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Abstract—Evolutionary algorithms have gained pop-
ularity as an alternative for dealing with multi-objective
optimization problems. However, these algorithms re-
quire to perform a relatively high number of fitness
function evaluations in order to generate a reasonably
good approximation of the Pareto front. This can be a
shortcoming when fitness evaluations are computation-
ally expensive. In this paper, we propose an approach
that combines an evolutionary algorithm with an en-
semble of surrogate models based on support vector
machines (SVM), which are used to approximate the
fitness functions of a problem. The proposed approach
performs a model selection process for determining the
appropriate hyperparameters values for each SVM in
the ensemble. The ensemble is constructed in an incre-
mental fashion, such that the models are updated with
the knowledge gained during the evolutionary process,
but the information from previous evaluated regions
is also preserved. A criterion based on surrogate fi-
delity is also proposed for determining when should the
surrogates be updated. We evaluate the performance
of our proposal using a benchmark of test problems
widely used in the literature and we compare our results
with respect to those obtained by the NSGA-II. Our
proposed approach is able to significantly reduce the
number of fitness function evaluations performed, while
producing solutions which are close to the true Pareto
front.

I. Introduction
Many real world problems (such as aeronauti-

cal/aerodynamic design, circuit design, etc.) require opti-
mizing several conflicting objectives simultaneously. These
problems are known as multi-objective optimization prob-
lems (MOPs), and their solution implies to find a set of
points that satisfy a trade-off among the objectives. This
set of points is known as the Pareto optimal set.

Over the last 25 years, evolutionary algorithms (EAs)
have become popular techniques for solving MOPs, mainly
because they are able to generate several elements of the
Pareto optimal set in a single run and because they are less
susceptible than mathematical programming techniques to
the shape and continuity of the Pareto front [1], [2]. How-
ever, most of them require performing several objective

functions evaluations in order to obtain a good approxima-
tion of the Pareto front. This could be a shortcoming when
using them in real-world problems, where the objective
functions evaluations could be computationally expensive.

A promising approach for dealing with computation-
ally expensive problems is the use of surrogate-assisted
evolutionary computation methods. A surrogate model is
a cheaper approximation model of the objective function.
There has been an increasing interest for using surrogate
models in optimization with the aim of reducing the num-
ber of objective functions evaluations while maintaining
a good quality of the final solutions. There exists a wide
diversity of techniques that allow constructing surrogate
models, such as: support vector machines (SVMs), ar-
tificial neural networks (ANNs), radial basis functions
(RBFs), polynomial regression (PR), etc. The fidelity of
the surrogate model depends on the appropriate selection
of the model and its hyperparameters.

In this work, we propose a surrogate-based approach
for evolutionary multi-objective optimization (EMO). Our
approach is based on the combination of a multi-objective
evolutionary algorithm (MOEA) with an incremental en-
semble of surrogate models, which is used to approxi-
mate the objective functions. Since surrogate models can
be constructed by different techniques, in this study we
adopted the use of SVMs, due to their high performance
and scalability over different problems [3], [4]. In order
to determine the appropriate hyperparameters (i.e., the
kernel type and kernel parameters) for the surrogate, a
grid search procedure is performed. We evaluated our
proposal on benchmark problems commonly adopted in
the specialized literature. The obtained results show a
significant reduction of the number of evaluations, while
producing reasonably good approximations.

The remainder of this paper is organized as follows.
First, some basic concepts related to multi-objective op-
timization are presented in section II. In section III, we
provide a brief description of support vector machines.
The most relevant previous related work is described in
section IV. In section V, we describe our proposed ap-



proach, and our experiments and results are presented in
section VI. Finally, in section VII, we present the main
conclusions as well as possible future research directions.

II. Multi-Objective Optimization
A multi-objective optimization problem (MOP) is de-

fined as the problem of finding a set of solutions that
satisfy a set of equality and inequality constraints, and
optimize two (or more) (possibly conflicting) objectives
simultaneously. Assuming minimization, a MOP is stated
as follows:

minimize f (x) = [f1 (x) , . . . , fl (x)]T
subject to gj (x) ≤ 0 j = 1, . . . , p

hk (x) = 0 k = 1, . . . , q

where x = [x1, . . . , xn]T ∈ Rn is a vector of decision
variables, fi (x), i = 1, . . . , l, are the objective functions,
gj (x), j = 1, . . . , p are the inequality constraints and
hj (x), k = 1, . . . , q, are the equality constrains.

Most modern MOEAs use the concept of Pareto dom-
inance to determine if a solution is better than another, in
their population. Formally, the Pareto dominance concept
is defined as follows:

Definition 1: A solution x(1) dominates a solution x(2)

(x(1) � x(2)) if and only if x(1) is better than x(2)

at least in one objective and it is not worse in the
rest, i.e. ∀i ∈ {1, . . . , l}, fi

(
x(1)) ≤ fi

(
x(2)) ∧ ∃i ∈

{1, . . . , l} , fi
(
x(1)) < fi

(
x(2)).

The notion of optimum in MOP refers to obtaining the
best possible trade-off among the objectives. In order to
establish these trade-offs, the most accepted notion of op-
timum is the so-called Pareto optimality. Pareto optimality
is formally defined as:

Definition 2: A solution x∗ ∈ Ω, where Ω is the feasible
region, is a Pareto Optimal if there does not exists another
solution x′ ∈ Ω such that x′ � x∗.

This definition produces not one, but a set of trade-
off solutions among the different objectives. The set of
trade-off solutions (in decision variable space) is known
as Pareto optimal set.

Definition 3: The Pareto optimal set (PS) is defined
as:

PS = {x ∈ Ω | x is a Pareto optimal solution}

The objective function values corresponding to the
elements of the Pareto optimal set constitute the so-called
Pareto front. Formally,

Definition 4: The Pareto front (PF) is defined as:

PF = {F (x) | x ∈ PS}

III. Support Vector Machines
Support Vector Machines (SVMs) [5] are supervised

learning algorithms based on statistical learning theory.
SVMs are able to construct classification and regression

models from a training data set. In a regression task, a
SVM aims to learn a function, f (x), that has at most an
ε deviation from the targets for the training data.

Let {(x1, y1) , . . . , (xm, ym)} be a training data set,
where xi ∈ Rn is an input vector and yi ∈ R corresponds
to the desired output. The support vector regression con-
structs a linear function:

f (x) = w · x + b (1)

where f (x) is the estimated function, w is a coefficient
vector, b is the bias. These parameters can be obtained by
solving the following constrained optimization problem:

min 1
2 ‖ w ‖2

s.t. w · x + b− yi ≤ ε,
yi −w · x− b ≤ ε,
i = 1, . . . ,m

(2)

where ε > 0 is a constant that controls the tolerable error.
This equation assumes that the convex optimization

problem is always feasible, but this may not be the case.
Furthermore, sometimes it is desirable to allow for some
errors. For that reason, one can introduce slack variables
ξi, ξ∗i in equation (2), re-expressing the optimization prob-
lem as follows:

min 1
2 ‖ w ‖2 +C

m

m∑
i=1

(ξi + ξ∗i )

s.t. w · x + b− yi ≤ ε+ ξi,

yi −w · x− b ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . ,m

(3)

where C is a parameter that controls the trade-off between
the complexity of the model parameterization and the
margin-based error.

Equation (3) can be solved using quadratic program-
ming techniques. The interested reader is referred to [6]
for more details about support vector regression.

IV. Previous Related Work
In recent years, the use of surrogate models in opti-

mization has received great attention, as an alternative
to approximate the objective function and to reduce the
number of required (objective function) evaluations with-
out degrading, in a significant manner, the quality of
the obtained solutions. Surrogate models have been used
both in single-objective optimization and multi-objective
optimization. In multi-objective optimization, a number
of strategies have been adopted. Arias-Montaño et al. [7]
proposed a surrogate-based approach for multi-objective
optimization based on differential evolution. Their pro-
posal is based on multiple surrogate models. Instead of
combining the surrogates in an ensemble, the authors
proposed that the multiple surrogates are used in parallel.



For each model, a solution is chosen to be evaluated with
the real fitness function and it is also used to update the
models.

In [8], Zhang et al. proposed to couple the MOEA/D [9]
algorithm with a meta-model called Gaussian Process (also
known as Kriging method). Their proposed approach is
called MOEA/D-EGO, which uses the Gaussian process
meta-model for modeling each one of the objective func-
tions and to derive models for the decomposed problems.
In each generation, a number of k points are selected to be
evaluated with the expensive fitness functions, and these
are added to an external population. MOEA/D-EGO was
evaluated using a suit of benchmarks problems with up to
8 decision variables, and with 200 and 300 fitness functions
evaluations.

Lim et al. [10] proposed the use of surrogate models
within local search in a memetic algorithm. The authors
used two types of surrogates: an ensemble and a low-order
polynomial. The surrogates were trained to approximate
a weighted sum of the objectives. A single-objective al-
gorithm coupled with the surrogates was run to find an
optimal solution. A selection strategy was proposed for de-
ciding which solutions had to be added to the population.

Knowles [11] proposed ParEGO, a hybrid approach
that combines Gaussian processes with an extension to the
EGO algorithm for multi-objective problems. ParEGO ap-
plies the EGO algorithm to a randomly selected weighting
vector to scalarize the objective functions, and it is used
to find a point to be evaluated with the expensive fitness
functions. In order to avoid the computational overhead,
this algorithm limits the maximum number of samples
used for training the surrogate, such that information
from previous evaluated points can be lost, causing that
these points could be evaluated again. This approach is
used to solve multi-objective problems with low-to-medium
dimensionality (in fact, up to 8 decision variables) with
only 100 and 250 fitness functions evaluations.

Zhou et al. [12] used multiple surrogate models, such
as polynomial regression and radial basis functions, with
a memetic algorithm. An evolutionary algorithm was cou-
pled with a local search engine, which used multiple sur-
rogates. These surrogates were combined in an ensemble.
This ensemble was used to evaluate the solutions during
the local search.

It has also been of interest the issue of choosing
an appropriate surrogate model for using in evolution-
ary optimization. In this direction, a comparative study
has been performed by Montemayor-Garcia and Toscano-
Pulido [4] and Diaz-Manriquez et al. [3]. In both works,
four different surrogate models (polynomial regression
(PR), kriging, radial basis functions (RBFs) and support
vector regression (SVR)) are compared in different aspects
of the models during the evolutionary process, such as
accuracy, robustness, efficiency, and scalability. In [4], the
authors concluded that for low dimensional problems,
kriging methods and PR are the most suitable approaches,
while for high dimensional problems, RBF and SVR are
preferred. In contrast, in [3], the authors concluded that
for low dimensional problems, the best approach can be

kriging or even SVR, while for high dimensional problems,
RBF can be the most suitable.

Santana-Quintero et al. [13] also perform a comparative
study between support vector machines, artificial neural
networks, and radial basis functions. From that compara-
tive study, the authors concluded that the SVM provides
better approximations. Then, an SVM is coupled with a
multi-objective particle swarm optimizer (MOPSO) and
Rough Sets to solve multi-objective optimization problems.

Pilat and Neruda [14] proposed a framework to choose
a supervised learning algorithm, to be used to construct
the surrogate. The constructed surrogate is used in EMO.
The surrogate is used in two ways: to pre-select individuals
and in a local search engine. As their surrogate models,
the authors used linear regression, 3 types of support
vector regression, 3 types of artificial neural networks,
and 2 types of RBF networks and Gaussian processes. In
that framework, the selection for hyperparameters values
for each kind of surrogate is not performed; instead, the
default hyperparameters values were used.

Based on the previous literature review, we found out
that there exists an interest in using different surrogate
models to improve fitness estimation, as well as in deter-
mining the most suitable surrogate model to be used in
an optimization problem. Notwithstanding, in these works
the automated model selection step is not included in
the MOEA. An exception of this is Pilat and Nerudas’s
work, in which a learning algorithm selection stage is
incorporated into the framework. They do not consider to
choose the appropriated set of hyper-parameters for the
selected learning algorithm, but from the machine learning
field it is well known that the performance of a model
highly depends on the hyper-parameters configuration. For
that reason, in this work we propose an algorithm that
automatically chooses the most suitable hyper-parameters
for the SVMs, which are combined into an ensemble
method to improve the fitness estimation. We chose the
SVM algorithm because it has a high performance over
different problems, included those used in our study.

V. Our Proposed Approach
The proposed approach combines a MOEA with an en-

semble of surrogate models for approximating the objective
functions. The ensemble is constructed in an incremental
fashion. As our surrogate model, we used SVMs. Since
different SVMs models can be constructed using different
hyperparameters values, this raises the issue of model
selection, i.e., determining an appropriate combination
for the hyperparameters values that provides the most
accurate model that is possible. The proposed approach
is presented in Algorithm 1, and it is described in detail
in the following sections.

A. Initialization
In order to ensure a well-distributed initial population,

this is created using the Latin-hypercube sampling tech-
nique [15]. The initial population is evaluated using the
real functions. Our proposal uses two external archives:
the first one (external archive A) stores the non-dominated



Algorithm 1 SAMOEA/SVM
Require: f : objective functions vector,

N : population size,
G: maximum number of generations,
m: size of external archive B,
n: number of models in the ensemble.

Ensure: A set of non-dominated solutions (external archive A)
1: Create an initial population, P0, using latin-hypercubes

sampling
2: Evaluate initial population’s members using the real fitness

functions
3: Store the non-dominated solutions in external archive A
4: Store the population’s members in external archive B
5: Construct surrogate model.
6: for g = 1 to G do
7: Apply evolutionary operators (selection, crossover and

mutation) over the parents and archive A populations
to create an offspring population

8: Evaluate offspring’s members using the surrogate models
9: Determinate the non-dominated solutions from offspring

population
10: Evaluate the non-dominated solutions using the real

fitness functions
11: Update external archives.
12: Update surrogate models.
13: end for

solutions found during the evolutionary process, while
the second one (external archive B) stores the evaluated
solutions with the real functions and it is used as training
samples for the surrogates. Therefore, the external archive
A initially stores the non-dominated solutions from the
initial population, and the external archive B stores the
solutions from the initial population. It must be noted that
both external files are limited to store a fixed number of
samples (N samples for external archive A, and m samples
for external archive B).

B. Constructing Models

After the initial population has been created and eval-
uated with the real objective functions, the next step is to
construct the surrogates. The solutions stored in external
archive B are used as training samples for constructing
a surrogate. As it was previously indicated, we used an
SVM as a surrogate model. In order to improve the
surrogate’s reliability, a model selection procedure is first
performed. Therefore, for each SVM kernel type (polyno-
mial, Gaussian, and sigmoid), a grid search is performed
for determining the most appropriate hyperparameters
values among a set of them. The set of hyperparameters
values that gives the lowest expected generalization error is
chosen. For determining the expected generalization error,
we used the k-fold cross validation sampling technique.
After determining the combination of hyperparameters,
the surrogate is trained and used for the fitness value
estimation. This process is summarized in Algorithm 2.

C. Choosing Solutions for being Evaluated with the Real
Fitness Functions

Once the surrogate has been constructed and an off-
spring population has been created (applying the evo-

Algorithm 2 construct Models
Require: External archive B
Ensure: A set of trained models

1: Let X be a set of samples points which were evaluated with
the fitness functions

2: Let Y be a vector with the responses of each point to each
objective function

3: for g = 1 to l, where l is the number of objectives do
4: Perform a grid search for determining a set of hyper-

parameters for an SVM appropriated for X with the
corresponding responses Y(g) (see Algorithm 3)

5: Train a meta-model using the determined hyper-
parameters and X and Y(g)

6: Add the trained meta-model to the set of models.
7: end for

Algorithm 3 grid Search
Require: d: number of grids for each dimension
Ensure: A set of hyper-parameter

1: Let X be a set of samples points which were evaluated with
the fitness functions

2: Let Y be a vector with the responses of each point to an
objective function

3: for each kernel type ∈ {linear, polynomial, Gaussian, sig-
moid} do

4: for each i ∈ {1, . . . , d} do
5: Use k-fold cross validation to estimate the expected

generalization error of a meta-model when it is trained
with a particular set of hyper-parameters and the
samples X and Y.

6: end for
7: end for
8: Choose the set of hyper-parameters with the lowest ex-

pected generalization error

lutionary operators), we proceed to determine the solu-
tions to be evaluated with the real fitness functions. At
this stage, the offspring’s members are evaluated using
the surrogate. Then, we determine which are the non-
dominated solutions from the offspring population. The
non-dominated solutions are then chosen for being evalu-
ated with the real fitness functions.

D. Updating External Archives

For storage and processing reasons, the size of the
external archives is limited. External archive A is limited
to store N solutions, where N is equal to the population
size. This archive stores the non-dominated solutions found
during the search process. For adding a new solution, this
new solution should be non-dominated with respect to the
solutions stored in archive A. If the added solution domi-
nates some solutions stored in archive A, such solutions are
removed from the archive. Once archive A has N samples,
it is allowed to add new non-dominated solutions, but the
archive is pruned to N samples. For pruning, a clustering
technique is used, where the solutions are grouped in N
clusters, and the nearest solutions to each cluster center
are chosen.

External archive B stores all solutions evaluated with
the real fitness functions. Once this archive has stored
its maximum allowable number of samples, adding new



solutions is allowed, but the external archive B is pruned
for that sake. Pruning is based on Pareto ranking. First,
the solutions are sorted according to their non-dominance
level. The solutions from the first non-dominated front are
added, followed by the second front, and so on, until B has
at least the maximum allowable size. The fronts that were
not added are deleted. If the size of the external archive B
is larger than its allowable value, a clustering technique is
used to prune the last added front.

E. Updating Models

The surrogate models are used to approximate the
solutions’ fitness values. Nonetheless, the new knowledge
acquired during the evolutionary process should be in-
cluded to update the information behavior of the fitness
functions. Therefore, the surrogate models will probably
be constructed several times along the search process.
To avoid increasing the computational cost to train the
model in each generation of the evolutionary algorithm,
we propose a criterion based on surrogate fidelity for
determining when a model should be trained. Since the
suggestions for solutions to be evaluated with the real
fitness functions are based on the fitness estimation pro-
vided by the surrogate, when these suggestions are worse
than a random one, then the surrogates must be trained
(performing the corresponding model selection), otherwise,
the current models are still used.

Furthermore, the use of ensembles could be beneficial
for improving the approximations of the fitness values, due
to the diversity in the behavior of the ensemble members.
For that reason, we explore the use of an ensemble of
SVMs. The ensemble is constructed incrementally. First,
the ensemble has only one member, which is the model
constructed with the solutions in the initial population.
After that, when a model is trained (according to the
criterion that was previously explained), this is added to
the ensemble. In this way, new information is added at
the time the information from previous explored regions
is preserved. The size of the ensemble is limited to a fixed
number of models. Finally, when the maximum number of
models is reached, in order to add a new model, the oldest
member of the ensemble is removed.

VI. Experiments and Results

For our experiments, we used the Zitzler-Deb-Thiele
(ZDT) test suite [16]. This benchmark consists of 6 bi-
objective optimization problems, with between 10 and 30
decision variables. However, here, we did not consider
ZDT5, because it is a binary problem. The considered
problems have diverse characteristics, such as convex, non-
convex, discontinuous, and multi-frontal problems. The in-
terested reader is referred to [16] for a detailed description
of these problems.

We used the following parameters for our proposal in
our experiments:

TABLE I: Number of solutions evaluated with the real
fitness function and trained models averaged over the 30
replications.

Function Evaluations No. trained models
ZDT1 2033.762± 420.701 31.267± 09.116
ZDT2 1608.350± 719.080 15.700± 09.917
ZDT3 2371.683± 192.815 66.667± 07.087
ZDT4 2313.894± 463.189 30.267± 09.989
ZDT6 2186.435± 198.136 24.367± 19.200

Population size 100
Generations 100

Crossover rate 0.9
Mutation rate 1

n , where n is the number
of decision variables

Distrib. index for crossover 20
Distrib. index for mutation 20

max. num. of models 5
External archive size 100

As we indicated before, the purpose of using surrogate
models is to reduce the number of fitness functions evalu-
ations. Therefore, it is important to assess this reduction
in the first place. In Table I, we present the number of
real fitness function evaluations performed by our proposed
approach, as well as the number of trained models used
during the search process. The reported results are the av-
erages and standard deviations from 30 independent runs.
From that table, it can be noted that the test problem
that required the highest number of fitness evaluations
was ZDT3, with an average of 2,371.683 fitness function
evaluations. This represents a reduction of 76.28%, on
average, of the number of fitness evaluations performed by
the MOEA, when not using surrogates (i.e., the MOEA
without surrogates performs 100 individuals × 100 gener-
ations = 10, 000 evaluations). This would evidently trans-
form in a significant reduction in CPU time if our proposed
approach is used in computationally expensive problems.
It is also noted that the number of trained models ranges
from 15.70 to 66.67, which also represents computational
savings, since it was not necessary to update the model at
each generation.

In order to quantitatively assess the performance of our
proposed approach, we adopted the following performance
measures: Averaged Hausdorff Distance (∆p) [17], Spread
(∆) [2], and Set Coverage (SC) [18]. We performed 30
independent runs for each test problem. Our obtained
results are compared with respect to those obtained by
the NSGA-II [19]. In order to make the comparison as
fair as possible, the parameters of the NSGA-II were fixed
so that it performed 3,000 fitness functions evaluations.
Therefore, the population size for the NSGA-II was fixed
to 60, the maximum number of generations was set to
50, the crossover probability was set to 0.9, the mutation
probability was set to 1

n (where n is the number of decision
variables), and the distribution index for crossover and
mutation was set to 20.

Table II shows the obtained results with both ap-
proaches: NSGA-II and our proposal (SAMOEA/SVM),
for each performance measure. The reported results are the



TABLE II: Results obtained by the NSGA-II and our proposed approach. The reported results are the average and
standard deviation for the 30 independent runs performed for each test problem. The best result is shown in boldface.

Test Problem ∆p ∆ SC
SAMOEA/SVM NSGA-II SAMOEA/SVM NSGA-II SAMOEA/SVM NSGA-II

ZDT1 1.41e− 2± 4.20e− 3 2.28e− 1± 7.39e− 2 0.590± 0.120 0.730± 0.049 0.000± 0.000 0.996± 0.012
ZDT2 1.75e− 2± 1.51e− 2 6.43e− 1± 2.06e− 1 0.435± 0.248 0.892± 0.073 0.000± 0.000 0.876± 0.300
ZDT3 2.06e− 2± 1.70e− 2 2.40e− 1± 5.10e− 2 0.671± 0.085 0.750± 0.044 0.000± 0.000 0.997± 0.011
ZDT4 1.30e + 1± 0.70e + 1 1.49e+ 1± 1.17e+ 1 0.973± 0.055 1.028± 0.119 0.814± 0.255 0.245± 0.275
ZDT6 3.02e− 1± 3.15e− 1 1.71e+ 0± 2.41e− 1 0.872± 0.408 0.926± 0.059 0.010± 0.011 0.686± 0.176

TABLE III: Obtained p-values from the Z-test. Cases with
a p-value less than a 0.05 are statistically significant with a
95% of confidence and these are indicated with an asterisk
(*).

Test Problem p-value
∆p ∆ SC

ZDT1 < 0.001(∗) < 0.001(∗) < 0.001(∗)

ZDT2 < 0.001(∗) < 0.001(∗) < 0.001(∗)

ZDT3 < 0.001(∗) < 0.001(∗) < 0.001(∗)

ZDT4 0.451 0.022(∗) < 0.001(∗)

ZDT6 < 0.001(∗) 0.660 < 0.001(∗)

average and standard deviation for the 30 runs performed
for each test problem. The best result obtained for each
test problem is shown in boldface. From this table, it can
be observed that our proposal had a better performance for
most of the test problems considered (ZDT1, ZDT2, ZDT3,
and ZDT6) with respect to the performance measures
adopted: ∆p, ∆, and SC. The only exception is ZDT4 in
the SC metric. We performed the Z statistical significance
test in order to determine if the differences between the two
algorithms was statistically significant. The Z-score can be
computed as follows:

Z = x1 − x2√
σ2

1
n1

+ σ2
2
n2

(4)

where x1 and x2 are the means of the performance for a
pair of algorithms, σ1 and σ2 represent the corresponding
standard deviations, and n1 and n2 are the corresponding
numbers of replications.

The Z-score can be converted to a significant level
through a normal cumulative distribution function, such
that a Z-value of 1.96 corresponds to a 95% significance
level (i.e. this Z-value corresponds to an alpha level of
0.05). We applied this statistical test to the obtained re-
sults for both approaches for each metric, and the obtained
p-values are presented in Table III. From that table, and
according to the statistical significance test, our proposal
statistically outperformed NSGA-II in the ZDT1, ZDT2,
ZDT3, and ZDT6 test functions when the Averaged Haus-
dorff Distance (∆p) and SC metrics were considered. But,
in the case of SC metric, it was statistically outperformed
in the ZDT4 test function. With respect to spread (∆),
the statistical test showed that our proposed approach
statistically outperformed NSGA-II in ZDT1 to ZDT4, but
the difference with the ZDT6 function was not statistically
significant.

Figure 1 shows the Pareto fronts generated by both
our proposed approach and the NSGA-II, for each test
problem. This figure allows us to graphically observe that,
for most of the test problems adopted, our proposal gets
points which are closer to the true Pareto front than those
obtained with the NSGA-II. This figure also allows us to
observe that the solutions generated by the NSGA-II are
far from the true Pareto front. Furthermore, for ZDT2,
ZDT4, and ZDT6, the number of non-dominated points
generated by the NSGA-II is scarce after performing 3,000
fitness functions evaluations. In contrast, our proposed ap-
proach, besides generating points closer to the true Pareto
front, it generates points that are better distributed along
it. Note that for ZDT4, the approximations generated by
both approaches are far from the true Pareto front. This is
caused by the evident difficulty that both approaches have
to deal with multi-frontal problems.

VII. Conclusions and Future Work
In this paper, we proposed an approach that uses an

ensemble of surrogate models for solving multi-objective
optimization problems, coupled with a model selection
strategy for determining the hyperparameters values for
an SVM. Since choosing these hyperparameters adds an
extra cost to the proposed approach, a criterion based on
the surrogate fidelity allows determining when a surrogate
should be trained. In this way, we avoid training a surro-
gate at each generation of the evolutionary process. This
allows saving computational time.

Our experimental results showed the advantages of
our proposed approach when compared to the NSGA-II.
In fact, the NSGA-II was not able to converge to the
true Pareto front when performing 3,000 fitness functions
evaluations, while our proposed approach generated better
approximations with fewer evaluations of the real fitness
functions. In spite of the poor performance of our proposed
approach on ZDT4, the statistical tests that were con-
ducted, showed that the improvements obtained in ZDT1,
ZDT2, ZDT3, and ZDT6 are statistically significant. Based
on these results, we assume that our proposed approach
can be useful in real-world problems in which the fitness
function evaluations are time-consuming.

As part of our future work, we would like to extend our
approach to consider more surrogate models types, besides
the SVM, so that our approach can be able to choose
among a set of surrogate models. We are interested in
studying other approaches to perform the model selection
step, making this procedure more efficient. We are also
interested in coupling our proposal with a local search
engine in order to improve its convergence. Finally, we
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(c) ZDT3 function
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(d) ZDT4 function
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Fig. 1: ZDT test problems. The above plots correspond to the Pareto fronts generated by the NSGA-II and our proposed
approach (SAMOEA/SVM) for each of the ZDT test problems.

want to test our approach with problems having more than
two objectives.
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