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Abstract—In recent years, the development of selection mecha-
nisms based on performance indicators has become an important
trend in algorithmic design. Hereof, the hypervolume has been
the most popular choice. Multi-objective evolutionary algorithms
(MOEAs) based on this indicator seem to be a good choice
for dealing with many-objective optimization problems. However,
their main drawback is that such algorithms are typically com-
putationally expensive. This has motivated some recent research
in which the use of other performance indicators has been
explored. Here, we propose an efficient mechanism to integrate
the R2 indicator to a modified version of Goldberg’s non-
dominated sorting method, in order to rank the individuals of a
MOEA. Our proposed ranking scheme is coupled to two different
search engines, resulting in two new MOEAs. These MOEAs are
validated using several test problems and performance measures
commonly adopted in the specialized literature. Results indicate
that the proposed ranking approach gives rise to effective
MOEAs, which produce results that are competitive with respect
to those obtained by three well-known MOEAs. Additionally, we
validate our resulting MOEAs in many-objective optimization
problems, in which our proposed ranking scheme shows its main
advantage, since it is able to outperform a hypervolume-based
MOEA, requiring a much lower computational time.

I. INTRODUCTION

Multiobjective Evolutionary Algorithms (MOEAs) based
on Pareto Dominance (PD) have been successfully used to
solve problems with two or three objectives, for several years.
However, it is well-known that, as the number of objectives
increases, the proportion of non-dominated solutions increases
in an exponential way [1]–[3]. Therefore, very quickly, it
becomes impossible to distinguish individuals for selection
purposes and the selection pressure dilutes, since we are
practically selecting solutions in a random way.

To overcome this shortcoming in the fitness assignment pro-
cess [4], the evolutionary multiobjective optimization (EMO)
community has developed several approaches that drive the
search using a quality assessment indicator. This idea has
become more popular in the last few years, mainly because of
the growing interest in tackling multi-objective problems hav-
ing 4 or more objectives (commonly called “many-objective
optimization problems”), for which indicator-based MOEAs
seem to be particularly suitable [5]. When using indicator-
based selection, the idea is to identify the solutions that
contribute the most to the improvement of the performance
indicator adopted in the selection mechanism.

The most general version of an algorithm of this sort is the
Indicator Based Evolutionary Algorithm (IBEA) proposed by
Zitzler and Künzli [6]. In this case, the original problem is re-
placed by the minimization or maximization of a performance
indicator. The authors proposed two different versions, one
using the Hypervolume [7], and another one adopting the ε-
indicator. In this work, the authors showed that with the use of
an indicator to rank the solutions, the algorithm did not require
any additional diversity preservation mechanism. Beume et al.
proposed the S Metric Selection Evolutionary Multi-Objective
Algorithm (SMS-EMOA) [8]. This algorithm uses the NSGA-
II’s selection procedure. However, the authors replaced the
Crowding Distance with the Hypervolume indicator. Ishibuchi
et al. proposed an approach divided in two phases [9]. In
the first phase, each objective is optimized separately, while
in the second phase, the algorithm searches for the solution
with more contribution to the Hypervolume indicator. This
approach was designed to search for a small number of non-
dominated solutions along the entire Pareto front. Igel et al.
proposed the Multi-Objective Covariance Matrix Adaptation
Evolution Strategy (MO-CMA-ES) [10]. This algorithm uses
a set of single-objective optimizers as its population. Each
optimizer generates new solutions that can be accepted back
into the population according to two criteria: 1) their ranking
according to PD, or 2) their contribution to the Hypervolume.
This work reveals that MO-CMA-ES is reliable and is faster
than the standard CMA-ES.

As it turns out, the Hypervolume has become the most
popular choice for implementing indicator-based MOEAs,
mainly because of its nice theoretical properties [8]. The use of
the Hypervolume raises, however, some issues, since it is very
expensive (computationally speaking), and its computational
cost considerably increases as we increase the number of
objectives. One choice is to approximate the hypervolume
(see for example [5]). Although this sort of scheme can
considerably reduce the computational cost of the ranking
process, one would expect that this will also decrease (per-
haps in a significant manner) the accuracy of the selection
mechanism. Rodriguez-Villalobos et al. recently proposed the
DDE (∆p-Differential Evolution) [11] in which the authors
adopted another performance indicator as an alternative to
the Hypervolume. In this approach, the ∆p indicator [12] is
adopted. The fitness assignment for each solution is performed



through the contribution to ∆p. The ∆p indicator requires a
reference set to be calculated, and the authors used the nadir
point and the ideal vector to create such a reference set. The
authors reported that this approach could obtain competitive
results with respect to other MOEAs (including SMS-EMOA),
having as its main advantage its very low computational cost,
even when dealing with many-objective problems.

Recent works [13, 14] have reported another suitable per-
formance indicator: R2 [15]. This performance indicator has
desirable properties (i.e., it is weakly monotonic, it produces
well-distributed solutions and it can be computed in a fast
manner) that make it a viable candidate to be used into
an indicator-based MOEA. These works also compare the
behavior of R2 with respect to that of the Hypervolume, and
conclude that they behave in a similar way, but R2 has a
considerably lower computational cost.

In this work, we propose to use the R2 indicator to rank the
individuals of a MOEA. The proposed approach is embedded
into two different algorithms (a Genetic Algorithm and Dif-
ferential Evolution). The new algorithms are then compared
with respect to some state-of-the-art MOEAs taken from the
specialized literature. Furthermore, we present a scalability
study to analyze the behavior of our proposed approach as the
number of objectives of the problem increases. The remainder
of this work is organized as follows. Details of the R2 indica-
tor are given in Section II. Section III presents our proposed
ranking method as well as the two new resulting MOEAs1. A
comparative study with respect to other algorithms is presented
in Section IV. Finally, our conclusions and some possible paths
for future work are provided in Section V.

II. R2 INDICATOR

The family of R indicators [15] is based on utility functions
which map a vector ~y ∈ Rk to a scalar value u ∈ R in order
to measure the quality of two approximations of the Pareto
front.

Definition 1: For a set U of utility functions, a probability
distribution p on U , and a reference set R, the R2 indicator
of a solution set A is defined as:
R2(R,A,U, p) =

∫
u∈U

max
r∈R
{u(r)}p(u)du−

∫
u∈U

max
a∈A
{u(a)}p(u)du (1)

Definition 2: For a discrete and finite set U and a uniform
distribution p over U , the R2 indicator can be defined as [16]:

R2(R,A,U) =
1

|U |
∑
u∈U

(
max
r∈R
{u(r)} −max

a∈A
{u(a)}

)
(2)

Since the first summand (maxr∈R{u(r)}) is constant if we
assume a constant R, the first summand can be deleted in order
to have a unary indicator as a result (called R for simplicity)
[14].

Definition 3: For a constant reference set, the R2 indicator
can be defined as a unary indicator as follows:

R2(A,U) = − 1

|U |
∑
u∈U
{u(a)} (3)

1The source code of these approaches is available for download from http:
//www.tamps.cinvestav.mx/∼adiazm/

We use the Tchebycheff function as our utility function
in our approach. This function works well when optimizing
different types of Pareto fronts. It is worth noting that this
aggregation function is not smooth for continuous multi-
objective problems. However, our algorithm does not need
to compute the derivative of the aggregation function. The
Tchebycheff function can be defined as u(z) = uλ(~z) =
−maxj∈{1,...,k} λj |z∗j − zj | where λ = (λ1, . . . , λk) ∈ Λ is a
weight vector and z∗ is an utopian point2.

Definition 4: The R2 indicator of a solution set A for a
given set of weight vectors Λ and a utopian point z∗ is defined
as:

R2(A,Λ, z∗) =
1

Λ

∑
λ∈Λ

min
a∈A
{ max
j∈{1,...,k}

{λj |z∗j − aj |}} (4)

Definition 5: Finally, we say that the contribution of one
solution a ∈ A to the R2 indicator can be defined as:

CR2(a,A,Λ, z∗) = R2(A,Λ, z∗)−R2(A\{a},Λ, z∗) (5)

III. OUR PROPOSED APPROACH

It is well known that Goldberg’s non-dominated sorting
scheme [17] has been adopted in a number of MOEAs (includ-
ing indicator-based algorithms). It is worth noting, however,
that the integration of this sort of scheme with an indicator-
based selection mechanism can lead to very expensive algo-
rithms (computationally speaking). Therefore, we decided to
completely remove Pareto dominance of this sorting approach
and replace it by the R2 indicator. The idea of this change
was to produce a computationally efficient algorithm, particu-
larly when dealing with many-objective problems. Below, we
explain the procedure adopted to identify the solutions that
contribute the most to R2.

A. Fast R2 Sorting Approach

Notwithstanding the straightforward way to compute the
contribution of a solution a ∈ A to R2 (where A is the
approximated Pareto front) is the issue of how to measure
R2 for A and then remove the solution a from A evaluating
only the new value of the indicator R2 (this is known as
the contribution of a). This is, indeed a computationally
expensive procedure. Therefore, we looked for an alternative
mechanism. First, we identify the individuals that contribute
the most to the performance indicator. The R2 indicator relies
on weight vectors, and the approach consists in computing the
contribution of each weight vector λ ∈ Λ to R2 as follows:

CR2
λ = min

a∈A
{ max
j∈{1,...,k}

{λj |z∗j − aj |}} (6)

Since
∑
λ∈Λ

CR2
λ is equal to the R2 indicator, it is possi-

ble to identify which solutions contribute the most to R2,
considering that it is also possible to obtain the individual

2An objective vector that is not dominated by any feasible search point



which contributes to each CR2
λ . Thus, an individual will have a

contribution equal to the sum of the CR2
λ where the individual

contributes. These findings led us to propose a pseudocode to
compute the contribution of each solution to the indicator R2
which is shown in Algorithm 1 .

Algorithm 1 CR2(A,Λ, z∗)
Input: A Approximated Pareto front
Output: C Contributions of the |A| solutions
∀a ∈ A : Ca = 0
for λ ∈ Λ do

[C
R2
λ a] = min

a∈A
{ max
j∈{1,...,k}

{λj |z∗j − aj |}}

{a is the solution which contributes to CR2
λ }

Ca = Ca + CR2
λ

end for

Having the contribution of each individual to the R2 indi-
cator, we can easily rank the individuals with respect to these
contributions. However, it is important to notice that, since
we can have individuals with zero contribution to R2, then
it is also possible to have fewer solutions than those needed
to complete the required population size. In order to deal
with this problem, we decided to adopt the notion of layers.
The general idea of the proposed approach is the following:
first, we apply the R2 indicator to the population. Then, we
identify and isolate the individuals with a contribution greater
than zero. These individuals will form our first layer (rank
1). Then, we apply again the R2 indicator to the remainder of
the population (to those individuals that have a contribution of
zero in the previous step), identifying and isolating again the
individuals with a contribution greater than zero, and assigning
them the next ranks. This process is repeated until the entire
population obtains a rank. This approach is called the Fast R2
Sorting or R2ranking for short.

B. Proposed MOEAs

The algorithm begins with an initial population size of N .
This population is randomly initialized. The utopian point
is formed with respect to the best obtained values for each
objective (of this initial population). Since, in order to compute
the R2 indicator, it is necessary to have a set of uniformly
distributed weight vectors, we randomly initialized the weight
vectors in such a way that the sum of each weight vector is
equal to one 3. The weights are changed at each iteration of the
algorithm. After new solutions are generated through variation
operators, the utopian point is updated. The actualization of the
utopian point consists in verifying, for each newly evaluated
solution, if they have an objective value better than the current
utopian point. Finally, the Fast R2 Sorting approach is exe-
cuted in order to select the best N solutions that will constitute
the next generation. This is the general structure for our R2-
based MOEA’s proposals. We show the pseudocode of our
general MOEA in Algorithm 2. Two different approaches are
derived from this general MOEA. The first approach resembles
a genetic algorithm similar to the NSGA-II since it uses its
same variation operators: Simulated Binary Crossover (SBX)

3The random weights vector was generated as in MOMHLib++ [18]

[19] and Polynomial-based Mutation [20]. This approach is
called R2-MOGA. The second approach uses the Differential
Evolution recombination operator to generate solutions, fol-
lowing the DE/rand/1/bin model [21]. This approach is called
R2-MODE.

Algorithm 2 R2-MOEA
Input: Iters - Number of iterations, |Λ| - Number of weight vectors, N - Size of the

population, k - Number of objectives
Output: PIters
P1 - Initialize population of size N
z∗ ⇐ Upgrade utopian point(P1)
for i = 1 a Iters do

Λ⇐ Generate Weights Vectors(Λ, k)(Generate |Λ| weight vector of size k)
Q⇐ New Solutions(Pi)
z∗ ⇐ Upgrade utopian point(Q)
Pi+1 ⇐ R2ranking(Pi ∪ Q,N,Λ, z∗)(Ranking with R2ranking and
choose the best N to advance to the next generation)

end for

IV. PERFORMANCE ASSESSMENT

The proposed approaches were evaluated using 13 test func-
tions. Five functions were taken from the Zitzler-Deb-Thiele
(ZDT) test suite [22], four functions were taken from the
Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [23] and the
remaining were taken from the Walking-Fish-Group (WFG)
test suite [24]. The main features of these test problems are
shown in Table I.

Test problem # of decision variables # of objectives
ZDT1-3 30 2
ZDT4,6 10 2
DTLZ1 7 3
DTLZ2-4 12 3
WFG1-4 24 3

TABLE I
TEST PROBLEMS ADOPTED

In order to assess the performance of the proposed ap-
proaches, we decided to take two performance measures from
the specialized literature.

1) Hypervolume (HV ). HV computes the area covered
for all the solutions in the approximated Pareto front
Q with the help of a reference point W . Equation (7)
shows the mathematical definition of HV .

HV = volume(

|Q|⋃
i=1

vi) (7)

where, for each solution i ∈ Q, a hypercube vi is
constructed using the reference point W . Therefore, HV
is the union of the volume of all the hypercubes.

2) Two set coverage (C(A,B)). This indicator computes
the proportion of solutions in B which are dominated
for the solutions in A. Equation (8) refers to the math-
ematical definition of the two set coverage.

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(8)



A value of C(A,B) = 1 indicates that all the solutions
in B are dominated by any solution in A. Moreover, a
value of C(A,B) = 0 indicates that there does not exist
any solution in B which is dominated by any solution
in A.

We decided to perform two experiments in order to evaluate
the effectiveness of our proposals. The first experiment con-
sists of evaluating the performance of our MOEAs when deal-
ing with problems having two and three objectives. However,
since two- and three-objectives problems have been widely
studied and we think that many-objective problems will be the
strength of our approaches, we only expect to have competitive
results with respect to other approaches which are representa-
tive of the state-of-the-art, in this case. The second experiment
is focused on evaluating the performance of our MOEAs
in many-objective problems. For this sake, we decided to
compare our results with respect to one of the most successful
indicator-based approaches currently available: SMS-EMOA.

A. Experiment 1 (two and three objectives)

In order to make a comparative study we chose the three
following approaches: 1) NSGA-II (this is, by far, the most
popular Pareto-based MOEA), 2) MOEA/D (a more recent
MOEA, based on decomposition, which has been found to be
more effective than NSGA-II in a number of problems), and
3) SMS-EMOA (this is perhaps the most popular indicator-
based MOEA in use today). All these MOEAs adopted a
population size of 100 (except for MOEA/D in problems with
3 objectives where the population size was of 105) and ran for
200 generations for problems with 2 objectives and ran for 300
generations for problems with 3 objectives. The only exception
was DTLZ3 for which the number of generations was set to
1000 (due to the difficulty of this problem). The remainder
parameters for each algorithm were the ones suggested by
their authors. Table II summarizes the parameters adopted in
our comparative study. Finally, in order to have more confident
results, each MOEA was executed 30 times.

NSGA-II MOEA/D SMS-EMOA R2-MOGA R2-MODE
pc = 1.0 pc = 1.0 pc = 1.0 pc = 1.0 F=0.5
pm = 1

|n| pm = 1
|n| pm = 1

|n| pm = 1
|n| CR=0.5

nc = 15 nc = 15 nc = 15 nc = 15
nm = 15 nm = 20 nm = 20 nm = 20

T = 20

TABLE II
ADOPTED PARAMETERS FOR EACH MOEA

The application of the Hypervolume performance measure
to the results obtained by the five approaches is shown in
Table III. From these results, it is easy to see that all the
approaches behaved similarly. The NSGA-II slightly outper-
formed the others for the ZDT test problems. However, this
approach did not behave well when optimizing the three-
objective test problems. In the DTLZ test problems, SMS-
EMOA outperformed the other approaches, while our pro-
posed R2-MODE behaved reasonably well in DTLZ4, WFG1

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
A=NSGA-II, B=R2-MOGA

C(A,B) 0.438 0.482 0.966 0.509 0.164
C(B,A) 0.513 0.601 0.113 0.877 0.985

A=MOEA/D, B=R2-MOGA
C(A,B) 0.840 0.960 0.800 0.002 0.999
C(B,A) 0.142 0.134 0.047 0.985 0.037

A=SMS-EMOA, B=R2-MOGA
C(A,B) 0.830 0.873 0.989 0.529 0.006
C(B,A) 0.114 0.132 0.031 0.793 0.985

A=NSGA-II, B=R2-MODE
C(A,B) 0.064 0.130 0.853 0.847 0.000
C(B,A) 0.776 0.865 0.224 0.819 0.980

A=MOEA/D, B=R2-MODE
C(A,B) 0.484 0.870 0.711 0.832 0.000
C(B,A) 0.357 0.168 0.090 0.996 0.870

A=SMS-EMOA, B=R2-MODE
C(A,B) 0.324 0.542 0.939 0.847 0.000
C(B,A) 0.436 0.398 0.066 0.822 0.977

TABLE IV
COMPARISON OF THE RESULTS OBTAINED BY NSGA-II, MOEA/D AND

SMS-EMOA VS. R2-MOGA AND R2-MODE USING THE TWO SET
COVERAGE PERFORMANCE MEASURE FOR THE ZDT TEST SUITE:

C(A,B)=% OF SOLUTIONS IN B DOMINATED BY A

and WFG2. In this experiment, our proposed R2-MOGA
proposal did not outperform any of its contenders. However,
its results are competitive with respect to the results obtained
by the other algorithms.

Since performing a visual comparison can also be helpful
sometimes, we decided to plot the median of the executions
with respect to the Hypervolume performance measure. The
obtained Pareto fronts are shown in Figures 1 and 2. From
these figures, it can be noticed that our proposals did not
completely cover the true Pareto front of some test problems
(ZDT{2,3,4,6} and WFG{3,4}). However, that is not a prob-
lem related to our implementations, but to the R2 performance
indicator itself. As Brockoff et al. [14] have stated, the R2
indicator has a tendency towards the knee of the Pareto front.
However, and although this condition has a negative impact
in our results, our approaches remained competitive with
respect to the Hypervolume performance measure. In ZDT4
and WFG1, our R2-MODE had problems to converge to the
true Pareto front. However, our proposed R2-MOGA achieved
a good convergence. This led us to hypothesize that the main
problems are caused by the search engine and not by the
ranking method.

Thus, we decided to adopt a second performance measure so
that we could be able to reach more general conclusions. Two
Set Coverage is a binary performance measure that has been
widely used in the specialized literature. Tables IV and V show
the results of the applications of this performance measure to
the algorithms’ outputs. The results show that SMS-EMOA
outperformed our R2-MODE in the test problems with three
objectives. However, our R2-MOGA remained competitive.

B. Experiment 2 (many-objective problems)

Since one of the aims of using an indicator-based MOEA is
its capability to perform well in the presence of many objective



Problem NSGA-II MOEA/D SMS-EMOA R2-MOGA R2-MODE
ZDT1 120.642±0.00 120.331±0.46 120.617±0.01 120.097±0.15 120.221±0.18
ZDT2 120.275±0.01 119.903±0.78 120.239±0.03 119.622±0.22 119.899±0.23
ZDT3 128.642±0.59 128.629±0.58 128.751±0.00 128.250±0.24 128.420±0.18
ZDT4 120.317±0.40 118.436±1.36 117.643±1.65 119.778±0.56 117.931±1.88
ZDT6 116.092±0.04 117.377±0.04 115.945±0.11 115.818±0.13 115.929±0.13
DTLZ1 0.168±0.04 0.184±0.00 0.189±0.00 0.182±0.00 0.185±0.00
DTLZ2 0.694±0.01 0.710±0.00 0.740±0.00 0.712±0.00 0.729±0.00
DTLZ3 0.693±0.01 0.705±0.00 0.741±0.00 0.715±0.01 0.730±0.00
DTLZ4 0.644±0.15 0.712±0.00 0.654±0.16 0.715±0.05 0.722±0.01
WFG1 14.693±3.35 7.987±0.96 19.756±1.46 17.212±3.04 24.670±1.44
WFG2 34.009±4.14 31.783±3.13 36.220±4.64 33.937±4.21 44.031±3.18
WFG3 5.018±0.04 4.613±0.19 5.054±0.03 3.983±0.27 4.702±0.14
WFG4 15.220±0.81 20.469±0.15 22.947±0.27 19.203±0.33 19.780±0.34

TABLE III
COMPARISON OF THE RESULTS OBTAINED BY NSGA-II, MOEA/D, SMS-EMOA, R2-MOGA AND R2-MODE WITH RESPECT TO THE HYPERVOLUME

PERFORMANCE MEASURE, FOR THE ZDT, DTLZ AND WFG TEST SUITES

DTLZ1 DTLZ2 DTLZ3 DTLZ4 WFG1 WFG2 WFG3 WFG4
A=NSGA-II, B=R2-MOGA

C(A,B) 0.002 0.062 0.029 0.109 0.402 0.035 0.027 0.030
C(B,A) 0.397 0.323 0.219 0.376 0.821 0.503 0.617 0.327

A=MOEA/D, B=R2-MOGA
C(A,B) 0.004 0.040 0.028 0.053 0.000 0.064 0.041 0.104
C(B,A) 0.028 0.000 0.018 0.000 1.000 0.494 0.696 0.026

A=SMS-EMOA, B=R2-MOGA
C(A,B) 0.034 0.138 0.118 0.206 0.454 0.153 0.134 0.107
C(B,A) 0.002 0.065 0.017 0.094 0.220 0.146 0.229 0.108

A=NSGA-II, B=R2-MODE
C(A,B) 0.028 0.107 0.108 0.159 0.411 0.030 0.105 0.192
C(B,A) 0.386 0.275 0.150 0.277 0.049 0.287 0.637 0.182

A=MOEA/D, B=R2-MODE
C(A,B) 0.024 0.068 0.049 0.085 0.000 0.037 0.075 0.330
C(B,A) 0.231 0.000 0.294 0.000 1.000 0.258 0.639 0.004

A=SMS-EMOA, B=R2-MODE
C(A,B) 0.085 0.155 0.197 0.234 0.502 0.113 0.369 0.469
C(B,A) 0.006 0.110 0.034 0.046 0.003 0.073 0.134 0.103

TABLE V
COMPARISON OF THE RESULTS OBTAINED BY NSGA-II, MOEA/D AND SMS-EMOA VS. R2-MOGA AND R2-MODE USING THE TWO SET

COVERAGE PERFORMANCE MEASURE FOR THE DTLZ AND WFG TEST SUITES: C(A,B)=% OF SOLUTIONS IN B DOMINATED BY A.

functions, we decided to test the behavior of our proposed
approach in such problems. For this experiment, we focused
our efforts on solving the DTLZ{1-4} test problems in order
to investigate the behavior of our proposed approaches with
several objectives (we analyzed the behavior of our proposed
approach from M = 4 to 10 objectives). Our results are
compared with respect those obtained by SMS-EMOA (since
this was the best approach in Experiment 1). Each MOEA
was executed 30 times and their results were evaluated using
the Hypervolume indicator. Since computational time is a
usual drawback in indicator-based approaches, we decided to
measure the execution time of the compared MOEAs as well.
The reference point used for the adopted problems was of
r = [r1 . . . rM ] where ri = 11 for 1 ≤ i ≤M . The parameters
were similar to those adopted in the previous experiment.
Additionally, a second version of SMS-EMOA, called SMS-
EMOA2 was added to the comparison or results. This version
uses the approximation to the contribution to the Hypervolume
(proposed in [5]) in order to decrease the execution time
of the algorithm. The number of samples used in this latter

algorithm is 100, 000. This addition was mandatory, since
the computational time required by the original SMS-EMOA
algorithm (using exact Hypervolume) becomes prohibitive
very quickly as the number of objective raises (this has also
been illustrated in other works [11]).

For this experiment, we adopted the Hypervolume per-
formance measure. However, the values obtained by this
performance measure tend to get bigger as we increase the
number of objectives. Therefore, we decided to normalize
these values in order to avoid problems when displaying them
in our tables of results. The normalization procedure applied
in each test problems was the following: First, we applied
the Hypervolume to the obtained results by the compared
approaches. Then, we searched for the highest Hypervolume
value among all the executions. Finally, this highest value
was used to normalize the Hypervolume results. Therefore,
we prefer values which are closer to 1.

The results of the normalized Hypervolume and the running
time (in brackets) for the compared approaches are shown in
Tables VI, VII, VIII and IX. In some cases, the Hypervolume
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Fig. 1. Graphical results for the ZDT test suite (bi-objective)

has a value of zero. This value indicates that the algorithm did
not not achieve any non-dominated solution with respect to the
reference point. From these tables, it is also worth emphasizing
that the time required by the original SMS-EMOA is greater
than the time required by the rest of the approaches. Also,
its execution for some problem sizes was prohibitive. That is
the reason why we only report the results of SMS-EMOA for
some instances. Furthermore, since the results of the original
SMS-EMOA and its approximated version are very similar, we
decided to discuss only the latter approach (since it required
a lower computational time, and we have results for this
approach for all the test problems instances).

For the easiest test problems (DTLZ2 and DTLZ4 shown in
Tables VII and IX, respectively), the results of the compared
approaches are similar. However, for DTLZ2 our R2-MOGA
remains slightly behind SMS-EMOA2 and our proposed R2-
MODE. On the other hand, for DTLZ1 and DTLZ3 (which
are shown in Tables VI and VIII, respectively), our ap-
proaches clearly outperform SMS-EMOA2. For DTLZ1 the
performance of SMS-EMOA2 decreased as we increased the
number of objectives. The main problem of this algorithm
is that the exact Hypervolume calculation was replaced with
an approximation, and when the number of objectives raises
it is necessary to increase the number of samples for the
approximation, as well. However, if the number of samples is
increased, the computational cost would also increase. Finally,
for DTLZ3 our R2-MOGA clearly outperformed the others.
This is a very challenging problem, and even our R2-MODE
decreased its performance when we increased the number
of objectives. SMS-EMOA2 was unable to converge in this
problem.

Finally, Figure 3 shows the average time required by each

of the tested approaches for each of the adopted problems. In
this figure, we can see that our approaches required lower time
than SMS-EMOA2. As a matter of fact, the computational time
required of our approaches for the 10-objective instance of the
adopted problems was lower than the 4-objective instance of
the SMS-EMOA2 algorithm.

M SMS-EMOA SMS-EMOA2 R2-MOGA R2-MODE

4 1.0000(71) 1.0000(9) 0.9992(2.8) 1.0000(3)
5 1.0000(1315) 0.9993(11) 0.9995(3.2) 1.0000(3.3)
6 —— 0.9939(13) 0.9996(3.7) 1.0000(3.8)
7 —— 0.9929(14.9) 0.9997(4.2) 1.0000(4.3)
8 —— 0.9978(16.7) 0.9998(4.7) 1.0000(4.8)
9 —— 0.9937(18.6) 0.9998(5.2) 1.0000(5.8)
10 —— 0.9951(20.4) 0.9998(5.8) 1.0000(5.9)

TABLE VI
COMPARISON OF THE HYPERVOLUME’S AVERAGE AND (RUNNING TIME)

OBTAINED BY SMS-EMOA, R2-MOGA AND R2-MODE FOR THE
DTLZ1 TEST PROBLEM WITH DIFFERENT NUMBER OF OBJECTIVES (M )

M SMS-EMOA SMS-EMOA2 R2-MOGA R2-MODE

4 1.0000(161) 1.0000(21.7) 0.9991(2.4) 1.0000(2.3)
5 1.0000(3230) 1.0000(20.6) 0.9995(2.8) 1.0000(2.8)
6 —— 1.0000(20.8) 0.9997(3.3) 1.0000(3.3)
7 —— 1.0000(21.7) 0.9998(3.7) 1.0000(3.7)
8 —— 1.0000(23.2) 0.9998(4.2) 1.0000(4.2)
9 —— 1.0000(24.9) 0.9998(4.6) 1.0000(4.7)
10 —— 1.0000(27) 0.9999(5) 1.0000(5.2)

TABLE VII
COMPARISON OF THE HYPERVOLUME’S AVERAGE AND (RUNNING TIME)

OBTAINED BY SMS-EMOA, R2-MOGA AND R2-MODE FOR THE
DTLZ2 TEST PROBLEM WITH DIFFERENT NUMBER OF OBJECTIVES (M )
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Fig. 2. Graphical results for the DTLZ and WFG test suites (three-objective)

M SMS-EMOA SMS-EMOA2 R2-MOGA R2-MODE

4 0.9601(36) 0.0055(9.6) 0.9984(4) 0.8712(6.3)
5 0.9956(650) 0.0000(11.8) 0.9994(4.1) 0.7802(6.4)
6 —— 0.0000(14.3) 0.9992(4.5) 0.6306(6.9)
7 —— 0.0000(16.8) 0.9996(5) 0.5803(7.3)
8 —— 0.0000(18.8) 0.9998(5.6) 0.3945(8)
9 —— 0.0000(20.8) 0.9995(6.2) 0.2421(8.6)
10 —— 0.0000(22.9) 0.9997(6.9) 0.1464(9)

TABLE VIII
COMPARISON OF THE HYPERVOLUME’S AVERAGE AND (RUNNING TIME)

OBTAINED BY SMS-EMOA, R2-MOGA AND R2-MODE FOR THE
DTLZ3 TEST PROBLEM WITH DIFFERENT NUMBER OF OBJECTIVES (M )

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed the Fast R2 sorting which is
a new approach to rank the individuals of a MOEA. The
proposed ranking method uses the contribution to the R2
indicator in order to select solutions. The R2 contribution
was successfully coupled to the notion of layers in order
to produce a fast R2 sorting method. This sorting method
was incorporated in two different search engines: a genetic
algorithm and a differential evolution algorithm. Our proposed
approaches were validated using two- and three-objective func-
tion problems. These approaches obtained competitive results

M SMS-EMOA SMS-EMOA2 R2-MOGA R2-MODE

4 0.9996(160) 0.9989(28.2) 0.9998(3.7) 1.0000(3.3)
5 1.0000(3271) 0.9997(23.2) 0.9999(4.9) 1.0000(3.6)
6 —— 1.0000(23.7) 1.0000(5.7) 1.0000(4.1)
7 —— 1.0000(23.2) 1.0000(6.2) 1.0000(4.4)
8 —— 1.0000(24.6) 1.0000(6.1) 1.0000(4.8)
9 —— 1.0000(26.5) 1.0000(6.8) 1.0000(5.3)
10 —— 1.0000(28.1) 1.0000(7.5) 1.0000(5.7)

TABLE IX
COMPARISON OF THE HYPERVOLUME’S AVERAGE AND (RUNNING TIME)

OBTAINED BY SMS-EMOA, R2-MOGA AND R2-MODE FOR THE
DTLZ4 TEST PROBLEM WITH DIFFERENT NUMBER OF OBJECTIVES (M )

when compared to NSGA-II, MOEA/D and SMS-EMOA
using several test problems and performance indicators taken
from the specialized literature. Therefore, we can say that
our sorting method was successful. However, since our main
target were many-objective problems, we decided to study our
approaches in this sort of problems. For this sake, we adopted
scalable test functions and we compared our results with
respect to a well-known Hypervolume-based approach (SMS-
EMOA) and a variation of it (SMS-EMOA2) that approxi-
mates the Hypervolume contributions, which results in a more
efficient performance. Our results indicate that our proposed
approaches outperform the others with respect to which it
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Fig. 3. Computational time required by SMS-EMOA2, R2-MOGA, R2-
MODE for the DTLZ adopted problems

was compared, not only with respect to the Hypervolume, but
also in terms of the required computational time. Therefore,
we can argue that our proposed R2 sorting approach was
successfully integrated to a MOEA, and we believe that this
type of approach should be particularly useful for dealing with
many-objective problems. Finally, an important feature of this
proposal is that it does not adopt Pareto dominance at all.

As part of our future work, we would like to further
investigate the incorporation of the new sorting method into
other search engines. Furthermore, we are also interested in
the use of our proposed approach for restricting the size of
external archives.
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