eberhart. Particle swarm op-
timization. In Proceedings of the IEEE International
Conference on Neural Networks, pages 1942–1948,
1995.

[12] M. Khodier and C. Christodoulou. Linear array ge-
ometry synthesis with minimum sidelobe level and null
control using particle swarm optimization.IEEE Trans-
actions on Antennas and Propagation, 53(8):2674–
2679, August 2005.

[13] R. Kumar. System and method for the use of an adap-
tive mutation operator in genetic algorithms, February
2010. Patent No US 7,660,773.

[14] K. Miettinen. Nonlinear Multiobjective Optimization,
volume 12 of International Series in Operations Re-
search and Management Science. Kluwer Academic
Publishers, Dordrecht, 1999.

[15] N. A. Moubayed, A. Petrovski, and J. A. W. McCall. A
novel smart multi-objective particle swarm optimisation
using decomposition. InPPSN (2), pages 1–10, 2010.

[16] J. A. Nelder and R. Mead. A Simplex Method for
Function Minimization.The Computer Journal, 7:308–
313, 1965.

[17] S. Pal, B. Qu, S. Das, and P. Suganthan. Optimal
synthesis of linear antenna arrays with multi-objective
differential evolution. Progress In Electromagnetics
Research B, 21:87–111, 2010.

[18] W. Peng and Q. Zhang. A decomposition-based multi-
objective particle swarm optimization algorithm for
continuous optimization problems. InIEEE Interna-
tional Conference on Granular Computing, 2008. GrC
2008, pages 534–537, 2008.

[19] Y. Rahmat-Samii and E. Michielssen, editors.Elec-
tromagnetic Optimization by Genetic Algorithms. John
Wiley & Sons, Inc., New York, NY, USA, 1st edition,
1999.

[20] G. V. Tsoulos. Adaptive Antennas for Wireless Com-
munications. Wiley-IEEE Press, Boca Raton, FL, USA,
2001.

[21] A. Udina, N. Martin, and L. Jain. Linear antenna array
optimisation by genetic means. InKnowledge-Based In-
telligent Information Engineering Systems, 1999. Third
International Conference, pages 505–508, December
1999.

[22] W.-C. Weng, F. Yang, and A. Elsherbeni. Linear
antenna array synthesis using taguchi’s method: A
novel optimization technique in electromagnetics.IEEE
Transactions on Antennas and Propagation, 55(3):723–
730, March 2007.

[23] S. Zapotecas Martı́nez and C. A. Coello Coello. A
Multi-objective Particle Swarm Optimizer Based on
Decomposition. InGECCO’2011, pages 69–76, Dublin,
Ireland, July 2011. ACM.

[24] Q. Zhang and H. Li. MOEA/D: A Multiobjective Evo-
lutionary Algorithm Based on Decomposition.IEEE
Transactions on Evolutionary Computation, 11(6):712–
731, December 2007.

[25] E. Zitzler and L. Thiele. Multiobjective Optimization
Using Evolutionary Algorithms – A Comparative Case
Study. In A. E. Eiben, editor,PPSN V, pages 292–301,
Amsterdam, September 1998. Springer-Verlag.

[26] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and
V. G. da Fonseca. Performance Assessment of Multi-
objective Optimizers: An Analysis and Review.IEEE
Transactions on Evolutionary Computation, 7(2):117–
132, April 2003.


