
An Adaptive Evolutionary Algorithm Based on Tactical and Positional
Chess Problems to Adjust the Weights of a Chess Engine

Eduardo Vázquez-Fernández
ESIME-IPN

Carrera de Ingenierı́a en Computación
Av. Santa AnaNo. 1000

Col. San Francisco Culhuacán
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Abstract—This paper employs an evolutionary algorithm to
adjust the weights of the evaluation function of a chess engine.
The selection mechanism of this algorithm chooses the virtual
players (individuals in the population) that have the highest
number of problems properly solved from a database of tactical
and positional chess problems. This method has as its main
advantage that we only mutate those weights involved in the
solution of the current problem. Furthermore, the mutation
mechanism is based on a Gaussian distribution whose standard
deviation is adapted through the number of problems solved by
each virtual player. We show here how, with the use of this
method, we were able to increase the rating of our chess engine
in 557 Elo points (from 1760 to 2317).

I. I NTRODUCTION

Computer chess is a topic that has attracted the interest
of different scientists around the world. In1947, Alan Tur-
ing [28] designed a program to play chess. In2012, as part
of the celebrations for his centenary birth, this program was
finally implemented to play a game against the former world
chess champion Garry Kasparov. In1949, at Bell Telephone
Laboratories, Claude Shannon [26] proposed two strategiesto
implement a chess engine. “Strategy A” considered all possible
moves to a fixed depth of the search tree (i.e., this is a brute
force approach). “Strategy B” used chess knowledge to explore
the main lines to a greater depth. Shannon was the first to
estimate that the total number of possible chess games is10120.

Computer chess has also attracted the interest of differ-
ent companies around the world, including Bell Telephone
Laboratories, Chessbase1, and IBM, among others. The most
significant event that related computer chess with companies
was held in 1997, when IBM’s supercomputerDeep Blue
defeated the reigning world champion in a classical chess
match. This supercomputer was based mainly on Shannon’s A
strategy, and was capable of evaluating200 million positions
per second. In spite of its importance, this event did not stop
the research in this area. Today, chess programs focus more
on Shannon’s B strategy and usually include meta-heuristics
in their search algorithms.

Chess is a game of perfect information between two
adversaries. The number of different positions reachable from
the beginning of the game is known as astate-space, and a
game treeis a representation of the state-space of a chess game.

1www.chessbase.com

In chess, the game tree consists of roughly1043 nodes [26] so
it is not possible to generate it completely. Instead, it is better
to generate thesearch treewhich is only a part of the game
tree. Aprincipal variation is a sequence of moves where both
players play optimally. In order to find the principal variation
in a chess game, it is necessary to evaluate the nodes without
children (leave nodes) in the search tree through the evaluation
function.

The main components of a chess engine are:

• The search algorithm.

• The move generator.

• The evaluation function.

Figure 1 shows the basic architecture of a chess engine.
Next, we will briefly describe each of these components.

The search algorithmfinds the principal variation from a
given position on the board. The main algorithms that can
be used in this component are: minimax, negamax, alpha-
beta, negascout, quiescence, among others. The basic ap-
proach for games between two adversaries is theminimax
algorithm [19], [22]. The negamax algorithm[6] is a more
elegant implementation, which is also easier to program than
the minimax algorithm because it applies the same operator
at all levels in the tree. The main search method for games
between two adversaries is the alpha-beta algorithm [18] which
has the advantage of refraining from evaluating some nodes
when unnecessary. It is also possible to use variants of the
alpha-beta pruning algorithm such as thenegascout[23] or
the Principal Variation Searchmethod [9]. Thequiescence
algorithm is used to extend the search tree to steady positions
in which material exchanges, and king’s checks (among others)
cannot influence the resulting evaluation of a position.

Together with the search algorithm, theevaluation function
is the most important part of a chess engine. As we saw
above, it is only possible to represent the search tree down
to a certain depth. Therefore, it is necessary to evaluate the
leaf nodes through the evaluation function. This function is
used to determine in a heuristic way the relative value of a
position with respect to a particular side. The aim is that the
evaluation function reflects the knowledge of the game.

The evaluation function is composed by a set of weights
that store knowledge of the chess positions. A successful
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Fig. 1. Basic architecture of a chess engine.

adjustment of these weights allows a chess engine to play
better. Developers of commercial chess programs must tune
these weights using exhaustive manual test procedures. The
main drawback of this method is the large amount of time
(even years) needed to adjust the weights, and therefore the
need to automate this task. In fact, this is the focus of the
work reported in this paper. In Figure 1, the search algorithm
invokes the evaluation function which returns a numerical
value associated with this position.

Themove generatorgenerates all possible movements from
a given position on the board. In Figure 1 the search algorithm
invokes the move generator which returns the available moves
on the current position.

The chess programs also usehash tableswhich store
information about positions that had already been searched.
Then, if the same position is reached again, no search is
conducted, since the previously generated information would
be used in that case.

The remainder of this paper is organized as follows. The
previous related work is presented in Section II. The evaluation
function and the chess engine adopted in our experiments are
described in Section III. Our proposed approach is described
in Section IV. Our experimental results are presented in
Section V. Finally, our conclusions and some possible paths
for future research are provided in Section VI.

II. PREVIOUS RELATED WORK

There are several papers in which the problems of adjusting
the weights of a chess engine has been dealt with using
co-evolution (tournaments among virtual players) (see [27],
[12], [13], [4] [5], [3], [17], [21], and [29], among others).

This paper adopts chess problems to carry out the weights
adjustment of a chess engine. Next, we will describe the works
that make use of supervised learning to perform this sort of
adjustment.

Gomboc et al. [15] applied an empirical gradient method
to adjust the weights of a chess program. In this work, they
used more than600, 00 chess positions from a Chess Informant
magazine to successfully adjust11 weights of the chess engine
Crafty which is a state-of-the-art chess engine with a rating of
2614 points.

David-Tabibi et al. [7] adjusted the weights of their chess
engine with a genetic algorithm through reverse engineering
(by mimicking the behavior of another chess program that
served as a mentor). With this approach, they had an interesting
participation in the2008 World Computer Chess Champi-
onship.

In [8], David-Tabibi et al. extended their previous related
work [7]. Basically, they extended their previous experiments
and carried out matches between the mentor and the evolved
organisms. With their method, they obtained the sixth placein
the 2008 World Computer Chess Championship.

Vázquez-Fernández et al. [31] tuned the weights of their
evaluation function through a database of chessmaster games.
In this work, the chess material values obtained were similar
to the values known from chess theory.

Vázquez-Fernández et al. [32] used exploration and ex-
ploitation to carry out the tuning of the weights of their chess
engine. In the exploration step, they used an evolutionary
algorithm with supervised learning. The selection mechanism
of this algorithm uses games from chess grandmasters to
decide which virtual player would pass to the next generation.
This step is similar to their previous related work [31] withthe
difference that now they adjusted a larger number of weights
(form 5 to 29 weights). With this method, they obtained an
increase in the rating of their chess engine from1463 to 2205.
In the exploitation step, they used the Hooke-Jeeves algorithm
to continue the adjustment of the weights for the best virtual
player obtained in the previous step. Using this algorithm as
a local search engine, they increased the rating of their chess
engine from2205 to 2425 points.

Vázquez-Fernández et al. [30] used tactical chess problems
to adjust the weights of their chess engine. This method allows
to mutate only those weights involved in the current problem,
preventing mutations that can lead to incorrect values for
future evaluations of board positions. Such a method adapts
the mutation rate based on the number of problems that have
been solved for each virtual player.

The present work is a continuation of our previous related
work [30], in which the main differences are:

• Before, we only used tactical chess problems. Now,
we add positional chess problems to our database.

• We consider now the weights associated with the
bishop’s and queen’s positional value.

• Experimentally, we found the ideal number of virtual
players within the range[8, 50].

• We use a different mutation operator. In our previous
work, we used Michalewicz’s non-uniform mutation
operator [20]. Now, we employ a mutation operator
based on a Gaussian distribution because we gathered
empirical evidence that indicates the superiority of



this operator with respect to Michalewicz’s mutation
operator.

It is important to mention that with these modifications, we
were able to increase the rating of our chess engine from1760
(see [30]) to2317 (see Section V) rating points. The concept
of rating in a chess engine is explained in Appendix A.

III. O UR CHESSENGINE

For a particular side, we evaluated a given position on the
board with the following expression:

eval = materialV alue + positionalV alue (1)

where:

materialV alue =
r

∑

i=1

Xi (2)

Xi represents the material value for piecei, andr is the
number of pieces of one side in particular, regardless of the
king.

On the other hand,

positionalV alue =

s
∑

i=1

Pi (3)

where:
Pi represents the positional value for piecei.
s is the number of pieces of one side in particular.

The king ’s positional value is given by:

PKing =

4
∑

i=1

Xking,i ∗ Fking,i (4)

where:
Xking,i is the weight of factorFking,i (a factor is a positional
characteristic of a particular piece, for example, its mobility).
Fking,1 is the sum of material values of pieces that defend
their king.
Fking,2 is the sum of material values of pieces that attack the
king.
Fking,3 is true if the king is castled; otherwise, it is false.
Fking,4 is the number of pawns that protect their king.

The queen’s positional value is given by:

Pqueen = Xqueen,1 ∗ Fqueen,1 (5)

where:
Xqueen,1 is the weight of factorFi.
Fqueen,1 is the queen’s mobility.

The rook’s positional value is given by:

PRook =

4
∑

i=1

Xrook,i ∗ Frook,i (6)

where:
Xrook,i is the weight of factorFrook,i.
Frook,1 is the mobility of the rook.
Frook,2 is true if the rook is on an open column; otherwise,
it is false.
Frook,3 is true if the rook is on the seventh row; otherwise, it
is false.
Frook,4 is true if there are two rooks on the seventh row;
otherwise, it is false.

The bishop’s positional value is given by:

Pbishop = Xbishop,1 ∗ Fbishop,1 (7)

where:
Xbishop,1 is the weight of factorFbishop,1.
Fbishop,1 is the bishop’s mobility.

The knight’s positional value is given by:

PKnight =

4
∑

i=1

XKnight,i ∗ FKnight,i (8)

where:
XKnight,i is the weight of factorFKnight,i.
FKnight,1 is the mobility of the knight.
FKnight,2 is true if the knight is in the periphery of the board;
otherwise, it is false.
FKnight,3 is true if the knight is defended by a pawn;
otherwise, it is false.
FKnight,4 is true if the knight cannot be evicted by an enemy
pawn; otherwise, it is false.

The pawn’s positional value is given by:

PPawn =

4
∑

i=1

XPawn,i ∗ FPawn,i (9)

where:
Xi is the weight of factorFi.
FPawn,1 is true if the pawn is doubled; otherwise, it is false.
FPawn,2 is true if the pawn is isolated; otherwise, it is false.
FPawn,3 is true if the pawn is central (i.e., if it is inc4, c5,
d4, d5, e4, e5, f4 or f5); otherwise, it is false.
FPawn,4 is true if the pawn is passed; otherwise, it is false.

The material value of a piece is a static value. Shannon [26]
assigned100, 300, 330, 500 and 900 points for the pawn,
knight, bishop, rook and queen, respectively. In this work,the
pawn’s material value is always100.

The positional value of a piece is a dynamic value and
depends on many factors such as mobility, board location,



strength, etc. In other related works (for example [12]), the
positional value of a piece only depends on its board location
because these values are stored in arrays of64 squares. The
idea of our proposal is that the chess positional values depend
directly on the characteristics of the position. It is expected that
while more features are taken into account in calculating the
positional value of a piece, this value will be more accurate,
and therefore, the position will be better evaluated.

The purpose of this paper is to tune the weights of
equations (2), (4), (5), (6), (7), (8) and (9) using evolutionary
programming [14] and a database of positional and tactical
chess problems extracted from [24] [10], [25] and [1]. The
aim is that the adjustment of the weights performed by our
approach leads to an increase in the rating of our chess engine.

To carry out our experiments, we implemented a chess
engine with the following characteristics:

• Election of movements through the alpha-beta algo-
rithm [18].

• Stabilization of positions through the Quiescence al-
gorithm [2] that takes into account the exchange of
material and king’s checks.

• Use of hash tables [33].

In these experiments, our chess engine used the database
Olympiad.abkin the opening phase. This database is included
with the graphical user interfaceArena.2

IV. OUR PROPOSEDAPPROACH

In our previous related work [30], we used tactical chess
problems to adjust the weights of our chess engine. Now,
we use tactical and positional chess problems to adjust these
weights. Under this approach, the virtual players improve their
playing strength with respect to our previous work.

The evolutionary algorithm adopted in [30] adjusts the
weights ofN virtual players, so that the virtual players with
more problems properly solved acquire the right to pass to
the next generation. The idea is the following: each virtual
player is asked if it can solve the current problem. If so,
the player increases in one its number of problems solved.
Once all the virtual players have been asked about the current
solution, theN/2 virtual players which have properly solved
the highest number of problems are selected, and they become
eligible to mutate the remaining half. This process is carried
out for Gmax = 50 generations or until all the virtual players
have solved the current problem. The algorithm was tested for
N = 8, 9, . . . , 50 virtual players, and for each of these values,
it was tested for30 to 60 problems in the database (half of the
problems are tactical in nature, and the other half are positional
in nature).

Algorithm 1 shows the evolutionary algorithm used to
adjust the weights of our chess engine. Line1 gets the set
P which consists ofnumP problems chosen at random from
the database of problemsS. Half of these problems are tactical
in nature, and the other half are positional in nature. Line2
chooses a particular problemp from the setP . In lines 3 to
5, we establish that the solution of the problemp and the

2http://www.playwitharena.com/

number of problems that have been solved is zero for each
virtual player. Line7 sets the weights that can be mutated or
not (because of the importance of this part of the algorithm,
in Section IV we discuss it in more detail). Line8 sets the
starting position of the problemp. Line 9 returns the solution
m of the problemp. Line 10 sets the generation counterg
equal to zero. In lines11 to 23 we carry out the adjustment
of the weights for the problemp during Gmax generations.
In lines 11 to 18, each virtual player computes its next move
n, and if this movement matches the movementm, then this
virtual player establishes that it has found the solution tothe
problemp and it increases its number of problems solved in
1. In lines19 to 21 we go to the next problem if all the virtual
players have found the solution to the problemp. In line 22
we apply the selection mechanism and in line23, we apply
the mutation operator.

Algorithm 1 EvolutionaryAlgorithm()

1: P ← chooseProblems(S, numP )
2: for each problemp in P do
3: for i = 1→ N do
4: foundSolution[i]← FALSE
5: solutions[i]← 0
6: end for
7: establishWeightsToMutate()
8: setPosition(p)
9: m← solution(p)

10: g ← 0
11: while g++ < Gmax do
12: for i = 1→ N do
13: n← nextMovement(i)
14: if m == n then
15: foundSolution[i] = TRUE
16: solutions[i]++
17: end if
18: end for
19: if allProblemsFoundSolution()==TRUEthen
20: break
21: end if
22: selection()
23: mutation()
24: end while
25: end for

Initialization

In our previous related work [30], the initial population
consisted ofN = 8 virtual players. Now, we useN =
8, 10, . . . , 20 virtual players (we choose even values to have
N/2 parents andN/2 offspring in subsequent generations).
The weights of the virtual players were randomly initialized
within their allowable bounds using a uniform distribution.
These bounds were defined by a chess expert. The left and
right bounds (Xj,low andXj,high, respectively) are shown in
Table I.

Selection

The selection mechanism of this step chooses theN/2
virtual players having the highest number of problems properly
solved, and these virtual players are mutated to generate the
remainingN/2 virtual players.



TABLE I. T HIS TABLE SHOWS THE WEIGHTS, THE LEFT BOUND OF

THE RANGE, THE RIGHT BOUND OF THE RANGE, THE AVERAGE WEIGHT

VALUE AND THEIR STANDARD DEVIATION FOR THE WEIGHT j AT THE END

OF THE EVOLUTIONARY PROCESS FOR THE BEST RUN. THE BOUND
VALUES WERE CHOSEN BY AN EXPERT IN CHESS.

Xj Xj,low Xj,high Value σ

Xpawn 0 0 100.00 0.00

Xknight 200 400 297.29 0.00

Xbishop 200 400 312.16 0.00

Xrook 400 600 493.57 19.44

Xqueen 800 1000 907.25 18.32

Xking,F1
−100 100 78.83 9.27

Xking,F2
−100 100 −84.82 6.67

Xking,F3
−100 100 61.230 6.56

Xking,F4
−100 100 81.12 5.56

Xqueen,F1
−100 100 9.14 2.01

Xrook,F1
−100 100 22.44 9.87

Xrook,F2
−100 100 49.22 16.56

Xrook,F3
−100 100 16.23 18.09

Xrook,F4
−100 100 72.22 3.07

Xbishop,F1
−100 100 12.03 2.45

Xknight,F1
−100 100 74.25 2.34

Xknight,F2
−100 100 −51.67 3.25

Xknight,F3
−100 100 19.34 4.07

Xknight,F4
−100 100 84.56 2.29

Xpawn,F1
−200 200 −133.92 10.76

Xpawn,F2
−200 200 −78.56 18.32

Xpawn,F3
−200 200 131.19 15.09

Xpawn,F4
−200 200 43.33 12.65

Mutation Operator

One offspring was created from each surviving parent by
mutating all weights in equations (2), (4), (5), (6), (7), (8) and
(9).

In our previous related work [30], we adopted
Michalewicz’s non-uniform mutation operator [20]. In
this paper, we employ a mutation based on a Gaussian
distribution because in all the experiments that we performed,
the Gaussian operator outperforms Michalewicz’s mutation
operator.

Mutation was implemented according to:

X
′

i = Xi + N(µ, σ) (10)

whereN(µ, σ) is a Gaussian random variable with meanµ
and standard deviationσ. The mean is given by the midpoint
of the range of the weightXi, that is:

µ = (Xj,low + Xj,high)/2 (11)

whereXj,low andXj,high are the left and right bounds of
the weightXi, respectively. The standard deviation is given
by:

σ = 3(−solutions[i]/numP + 1)µ (12)

wheresolutions[i] denotes the number of problems solved
by the virtual playeri, and numP denotes the number of

problems chosen from the database for adjusting the weights.
So, the expression(−solutions[i]/numP +1) is equal to one
(or zero) if the virtual playeri has not resolved any problem
from the database (or has resolvednumP problems from
the database). With this contribution to the present work, the
mutation of the weightXi is adapted through the evolutionary
process. The idea of the term3µ is cover practically all the
Gaussian bell at the beginning of the evolutionary process.

Database of Games

In our experiments, we used a database consisting of400
chess tactical problems and400 chess positional problems.
The tactical problems were taken from [24], and the positional
problems were taken from [10], [25] and [1].

V. EXPERIMENTAL RESULTS

We carried out two experiments. In the following sub-
sections we describe them in detail.

A. Experiment A

In the first experiment, we tuned the weights of equa-
tions (2), (4), (5), (6), (7), (8) and (9). These weights were
random values generated with a uniform distribution within
their allowable bounds. If, after mutation, the weightXj

falls, either to the left or to the right of the allowable range
[Xj,low, Xj,high], then its value is set toXj,low, or to Xj,high,
respectively. The number of virtual playersN took values
in the range[8, 50] (we choose even values to haveN/2
parents andN/2 offspring in subsequent generations), and
the number of training chess problemsnumP took even
values in the range from [30, 100] (we choose even values to
havenumP/2 tactical chess problems andnumP/2 positional
chess problems).

This experiment consisted of performing twenty runs for
each value ofN combined with each value ofnumP . At
the end of each run, we carried out200 games between
the evolved virtual player and the non-evolved virtual player.
Table II shows the best20 results in which the evolved virtual
player achieved the best percentage of victories against the
non-evolved virtual player. The runs are sorted in descending
order based on the percentage of victories (columnWins%),
so the best result is shown in row1. In this row, the evolved
virtual player won189, drew 11 and lost 0 games against
the non-evolved virtual player (the percentage of games won
by the evolved virtual player was97.25%). We can see in
this table that the evolved virtual player always exceeded the
winning percentage of the non-evolved virtual player by a
wide margin. We can also see that the ideal number of virtual
players was in the range from18 to 26, where22 was the
most frequent value (with eight repetitions). In this table, we
can see that the highest values of the variablenumP are in
the best20 runs. Therefore, it is expected that if we increase
the number of training chess problems in this variable, the
winning percentage of the evolved virtual player with regard
to the non-evolved virtual player will also be increased.

In this experiment we used a search depth of four plies (1
ply corresponds to the movement of one side).



TABLE II. NUMBER OF GAMES WON, DRAWN AND LOST FOR THE BEST

VIRTUAL PLAYER IN GENERATION 50 AGAINST THE BEST VIRTUAL PLAYER AT

GENERATION 0.

Row Wins Draws Losses Wins% N numP

1 189 11 0 97.25% 20 96

2 189 10 1 97.00% 22 98

3 188 12 0 97.00% 22 98

4 188 12 0 97.00% 20 96

5 188 12 0 97.00% 24 92

6 187 13 0 96.75% 18 90

7 187 13 0 96.75% 20 96

8 187 13 0 96.75% 22 88

9 188 11 1 96.75% 20 92

10 186 14 0 96.50% 22 94

11 186 13 1 96.25% 24 94

12 186 13 1 96.25% 22 92

13 185 14 1 96.00% 22 96

14 184 16 0 96.00% 24 96

15 185 13 2 95.75% 22 94

16 184 15 1 95.75% 20 98

17 185 13 2 95.75% 24 98

18 184 15 1 95.75% 26 96

19 183 16 1 95.50% 20 90

20 183 15 2 95.25% 22 86

B. Experiment B

In this experiment, the non-evolved virtual player was
calledV Pnon−evolved and played200 games against the chess
program Rybka 2.3.2ausing each of the following ratings:
2500, 2300, 2100 and 1900. A histogram of our results is
shown in Figure 2. For example,V Pnon−evolved won, drew
and lost0, 0 and 200, respectively, againstRybka 2.3.2aat
2500 rating points;V Pnon−evolved won, drew and lost0, 2
and 198, respectively, againstRybka 2.3.2aat 2300 rating
points. The same experiment was carried out with the evolved
virtual player which corresponds to the first row in Table II.
This virtual player was calledV Pevolved. The histogram of the
results is shown in Figure 3. In this Figure, we can see that
V Pevolved won, drew and lost29, 40 and 131, respectively,
againstRybka 2.3.2aat 2500 rating points;V Pevolved won,
drew and lost77, 48 and75, respectively, against Rybka 2.3.2a
at 2300 rating points, and so on.

Based on these played games, we used the Bayeselo
tool3 to estimate the ratings of the virtual players andRybka
2.3.2ausing a minorization-maximization algorithm [16]. The
obtained ratings are shown in Table III. In this table we can
see that the rating for the virtual playerV Pnon−evolved was
1501, and the rating for virtual playerV Pevolved was 2317,
representing an increase of816 rating points between the non-
evolved and the evolved virtual players after the evolutionary
process for the first run in Table II.

It is worth mentioning that these experiments were also car-
ried out by using Michalewicz non-uniform mutation operator
instead of the mutation operator based on a Gaussian distribu-
tion. In this case, the best evolved virtual player registered a
rating of 2282 points againstRybka 2.3.2a.

3http://remi.coulom.free.fr/Bayesian-Elo/
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Fig. 2. Histogram of wins, draws and losses for the non-evolved virtual
player againstRybka 2.3.2a.
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Fig. 3. Histogram of wins, draws and losses for the evolved virtual player
againstRybka 2.3.2a.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we presented an evolutionary algorithm to
adjust the weights of the evaluation function of a chess engine.
The selection mechanism of this algorithm gives priority tothe
virtual players who had properly solved more chess problems
from our database.

In our previous related work, we only used tactical chess
problems. Now, we added positional chess problems to our
database. Also, we added the weights associated with the
bishop’s and queen’s positional value. The mutation mecha-
nism was also modified. Before, this mechanism was based on
Michalewicz’s non-uniform mutation operator. Here, the mu-
tation mechanism used a Gaussian distribution whose standard
deviation is adapted through the number of problems solved
by each virtual player. With these changes, we increased the
rating of our chess engine in557 rating points (from1760 to
2317).

From our experiments, we concluded that the ideal number
of virtual players was in the range from18 to 26, where22
was the most frequent value. We also found that, as one would

TABLE III. R ATINGS OF THE VIRTUAL PLAYERS ANDRybka2.3.2a.

Rank Name Elo + - Games Score Oppo. Draws

(%) (%)

1 Rybka2500 2510 39 37 400 88% 1909 10%

2 V Pevolved 2317 19 19 800 57% 2256 18%

3 Rybka2300 2312 34 34 400 75% 1909 13%

4 Rybka2100 2207 35 36 400 68% 1909 10%

6 Rybka1900 1994 38 39 400 54% 1909 9%

5 V Pnon−evol 1501 52 62 800 1% 2256 3%



expect, as more chess problems are used in the training phase,
the strength of the virtual players gets better.

It is worth mentioning that the material values of the chess
pieces are similar to the values known from chess theory.

As part of our future work, we plan to add weights to the
evaluation function of our chess engine in order to increaseits
rating as much as we can. Also, we plan to use better strategies
that allow us a more efficient exploitation and exploration of
the search space. Similarly, it would be interesting to test
our method with other mutation operators as well as with
other evolutionary algorithms such as differential evolution,
evolution strategies, etc.
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APPENDIX A

The Elo rating system is a method for calculating the
relative strength of players in games with two opponents such
as chess. In this system, each player has a numerical rating,
and a higher number denotes a higher playing strength of the
player concerned.

The formula to obtain the Elo rating of a player is given
by [11]:

Rnew = Rold + K(outcome−W ), (13)

where:
Rnew is the new rating.
Rold is the old rating.
K is a constant that depends on the rating.
outcome is the game result.
W is the expected or percentage score given by the logistic
curve.

The outcome is given by:

outcome =

{

1, for a win
0.5, for a draw
0, for a loss

The expected or percentage scoreW is given by:

W =
1

1 + 10
Ropponent−Rold

400

, (14)

hereRopponent is the opponent’s rating.

This method was created by the mathematician Arpad Elo,
and has been adopted by the United States Chess Federation
(USCF) since1960 and by the Fédération Internationale des
Échecs (FIDE) since1970. Table IV shows the classification
of the USCF.

TABLE IV. ELO RATING SYSTEM

Interval Level

2400 and above Senior Master

2200− 2399 Master

2000− 2199 Expert

1800− 1999 Class A

1600− 1799 Class B

1400− 1599 Class C

1200− 1399 Class D

1000− 1199 Class E
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