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Abstract—The Teaching Learning-Based Optimization 

(TLBO) is a population-based optimization algorithm suitable for 

solving complex problems. TLBO imitates the interaction 

between a teacher and her/his students. The global solution 

search process of this approach consists of two phases: the 

Teacher- and the Learner-Phase. This paper proposes a multi-

objective teaching learning algorithm based on decomposition 

(MOTLA/D) for solving a reactive power handling problem. The 

proposed method is validated on three test systems, and it is 

compared with respect to a state-of-the-art multi-objective 

evolutionary algorithm based on decomposition (MOEA/D). 

 
Index Terms--Optimal power flow, Optimization, Reactive 

power. 

I.  INTRODUCTION 

PTIMAL reactive power handling (ORP) plays a 

significant role in the secure operation of power systems. 

One of the main tasks of a power system operator is to manage 

the system in such a way that its operation is safe and reliable. 

Its main aim is to determine the optimal operating capacity 

and the physical distribution of the compensation devices such 

as voltage rating of generators, reactive power injection of 

shunt capacitors/reactors, and tap ratios of the tap setting 

transformers, in order to ensure a satisfactory voltage profile, 

while minimizing the transmission losses. Active power line 

losses are small while reactive power line losses are large. 

Reducing the reactive power losses enables more active power 

to be transferred over a single line. Due to the continuous 

growth in the demand for electricity with unmatched 

generation and transmission capacity expansion, voltage 

stability has emerged as a challenge to power system planning 

and operation. Therefore, a voltage stability index should also 

be considered as an objective of the ORP problem. 

It is important that each system and control area handle 

capacitive and inductive reactive resources at proper levels to 

maintain the voltages within established high and low limits. 
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Reactive generation scheduling, transmission and switching, 

and load shedding, if necessary, should be implemented to 

maintain these levels. Likewise, each control area should 

provide its reactive power requirements, including appropriate 

reserves to protect the voltage levels for contingency 

conditions. 

The optimal reactive power problem is a nonlinear, non-

convex, over-determined system, a large-scale optimization 

problem with both continuous and discrete variables; 

additionally, its high dimensionality represents a major 

difficulty. This problem is quite important for power system 

security. In this paper, the basic objective is to estimate proper 

adjustments on the control variables, such as generator bus 

voltages and tap setting transformers that help to maintain an 

acceptable voltage profile and minimize the reactive power 

losses; one voltage stability metric (Lindex) is also used. Thus, 

an optimal formulation that contributes to attain these 

purposes becomes appropriate. In general, it may include 

several objective functions, possibly in conflict among them. 

Such kind of optimization problem has a set of possible 

solutions (named Pareto optimal set), which represents the 

best commitment (feasible) among the objectives [1]. Several 

optimization techniques have been proposed to solve such 

optimal reactive power problems. From them, two major 

approaches may be identified [2]: 

(1) The first approach is based on the use of evolutionary 

algorithms such as Differential Evolution (DE) [3], Non-

dominated Sorting Genetic Algorithm II (NSGA-II) [4], 

Particle Swarm Optimization (PSO) [5], an Improved Hybrid 

Evolutionary Programming Technique [6], and Artificial Bee 

Colony Algorithm (ABC) [7]. 

(2) The second approach is based on conventional 

methods. They include Gradient-based Methods, Non-Linear 

Programming (NLP), Quadratic Programming (QP), Linear 

Programming (LP) and Interior Point Methods [8-12], the 

Weighting Method [13], and the ε-Constraint Method [14]. 

These conventional methods are based on an estimation of 

the global minimum. However, due to difficulties of 

differentiability, non-linearity, and non-convexity, these 

methods do not guarantee reaching the global optimum [15]. 

Thus, these methods present limitations when dealing with 

certain types of problems. For instance, they cannot be used 

when the objective function is not available in an algebraic 

form. This has motivated the development of alternative 
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methods, such as metheuristics. Over the years, meta-

heuristics (from which evolutionary algorithms is a particular 

subclass) have become a popular choice for solving complex 

optimization problems, due to their flexibility, generality (they 

are less sensitive to the actual shape or continuity of the Pareto 

front than conventional methods) and ease of use. 

Additionally, most meta-heuristics require little or no specific 

domain knowledge. 

In this paper, a multi-objective teaching learning algorithm 

based on decomposition (MOTLA/D) is proposed for solving 

the reactive power handling problem. In order to minimize the 

reactive power losses and a voltage stability index [21], the 

proposed algorithm estimates the following optimal values: (i) 

generator bus voltages; (ii) tap setting transformers. The 

effectiveness of the proposed approach is demonstrated and 

compared with respect to the multi-objective evolutionary 

algorithm based on decomposition (MOEA/D) [16], which is 

representative of the state-of-the-art on the subject; both 

methods are applied on three test systems: 9-, 26-, and 118-

buses. 

The rest of the paper is organized as follows. Section II 

exposes a basic background. In Section III, the general 

framework of the proposed approach is summarized. Section 

IV presents the problem formulation and a short description of 

the test systems. Results of a comparative study are presented 

in Section V. Finally, conclusions are provided in Section VI. 

II.  BASIC CONCEPTS 

A.  Multi-objective optimization 

A multi-objective optimization problem (MOP) may be 

formulated as follows, 





x

xfxfxF k

subject to

)}(),...,({)(min 1
           (1) 

where x is the vector of decision variables, and Ω is the 

feasible region within decision variable space. 
kF : is 

defined as the mapping of k objective functions. 

In multi-objective optimization, the goal is to find the best 

possible trade off among the objectives since, frequently, one 

objective can be improved only at the expense of worsening 

another. To describe the concept of optimality for problem (1) 

the following definitions are provided [17]. 

Definition 1. Let ,x y , such that x y , we say that x 

dominates y (denoted by x y ) if and only if, ( ) ( )i if x f y  

for all i = 1, ..., k. 

Definition 2. Let 
*x  , we say that 

*x  is a Pareto optimal 

solution, if there is no other solution y  such that 
*y x . 

Definition 3. The Pareto Optimal Set (PS) is defined by 

{  is Pareto Optimal Solution}SP x x  , while its image 

{ ( ) }F SP F x x P   is called the Pareto Optimal Front. 

B.  Decomposition of a multi-objective optimization problem 

There are several approaches for transforming a MOP into a 

number of scalar optimization problems, which have been 

described in detail in [18]. Usually, these methods use a 

weighting vector to define a scalar function and, under certain 

assumptions, a Pareto optimal solution is achieved by 

minimizing such function [17]. In this paper, the 

Tchebycheff’s approach is used to decompose a MOP. In this 

approach, the scalar optimization problem can be stated as 

[18]: 

   * *

{1,.., }
Minimize , max ( )

Subject to
i i i

i k
g x w z w f x z

x


 


          (2) 

where  1,..., kw w w  is a weighting vector and 0iw   for all 

1,...,i k , 1
1

k

ii
w


 ;  * * *

1 ,..., kz z z  represents the 

reference point, i.e.,  * min ( )i iz f x x  , for 1,...,i k . 

For each Pareto optimal solution 
*x  there exists a 

weighting vector w such that 
*x  is the optimal solution of (2), 

and each optimal solution is a Pareto optimal solution for (1). 

Therefore, it is possible to obtain different Pareto optimal 

solutions using different weighting vectors w [16]. 

C.  Teaching learning based optimization 

The original teaching learning based optimization (TLBO) 

algorithm was proposed by Rao et al. [19], to calculate global 

solutions for continuous non-linear functions. In optimization 

algorithms, the population consists of different design 

variables. In TLBO, the design variables are analogous to 

different subjects offered to learners. The learners' grade is 

analogous to the 'fitness' as in any other evolutionary 

algorithm, and the teacher is considered to be the best solution 

obtained so far [19]. Hence, the TLBO is based on two main 

phases: the teacher phase, which involves learning from the 

teacher, and the learner phase, which involves learning 

through the interaction among learners. 

Teacher phase 

In TLBO, each class consists of a number of learners with 

different grades; the learner with the best grade is selected as 

the teacher. A teacher will try to improve the mean of the class 

toward their own level, according to his/her capability. 

Let Mi be the mean of the class and Tbest,i be the best 

solution so far and, therefore, the teacher in the i-th iteration. 

Hence, Tbest,i will try to move the mean of the class Mi towards 

its own level. Thus, the new mean will be Tbest,i, designated as 

Mnew,i. The difference between the mean of the class (Mi) and 

the new mean (Mnew,i) is expressed by [19] 

 ,i i new i F ir M T M            (3) 

where TF is a teaching factor that weights the current mean 

value. The value of TF can be either 1 or 2, which is 

determined randomly with equal probability as TF = round [1 

+ rand(0,1)]. ri is a random number within [0, 1]. TLBO uses 

the current best solution to improve the existing solution, 

thereby increasing the convergence rate [19]. The difference 

(3) updates the current solution according to the following 

expression [19] 

new oldx x             (4) 

xnew is accepted if it improves the function value. 

Learner phase 

A learner interacts randomly with other learners through 

group discussions, presentations, formal communications, etc., 

[19]. Thus, each learner may acquire new knowledge if the 
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others have more knowledge than him/her. The modification 

of the Learners is expressed as follows [19]. 

,

,

 1 to number of learners
 select one learner , such that 

( ( )

( )

( )

 i
 

i j

i j

new i i i i j

new i i i j i

for i
Randomly j x x

if f x f x

x x r x x

else
x x r x x

end f
end for




 

  

  

  (5) 

 

xnew is accepted if it accomplishes a better objective function 

value. The new solutions (xnew) update the initial learners and 

the teaching-learning process continues until the stopping 

criterion is achieved. 

Metaheuristics, in general, require parameters that affect 

their performance. For example, differential evolution (DE) 

depends on the mutation strategy adopted, and on its intrinsic 

control parameters such as its scaling factor (Fs) and the 

crossover rate (Pcr); particle swarm optimizers (PSO) require 

learning factors, the variation of the inertia weight and the 

velocity's maximum value; ABC requires a limit value. In 

contrast, TLBO does not require any specific parameters to be 

tuned, which facilitates its implementation and use. 

In this paper, an extension of the TLBO algorithm for multi-

objective optimization based on decomposition is proposed, 

and it is applied to power systems optimization. 

III.  MULTI-OBJECTIVE TEACHING LEARNING BASED ON 

DECOMPOSITION 

The proposed Multi-Objective Teaching Learning 

Algorithm based on Decomposition (MOTLA/D) utilizes the 

Tchebycheff’s approach (see eq. (2)), to decompose the MOP 

into N scalar optimization sub-problems. 

Let w1,...,wN be a set of evenly spread weighting vectors and 

z* be the reference point. Hence, using eq. (2) the objective 

function of the j-th sub-problem becomes 
* *

{1,.., }
( , ) max { ( ) }j j

i i i
i k

g x w z w f x z


  , with 1{ ,..., }j j j

kw w w  

and j = 1,…, N. The proposed approach looks for the 

sequential minimization of these sub-problems. Similar to 

MOEA/D [16], neighborhood relationships among these sub-

problems are defined by computing Euclidean distances 

between weighting vectors. A neighborhood to the weighting 

vector jw  is defined as the set of its closest weighting vectors 

in 
1{ ,..., }Nw w . 

In MOTLA/D, the size of the neighborhood becomes the 

number of learners in the class. For the j-th sub-problem, this 

class can be expressed as, 
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where the subscript D is the number of design variables, and 

Tsize is the size of the neighborhood ΩT. Tsize is the main 

control parameter in MOTLA/D. If Tsize is too small, the 

algorithm lacks the ability to explore new regions in the 

searching space. On the other hand, if Tsize is too large, the 

exploitation ability of the algorithm is weakened. 
Firstly, a randomly distributed initial population within the 

valid parameters’ interval is generated, 

min max min

, (0,1) ( ), 1,..,

1,..,

j d d d dx x rand x x j N

d D

    

    
(7) 

where N is the number of sub-problems (i.e., number of 

learners) and D is the number of decision variables (i.e., the 

number of subjects offered to the learners). min

dx  and max

dx  are 

the lower and upper bounds of parameter d, respectively. 

 The fitness evaluation is based on scaling functions with 

uniformly distributed weighting vectors. As in [16], the 

weighting vectors are generated from the following 

expressions, 

   1 2 ... 1kw w w   
                                

(8) 

1 2
0, , ,..., , 1,2,...,i

I
w i k

I I I

 
  
               

(9) 

where I is a user-defined positive integer. For example, for k = 

2 (i.e., two objective functions), if I is specified as 100, then 

101 weighting vectors (0,1), (0.01,0.99),.., (1,0) are used. This 

method for generating weighting vectors works well for the 

formulation in this paper. However, other methods can be used 

[16]. The main phases of the proposed MOTLA/D may be 

summarized as follows. 

Teacher phase 

Within the teacher phase, the mean of the class for each 

design variable is evaluated, 

1 2[ , ,..., ]DM m m m                     (10) 

For the j-th sub-problem the teacher (Mnew) represents the 

best learner of the class Cjth. Thus,  
*{ min ( , )}

j

j

new j jx T

M x g x w z


       (11) 

Using the difference between two means, eq. (3), the 

teacher will try to improve the mean of the class (M) taking it 

towards its own level (Mnew). The difference modifies the j-th 

learner (xj) in order to generate a new solution ( newTx ) as 

follows: 

newT jx x                   (12) 

Learner phase 

The learner phase generates a new solution ( newLx ) by 

randomly selecting another learner xi, such that i ≠ j. This may 

be expressed by, 

 ( ) ( )

( )

( )

j i

newL j i j i

newL j i i j

if f x f x

x x r x x

else
x x r x x

end



  

  
       (13) 

MOTLA/D generates one offspring by recombining the 

previous solutions: the teacher phase and the learner phase. 

Particularly, the algorithm of MOTLA/D crosses each vector 

as follows, 
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       (14) 

Crossover is applied for each of the D decision variables. 

Additionally, a polynomial mutation operator is applied to 

maintain the solutions’ diversity. The operator uses the 

polynomial distribution, 
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           (15) 

where rd is a uniformly distributed random number in the 

interval [0, 1], and μ is a mutation distribution index. The 

mutated element is given by, 

    , , , ,new d new d ub d lb d dx x x x                    (16) 

where ,lb dx  and ,ub dx  are the lower and upper limits for the d-

th decision variable, respectively. 

For the new solution (xnew), if one or more variables lie 

outside Ω, then the d-th value of xnew is reset as follows, 

, , ,

,

, , ,

,

,

lb d new d lb d

new d

ub d new d ub d

x if x x
x

x if x x


 


          (17) 

The new solution (xnew) is accepted if it improves the 

function value and replaces the old one (xj). The MOTLA/D 

implementation may be summarized as follows. 

 

Step 1) Initialization 

Step1.1) Generate an initial population of N points 

 1,..., Nx x  and evaluate its individuals F(x1), .., F(xN). 

Step1.2) Initialize the reference point  * * *

1 ,..., kz z z  , 

where  * min ( )i iz f x x  , for 1,...,i k . 

Step1.3) Set t = 1 and generate a well-distributed set of N 

weighting vectors 1( ,..., )j j j

kw w w , j = 1,.., N. 

Step1.4) In order to define the neighborhood ΩT for each 

vector, compute the Euclidian distances between any two 

weighting vectors. 

 

Step 2) Teaching learning process 

For j = 1 to N do 

Step2.1) From the teacher phase, generate a solution 

xnewT according to (12). Then, from the learner phase, 

generate a solution xnewL according to (13). 

Step2.3) Recombine solutions xnewT and xnewL (i.e., 

apply crossover between them) in order to generate a 

new solution xnew according to (14). Then, apply the 

mutation operator (16). If an element of xnew lies 

outside Ω, its value is reset according to (17).  

Step2.4) Update the reference point 
*z : 

*

i new iif f x z    then * ( )i i newz f x  for each i =1,.., k. 

Step2.5) Update the population: 
* *( , ) ( , )j j

new jif g x w z g x w z , then j newx x and 

( ) ( )j newF x F x . 

Step 3) Stopping Criterion: If t < Ngen (number of 

generations), then t = t + 1 and go to Step 2. Otherwise, stop 

MOTLA/D and report as the output of the algorithm: 1,..., Nx x  

and 1( ),..., ( )NF x F x . 

 For the previously described algorithm, the main 

computational burden lies on Step 2, where MOTLA/D 

generates N new solutions. Step 2.1 just randomly picks two 

solutions in the learner phase. Step 2.4 performs O(k) 

comparisons and assignments, where k is the number of 

objectives. Step 2.5 requires O(kTsize) basic operations since its 

major cost is to compute the value of 
*( , )g x w z  for Tsize 

solutions; the computation of such value requires O(k) basic 

operations. Therefore, the computational complexity of step 2 

is O(kNTsize). 

IV.  PROBLEM STATEMENT 

In this paper, a reactive power system problem is 

approached, which may be stated as an optimization problem 

where two objective functions are minimized, while satisfying 

a number of equality and inequality constraints. The following 

objective functions are minimized: (i) the reactive power 

losses; and (ii) the voltage stability index Lindex [21]. 

A.  Objective functions 

A.1 Reactive power losses 

One important issue in power transmission is the high 

reactive power losses on the highly loaded lines, with the 

consequent transmission capacity reduction. Therefore, the 

reactive power losses minimization is selected as one 

objective function. Losses are evaluated by the following 

expression, 

Losses for a single line 
2

2

, 2

( )
| | ei ri

VAR i i i i

i

V V
Q X I X

X


             (18) 

where Vei and Vri are the sending and receiving voltages, 

respectively; Xi is the line reactance; Ii is the current through 

the transmission line. 

Objective function for the power system losses: 

1 ,1

nl

VAR ii
f Q


           (19) 

where nl is the number of transmission lines. Reducing the 

reactive power losses enables more active power to be 

transferred over the line. 

 

A.2 Voltage stability index 

A conventional way for the voltage stability assessment is 

the use of indexes, which estimate the proximity to the voltage 

collapse and determine which are the buses exhibiting weak 

stability [20]. 
Nowadays, there are a variety of indexes that help to assess 

the steady state voltage stability. In this case, the voltage 

stability index Lindex is used [21]. This index is able to evaluate 
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the steady state voltage stability margin of each bus. The Lindex 

value lies between 0 (no load) and 1 (voltage collapse). This 

value implicitly includes the load effect. The bus with the 

highest Lindex value will be the most vulnerable, and therefore, 

this method helps to identify weak areas that require a critical 

support of reactive power. The Lindex is calculated in the 

following way [21]. 

The network equations in terms of the bus admittance 

matrix may be written as, 

bus bus busI Y V            (20) 

The buses are broken down into two categories: (i) the set 

of load buses ( L ); and (ii) the set of generator buses ( G ). 

Thus, equation (20) becomes, 

1 2

3 4

L L

G G

Y YI V

Y YI V

    
     
    

        (21) 

It is assumed that the transmission system is linear and 

allows a representation in terms of a hybrid matrix H, 
L L LL LG L

G G GL GG G

V I Z F I
H

I V K Y V

       
          

       
        (22) 

where LV  and IL are voltage and current vectors for load 

buses; VG and IG are voltage and current vectors for generator 

buses; ZLL, FLG, KGL, YGG are sub-matrices of the hybrid matrix 

H. 

Matrix H can be evaluated from the admittance matrix (Ybus) 

by a partial inversion, where the voltage vector associated to 

the load buses (VL) is exchanged with the corresponding 

current vector (IL). Thus, a voltage stability index for the load 

buses is defined, namely Lj [21], 

1
ji i

j

j

Gi
F V

L
V


 


         (23) 

For stable conditions, 0 1jL   must not be violated for 

any j. Hence, a global index Lindex describing the whole 

system’s stability is defined by [21], 

 2 max j
Ljindex

f L L         (24) 

Pragmatically, Lindex must be lower than a given threshold 

value. The predetermined threshold value is specified 

depending on the system configuration and on the utility 

policy regarding service quality and allowable margin. Thus, 

the Lindex in (24) is associated with the worst bus in the sense 

of voltage stability. The minimization of f2 implies to move 

such bus toward a less stressed condition. 

B.  Constraints 

B.1 Equality constraints 

The equality constraints are the balance of the active and 

reactive power described by the set of power flow equations. 

They may be expressed as follows, 

1
cos( ) 0

bN

gi di i j ij i j ijj
P P V V Y   


             (25) 

1
sin( ) 0

bN

gi di i j ij i j ijj
Q Q V V Y   


             (26) 

where, Nb is the number of buses, Pgi is the i-th active power 

generation, Qgi is the i-th reactive power generation, Pdi is the 

i-th active power load, Qdi is the i-th reactive power load, and 

|Yij| is the ij-th element of the bus admittance matrix. These 

equality constraints are handled within the power flow 

calculations. 

B.2 Inequality constraints 

a) Generators: these constraints are associated to the generator 

voltage (Vg), active power (Pg), and reactive power (Qg), 
min max , 1,...,gi gi gi gV V V i N           (27) 

min max , 1,...,gi gi gi gP P P i N            (28) 

min max , 1,...,gi gi gi gQ Q Q i N            (29) 

where, Ng is the number of generators. The reactive power 

generation (Qg) is restricted within the power flow program. 

b) Transformers: transformer tap setting, 
min max , 1,...,i i i tT T T i N            (30) 

where Nt is the number of tap changing transformers. 

 

In the test procedure, the generator voltages are allowed to 

vary within the interval [1.0, 1.05]. Actually, both limits will 

depend on the operating point, reactive power availability, tap 

positions, etc., thus, this interval may be modified. The 

active/reactive minimization losses tend to take the voltages to 

the upper limits. If this fact actually leads to inconveniences 

(such as insulations’ stress), as indicated above, one 

alternative could be to limit the generator voltage’s upper 

bound. 

C.  Decision variables 

The decision variables include the generator voltage Vg, and 

the transformer tap setting (T), 

1 1[ ,..., , ,..., ]
Ng tg g Nx V V T T                    (31) 

It is worth noting that the decision variables are self-

constrained by the optimization algorithm. 

D.  Case studies 

This paper compares the effectiveness and performance of 

the proposed algorithm with respect to that of the MOEA/D. 

Both MOTLA/D and MOEA/D have been applied to three test 

systems. In the first case study, we consider the nine-bus test 

system; this system consists of 9 transmission lines and 3 

generating units. The system model and data can be found in 

[22]. The second case study is related to the IEEE-26 bus test 

system, which has 26 buses, 46 branches, 6 generators, 7 

transformers, and 9 shunt capacitors. The detailed data of this 

problem can be found in [23]. Finally, in the third case study, 

the IEEE 118-bus test system is used. The system has 54 

generator buses, 64 load buses and 186 transmission lines with 

9 tap setting transformers. The complete system data are taken 

from [24]. For each case study, 20 independent runs are 

performed. The number of sub-problems considered by each 

algorithm are 100 for cases 1 and 2, and 200 for case 3. It is 

worth mentioning that the stopping criterion of each algorithm 

is the number of generations Ngen, (120, 180, and 200 

generations for cases 1, 2 and 3, respectively). For all test 

instances, the control parameter settings utilized by the 

MOTLA/D and MOEA/D are summarized in the following. 

The neighborhood size (Tsize), is 30. The distribution index (μ), 

used in the polynomial mutation, is 20. The parameter of scale 

factor (Fs) associated with MOEA/D, which represents the 

amount of perturbation added to the main parent, is 0.5. The 

Crossover rate (Pcr) associated with MOEA/D, which 
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determines the quantity of elements to be exchanged by the 

crossover operator, is 1. Finally, a mutation rate Pm=1/n is 

taken into account, where n is the number of decision 

variables. This parameter indicates the probability that each 

decision variable has of being changed.  

E.  Performance measures 

There are two goals in multi-objective optimization: (a) to 
achieve convergence to the Pareto-optimal set; and (b) to 
obtain a well-distributed set of solutions along the Pareto 
front. These two tasks cannot be measured adequately by one 
performance measure each. Therefore, in order to assess the 
algorithms' performance two performance measures are 
adopted. 
E.1 Coverage of two sets 

This performance measure was proposed by Zitzler et al. 

[25]. It compares two sets of non-dominated solutions (A, B) 

and outputs the percentage of individuals in one set dominated 

by the individuals on the other set. This performance measure 

is defined as, 

B

BaAaBb
BAC

}:{
),(


         (32) 

The value C(A,B) = 1 means that all points in B are 

dominated by or equal to all points in A. C(A,B) = 0 represents 

the situation when none of the solutions in B are covered by 

the set A. Note that both C(A,B) and C(B,A) have to be 

considered, since C(A,B) is not necessarily equal to 

1 ( , )C B A . When C(A,B) = 1 and C(B,A) = 0 then, we say 

that the solutions in A completely dominate the solutions in B 

(i.e., this is the best possible performance for A). 

E.2 Spacing 

This performance measure was proposed by Schott [26], 

and it quantifies the spread of solutions (i.e., how uniformly 

distributed the solutions are) along a Pareto front 

approximation. This is defined by, 
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where n is the number of non-dominated solutions, 

1,
min

k i j

i m mmi i j
d f f


   , i, j = 1,2,..,n, where k denotes the 

number of objectives, and 
1

n

ii
d d n


 . A value of zero 

implies that all solutions are uniformly spread (i.e., the best 

possible performance). 

V.  EXPERIMENTAL RESULTS AND COMPARISON 

The advantage of evolutionary algorithms is that they have 

minimum requirements regarding the problem formulation; 

objectives can be easily added, removed, or modified. 

Likewise, in this application, they are well-suited to tackle 

highly complex problems such as those existing in power 

systems. 

All the algorithms compared were implemented in 

MATLAB 7.3 and run on a PC with a Pentium core duo 

processor operating @ 2 GHz with 2 GB RAM. Three test 

systems were used: the IEEE 9-bus, IEEE 26-bus, and the 

IEEE 118-bus systems, operating under their corresponding 

base case. For each test power system and each algorithm, 20 

runs were executed. The following results correspond to the 

best solution attained by each algorithm, with respect to the 

coverage of two set performance measure. 

A.  Case study 1: 9-buses test system 

The decision variables are related to the generator voltage 

Vgi, and range in the interval [1.0, 1.05] pu. 

Table 1 summarizes the best solution for minimum reactive 

losses calculated through MOTLA/D and MOEA/D. Notice 

that for the optimized case, a reduction of the reactive losses 

and voltage stability index is attained. Both algorithms reduce 

the losses in 38.54%, which represents an important 

proportion of the losses with respect to the base case. 

Regarding the voltage stability index, Lindex, this has been 

decreased in 10.99% relative to the base case. In summary, the 

objective functions become: 

fRloss (Base Case)  = 0.0755 p.u      fLindex (Base Case) = 0.1673 

fRloss (MOTLA/D)  = 0.0464 p.u     fLindex (MOTLA/D) = 0.1489 

fRloss (MOEA/D)   = 0.0464 p.u      fLindex (MOEA/D)   = 0.1489 

B.  Case study 2: IEEE 26-buses test system 

The decision variables are related to the generator voltage 

Vgi, and range in the interval [1.0, 1.05] pu. Likewise, another 

decision variable is the transformer tap setting Ti, which 

ranges in the interval [0.95, 1.05]. 

The best solution for minimum reactive losses (Rloss) and 

voltage stability index (Lindex) is summarized in Table 2. The 

minimum Rloss and Lindex for the base case is 0.6302 p.u. and 

0.1241, respectively. As can be noticed, MOTLA/D estimates 

Rloss = 0.1487 p.u and Lindex = 0.1023, while MOEA/D attains 

Rloss = 0.2105 p.u and Lindex = 0.0995. This means that 

MOTLA/D reaches 76.4% reduction in losses and 17.56% 

reduction in Lindex with respect to the base case. Meanwhile, 

MOEA/D reaches 66.59% reduction in losses and 19.82% 

reduction in Lindex with respect to the base case. It is assumed 

that the tap positions vary among 32 positions (16 up, and 16 

down), and the closest is selected in Table 2. In summary, the 

objective functions become: 

fRloss (Base Case)  = 0.6302 p.u      fLindex (Base Case) = 0.1241 

fRloss (MOTLA/D)  = 0.1487 p.u  fLindex (MOTLA/D) = 0.1023 

fRloss (MOEA/D)   = 0.2105 p.u     fLindex (MOEA/D)  = 0.0995 

C.  Case study 3: 118-buses tests system 

The decision variables are related to the generator voltage 

Vgi, and range in the interval [0.98, 1.05] pu. Likewise, another 

decision variable is the transformer tap setting Ti, which 

ranges in the interval [0.95, 1.05]. 

Table 3 summarizes the optimal values for the two objective 

functions (Rloss) and (Lindex) estimated by both algorithms. The 

minimum Rloss and Lindex for the base case became 7.8223 p.u 

and 0.0693, respectively. MOTLA/D reduced reactive losses 

from 7.8223 p.u to 6.9097 p.u (a reduction of approximately 

11.66%) and improved the Lindex from 0.0693 to 0.0630 (a 

reduction of approximately 9.1%). Meanwhile, MOEA/D 

reduced reactive losses from 7.8223 p.u to 6.9116 p.u (a 

reduction of approximately 11.64%) and improved the Lindex 

from 0.0693 to 0.0630 (a reduction of approximately 9.1%). It 

is assumed that taps vary among 32 positions (16 up, and 16 

down), and the closest is selected in Table 3. In summary, the 

objective functions become: 
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fRloss (Base Case)  = 7.8223 p.u      fLindex (Base Case) = 0.0693 

fRloss (MOTLA/D)  = 6.9097 p.u     fLindex (MOTLA/D) = 0.0630 

fRloss (MOEA/D)   = 6.9116 p.u     fLindex (MOEA/D)  = 0.0630 

 

TABLE 1. CASE STUDY 1: BEST SOLUTIONS CALCULATED BY BOTH MOTLA/D AND MOEA/D 

Decision variables Base case 
fRloss fLindex 

MOTLA/D MOEA/D MOTLA/D MOEA/D 

Vg1 (p.u) 1.04 1.05 1.05 1.05 1.05 

Vg2 (p.u) 1.02533 1.0376 1.0377 1.05 1.05 

Vg3 (p.u) 1.02536 1.0328 1.0331 1.0499 1.0499 

 
 

TABLE 2. CASE STUDY 2: BEST SOLUTIONS CALCULATED BY BOTH MOTLA/D AND MOEA/D 

Decision variables Base case 
fRloss fLindex 

MOTLA/D MOEA/D MOTLA/D MOEA/D 

Vg1 (p.u) 1.025 1.0265 1.0466 1.05 1.0498 

Vg2 (p.u) 1.02 1.0109 1.0112 1.0429 1.0365 

Vg3 (p.u) 1.03 1.021 1.0137 1.0498 1.0420 

Vg4 (p.u) 1.045 1.0498 1.0487 1.05 1.0499 

Vg5 (p.u) 1.045 1.0248 1.0445 1.05 1.0379 

Vg26 (p.u) 1.015 1.0459 1.0216 1.0499 1.0500 

T3 0.96 (-13) 1.0135 (4) 0.9705 (-9) 0.95 (-16) 0.9850(-5) 

T6 0.96 (-13) 0.95 (-16) 1.0493 (13) 0.95 (-16) 1.0129(1) 

T8 1.017 (5) 1.0016 (1) 0.9840 (-6) 0.95 (-16) 0.9579(-14) 

T9 1.05 (16) 0.9637 (-12) 0.9703 (-10) 0.95 (-16) 0.9500(-16) 

T10 1.05 (16) 0.9735 (-8) 0.9598 (-13) 0.95 (-16) 0.9507(-16) 

T15 0.95 (-16) 0.964 (-12) 0.9507 (-16) 0.95 (-16) 0.9515(-16) 

T18 0.95 (-16) 0.9768 (-7) 0.9730 (-9) 0.95 (-16) 0.9500(-16) 
 

 

TABLE 3. CASE STUDY 3: BEST SOLUTIONS CALCULATED BY BOTH MOTLA/D AND MOEA/D 

Decision variables Base case 
fRloss fLindex 

MOTLA/D MOEAD MOTLA/D MOEAD 

Vg1 (p.u) 0.955 1.0356 1.0334 1.0285 1.0273 

Vg4 (p.u) 0.998 1.05 1.05 1.0497 1.05 

Vg6 (p.u) 0.99 1.0472 1.0451 1.0459 1.0401 

Vg10 (p.u) 1.05 1.0499 1.05 1.0491 1.05 

Vg19 (p.u) 0.963 1.0435 1.037 1.0497 1.0397 

Vg24 (p.u) 0.992 1.0497 1.0436 1.0498 1.047 

Vg27 (p.u) 0.968 1.037 1.0371 1.049 1.0327 

Vg31 (p.u) 0.967 1.033 1.031 1.0362 1.035 

Vg36 (p.u) 0.98 1.0495 1.0493 1.0493 1.0495 

Vg40 (p.u) 0.97 1.0398 1.0351 1.0415 1.0461 

Vg42 (p.u) 0.985 1.0499 1.0435 1.0499 1.0498 

Vg54 (p.u) 0.955 1.0187 1.0122 1.0203 1.0118 

T8 0.985 (-5) 0.9935 (-2) 0.9903 (-3) 0.9871 (-4) 0.9911 (-3) 

T32 0.96 (-13) 1.000 (1) 1.0006 (1) 1.0013 (1) 0.9995 (-1) 

T36 0.96 (-13) 0.9948 (-2) 0.9965 (-5) 1.0006 (1) 1.0032 (2) 

T51 0.955 (-14) 0.983 (-6) 0.9857 (-5) 0.9725 (-9) 0.9814 (-6) 

T93 0.96 (-13) 1.0259 (9) 1.0177 (6) 1.05 (16) 1.0223 (8) 

T95 0.985 (-5) 1.0179 (6) 1.013 (5) 1.0377 (12) 1.0136 (5) 
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Figure 1. From left to right: Pareto fronts (f1 – f2) for both the MOTLA/D and MOEA/D (best result): (a) Case study 1; (b) Case study 2; (c) Case study 3. 

 

D.  Comparison of MOTLA/D and MOEA/D 

For each case study, MOTLA/D and MOEA/D are 

evaluated using the two performance measures (32) and (33). 

The results are summarized in Tables 4 and 5. Each of these 

Tables present the average and the standard deviation (in 

brackets) of each performance measure for each case study. 

The best results are displayed in boldface. 

Notice in Table 4 that the proposed approach (MOTLA/D) 

outperformed MOEA/D in all cases regarding the Coverage of 

two sets (C). This indicates that the proposed approach 

produces more solutions that dominate (according to Pareto 

optimality) the solutions produced by MOEA/D. The 

difference among the non-dominated solutions produced by 

MOTLA/D and MOEA/D is more noticeable in cases 2 and 3. 

According to Table 4, in the case study 2, MOTLA/D 

produced solutions which dominate to 55% of the solutions 

generated by MOEA/D. In contrast, MOEA/D produced 

solutions that dominate only to 30% of the solutions generated 

by MOTLA/D. In the case study 3, the solutions obtained by 

MOTLA/D dominate about 41% of the solutions generated by 

MOEA/D; in contrast, MOEA/D produced solutions that only 

dominate 25% of the solutions generated by MOTLA/D. 

Regarding Spacing (S), MOEA/D attains relatively better 

results for cases 1 and 2. However, since coverage (which 

relates to convergence) has precedence over spread, we can 

conclude that our proposed MOTLA/D outperformed 

MOEA/D in the analyzed cases of study. 

The Pareto’s fronts obtained by MOTLA/D and MOEA/D 

for all cases are depicted in Fig. 1. These curves represent the 

best case, according to the performance measures defined in 

(32)-(33). Notice that both algorithms perform similarly for 

case study 1. The difference between the approximations 

obtained by MOTLA/D and MOEA/D is more noticeable in 

cases 2 and 3. It is noteworthy that MOTLA/D is able to 

achieve more distributed solutions in the case study 3. A 

distribution of non-dominated solutions as uniform as possible 

along the Pareto front, ensures that there are not big gaps in 

the Pareto front and, therefore, all the different types of trade-

off solutions are generated. This is relevant, because if big 

gaps occur, it may happen that the trade-off solution in which 

we are interested on is not produced (i.e., the solution of 

concern may be located in the missing portion of the Pareto 

front). 

 

 

 

 
TABLE 4. RESULTS OF COVERAGE OF TWO SET(C) PERFORMANCE MEASURE 

TEST C(MOTLA/D,MOEA/D) C(MOEA/D,MOTLA/D) 

 Average 

(Std. Dev.) 

Average 

(Std. Dev.) 

Case study 1 0.014 

(0.009) 

0.011 

(0.011) 
Case study 2 0.545 

(0.415) 

0.293 

(0.335) 
Case study 3 0.411 

(0.354) 

0.252 

(0.224) 

 

TABLE 5. RESULTS OF SPACING (S) PERFORMANCE MEASURE 

TEST MOTLA/D MOEA/D 

 
Average 

(Std. Dev.) 
Average 

(Std. Dev.) 

Case study 1 
0.0228 

(0.000) 
0.0197 

(0.002) 

Case study 2 
0.0256 

(0.002) 
0.0184 

(0.003) 

Case study 3 
0.0254 

(0.013) 

0.0338 

(0.014) 

VI.  CONCLUSIONS 

This paper presented a multi-objective teaching learning 

algorithm based on decomposition (MOTLA/D) for solving a 

reactive power system problem. The effectiveness and 

performance of MOTLA/D were compared with respect to 

those of MOEA/D, which represents a state-of-the-art 

algorithm, in three cases of study: 9-, 26-, and 118-buses test 

systems. The results indicate that the proposed algorithm was 

able to obtain better solutions than MOEA/D in all the 

analyzed cases. Thus, it may be concluded that the proposed 

algorithm is a reliable choice for power systems applications. 

In this paper, an improvement of both reactive losses and 

voltage stability were attained. Likewise, some other 

additional objectives could be taken into account as well. 
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