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Abstract. Recently, the Directed Search Method has been proposed as a point-wise
iterative search procedure that allows to steer the search, in any direction given
in objective space, of a multi-objective optimization problem. While the original
version requires the objectives’ gradients, we consider here a possible modifica-
tion that allows to realize the method without gradient information. This makes the
novel algorithm in particular interesting for hybridization with set oriented search
procedures, such as multi-objective evolutionary algorithms.

In this paper, we propose the DDS, a gradient free Directed Search method, and
make a first attempt to demonstrate its benefit, as a local search procedure within a
memetic strategy, by integrating the DDS into the well-known algorithm MOEA/D.
Numerical results on some benchmark models indicate the advantage of the result-
ing hybrid.

1 Introduction

Many real world problems demand for the concurrent optimization of k objectives
leading to a multi-objective optimization problem (MOP) [16]. One characteristic
of these problems, compared with those where only one objective is under con-
sideration, is that the solution set of a MOP (the Pareto set) typically forms a
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(k− 1)-dimensional object. So far, there exist many methods for the computation
of the Pareto set of a MOP. Among them, multi-objective evolutionary algorithms
(MOEAs) have caught the attraction of many researchers (e.g., [7, 6] and references
therein). The major reason for this might be that the population based approach,
together with a stochastic component in the search procedure, allows typically for
an approximation of the entire (global) Pareto set in one single run of the algo-
rithm. This represents an advantage over most mathematical programming (MP)
techniques, which require in addition certain smoothness assumptions on the MOP.
On the other hand, it is well-known that MOEAs normally need a large amount of
function evaluations, due to their slow convergence rate, in order to generate a suit-
able finite size approximation of the set of interest ([4]). As a remedy, researchers
have proposed memetic MOEAs, i.e., hybrids of MOEAs and MP with the aim to
get fast and reliable global search procedures (e.g., [9, 11, 10, 22, 14]).
In this paper, we adapt the Directed Search (DS) method [21] for the use within
MOEAs. One crucial drawback of the DS is that it requires gradient information
which restricts its usability. Here, we propose a modification of the DS that is gradi-
ent free. Even more, the computation of the search direction comes without the cost
of additional function evaluations if the neighborhood information can be exploited.
The latter makes the Discrete Directed Search (DDS) a suitable algorithm, in partic-
ular, for the usage within set oriented search techniques. We demonstrate the benefit
of the DDS by hybridizing it with MOEA/D ([24]), a state-of-the-art MOEA whose
neighborhood definition can be directly used for the DDS.
The remainder of this paper is organized as follows: In Section 2, we give the re-
quired background for the understanding of the sequel. In Section 3, we present the
DDS, a gradient free Directed Search variant. In Section 4, we propose a way to
integrate the DDS into MOEA/D leading to a new memetic algorithm. In Section 5,
we present some results, and finally, we draw our conclusions in Section 6.

2 Background

In the following we consider unconstrained multi-objective optimization problems
(MOPs) which can be stated as follows:

min
x∈�n

F(x), (1)

where F : R ⊂ �n →�
k is defined as the vector of k objective functions fi : R ⊂

�
n → �, i = 1, . . . ,k. A point x ∈ R is said to dominate another point y ∈ R, if

fi(x) ≤ fi(y) for all i ∈ {1, . . . ,k}, and if there exists an index j ∈ {1, . . . ,k} such
that f j(x)< f j(y). A point x∈ R is called optimal, or Pareto optimal, with respect to
(1), if there is no other point y ∈ R that dominates x. The set of all optimal solutions
is called the Pareto set, and the set of images of the optimal solutions is called the
the Pareto front.

Recently, a numerical method has been proposed for differentiable MOPs that
allows to steer the search from a given point into a desired direction d ∈ �k in
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objective space ([21]). To be more precise, given a point x ∈�n, a search direction
ν ∈�n is sought such that

lim
t↘0

fi(x0 + tν)− fi(x0)

t
= di, i = 1, . . . ,k. (2)

Such a direction vector ν solves the following system of linear equations:

J(x0)ν = d, (3)

where J(x) denotes the Jacobian of F at x. Since typically k << n, we can assume
that the system in Equation (3) is (highly) underdetermined. Among the solutions of
Equation (3), the one with the smaller 2-norm can be viewed as the greedy direction
for the given context. This solution is given by

ν+ := J(x)+d, (4)

where J(x)+ denotes the pseudo inverse of J(x) (we refer e.g. to [17] for an efficient
computation of ν+). If one proceeds the search in direction d in the same manner,
this is identical to the numerical solution of the following initial value problem
(starting from solution x0 ∈�n):

x(0) = x0 ∈�n

ẋ(t) = ν+(x(t)), t > 0
(5)

If d is a ‘descent direction’ (i.e., di ≤ 0 for all i = 1, . . . ,k and there exists an index
j such that d j < 0), a numerical solution of (5) can be viewed as a particular hill
climber for MOPs.

The endpoint x∗ of the solution curve of (5) does not necessarily have to be a
Pareto point, but it is a boundary point in objective space, i.e., F(x∗) ∈ ∂F(�n)
which means that the gradients of the objectives in x∗ are linear independent (and
hence, that rank(J(x∗))< k). This fact can be used to check numerically if a current
iterate is near to a boundary point: For the condition number of the Jacobian it holds

κ2(J(x)) =

√
λmax(J(x)T J(x))
λmin(J(x)T J(x))

→ ∞ for x→ x∗, (6)

where λmax(A) and λmin(A) denote the largest and the smallest eigenvalue of matrix
A, respectively. (Roughly speaking, the condition number indicates how ‘near’ the
rows of J(x), i.e., the gradients of the objectives, are to be linearly independent: the
higher the value of κ2(J(x)), the closer J(x) is to a matrix with rank less than k.)
Further, one can check the (approximated) endpoint x∗ numerically for optimality
by checking if ‖∑k

i=1 α̃i∇ fi(x∗)‖2 ≤ tol, where tol > 0 is a given tolerance and α̃
solves the following k-dimensional quadratic optimization problem (see [18]):
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min
α

⎧⎨
⎩
∥∥∥∥∥

k

∑
i=1

αi∇ fi(x)

∥∥∥∥∥
2

2

: αi ≥ 0, i = 1, . . . ,k,
k

∑
i=1

αi = 1

⎫⎬
⎭ (7)

The hill climber described above shares many characteristics with the one described
in [3], where also possible choices for d are discussed.

3 Gradient Free Directed Search

The key of the DS is to solve Equation (3) in order to find a vector ν such that
the search can be steered in d-direction. For this, the most expensive part might be
the computation or approximation of the objectives’ gradients. Here, we suggest an
alternative way to compute such search directions ν using a finite difference method
tailored to the given context. We note that this approach is not equal to the classical
finite difference approach used to approximate the gradient (e.g., [17]).

Assume we are given a candidate solution x∈�n and r search directions νi ∈�n,
i = 1, . . . ,r. Define the matrix F (x) ∈�k×r as follows:

F (x) := (〈∇ fi(x),ν j〉) i = 1, . . . ,k; j = 1, . . . ,r . (8)

That is, every entry mi j of F is defined by the directional derivative of objective fi in
direction ν j , mi j = ∇ν j fi(x). Crucial for the subsequent discussion is the following
result:

Proposition 1 Let x,νi, i = 1, . . . ,r ∈�n, λ ∈�r, and ν := ∑r
i=1λiνi. Then

J(x)ν = F (x)λ (9)

Proof. It is

F (x)λ =

⎛
⎜⎝
〈∇ f1(x),ν1〉 . . . 〈∇ f1(x),νr〉

...
...

...
〈∇ fk(x),ν1〉 . . . 〈∇ fk(x),νr〉

⎞
⎟⎠
⎛
⎜⎝
λ1
...
λr

⎞
⎟⎠ (10)

and

J(x)ν = J(x)(
r

∑
i=1

λiνi) =
r

∑
i=1

λi

⎛
⎜⎝
∇ f1(x)T

...
∇ fk(x)T

⎞
⎟⎠νi (11)

Hence, for the l-th component of both products it holds

(F (x)λ )l =
r

∑
i=1

λi〈∇ fl(x),νi〉= (J(x)ν)l , (12)

and the desired identity follows. ��
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Hence, in search for a direction ν , one can instead of Equation (3) try to solve
the following equation:

F (x)λ = d, (13)

and set

ν :=
r

∑
i=1

λiνi. (14)

Remark 1 Assume that we are given a candidate solution x0 ∈ �n and further r
points xi, i = 1, . . . ,r, in the neighborhood of x0 together with their function values
F(xi), i = 0, . . . ,r. Defining

ν j :=
x j− x0

‖x j− x0‖2
, t j := ‖x j− x0‖2, j = 1, . . . ,r, (15)

one can approximate the entries of F by finite differences as follows:

mi j = 〈∇ fi(x0),ν j〉= lim
t↘0

fi(x0 + tν j)− fi(x0)

t

≈ fi(x j)− fi(x0)

‖x j− x0‖2
, i = 1, . . . ,k, j = 1, . . . ,r.

(16)

Analog to the well-known forward differences to approximate the gradient, one can
show that the computational error is given by

〈∇ fi(x0),ν j〉=
fi(x j)− fi(x0)

‖x j− x0‖2
+O(‖x j− x0‖2). (17)

Note that, by this, the search direction can be computed without any additional
function evaluations.

Since it is ad hoc not clear if Equation (13) has a solution, and even if it is solvable,
how the condition of the problem is (in terms of κ2(F )), we have to investigate the
choice of r and the νi’s. For this, it is advantageous to write F (x) as follows:

F (x) = J(x)V, (18)

where V := (ν1, . . . ,νr) ∈�n×r is the matrix consisting of the search directions νi.
If rank(J(x)) = k (which is given for a non-boundary point x), it is known from
linear algebra that

rank(J(x)) = k ⇒ rank(F (x)) = rank(V ). (19)

If on the other hand x is a boundary point (and hence, rank(J(x))< k), then it follows
by the rank theorem of matrix multiplication that also rank(F (x)) < k regardless
of the choice of V (i.e., regardless of the number r and the choice of the search
directions νi.).
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This indicates that the condition number of F (x) can be used to check numeri-
cally if a current iterate is already near to an endpoint of (5). Equation (19) indicates
that the νi’s should be chosen such that they are linearly independent. If in addi-
tion the search directions are orthogonal to each other, a straightforward calculation
shows that

V orthogonal ⇒ κ2(F (x)) = κ2(J(x)). (20)

In that case, the condition number κ2(F (x)) can indeed be used as a stopping crite-
rion, analog to the original method described in Section 2. That is, one can stop the
iteration if for a current iterate xi it holds

κ2(F (xi))> tolκ , (21)

where tolκ >> 1 is a large number.

Example 1 Consider the following bi-objective model ([12]):

F :�n →�2

fi(x) = ‖x−ai‖2
2, i = 1,2,

(22)

where a1 = (1, . . . ,1)T ,a2 = (−1, . . . ,−1)T ∈�n. The Pareto set is given by the line
segment between a1 and a2, i.e.,

P = {x ∈�n : xi = 2α−1, i = 1, . . . ,k,α ∈ [0,1]} (23)

Let r = 2 and v1 := ei and v2 := e j, i 
= j, where ei denotes the i-th canonical vector.
Then, it is

F (x) =

(
xi−1 x j−1
xi +1 x j +1

)
(24)

It is det(F (x)) = 1/(2(xi− x j)), and hence,

det(F (x)) = 0 ⇔ xi = x j, (25)

by which it follows that it is rank(F (x)) = 2 for all x ∈ �n\B, where B := {x ∈
�

n : xi = x j} (note that P ⊂ B). Since B is a zero set in �n, the probability is one
that for a randomly chosen point x ∈�n the matrix F (x) has full rank, and hence,
that Equation (13) has a unique solution. To be more precise, it is ν = λ1ei +λ2e j,
where

λ = F−1(x)d =
1

det(F (x))

(
x j+1 −x j +1
−xi−1 x j−1

)(
d1

d2

)

=
1

2(xi− x j)

(
x j(d1−d2)+ d1 +d2

xi(d2−d1)−d1−d2

)
.

(26)

Note that this holds regardless of the number n≥ 2 of the parameter dimension.
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The above considerations show that already for r = k search directions νi,
i = 1, . . . ,r, one can find a descent direction ν̃ by solving Equation (13). However,
by construction it is ν ∈ span{ν1, . . . ,νk} which means that only a k-dimensional
subspace of the �n is explored in one step. One would expect that the more search
directions νi are taken into account, the better the choice of ν̃ is. This is indeed the
case: For r > k, we suggest to choose analog to (4)

ν(r)+ :=
r

∑
i=1
λiνi, where λ = F (x0)

+d (27)

The following discussion gives a relation between ν(r)+ and ν+ for non-boundary
points x for the case that the νi’s are orthonormal: It is

ν+ = J+(x)d = J(x)T (J(x)J(x)T )−1d (28)

and

λ = F (x)+d =V T J(x)T (J(x)VV T︸︷︷︸
I

J(x)T )−1d

=V T J(x)T (J(x)J(x)T )−1d︸ ︷︷ ︸
ν+

=V Tν+
(29)

and hence

ν(r)+ =
r

∑
i=1
λiνi =

r

∑
i=1
〈νi,ν+〉νi (30)

For instance, when choosing νi = e ji , Equation (30) gets simplified:

ν(r)+ =
r

∑
i=1

ν+, ji e ji , (31)

i.e., ν(r)+ has only r entries which are identical to the corresponding entries of ν+.

In both cases ν(r)+ gets closer to ν+ with increasing number r and for r = n it is

ν(r)+ = ν+.

Remark 2 We would like to stress that this approach is intended for multi-objective
optimization problems (i.e., k > 1). For the special (and important) case of scalar
optimization (i.e., k = 1), the present approach is of very limited value as the fol-
lowing discussion shows: For r = k = 1, Equation (13) reads as

〈∇ f (x),ν1〉λ = d (32)

Concrete values for the desired direction d in image space are hard to find. If it
is e.g. desired to obtain improvements of the objective f , one may choose (after
normalization) d = −1. Assuming that 〈∇ f (x),ν1〉 
= 0, Equation (32) leads then
(again after normalization) to
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λ =

{
−1 if 〈∇ f (x),ν1〉> 0

1 if 〈∇ f (x),ν1〉< 0
(33)

and thus to ν ∈ {ν1,−ν1}. However, this does not bring any new insight: It is well-
known that the descent cone of f at x is given by

C(x) := {ν ∈�n : 〈∇ f (x),ν〉 < 0}, (34)

and hence, it is under the above assumption on ν1 either ν1 ∈C(x) or −ν1 ∈C(x).

Finally, we state the Discrete Directed Search (DDS) which is simply a line search

along the search direction ν(r)+ (see Algorithm 1). For an efficient step size control
we refer to [15].

Algorithm 1 Discrete Directed Search (DDS)
Require: Initial solutions x0,x1, . . .xr ∈�n

Ensure: New candidate solution xnew

1: compute ν(r)+ as in Eq. (27).
2: compute t ∈�+

3: xnew := x0 + tν(r)+

4 Integration of DDS into MOEA/D

Here we show the potential of the DDS as local search engine within the state-
of-the-art method MOEA/D [24]. The philosophy behind this MOEA consists of
employing a decomposition approach, to convert the problem of approximating the
Pareto front into a certain number of scalar optimization problems (SOPs). We stress
that MOEA/D is indeed particularly attractive to be combined with the DDS proce-
dure. Two important reasons for this are (a) MOEA/D has an implicit neighborhood
structure, imposed by the particular decomposed problems, and (b) there is a weight
vector associated to each subproblem, and to each individual.

In this sense, DDS can take advantage of (a) to avoid the computation of the

neighbors used to estimate the search direction ν(r)+ ; also, no extra function eval-
uations are necessary, which makes the computation of the search direction an ef-
fortless procedure—in terms of function evaluations. In other words, given a point
x ∈�n, if some neighbors of x1, . . . ,xr are already evaluated, the computation can
be done without any additional function evaluations. In general, memetic MOEAs
which use gradient-based information have already proven their efficacy on several
MOPs [14, 3], but the cost of estimating the first order information has been always
an issue.

From a practical point of view, the reason (b) allows us to automatically identify
which is the individual with the best fitness associated with each subproblem; and
establishing, in this manner, a relationship with the corresponding weight vector
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for the movement performed by DDS. Furthermore, DDS also takes advantage that
MOEA/D already has a computed reference point for the decomposed problems. In
this sense, once the individual p is chosen to be affected by the local search, the
values for di in the DDS are already set for p (according with its corresponding
decomposed MOEA/D subproblem).

How to apply the local search is one of the main issues when designing memetic
algorithms. Two important parameters have been identified [8, 13] as crucial when
controlling the local search application on memetic MOEAs. They are:

(i) The frequency kls for application of the local search along the total amount of
generations.

(ii) The number of elements hls, from the population, to which the local search is
applied each generation.

Algorithm 2 describes the coupling of DDS and MOEA/D. The notation regarding
MOEA/D procedures and parameters is consistent with the one presented in [24].
The SOP regarding the decomposition was, in this case, taken by the Tchebycheff
approach as:

minimize gte(x|λ ,z∗) = max
1≤i≤m

{λi| fi(x)− z∗i } (35)

where z∗, such that z∗i = min{ fi(x)|x ∈ P0}, is the reference point; and the direction
di for the application of DDS to the individual xi is set as di = λi− z∗.

Algorithm 2 MOEA/D/DDS
1: Set the weight vectors λi and the neighborhoods B(i) = {i1, . . . , iT } for each

decomposed problem (λi1 , . . . ,λiT are the T closest weight vectors to λi).
2: Initialize an initial population P0 = {x1, . . .xN}.
3: Initialize the reference point z∗, EP = /0, gen = 1.
4: repeat
5: for i = 1, . . . ,N do
6: Select two indexes k, l from B(i) and generate, using genetic operators, a new

solution y from xk and xl .
7: Apply the subproblem improvement heuristic for each y in order to get y′

(Eq. 35).
8: if mod(gen,kls) == 0 and mod(i,hls) == 0 then
9: Apply DDS to y′, in order to get y′′.

10: Set y′ ← y′′.
11: end if
12: Update the reference point z∗.
13: Remove from EP all the vectors dominated by y′ and add it if no vectors in EP

dominate y′.
14: end for
15: gen = gen+1.
16: until Stopping criteria is satisfied
17: report EP.
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5 Numerical Results

In this section we show some results of the MOEA/D/DDS for the computation of
Pareto fronts as well as of the DS in the context of a particular control problem.

5.1 Comparison MOEA/D and MOEA/D/DDS

Since we have chosen MOEA/D as base MOEA, it seems reasonable to test over
the CEC09 benchmark [27]. For this, we adapted the available code from a specific
version of MOEA/D [25], which was tested for performance with remarkable results
over this particular test suite [26]. Differences of this code and the MOEA/D original
version are that this modification allows the computational effort to be distributed
among the subproblems based on an utility function πi defined for each subproblem.

The main parameters for MOEA/D were set according to Table 1, and for the
DDS we have chosen r = 5. We stop the computations after 30,000 function eval-
uations, which represents the 10% of the budget originally allowed by the compe-
tition. Figure 1 presents plots that show that the Pareto front has been reached, by
the MOEA/D/DDS using this reduced budget. Finally, the parameters related to the
control for application of the local search are presented in Table 2. As performance
indicators to compare the results of the different algorithms we have chosen to take
the Generational Distance (GD, see [23]), the Inverted Generational Distance (IGD,
see [5]), the averaged Hausdorff Distance Δ1 (see [19, 20]) which is in fact the max-
imum of the GD and the IGD value, and the Hypervolume indicator (HV, see [28]).
From Figure 1 and Table 3 it becomes clear that the new hybrid is outperforming its
base MOEA in three out of four cases. For UF2, the indicator values of MOEA/D
are slightly better, however, there is no clear winner.

Table 1 Parameters setting for MOEA/D in this experiments

Identifier Value Description
N 600 The number of subproblems considered
T 0.1 N Size of the neighborhood
Pm 1/n Mutation rate
EP 100 Number of final solutions (external population)

Table 2 Parameters setting for the memetic part

Identifier Value Description
kls (0.15) tg Local search application frequency;

tg is the total number of generations.
hls (0.1) N Percentage of the population over which the

local search is applied.
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Fig. 1 Numerical results for MOEA/D (crosses) and MOEA/D/DDS (circles) on the bench-
mark models UF1 to UF4 (compare also to Table 3). The true Pareto fronts are indicated by
the dotted lines.

Table 3 Indicator values obtained by MOEA/D and MOEA/D/DDS on the benchmark mod-
els UF1 to UF4. The budget for the function evaluations was set to 30,000. The information
was gathered by 10 independent runs.

Indicators
Problems GD IGD Δ1 HV

UF1
MOEA/D
MOEA/D/DDS

0.0696046570
0.0415884479

0.0709107497
0.0400041235

0.0736649773
0.0422788829

0.9431136545
0.9619027643

UF2
MOEA/D
MOEA/D/DDS

0.0261457333
0.0323564751

0.0195839746
0.0151025484

0.0261457333
0.0323564751

0.9757865917
0.9645998451

UF3
MOEA/D
MOEA/D/DDS

0.1459679411
0.0552610854

0.1307335754
0.0537723289

0.1520909424
0.0616385221

0.8604675543
0.9608503276

UF4
MOEA/D
MOEA/D/DDS

0.0823081769
0.0472797997

0.0871159952
0.0472797997

0.0871159952
0.0478409975

0.9206159284
0.9498433991
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5.2 A Control Problem

The skill of the DS is to steer the search into any direction in objective space. This
can be used for Pareto front computations as seen above, however, may also have
other applications as the following discussion shows. In [1], robustness of optimal
solutions to MOPs subject to physical deterioration has been addressed. The prob-
lem posed in that study involves the need to steer the decorated performances (due
to undesired changes in some design parameters) as close as possible to the origi-
nal performances. In order to elucidate this demand for robustness, consider a two
parameter bi-objective design space (i.e., n = k = 2). Assume Figure 2 shows four
optimal solutions, and that the performance vector designated by the bold circle is
the decision makers selected solution (denote by x∗). Now suppose that due to wear,
one of the design parameters associated with that solution, changes (say x1). This
will cause the performances to deteriorate (see the triangle in both panels). Now sup-
pose that there is a way to actively change the remaining parameter x2 by actively
controlling its value. If this is done properly, the performances might be improved
to new performance vectors (designated in the figures by squares). The way the de-
teriorated performances are steered (controlled) as close as possible to the original
location, has been termed in [1] as ‘control in objective space’. In [1] the control
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Fig. 2 Hypothetical two dimensional bi-objective design problem

problem has been defined as a regulative control problem, and a proportional con-
troller has been used to update the optimal solution in time. Note, however, that
since optimality is defined in objective space, the DS (or DDS) can be used to ac-
complish this task: The direction di is simply the difference of performance of the
desired solution and the performance of the actual performance at the (deteriorated)
point xi, i.e., di = F(x∗)−F(xi).
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To illustrate the performance of the suggested control scheme, we choose the
quadratic bi-objective problem

F :�15 →�2

F(x) = (‖x−a1‖2
2,‖x−a2‖2

2),
(36)

where a1 = (1, . . . ,1) and a2 = (−1, . . . ,−1). For the decision space we choose
n = 15 whereof three parameters deteriorate (x1, x2, and x3) and the rest can be con-
trolled. The results for the handling of the DDS controller with the above problem
are depicted in Figure 3 (a). The solid line represents the initial Pareto front. The
circle is the performance of the initial design. The performance after deterioration
occurs is marked with triangles. Since some design variables have deteriorated, the
Pareto front has changes in time. The deteriorated Pareto front in every time step
is marked with a dashed line. The final state of the DDS controlled performance
is marked with a black square, while the trajectory is marked with smaller gray
squares. Note that the trajectory is going along the Pareto optimal front, and stops
when the error is minimal. Figure 3 (b) depicts the performance of the deteriorated
product with and without the DDS controller. The uncontrolled performance is de-
scribed with triangles and the controlled one with squares.

We note that this result has been obtained by using the classical DS, however,
from this we conclude that the DDS might be an alternative choice for models where
no gradient information is at hand. We leave this for future research.
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Fig. 3 Result of the DS approach to the control problem
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6 Conclusions

In this paper, we have modified the Directed Search Method, a point-wise iterative
search procedure that allows to steer the search into any direction given in objective
space of a given MOP. The resulting algorithm, DDS, allows to perform similar iter-
ations as its original, however, without using gradient information but by exploiting
the neighborhood information in order to find a suitable search direction. The latter
makes the new algorithm in particular interesting for set oriented search procedures
such as MOEAs. Here, we have made a first attempt to demonstrate this by inte-
grating the DDS into MOEA/D. Comparisons on some benchmark functions have
shown the benefit of such a hybridization.

For future work, the development of more efficient memetic strategies as the one
proposed in this paper is an interesting topic which will call for a more sophisticated
interplay of local and global search. Also, the adaption of the DDS to higher dimen-
sional problems seems to be very interesting. Note that the choice of the number of
test points near a solution x0 that have to be chosen in order to find a search direction
merely depends on the number of objectives involved in the MOP, and not on the
dimension of the parameter space. Finally, we intend to utilize the DS/DDS in other
applications, e.g., in the context of changing market demands as described in [2].
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