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Abstract—The coinciding development of multi-objective evo-
lutionary algorithms (MOEAs) and emergence of complex prob-
lem formulation in the finance and economics areas have led
to a mutual interest from both research communities. Since the
1990s, an increasing number of works have thus proposed the
application of MOEAs to solve complex financial and economic
problems, involving multiple objectives. This paper provides a
survey on the state-of-the-art of research, reported in the special-
ized literature to date, related to this framework. The taxonomy
chosen here makes a distinction between the (widely covered)
portfolio optimization problem and the other applications in the
field. In the final part of the paper, some potential paths for
future research within this area are identified.

Index Terms—Multi-objective optimization problems, Evolu-
tionary algorithms, Finance, Economics.

I. INTRODUCTION

MANY problems in all sorts of domains can be for-
mulated as optimization problems, which need the

application of specialized methods for their solution. If a
great importance was traditionally granted to mathematical
programming methods, the complexity of the tackled models
has led researchers to concentrate their efforts on the de-
velopment of solution heuristics based on an analogy with
biological, social or physical phenomena observed in nature.
In this framework, a great attention has been dedicated to Evo-
lutionary Algorithms (EAs). This class of metaheuristic relies
on the emulation of the Darwinian theory (i.e., the “survival
of the fittest” mechanism), in order to evolve a population
of solutions towards a good adaptation to their environment
(i.e., to produce solutions that are a good approximation of
the global optimum that we wish to achieve). Since their
very inception, EAs have been successfully adopted to solve
problems in many different application areas, ranging from
engineering to ecology or social sciences [1], [2], [3], [4].
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MÉXICO.
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EAs also require little domain information to operate, which
makes them less susceptible to the specific mathematical fea-
tures of the problem to be solved (e.g., they can deal with non-
convexities and/or discontinuities in objective function space).
Therefore, due to the complexity of the involved problems,
finance and economics applications have been of great interest
for researchers from the evolutionary computation community
[5], [6]. EAs have been, therefore, widely applied to this type
of problems since the 1980s, as indicated in [7].

However, the majority of the financial problems that have
been tackled with EAs only deal with a single objective
function. Nevertheless, many authors have indeed pointed out
the fact that many problems in finance and economics involve
multiple conflicting objectives. In such problems, the aim is
no longer to identify one optimal solution, but rather a set of
solutions representing the best possible trade-offs among the
objectives of the problem.

Within this context, a major motivation for using MOEAs
instead of single-objective EAs or other techniques is their
ability to simultaneously handle a set of solutions (called
population): since the aim is to identify a set of efficient
(Pareto-optimal) solutions, this can be attained in a single
MOEA run while several runs should be necessary when
applying techniques such as, for example, ε-constraint or goal
programming. Besides, single-objective based strategies might
be unable to deal with complex shapes of the Pareto front (for
instance, the aggregation function technique cannot determine
the non-convex parts of the front), while MOEAs’ performance
is not affected by this issue. Furthermore, an essential fea-
ture desired when addressing multi-objective problems is the
achievement of a uniform distribution of the efficient solutions
over the Pareto front. Thus, most MOEAs implement specific
procedures that enforce diversity preservation techniques (such
as niching or use of density metrics) as a secondary criterion
to evaluate the solution fitness. Conversely, single-objective
optimization methods might focus on a particular region of
the front and neglect some others.

So, the coinciding emergence of multi-objective financial
applications and of MOEA-related developments led to a
mutual interest from both research communities. In fact, the
mathematical nature of the financial models currently available
and the high complexity of the search spaces produced by
such models, make MOEAs particularly suitable to deal with
such applications. However, it is somewhat surprising to find
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out that, in spite of the existence of an increasing trend, the
number of financial problems solved with MOEAs until now,
remains relatively scarce, when compared to the use of single-
objective evolutionary algorithms [7].

The aim of this paper is thus twofold: on the one hand, we
aim to attract the attention of Evolutionary Multi-Objective
Optimization (EMOO) researchers towards this application
domain, and, on the other hand, we aim to attract the interest of
researchers working in financial applications to adopt MOEAs.

This paper constitutes an updated extension of the surveys
published in [8], [9]. It is worth noting, however, that, in
contrast with the survey of Schlottmann and Seese [9], our
aim was to provide a broader coverage of applications, while
sacrificing, to a certain extent, a more in-depth analysis of
them.

The taxonomy adopted for the purposes of this paper is
based on the topics covered by the works that were revised
and is divided in two main parts. The first one is devoted to
studies dealing with the portfolio optimization problem (which
is, by far, the most popular application of MOEAs reported in
the specialized literature), while the second one presents all
the other types of applications.

Note, however, that the discussion provided next will be
evidently unbalanced, because of the high number of publica-
tions devoted to solve portfolio optimization problems using
MOEAs (as compared to the applications of MOEAs in other
problems arising in economics and finance). Due to the wide
variety of papers that focus on the former topic, we present a
more detailed study of this area. This study is divided in two
main research lines: the first one is related to the realism of the
models adopted (e.g., integration of additional constraints and
objectives currently used in funds management). The second
topic deals with the adaptation of MOEAs proposed for the
solution of this problem.

The other applications covered in this paper are divided in
five main classes:

- Financial time series,
- Stock ranking,
- Risk-return analysis,
- Financial and trading decision-support tools,
- Economic modelling.
Applications of MOEAs in each of these areas of problems

will be discussed next.
The remainder of this paper is organized as follows. Sec-

tion II provides a short introduction to multi-objective opti-
mization which is required to make this paper self-contained.
In Section III, we review the use of MOEAs in investment
portfolio optimization while other kinds of applications are
described in Section IV. Finally, Section V provides our
conclusions and some guidelines for future investigation.

II. BASIC CONCEPTS ON EVOLUTIONARY
MULTI-OBJECTIVE OPTIMIZATION

In this section, a basic overview on Multi-Objective Op-
timization and evolutionary solution techniques is provided.
This will involve, first, a short presentation of the formulation
and aims of multi-objective problems. In a second part, the

classical MOEAs mentioned in this work will be briefly
defined.

A. Formulation of Multi-Objective Problems

We are interested in solving constrained optimization prob-
lems, whose recognized common formulation can be written
as follows1:

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fk(~x)] , (1)

subject to:

gi(~x) ≤ 0 i = 1, 2, . . . ,m, (2)

hi(~x) = 0 i = 1, 2, . . . , p, (3)

where ~x = [x1, x2, . . . , xn]T is the vector of decision vari-
ables, fi : IRn → IR, i = 1, ..., k are the objective functions
and gi, hj : IRn → IR, i = 1, ...,m, j = 1, ..., p are the
constraint functions of the problem.

To describe the concept of optimality in which we are
interested, we will introduce next a few definitions.

Definition 1. Given two vectors ~x, ~y ∈ IRk, we say that
~f(~x) ≤ ~f(~y) if fi(~x) ≤ fi(~y) for i = 1, ..., k, and that
~x dominates ~y (denoted by ~x ≺ ~y) if ~f(~x) ≤ ~f(~y) and
~f(~x) 6= ~f(~y).

Definition 2. We say that a vector of decision variables
~x ∈ X ⊂ IRn is nondominated with respect to X , if there
does not exist another ~x′ ∈ X such that ~f(~x′) ≺ ~f(~x).

Definition 3. We say that a vector of decision variables ~x∗ ∈
F ⊂ IRn (F is the feasible region) is Pareto-optimal if it is
nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto-optimal}.

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRk|~x ∈ P∗}.

We thus wish to determine the Pareto optimal set from
the set F of all the decision variable vectors that satisfy (2)
and (3). Note however that in practice, not all the Pareto
optimal set is usually desirable (e.g., it may not be desirable
to have different solutions that map to the same values in
objective function space) or achievable.

1Without loss of generality, we will assume only minimization problems.
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B. State-of-the-art MOEAs in this survey

The first attempts to adapt EAs to the solution of multi-
objective optimization problems date back to the mid-1980s,
when David Schaffer [10] proposed the Vector Evaluated
Genetic Algorithm (VEGA), which is considered as the first
Multi-Objective Evolutionary Algorithm (MOEA) ever pro-
posed. Over the years, many other MOEAs have been pro-
posed, and they have been used in a wide variety of application
domains [11], [12].

In general, a MOEA consists of two main components:
(1) a selection mechanism that aims to select the solutions
representing the best possible trade-offs among all the objec-
tives, and (2) a diversity maintenance (also called “density
estimator”) mechanism that avoids convergence of the popu-
lation to a single solution. This allows a MOEA to generate
several different solutions in a single run. Another important
component of modern MOEAs is elitism, which refers to
maintaining the best solutions that have been generated so
far. Elitism is normally implemented through the use of an
external archive in which the best solutions generated at each
iteration are stored.

The aim of this subsection is not to provide a general
description of the historical developments nor particular pro-
cesses implemented in MOEAs. We rather propose here a short
presentation of the MOEAs mentioned in the remainder of this
survey, in order to make ir a self-contained product. MOEAs
are presented in alphabetical order.
• AbYSS [13]
This approach is based on scatter search with a small

population, whose members are combined and subsequently
improved by a (1+1)-Evolution Strategy to construct new
individuals (applying SPEA2’s density estimator, which is
based on a clustering algorithm [14]). It also uses an external
archive to store the non-dominated solutions obtained during
the search, using the crowding distance of the NSGA-II [15]
as a density estimator.
• FastPGA [16]
FastPGA [16] computes the fitness of each solution accord-

ing to a crowding distance for the non-dominated solutions
and to the number of dominating/dominated individuals for
the others. Additionally, a population regulation operator dy-
namically adapts the population size to the number of existing
non-dominated solutions.
• Indicator Based Evolutionary Algorithm (IBEA, [17])

IBEA is a MOEA that defines the optimization goal in terms
of an arbitrary binary performance measure (indicator). Then,
IBEA directly uses this measure in the selection process,
through a replacement strategy that tries (in a greedy way) to
optimize the value of the indicator for the current population.
In contrast to other existing MOEAs, IBEA can be adapted to
the preferences of the user and, moreover, does not require any
additional diversity preservation mechanism, such as fitness
sharing, clustering, etc.
• MOCeLL [18]
This approach uses an external archive to store the non-

dominated solutions found during the search. For each gener-

ation, a number of individuals in the current population is re-
placed by randomly chosen solutions from the external archive,
in order to enhance the diversity preservation. The genetic
operations are performed only for two individuals belonging
to the same neighborhood. When the external archive is full,
a crowding distance based density estimator is adopted to
determine if a new non-dominated solution should be included
or not. This process allows to produce an evenly distributed
set of solutions.
• Multi-Objective Evolutionary Algorithm based on De-

composition (MOEA/D, [19])
This algorithm uses an aggregation method to decompose a
multi-objective optimization problem into N single objective
optimization subproblems, related each one to the others
through a neighborhood structure. N is a parameter set by
the user in order to control the spacing between a set of
uniformly distributed points approximating the Pareto front.
Then, MOEA/D solves these subproblems simultaneously by
evolving a population of solutions and taking advantage of
the solutions obtained for neighboring subproblems. One of
the key components in MOEA/D is its decomposition meth-
ods, two of them being, in the initial MOEA/D version,
the weighted Chebyshev approach and the weighted sum
approach.
• Multi-Objective Genetic Algorithm (MOGA, [20])

This algorithm is a non-elitist MOEA that was very popular
in the early days of evolutionary multi-objective optimization
[12]. MOGA implements a variant of the Pareto ranking
selection originally proposed by Goldberg [2]: non-dominated
individuals have a rank equal to 1, while the dominated
ones are penalized according to the population density in the
corresponding region of the surface of the trade-off solutions.
A fitness is then assigned to each individual, by interpolating
from the best (rank 1) to the worst. MOGA also implements
fitness sharing and mating restrictions.
• Non-dominated Sorting Genetic Algorithm (NSGA, [21])

NSGA is a non-elitist MOEA based on several layers of
classifications of the individuals as suggested by Goldberg
[2]. Before selection is performed, the population is ranked
on the basis of non-domination: all non-dominated individuals
are classified into one category (with a dummy fitness value,
which is proportional to the population size, to provide an
equal reproductive potential for these individuals). To maintain
the diversity of the population, these classified individuals are
shared with their dummy fitness values. Then this group of
classified individuals is ignored and another layer of non-
dominated individuals is considered. The process continues
until all individuals in the population are classified.
• Non-dominated Sorting Genetic Algorithm - II (NSGA-II,

[15])
In the NSGA-II, for each solution one has to determine
how many solutions dominate it and the set of solutions to
which it dominates. The NSGA-II estimates the density of
solutions surrounding a particular solution in the population
by computing the average distance of two points on either side
of this reference solution along each of the objectives of the
problem. This value is the so-called crowding distance. During
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selection, the NSGA-II uses a crowded-comparison operator
which takes into consideration both the non-domination rank
of an individual in the population and its crowding distance
(i.e., non-dominated solutions are preferred over dominated
solutions, but between two solutions with the same non-
domination rank, the one that resides in the less crowded
region is preferred).
• Pareto Archived Evolution Strategy (PAES, [22])

PAES is an elitist MOEA consisting of a (1+1)-Evolution
Strategy, whose main highlight is the use of an adaptive
grid in the external archive that is used to store the non-
dominated solutions that are generated during the search. This
adaptive grid is used like a coordinate system to locate the
non-dominated solutions inside the external archive. Once
the archive has reached a certain (pre-defined) limit, then
new solutions are allowed only if they will occupy the less
densely populated grids. Thus, this mechanism allows the
proper distribution of the non-dominated solutions along the
Pareto front.
• Pareto Envelope-based Selection Algorithm (PESA, [23])

PESA uses, like PAES [22], a small internal population and
a larger external population (which is an archive that stores
the non-dominated solutions generated during the search).
Additionally, the external population has an adaptive grid
which is used to preserve diversity in both populations: for
selection purposes (based on a crowding metric) and to filter
out the solutions entering the external archive.
• Strength Pareto Evolutionary Algorithm 2 (SPEA2, [14])

SPEA2 maintains an external archive of the non-dominated
solutions found during the search, and updates it at each gen-
eration. This update is performed through a specific technique
for estimating the neighborhood density for each solution. For
each individual in the external archive, a “strength value”
is computed, according to the number of solutions that it
dominates and to the number of solutions that dominate it.
• Vector Evaluated Genetic Algorithm (VEGA, [10])

VEGA is commonly regarded as the first attempt for modi-
fying traditional GAs in order to solve multi-objective opti-
mization problems. It works by decomposing the population
into a number of sub-populations equal to the number of
objective functions of the problem. In each sub-population,
the solutions are evaluated according to only one objective
and the survivors are selected by a roulette-wheel mechanism.
This simple working mode is very similar to a classical GA
but, it has several limitations from which the main one is that
it is unable to identify appropriate trade-offs regions since it is
designed to favor solutions that are the best only with respect
to one objective. The fuzzy versions of VEGA are designed to
overcome this drawback and make use of fuzzy decision rules,
based on verbal statements on the quality of each objective.

III. PORTFOLIO OPTIMIZATION PROBLEM

Selecting investment portfolios nowadays represents a very
common practice, covering a wide range of applications going
from relatively simple portfolios held by individuals (con-
taining a few stocks, bank investments, real estate holdings,

etc.) to huge portfolios managed by professional investors
for companies or pension funds (containing many stocks,
treasure bonds, etc.). The solution of this problem lies on
the intersection of finance, mathematics and computer science
and, because of its importance, it has attracted a considerable
amount of research within these three areas.

The pioneering methodology to solve portfolio optimization
problems was formulated by Markowitz [24] and lies on the
duality of the two features desired by any investor (or decision-
maker): assuring a certain return (i.e., money earned) and, at
the same time, avoiding risks of possible losses due to market
fluctuations. Formulating this problem in optimization terms,
Markowitz states that, ideally, the investor searches for the
optimal portfolio, i.e., the portfolio that minimizes the risk
(within a defined tolerance) while maximizing the return.

Within the Markowitz mean-variance formalism, a portfolio
is defined by a vector of real numbers which contains the
weight (i.e., ratio of the total invested capital) corresponding
to each available asset. Then, one wishes to maximize the
weighted sum of the assets’ expected rate of return and,
simultaneously, to minimize the risk expressed as the variance
of the portfolio’s rate of return (since this defines the level
of uncertainty about the future payoff at a certain time). This
model can be solved using Quadratic Programming (QP) [25].

However, the comparison between the model’s simplistic as-
sumptions and the real-world conditions that decision-makers
are faced with (additional requirements on the number or the
relative ratio of selected assets, probabilistic distributions of
the returns, etc.) has led to the necessity of improving—and,
consequently, to an increasing complexity of—the models ad-
dressing the portfolio selection problem: additional constraints,
as well as new risk representation schemes, make impossible
the solution of the problem through the use of classical, exact
techniques. This higher complexity, coinciding with an impor-
tant increase regarding research on MOEAs, has encouraged
the development and application of this more robust class of
optimization techniques. As such, the first use of MOEAs for
optimizing investment portfolios was apparently proposed in
1993 in [26].

This section focuses on both features: (i) the various pro-
posals made to improve and extend the formulation of the
portfolio selection problem towards more realistic models;
and (ii) the advances in the adaptation and implementation
of evolutionary computation techniques used for solving this
problem. Rather than a chronological description of the ex-
isting studies, the taxonomy chosen here groups together the
specialized works according to their research line(s): addition
of additional constraints to the initial Markowitz’ formulation,
consideration of new objectives, design of new problem-
devoted optimization methods (which include, in the evolu-
tionary framework, recent trends in the portfolio encoding
techniques), and studies comparing the performance of state-
of-the-art MOEAs when applied to the portfolio selection
problem. It is worth noting that this thematic organization
implies an unavoidable repetition of the quoted references,
since each work normally investigates several of the previously
mentioned features.
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A. Recent trends in the formulation of portfolio optimization
problems

The classical Markowitz’ mean-variance model addresses
the simultaneous minimization of risk and maximization of
return, according to the following mathematical formulation
for an N -assets problem:

minimize Risk,maximize Return, (4)

subjected to:

Return =
N∑

i=1

wiri, (5)

Risk =
N∑

i=1

N∑
j=1

wiσijwj , (6)

N∑
i=1

wi = 1, (7)

0 ≤ wi ≤ 1, (8)

where wi is the weight assigned to asset i and ri the associated
expected return; σij denotes the elements of the covariance
matrix of all the investment alternatives. The two last con-
straints of the model impose, respectively, the sum of asset
weights to be equal to one (budget constraint) and the weights
to be positive (no short-sell is allowed).

As mentioned earlier, the simple initial Markowitz’ model
was modified and adapted to real-world requirements and
different operating modes. With respect to the improvements
brought, researchers have mainly emphasized: (i) the integra-
tion of realistic constraints, (ii) the addition of new objectives
(mostly for the formulation of risk indicators) and, to a mod-
erate extent, (iii) the use of Sharpe’s ratio. It is worth noting
that, in the framework of this paper, we only focus on the
model developments that are combined with the utilization of
MOEAs (and not on works using a single-objective approach
either based on EAs or on any other technique).

1) Consideration of real-world constraints: Markowitz’
model initially considered only one strong constraint, setting
the sum of asset weights to 1 (which means that the sum
of the invested amounts must exactly meet the available
capital). However, many examples of other constraints are
often used in real-world fund management, which researchers
tend to include into their models. While the most common
ones are the typical floor-ceiling constraints or the cardinality
constraints, more advanced constraints have been proposed by
some authors and are detailed in the remainder of this section.

Note that the linear budget constraint does not involve
computational difficulty for a QP solution technique [25].
Conversely, in most cases, the introduction of new constraints
leads to a non-convex search space and QP cannot be used
anymore. This clearly motivates the use of metaheuristics.

The real-world constraints that have been more frequently
added to the portfolio optimization problem are the following:
• Floor-ceiling constraints
These constraints impose lower and/or upper bounds on the

values of each asset weight, instead of the 0 (minimal) - 1

(maximal) bounds. This means that an asset cannot represent
less/more than some proportion of the total invested capital.
This requirement is explained by the following: (i) regarding
the lower bound, not devoting very small percentages of
the capital to many securities (since this would result in
high transaction costs); (ii) concerning the upper bound, not
assigning a too large ratio of the total invested capital to
one asset, in order to minimize risk (by sharing it among
several assets). The mathematical expression of the floor-
ceiling constraint is:

∀i = 1, ..., N, li ≤ wi ≤ ui. (9)

To the best of our knowledge, this kind of constraints
was first introduced in [27] as buy-in thresholds, and was
subsequently taken up in [28], [29], [30], [31], [32], [33],
[34], [35]. Note that [36] proposed a similar version of the
floor-ceiling constraints, which is called 5-10-40 constraint, in
reference to the German investment law [37]: an upper bound
is defined for each individual asset and for the sum of all
“heavyweight” assets in the portfolio.

In most cases, the floor-ceiling constraints are handled
either through an appropriate encoding technique (see Sec-
tion III-B1) or by a specific repair procedure (which may
slightly differ from an author to another, even though the
global methodology is basically always the same one).
• Total weight assigned to asset classes

This constraint is very similar to the floor-ceiling one and
lays down bounds on the total capital assigned to a class, or
sector, of assets (for instance, securities from the steel industry
may represent one sector). So, in the same way bounds are
assigned to each asset weight for the floor-ceiling constraint,
the sum of the weights assigned to securities belonging to a
same sector might also be restricted within some determined
limits. This approach was adopted in [29] and [35]. Similarly,
in [38], sectors are considered and sorted (in decreasing order)
regarding market capitalization. Then, the total weight of
securities in one given sector should be greater than the total
weight of securities in any following sector (i.e. a sector with
lower capitalization). The mixed-integer model thus involves
an additional vector of binary variables, indicating, for each
sector, if an asset belonging to it has been selected or not.
• Cardinality constraints

The cardinality constraint forces the number of assets selected
in a portfolio to respect some restrictions. This constraint has
two versions: while the first (exact) one imposes the number of
selected securities to be equal to a given value K, the second
(soft) one only provides lower and/or upper bounds (ZL,
ZU ) on this number. The mathematical formulation typically
involves new binary variables zi, denoting the presence or not
of asset i in the considered portfolio: zi=1 if wi > 0 and zi=0,
otherwise. Then, the (soft) cardinality constraint is formulated
as:

ZL ≤
N∑

i=1

zi ≤ ZU . (10)
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As mentioned earlier, it is important to note that, when
no cardinality constraints are imposed on the problem, QP
can be used to solve it in an exact manner. However, when
cardinality constraints are imposed, no exact method exists for
solving it. In the multi-objective statement of this problem, the
Pareto front may be discontinuous and/or non-convex, which
also causes difficulties when using approaches based on linear
aggregating functions.

[39] seems to be the first one to introduce the cardinality
constraint. The exact version was then adopted in [40], [38],
[30], [38], [33], [35] while the soft version is used in [27],
[36], [28], [31], [32], [41].

The most commonly implemented strategies to handle car-
dinality constraints lie on classical techniques integrated into
an evolutionary algorithm (i.e., penalty functions, domination-
based rules, etc.). In [27], the authors adopt a repair mech-
anism that first removes all surplus assets (those with the
smallest weights, wi) from the portfolio to meet the cardinality
constraints (similar methods are used for the other constraints).
Additionally, in order to examine the effect of this repair
mechanism, the authors use two strategies, adopting or not
Lamarckism (when using Lamarckism, the repaired solution
is kept; otherwise, only its objective function is used). The
comparative results are further discussed in Section III-B1,
which focuses on encoding techniques.

However, more specific constraint handling methods are
proposed in other works. In [40], the authors indicate that if
only the cardinality constraint is imposed on the problem and
the others are ignored, then cardinality can be considered as
a third objective (additional to the traditional risk and return
objectives). Then, the 2-dimensional cardinality constrained
frontier can be extracted for any particular cardinality k.
However, if additional constraints need to be considered, this
approach is not viable anymore and the authors thus propose to
search for each cardinality constrained front in parallel, and
constructively use information from these fronts to improve
the search process of the others.

In [35], a k-means clustering method is adopted: considering
that K assets must be exactly chosen for the portfolio, K
clusters are defined such that the variability (in terms of mean
and variance of returns) inside a cluster is minimized and the
variability between different clusters is maximized. Selecting
exactly one asset from each cluster thus allows to remove
the cardinality constraint, which consequently simplifies the
model. This strategy is validated by comparing the efficient
frontier obtained from the initial problem (with all the assets)
with the modified one (clustered investable universe): the
study shows that, regardless of the cluster selection, the
efficient frontiers are quite close from those produced with
a Markowitz’ mean-variance model (solved using Quadratic
Programming).

• Roundlot/minimum lots constraint

In many real-world applications, the amount invested in a
security must be a multiple of the minimum transaction lot,
which represents the smallest volume of this security that can
be purchased. Thus, the weight wi of any asset i is not directly
a decision variable anymore, but, instead, it has to be computed

through a lot purchasing price (ci) and an integer number of
lots that should be purchased (xi):

∀i = 1, ..., N, wi =
xici∑N
i=1 xici

. (11)

This type of constraint has been adopted in [42], [43], [27],
[44], [38], [33], [41].
• Turnover constraints

Finally, some authors consider further restrictions on the
change in the assets weight, with respect to a previous weight
allocation. This formalism might be especially useful when
considering a multi-period investment horizon. In [29], the
difference between the current assignment w and the previous
one w’ must be larger than a certain threshold (if there is any
change in the asset weight):

∀i = 1, ..., N, |wi − w′i| ≥ ∆i or |wi − w′i| = 0. (12)

Additionally, the sum of the absolute change from the pre-
vious allocation must be smaller than the maximum turnover
ratio:

N∑
i=1

|wi − w′i| ≤ TR. (13)

Similarly, purchase/sale constraints are proposed in [34]:

∀i = 1, ..., N,max (wi − w′i, 0) ≤ Bi and

max (w′i − wi, 0) ≤ Si, (14)

as well as trading constraints:

∀i = 1, ..., N,wi = w′i or wi ≥ w′i+Bi or wi ≤ w′i−Si, (15)

where Bi and Bi represent minimal and maximal purchas-
ing thresholds respectively (i.e. when wi > w′i) and Si and Si

represent minimal and maximal saling thresholds respectively
(i.e. when w′i > wi).

2) New objectives: If the “maximizing return - minimiz-
ing risk” strategy (the investor is risk-averse and wants to
maximize his/her profit) is generally not questioned, other
issues (and mainly the computation of risk as the variance
of the security returns) has generated many criticisms: the
assumption of a multivariate normal distribution of an asset
rate of return does not hold in practice (the distributions are
typically asymmetric); the fact that the common approaches
disregard for individual’s investor preferences, who sometimes
prefers portfolios that lie behind the non-dominated fron-
tier; the fact that variance equally accounts for upward and
downward deviation, unlike business executives who rather
view risk as the probability of not meeting a fixed target
rate of return (thus, upward deviations are not penalizing and
should not be included in the risk representation scheme); the
consideration, apart from the fluctuations of a portfolio value
around its mean due to market volatility, of the possibility that
a portfolio may lose a significant amount of its value because
of catastrophic, non-predictable, low-probability events; the
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issue of the accuracy of the expected return rates forecast in the
small sample situation (since the computation of the variance-
covariance matrix is based on the large sample theory); etc.
These reasons encouraged researchers to define new ways of
representing the risk of a given portfolio. Even Markowitz
proposed a variation of the mean-variance model, introducing
the semi-variance of a portfolio value [25], which represents
the probability of possible losses.

Accordingly, Arnone et al. [26] adopt lower partial mo-
ments, which refer to the down-side part of the distribution of
returns (appropriately, this measure is called downside risk).
The use of downside risk makes the problem more difficult,
because the shape of the objective surface is generally non-
convex, therefore forbidding the use of QP to find exact
solutions. The same measure for risk was also adopted in [45].

Similarly, Yan et al. [46] compute risk as the semi-variance
(equivalent to the downside risk) of portfolio returns. More-
over, they do not consider a single investment period, but
rather T periods: the decision-maker must determine, at the
beginning of each period, how to set the weights of the N
investment assets. Aiming at a target value d representing the
growth rate of the initially invested capital over the T periods,
the semi-variance risk is equal to 0 if the target is reached;
otherwise, it is equal to the quadratic distance to the target.
Consequently, the authors address the bi-objective problem
of maximizing growth rate d and minimizing semi-variance
(through an ε-constraint strategy).

Another risk measure used in several works is Value-at-
Risk (VaR), which is defined as the α-quantile (typically,
α=5%) of the distribution of a portfolio’s losses. In other
words, VaR represents the maximum loss on a portfolio that
can be expected with a certain confidence level 100(1 − α),
over a certain time interval [47]. In fact, VaR has become a
popular risk measure since it was recommended and adopted
by the Bank for International Settlements and by US regulatory
agencies in 1988. Like downside risk, VaR is a non-convex
measure. Subbu et al. [48] define a model that maximizes the
expected return while minimizing both the portfolio Value-at-
Risk and surplus variance. Bradshaw et al. [49] adopt Value-
at-Risk for the design of the risk criterion. In [29], the authors
consider three bi-objective models, which differ one from
another in the risk representation: the first one addresses the
Markowitz mean-variance optimization, while the other two
are based on Value-at-Risk and Expected Shortfall (i.e., the
conditional mean value of the losses given that the losses have
exceeded VaR) instead of variance.

Additionally, many other risk indicators have been proposed
in the multi-objective portfolio selection framework. Ehrgott
et al. [50] extend the Markowitz’ mean-variance model with
the design of five new objectives to be maximized (derived
from a cooperation with Standard and Poor’s): (1) 12-month
performance of an asset, (2) 3-year performance of an asset,
(3) annual dividend of a portfolio, (4) Standard and Poor’s star
ranking, and (5) volatility.

In [51], the objective is to compare several MOEAs on two
portfolio optimization formulations. While the first one in-
volves the two classical objectives (mean-variance of returns),
the second one includes a third criterion, i.e., maximization of

the annual dividend yield.
Chang et al. [30] propose various risk measures: semi-

variance, mean absolute deviation and variance with skewness
(as a third objective). Skewness represents the fact that the
security price distribution might not be symmetrical. Maxi-
mizing skewness thus biases the return distribution towards
profits instead of losses.

In [31] and [32], a return-risk model is optimized but,
unlike classical approaches, a loss distribution is computed by
generating scenarios for the stochastic return variable. Thus,
the risk and return over a given period can be computed
according to the generated set of scenarios, allowing a wide-
open range of choices for the risk representation measure.
According to this strategy, three measures (namely standard
deviation, Value-at-Risk and Conditional Value-at-Risk) are
adopted in the first work. The second one extends the study
to two additional risk measures, i.e., mean-absolute downside
semi-deviation and expected shortfall.

In [52], the authors are specifically interested in the critical
step of computing an accurate forecast for the return rate
and variance-covariance matrix, according to the classical
Markowitz’ model. They point out that the methods typically
used for this computation lie on the large samples theory,
which may not be reliable when dealing with small problems.
Thus, they propose the use of Grey and possibilistic regression
models in order to design three objectives: the expected return,
the uncertainty risk and the relation risk.

All the above-mentioned papers discuss portfolio selection
in a stochastic environment. In [53], however, the author
underlines the fact that in some situations in which it is
difficult to use probability theory, investors can make use of
fuzzy set theory to reflect the vagueness and ambiguity of
security returns. Within this perspective, some authors adopt
a framework that represents uncertainty on security returns
through fuzzy variables. Huang [53] computes the risk as the
semi-variance of the expected returns while Li et al. [54]
propose skewness as a third objective (in addition to expected
return and variance). In these two former cases, the objective
is computed as a credibility index, which is obtained by fuzzy
simulation.

Anagnostopoulos and Mamanis [55] argue that in multi-
objective optimization a constraint must be considered as an
objective if it is not easy to fix a right-hand side value for the
constraint without knowing the levels of the other objectives.
Thus, the authors decided to add the number of assets included
in the portfolio as an objective. This way, the formulation
of the portfolio selection problem comprises three objectives,
namely: maximize the return, minimize the risk, and minimize
the number of assets in a portfolio. The results indicated that
the algorithms provide a good approximation of the return-risk
Pareto front for different values of the number of assets. Thus,
it can be said that the tri-objective formulation of the portfolio
selection problem generalizes the mean-variance approach:
this strategy provides the investor with portfolios that are
not mean-variance efficient (i.e., when projected on the two-
objectives plane) but, since these solutions have fewer assets,
they represent non-dominated solutions when considering the
three objectives.
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Fig. 1. Illustration of Sharpe’s index in the risk-return space

Finally, apart from the risk measures, other criteria can be
considered, such as transaction costs [42], [43], [56] or, as
mentioned in the previous section, the cardinality constraint
can also be considered as an additional objective [40].

3) Use of Sharpe’s ratio: Apart from the determination of
the efficient frontier representing the optimal risk-return port-
folios, some authors considered the use of another selection
criterion, the Sharpe’s ratio. This index measures how much
excess profit per risk unit delivers a certain portfolio and is
parameterized by a value Rf that indicates the observed (or
desired) return of a risk-free portfolio. As mentioned in [57],
an important consequence of the use of this selection criterion
is the fact that specific regions of the Pareto front turn out
to be more relevant. The inclusion of this selection criterion
within the optimization process thus allows focusing on this
region where the Sharpe’s index attains its maximum value.
This operating mode can be seen as a way of incorporating
preferences into the evolutionary search.

This concept is illustrated in Figure 1 (which is reproduced
from [28]). The point Rf represents the risk-free return
available in the market. Line CC represents the capital market
line, which is a straight line that passes through Rf and is
tangential to the efficient frontier F . The intersection of F and
CC defines the efficient portfolio in point a: any combination
of it and the risk-free asset, attainable by either lending or
borrowing at rate Rf , will allow operating at any point on the
capital market line, above the efficient frontier, resulting in a
higher return for any given amount of risk than any optimal
portfolio on F .

Mathematically, the efficient portfolio is the point on the
Pareto front that maximizes Sharpe’s ratio:

Sr =
RP −Rf

σP
, (16)

where RP and σP are the expected return and the risk
expressed as the variance of a portfolio P , respectively. Thus,
maximizing Sr comes down to increasing the slope of the
capital market line CC, until reaching a tangential position
with the feasible region in the objective space (last feasible
intersection between CC and the feasible region).

Sharpe’s index can be used either as a single objective in the

optimization process, or as an additional objective in a multi-
objective setting. For instance, Aranha and Iba [58], [59] solve
the portfolio selection problem adopting Sharpe’s ratio as the
only optimization criterion.

On the other hand, in [28], the mean-variance formulation
is solved with a MOEA in which the selection is carried out
through a Pareto-ranking procedure. To break ties between
solutions from the same front, the authors propose to use
Sharpe’s ratio instead of the classical density estimators (such
as niche count or crowding distance) which are generally
adopted in state-of-the-art MOEAs. This allows to focus the
search around the efficient portfolio point.

The resulting preference-based MOEA (PMOEA) is com-
pared against a classical MOEA (using a niche count as
tie breaker within the selection step) and against a Single-
Objective Evolutionary Algorithm (SOEA) which optimizes
Sharpe’s ratio, for five problems drawn from the OR-library
[60] and for three locations of the risk-free point Rf . Sur-
prisingly, in almost all cases, the number of fitness function
evaluations required to reach solutions within 5% of the
optimal fitness was better for the PMOEA. The authors also
noted that the benefit of integrating preferences is higher when
the gap between the efficacy of the SOEA and the MOEA
is larger. Therefore, the PMOEA strategy allows to locate
an efficient portfolio with a higher accuracy than the SOEA.
Additionally, it requires fewer fitness function evaluations to
find such a solution and also provides a set of alternative
solutions close to this target point (which may be useful for
the decision-maker to choose a final portfolio).

In [57], the efficacy of several MOEAs (see Section III-B3)
is compared on the mean-variance formulation. Subsequently,
the point closest to the efficient portfolio is identified in the
efficient frontier produced by each MOEA and compared to
the solution of a SOEA using Sharpe’s index as an objective
function (for an equal number of objective function eval-
uations). Quite obviously, the results show that the SOEA
consistently returns a solution very close to the efficient
portfolio and outperforms the MOEAs. This statement remains
true for higher Rf values, with the MOEAs solution quality
decreasing drastically in this case.

Considering this preliminary result, the authors then propose
to compare the Pareto front produced by the MOEAs with the
approximated set obtained by running several times the SOEA
when varying the Rf parameter. In each of the 30 performed
executions of the SOEA, the efficient portfolio obtained with
a specific value of the risk-free return rate constitutes an
approximated point of the Pareto front. The SOEA, in this
configuration, cannot achieve the MOEAs’ efficacy because
of its discretization, even though it does not perform so badly.

Table I summarizes the various developments brought to the
Markowitz’ mean-variance model mentioned in this section,
according to the constraint and objective research lines. The
classical case (Markowitz’ model) is characterized by the
“basic constraint” (i.e., capital budget constraint) and mean-
variance objectives. Note that all models include the basic
constraint, so the references appearing in the corresponding
column are those that only have this constraint.

This section presented the addition and refinements of new
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TABLE I
OVERVIEW ON MODEL DEVELOPMENTS (NEW OBJECTIVES/CONSTRAINTS)

ConstraintsObjectives
Basic Floor-ceiling Asset classes Cardinality Min. lots Turnover

[27],[28],[29], [27],[28],[31], [27],[33],
Mean-variance [51],[50] [36], [31],[33], [35],[38],[55] [33],[35],[36] [38],[42], [29],[34]

[34],[35],[55] [38],[39],[61] [44]
Downside risk / semi-variance [26],[45],[46] [30] [30]
Value-at-Risk [47],[48],[49] [29],[31] [31] [29]
Surplus variance [48]
Expected shortfall [29],[32] [32] [29]
12-month performance [50]
3-year performance [50]
Annual dividend yield [50],[51]
Standard and Poor’s star ranking [50]
Mean abs. dev. [30],[32] [30],[32],[41] [41]
Skewness [30] [30]
Uncertainty/relation risk [52]

Skewness [54]Fuzzy approach
Semi-variance [53]

Transaction cost [56] [42]
Sharpe’s index [57],[58],[59] [28] [28]

and more realistic features in the formulation of the portfolio
selection problem. As mentioned before, the resulting com-
plexity of the model makes the solution step very difficult, or
even impossible, for classical methods such as QP (used within
the original Markowitz’ formalism). Due to the multi-objective
nature of the problem, MOEAs represent a viable alternative,
but their application requires necessary adaptation efforts.
Therefore, the next section is devoted to the presentation of
research that proposes or improves the use of Evolutionary
Algorithms for solving portfolio optimization problems.

B. Focusing on the solution techniques

The aim of the portfolio optimization problem is to provide
a set of portfolios belonging to the Pareto front (i.e., the best
possible trade-offs among the objectives), among which the
investor is able to choose the most appropriate option. A clear
advantage of MOEAs in this framework is their ability to
produce, in one single run, a complete approximation of the
Pareto front.

However, when tackling the portfolio optimization problem
with MOEAs, various issues arise. First, the representation
(or encoding) of a portfolio is not straightforward, mainly
because of the basic (budget) constraint (of course, including
real-world constraints has similar implications). Various stud-
ies thus particularly focus on this point, aiming to propose
encoding techniques that always produce feasible portfolios.
Additionally, since reaching the optimal Pareto front is the
crucial goal of a MOEA, many works deal with the develop-
ment of new techniques that improve the quality of the final
solutions attained. Finally, and as the use of MOEAs became
more popular, some researchers started to present comparative
studies in which several MOEAs are applied to some instances
of portfolio optimization problems. The following subsections
provide an analysis of the most representative work along these
three research lines.

1) Encoding techniques: The encoding is an issue of great
importance when dealing with the portfolio selection prob-
lem, which is really an allocation problem. Thus, a direct

representation (i.e., using decision variables as usually done
with Genetic Algorithms (GAs) for representing the weights
of each stock) does not work well. The reason is that this type
of representations will frequently produce infeasible solutions
in which the values allocated do not add up to one, which is
the basic constraint imposed on the problem.
• Shoaf and Foster [62], [63]
These authors adopted a representation which has a single

field of k+1 bits for each asset. The first bit indicates whether
the position on that holding will be long (one) or short (zero).
The remaining k bits are an unsigned index onto an “allocation
wheel”, representing the resources to be allocated. The wheel
is divided into 2k equal sections, each indexed by a k-bit
binary value. For any asset represented as a long position,
the wheel proportion between its index and the index of
the next long position, plus the proportion of any enclosed
short position wedges, is the total proportion of resource
allocation for that holding. The idea is that, for example, the
resources from a short sale of a stock are used to purchase
additional shares of the long position stock whose index
most immediately precedes its index. The greatest benefit
of this encoding is that the total investment represented by
a chromosome is always 100% of the available resources
(i.e., the solutions are always feasible). Conversely, its main
drawback is a higher sensitivity to the mutation and crossover
rates, since the encoding is epistatic (i.e., a change in the
index of one holding generally affects one or two other holding
allocations). The authors compared their approach with respect
to quadratic programming (the most common approach used
to solve this problem) and highlighted that their GA could
determine portfolio allocations with similar risk and higher
rates of return than QP.
• Vedarajan et al. [56]

Two encoding schemes, both based on real-value genes, were
proposed in this case. The first one has no specific features
but, since the sum of weights might not add up to one, the
budget constraint is handled through a static penalty function,
aggregated in the fitness computation. The second encoding
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scheme is based on a variation of random keys (initially
proposed in [64]): the assets are included in the portfolio
in the decreasing order of their weights, until the sum of
the included assets weights is higher than one; the weight of
the last included asset is then modified to respect the budget
constraint.
• Streichert et al. [27]

The authors experimented with both a binary encoding (with
and without Gray codes) and a real numbers encoding. They
adopted the NSGA [21] with tournament selection, fitness
sharing, one-point mutation and discrete 3-points crossover.
Since the authors had determined from preliminary experi-
ments that Pareto-optimal solutions were normally composed
of a limited selection of the available assets, they noted the
similarities of the problem with the one-dimensional binary
knapsack problem. Since the knapsack problem has been
solved using EAs, the authors adopted this encoding in ad-
dition to the vector of decision variables (the weights). So,
each bit from the knapsack determined if an asset would be
used or not. The genetic operators were applied separately to
each of the two segments of the chromosome.

As mentioned in Section III-A1, different constraints are
additionally considered in this work and the effect of the use
(or not) of Lamarckism after the repair process constitutes a
parameter of the study. The S-metric was employed to compute
the hypervolume (the region of the objective space dominated
by the approximate Pareto) of the Pareto front [65], and this
value was used as a performance assessment measure.

The results indicated that, when no Lamarckism is adopted
and no additional constraints are imposed on the problem,
the use of the knapsack encoding clearly outperforms the
standard representation. From the different encodings adopted,
the traditional binary encoding is the best one and the real-
numbers encoding is the worst.

Without cardinality constraints, the standard GA is slightly
better than the GA with knapsack encoding, but the effect
is hardly noticeable because all the approaches perform very
well. But the standard GA is still much better than without
Lamarckism. However, when cardinality constraints are im-
posed on the problem and without using Lamarckism, one
cannot make clear distinctions in the results anymore. Con-
versely, when using Lamarckism, the standard GA outperforms
the GA with the knapsack encoding regarding convergence rate
and reliability, for the case in which cardinality constraints are
considered.

When additional constraints (floor-ceiling, minimum round-
lot) are considered, for the case in which no Lamarckism is
adopted, the standard GA presents premature convergence.
If Lamarckism is adopted, then the negative effect of the
neutral search space is apparently removed, which significantly
increases the efficiency of the standard GA. Real numbers
encoding exhibits a slightly better performance than binary
encoding in this case. Using the knapsack encoding, the GA
does not present premature convergence, but its performance is
poor. The use of Lamarckism causes, again, a very significant
performance improvement. However, binary encoding is better
than real-numbers encoding in this case.
• Chiam et al. [28]

The main point of this study consisted on the design of a
hybrid representation scheme and associated genetic operators.
The chromosome was divided into two parts: the first one
was a permutation vector containing the identity tags of the
available securities, while the second one represented the
weights corresponding to each security. The securities were
integrated to the portfolio in the order they appeared in the
permutation vector, until the sum of the associated weight
exceeded one. Then, the weights of the included assets were
normalized. This process was slightly modified through two
simple repair processes: the first one was to handle the floor-
ceiling constraints (considered as hard constraints) and the
second one was to handle the cardinality constraints (which
were considered as soft constraints: infeasible solutions might
be included in the population).

Additionally, the first population is generated according
to three possible initialization techniques, resulting in three
different MOEAs: (i) without any constraint on the asset
weights; (ii) with a maximum asset weight equal to 0.1; (iii)
with a varying maximum asset weight. The purpose of such
strategy is to change the diversity (in terms of asset number in
each portfolio) of the initial population. Besides, an external
archive maintains the non-dominated solutions found during
the search; the selection step is performed on the current
population plus this external archive, with a binary tournament
based on feasibility, Pareto-dominance and niche count (in the
normalized objective space).

The resulting three MOEAs (each one with one of the
above-mentioned initialization methods) are compared against
a classical real-number encoded MOEA. The comparison cri-
teria account for the distance of the approximated Pareto set to
the unconstrained true Pareto front (this is called “Generational
Distance” [66]) and for the approximated Pareto set diversity
(using the Maximum Spread and the Spacing performance
measures [65], [67]). The first computational experiments
(driven on five problems drawn from the OR-library [60])
were carried out for the unconstrained problem, and showed
the clear superiority of the proposed MOEA with the varying
maximum asset weight as the initialization method. Then,
when applied to the constrained problem, this latter MOEA
version could reach solutions close to the unconstrained true
front, albeit depending on the harshness of the imposed floor-
ceiling and cardinality bounds. The authors also highlighted
the influence of the constraints on the size of the associated
portfolios, as well as the size of the portfolios according
to their location in the Pareto front. As expected, portfolios
located in the low risk-low returns region were those having
many assets, since diversifying inversion on many items has
the effect of distributing the risk; conversely, portfolios with
high returns (and high risks) involved few assets.

• Aranha and Iba [58]

The authors developed here a specific representation scheme,
quite similar to Genetic Programming [68], which adapts
a tree-based portfolio construction. Terminal nodes (leaves)
must identify a security tag while the other nodes (trunk)
determine the weight of each left-side sub-tree. This allows
producing purely feasible portfolios (the asset weights are
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implicitly normalized). Moreover, each sub-tree can act as an
independent feasible tree, so that a fitness can also be assigned
to it.

This encoding technique (which imposes a limit on the tree
depth) involves the development of adapted genetic operators
that randomly modify selected sub-trees: in the mutation step,
the chosen sub-tree is replaced by a new randomly generated
one, while in the crossover step, the sub-trees of two parents
are exchanged according to their associated fitness. This latter
mechanism produces an offspring combining the best sub-trees
of each parent.

Before numerical experimentation, the authors show that,
in most cases, the tree-based representation technique should
speed up convergence. Then, the new encoding scheme is
compared to a classical array-based representation. The results
obtained on two problems (with 100 and 225 possible assets),
in terms of the best solution found, are quite similar. How-
ever, a deeper analysis of the selected portfolios shows that
the number of selected assets is much lower with the tree-
based encoding, which highlights the fact that the array-based
method is not able to discard assets that weakly contribute to
the global portfolio.
• Anagnostopoulos and Mamanis [55]

As described in Sec III-A2, the authors formulated the portfo-
lio selection problem adopting three objectives: return, risk,
and number of assets in the portfolio. The formulation of
the problem also included class constraints. In order to han-
dle these constraints, the authors utilized a problem-specific
chromosome representation, in which a real-valued vector was
used. In order to avoid the construction of infeasible solutions,
they also used a repairing technique: when a new chromosome
did not contain an asset from a specific class, a randomly
selected asset was added to the chromosome.

2) Original multi-objective optimization techniques: A typ-
ical approach when dealing with multi-objective problems is
to reduce the number of criteria in order to come down to a
single-objective problem. To do so, the most commonly used
methods are the aggregation of the weighted objectives in a
linear function and the ε-constraint strategy.

For the former technique, the weights associated to each
objective direct the search towards a specific region of the
Pareto front, so that multiple executions are required to pro-
duce a complete approximation of the Pareto set. Additionally,
the aggregation function technique does not allow to construct
the whole Pareto front when it is not convex. Regarding the
ε-constraint strategy, all objectives but one are considered as
constraints of the model. The right-hand-side term of the new
constraints represents an extreme acceptable value; several
executions (varying the value of the RHS term) are also needed
to determine the complete Pareto front. Works using these
two strategies are reviewed in the two bullet points of this
subsection.

The above-mentioned remarks have encouraged and pro-
moted the development of algorithms adapted to the multi-
objective nature of the problem and which do not face the
above mentioned problem: with MOEAs, the Pareto front
might be approximated in a single run, and regardless of
its characteristics (convexity, continuity, etc.). Because of the

diversity of the techniques proposed in the devoted literature,
the second part of this subsection presents each associated
work in a paper-by-paper fashion.
• Weighted linear aggregation function

In [26], a GA was adopted and the population was divided into
different sub-populations that encoded different weight com-
binations and produced, in consequence, different portions of
the Pareto front. In a further paper, Loraschi et al. [45] used a
distributed GA for the same problem formulation, and showed
that the distributed version offered a significantly better return
for a given risk level than its sequential counterpart.

Chang et al. [39] proposed a steady state GA with binary
tournament selection, uniform crossover and a boundary mu-
tation operator. The issue of the encoding was dealt with a
simple repair procedure that transforms infeasible solutions
into feasible ones. Besides using a GA, the authors also ex-
perimented with tabu search [69] and simulated annealing [70]
(all of them using the same linear aggregating function). For
their comparative study, the authors constructed five test data
sets considering the stocks involved in five different capital
market indices from around the world. First, an unconstrained
version of the problem was solved and results were compared
with respect to those generated by an exact method. The
GA was the best overall performer in this case, followed by
simulated annealing. Tabu search produced a very large mean
percentage error with respect to the two other approaches. In
a second experiment, the authors considered the cardinality
constrained version of the problem. This time, there was no
clear winner, since some approaches produced smaller mean
percentage errors in some problems, but greater values in
others. However, regarding the contribution of each algorithm
to the Pareto optimal set (constructed as the union of results
produced), the GA was the approach that contributed the most,
followed by tabu search and by simulated annealing.

A GA was proposed in [62] to solve the classical
Markowitz’ formulation. A specific encoding scheme (detailed
in Section III-B1) was implemented and compared with re-
spect to QP using end-of-week closing data accumulated over
an eleven month period beginning on October 3, 1994. The
GA adopted two-point crossover, roulette-wheel selection and
bit-flip mutation. Results indicated that the GA could find
portfolio allocations with similar risk and higher rates of return
than quadratic programming.

In a further paper, Shoaf and Foster [63] analyzed the
computational complexity of their approach and proved that
it is dominated by the sorting required by their special en-
coding. Assuming that quicksort is adopted, the complexity is
O(n log n). Moreover, their results indicated a good scalability
of the GA up to 100 stocks (i.e., the algorithm’s complexity
remained as O(n log n), as expected). However, aiming to be
able to explore faster and in a more effective manner the
potentially large and highly multimodal search space of this
problem, the authors also proposed a parallel model based on
islands.

In [30], 500 combinations of the return-risk weights were
used in order to construct the Pareto front. A simple GA
(uniform crossover, problem-specific mutation) was employed
to solve the resulting single-objective problem. The approach
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was validated on a benchmark consisting of three problems
with a number of securities varying between 33 and 99. The
Pareto front, drawn for different values for the cardinality
constraint (K), showed that, for larger K values, the region
with high returns (and high risks) could not be reached. At
the same time, the CPU time increased with K.

Hochreiter [31], [32] proposed a GA optimizing a single ob-
jective, which is built as a linear aggregation of both risk/return
criteria. The GA adopted a real-numbers encoding, followed
by a necessary normalization repair procedure to respect the
total budget constraint. The genetic operators were N -point
and intermediate crossovers and a mutation step in which asset
weights were multiplied by a randomly generated factor. A
15-assets problem from Dow Jones historical data was solved.
The authors highlighted the differences observed, according
to the used risk measure (e.g., standard deviation, Value-
at-Risk, Conditional Value-at-Risk, mean-absolute downside
semi-deviation and expected shortfall; see Section III-A2),
between the best obtained portfolios as well as the associated
loss distributions.

In [41], the portfolio selection problem was modeled by
a fuzzy mathematical programming approach. The fuzzy
model is based on the mean-absolute deviation variant of
the Markowitz’ model. In the proposed model the expected
return and the risk objectives were fuzzified using a logistic
membership function. Thus, both the objective (risk) and the
constraints (expected return and other usual constraints) were
considered to be fuzzy. Among the constraints considered we
can find the expected return, a lower bound for the number of
assets in the portfolio, lower and uppers bounds for the budget,
and the minimum transaction lots. The authors adopted a GA
combined with a local search algorithm in order to improve
the population before applying evolutionary operators.
• ε-constraint strategy

In [52], the multi-objective problem was reduced to a single-
objective one (i.e., minimize risk), by including the expected
return (greater than a minimum acceptable value) in the con-
straints. The solution phase was undertaken with a GA using
binary encoding, uniform crossover, roulette-wheel selection
and fitness evaluation through crowding distance (no further
details are provided). A numerical example with 6 stock assets
was solved to illustrate the proposed methodology. A 55-
solutions Pareto front was obtained.

Soleimani et al. [38] considered the return objective as a
constraint while the variance was minimized. The solution
method was a single-objective GA, whose main features were
a completely deterministic selection technique (the fittest half
of the population survives) and a RAR crossover method [71]
which was used to generate the other half of the population.
Computational experiments were first driven on a small 9-
stock problem, in order to compare it with the results obtained
by a mathematical programming method (LINGO package):
the GA’s solutions lied between 0.45% and 7.77% far away
from the optimum found by LINGO. However, LINGO was
unable to solve a 30-stock problem to optimality within a
24 hours execution, so only the GA was tested on larger
(randomly generated) instances, consisting of 500 and 2000
securities. The authors conclude on the good quality of the

achieved results in reasonable computational times (lower than
7 minutes), despite the lack of comparison with any other
solution technique.
• Ehrgott et al. [50]

Five different objectives were considered in this study (refer to
Section III-A2) and the authors also allowed the incorporation
of the user’s preferences through the construction of decision-
maker specific utility functions and an additive global utility
function. Using this global utility function as the objective
function to be optimized, the authors performed a study in
which they compared four approaches: (1) a two-phase local
search algorithm, (2) simulated annealing [70], (3) tabu search
[69], and (4) a GA. The two-phase local algorithm, simulated
annealing and tabu search, shared the same neighborhood
structure. Results on a funds database indicated that the GA
was the best performer, followed by simulated annealing. In
randomly generated instances, however, the two-phase local
search algorithm had a better performance, followed by the
GA.
• Lin et al. [42], [43]

These authors adopted the Nondominated Sorting Genetic
Algorithm-II [15] to solve the investment portfolio optimiza-
tion problem with fixed transaction costs and minimum lots.
In this study, integers encoding, simulated binary crossover
(SBX) [72] and parameter-based mutation [15] were imple-
mented within the NSGA-II.

An interesting aspect of this work is that the authors adopted
GENOCOP [73] to handle the constraints of the problem.
However, since GENOCOP requires that the initial population
is feasible in order to handle linear constraints, then the authors
adopted the same NSGA-II to find feasible solutions. The
problem solved in this case is really single-objective, but it
is considered as a special case of the multi-objective problem.

When all the individuals in the population are feasible, the
NSGA-II is stopped and the solutions are fed into GENOCOP,
which handles the original constraints of the problem. The
authors validated their approach using data from the OR-
Library [60]. The results indicated that, by investing in more
stocks, the maximum risk was significantly decreased. The
authors also experimented with fitness scaling, which they
found to be useful to make their MOEA more efficient.
However, the results were not compared with respect to any
other approach.
• Fieldsend et al. [40]

The MOEA adopted in this case is a (1+1)-evolution strategy
previously used in [61]. The algorithm maintains a set of
the different cardinality constrained Pareto fronts, each of
which is initialized with a random portfolio. The algorithm
proceeds at each iteration by first selecting (randomly) an
archive with cardinality k and copying a portfolio from it.
Such a copied portfolio is then adjusted (either only weight
adjustment or also dimensionality change). The resulting port-
folio is evaluated in terms of its return and risk and compared
to the others previously stored portfolios to see if it is non-
dominated. Evidently, any dominated portfolios are removed.
The approach was validated using stock data from the US S&P
100 index and emerging markets stock. Results are compared
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with respect to the unconstrained problem, which is solved
using QP. Preliminary results showed that it was possible to
replicate closely the mean and variance of an efficient portfolio
using a relatively low number of stocks.
• Subbu et al. [48]

The solution technique adopted in this case is a hybrid multi-
objective optimization algorithm that combines EAs with
linear programming for investment portfolio optimization. The
adopted EA, proposed in this study, is the Pareto Sorting Evo-
lutionary Algorithm (PSEA), which uses a small population
size and an archive that retains the non-dominated solutions
found along the search. PSEA is initialized with a Randomized
Linear Programming (RLP) algorithm, which stochastically
identifies a sample of the boundaries of the search space by
solving thousands of randomized linear programs. Addition-
ally, a fast dominance filter is implemented to differentiate
between dominated and non-dominated solutions: following a
divide-and-conquer strategy, a set of solutions is decomposed
in order to work on smaller chunks of such set.

The actual search for optimal portfolios was performed by
another approach called Target Objective Genetic Algorithm
(TOGA), which is based on both goal programming and the
Vector Evaluated Genetic Algorithm (VEGA) [10]. TOGA
attempts to find solutions that are as close as possible to a pre-
defined target for one or more objectives. These approaches are
all part of a more complex system developed at General Elec-
tric and currently used in real-world problems with hundreds to
thousands of assets. The system also allows the incorporation
of progressive preferences and provides 2-D projections of the
obtained Pareto fronts.
• Branke et al. [36]

A hybrid algorithm was proposed in this work, in order to
obtain a continuous Pareto front, by combining a MOEA
(namely, NSGA-II [15]) and the critical line algorithm [25].
NSGA-II handled the permutation variables that specify if the
corresponding assets are included or not in the portfolio and
was used to define convex subsets of the original search space;
subsequently, the critical line algorithm was applied on every
subset to form the complete Pareto front.

Thus, each solution in the MOEA is not represented any-
more by a single point but rather by a partial front in the
mean-variance space, determined by the critical line algorithm,
which is called by the authors an “envelope”. Several en-
velopes may be aggregated to determine the entire front. Using
this feature, the non-dominated sorting procedure and crowd-
ing distance computation are modified in order to determine,
for the former, which is the best aggregated front a solution
participates to and, for the latter, which is the proportion of
this front the solution is contributing to.

Although a simple binary encoding would be sufficient
(since the asset weights are handled by the critical line
algorithm), a permutation encoding is adopted in order to
provide some feedback from the critical line algorithm to
the MOEA: an asset receiving a high weight (averaged on
the number of efficient solutions found by the critical line
algorithm) will appear sooner in the permutation. Uniform
order-based crossover and swap mutation are used as genetic

operators.
Two additional features are also added to the proposed

strategy. First, the duplicate elimination technique removes
all individuals showing a frontier completely covered by
(or included in) the frontier of another individual (this so-
lution, therefore, does not really contribute individually to
the construction of the aggregated front). Besides, a variable
population size is used in order to increment the number of
individuals when the first aggregated front (i.e., the Pareto
front approximation) is constituted by a number of solutions
higher than the current population size.

The approach is tested on four problems drawn from
the OR library [60] and compared with NSGA-II without
the critical line algorithm (and which consequently produces
point-based solutions). The authors underlined that, because
of its envelope-based working mode, the hybrid algorithm
requires a much smaller (initial) population size than the
classical NSGA-II. The comparison was performed according
to metrics that basically represent the area between the Pareto
front obtained with the considered algorithms and an ideal
Pareto front (i.e., the Pareto front for the problem without
non-convex constraints and determined by the critical line
algorithm). Experimental results highlighted the superiority
of the enveloped-based algorithm, which provided a better
approximation of the ideal front (especially in the extreme
regions) and converged faster than the simple MOEA. Finally,
its clear advantage over other existing approaches was its
ability to produce a continuous Pareto front.
• Yan et al. [46]

Considering expected return and semi-variance on T periods as
optimization objectives, the authors of this paper included the
risk minimization into the constraints and performed several
executions (varying the right handside term of the maximum
allowable risk) with a single-objective Genetic Algorithm.

The specificity of the proposed GA lies on the replacement
of the mutation step by a Particle Swarm Optimization-based
operator [74]: the considered individuals are modified via
a vector accounting for the historical best personal position
and the current best global position. Note that the velocity
from the previous iteration does not appear in the PSO-based
mutation process (as it does in a classical PSO strategy).
No further details are provided about the handling of the
budget constraint or about the adopted encoding scheme.
Two numerical experiments were carried out, using two non-
referenced examples that considered, respectively, 3 and 6
periods and 4 and 12 securities. The resulting Pareto fronts
were compared against the solutions obtained by a direct
search method (no details were provided about this technique)
and the EA outperformed the latter one.
• Bradshaw et al. [49]

The portfolio selection problem with Value-at-Risk as the risk
objective was solved by these authors using a classical MOEA
(the authors argue that it is “loosely” similar to SPEA2 [14]).
The main features of the algorithm consist of the design of
genetic operators that maintain the solutions’ feasibility and a
varying size population. Regarding the crossover and mutation
operators, when some portfolio exceeds or is below the total
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budget, the weight of a randomly selected asset (or several
assets, if necessary) is modified so that the sum of all weights
equals one. Concerning the varying size population, when the
number of non-dominated solutions is higher than the current
population size, the latter is increased in order to keep all those
solutions.

The resulting algorithm was tested on a 20 assets instance
and a sensitivity analysis was carried out on the number of
generations and on the initial population size. Results showed
that a small initial population size allowed to reduce the
computational time without deteriorating the quality of the
resulting Pareto front. The results were not matched against
any other solution method.
• Krink and Paterlini [29]

An original solution technique was proposed by these authors
for three models that differ in the objectives that were con-
sidered in each case (refer to Section III-A2): the expected
return criterion was combined with either variance (model
MV), Value-at-Risk (model MVaR) or Expected Shortfall
(model MES). The solution technique was inspired on several
algorithms. First, the operators were taken from Differential
Evolution [75] (in its rand/1/exp version, meaning that the
individuals involved in the mutation step are randomly se-
lected and combined in only one differentiation, and that the
crossover step is based on an exponential distribution). For the
selection step, they adopted the nondominated sorting from
NSGA-II, together with its multi-objective based rules and
crowding distance to choose from the union of the parents
and the mutated offspring. Finally, Michalewicz’s GENOCOP
approach [73] was used to handle the linear constraints of the
problem. Unlike the classical DE technique, all the mutated
individuals were compared in this case to all the parents, in
order to replace the worst ones in the following population.

The resulting algorithm (DEMPO) is compared against
NSGA-II [15] using four metrics that measure, respectively,
the distance between the approximated front and the true
Pareto front (which is generated by a QP method for the
unconstrained problem), the uniformity of the approximated
front, the hypervolume [76] covered by the approximated
front and Knowles and Corne’s MOSTATS metric [22] (which
statistically computes the attainment surfaces [77] for a given
number of runs for each considered algorithm).

Previously tested on six multi-objective mathematical prob-
lems, this comparative study shows that NSGA-II beats
DEMPO for the simplest instances, while the reverse is
observed for the more complex problems. Concerning the
computational times, DEMPO is almost three times faster than
NSGA-II for an equal number of fitness function evaluations.

Then, the three portfolio optimization models were solved
on a real-world instance; data from the Italian stock exchange
were used. For the MV model, DEMPO outperformed NSGA-
II and provided a Pareto front very close to the true Pareto front
generated by QP. Moreover, apart from the uniformity metric,
DEMPO obtained the best values of the performance indica-
tors. The authors claim that the reasons for DEMPO’s superior-
ity are the (already reported) particularly good efficacy of DE
on continuous optimization problems and the GENOCOP-like
constraint handling method adopted for the equality constraints

of the problem. NSGA-II’s results were not provided for the
two remaining models (MVaR and MES), so it is difficult to
assess DEMPO’s behavior on those formulations.
• Aranha and Iba [59], [78]

As mentioned in the previous sub-section on encoding tech-
niques, Aranha and Iba [58], [78] proposed a tree-based rep-
resentation scheme. The authors subsequently improved their
solution technique by implementing a local search procedure
in order to modify the trunk nodes of a tree, starting by the
deepest non-terminal nodes. The resulting memetic algorithm,
when compared to more classical portfolio representations,
was found to work quite well on three real-world data ex-
amples.
• Gomez et al. [34]

The authors of this paper proposed a hybrid approach based
on Simulated Annealing [70] and MOEAs for dealing with a
model involving cardinality, floor-ceiling, trading and turnover
constraints. A population of solutions was modified according
to a neighborhood (not detailed in the paper), and then it
was Pareto-ranked and the offspring were selected if they
improved the risk criterion. No details were provided about
the selection process, the constraint-handling method nor the
cooling schedule adopted for the SA algorithm.
• Vijayalakshmi and Michel [35]

As mentioned in Section III-A1, the most relevant aspect
of the approach proposed in [35] lies on the use of k-
means clustering to deal with the cardinality constraints.
Then, a (λ+µ)-Evolution Strategy is adopted to optimize a
linear function which aggregates return and risk objectives.
Moreover, a “plus” selection scheme (involving more offspring
than parents), uniform crossover and mutation steps and repair
procedures (to handle the floor-ceiling and class constraints)
were adopted within the ES algorithm.

The strategy was numerically validated on two real-world
problems (Indian and Japanese stock exchanges, with 200
and 225 assets, respectively). The Pareto fronts produced
by multiple executions of the ES (modifying the return-risk
weights in the objective function) and by QP were compared
only in terms of their visualization. From this analysis, the
authors concluded that the solutions generated by their evo-
lution strategy were very close to those generated by QP.
Additionally, a Data Envelopment Analysis (DEA) technique
was carried out to compare both approaches, concluding that
they were similar in terms of efficiency and robustness.
• Drezewski and Siwik [79]

These authors emphasized the necessity of procedures, inside
MOEAs, that preserve the diversity of the population (in order
to avoid converging to a limited region of the Pareto front, or
to avoid getting trapped in false Pareto fronts). As such, they
present the use of a co-evolution strategy as an alternative
for dealing with this issue: co-evolution is defined as the
prolonged mutual interaction between two (or more) species.
The nature of these interactions might be positive or negative,
according to the considered species. For instance, mutualism
means that all involved species benefit from the relationship;
competition means that the species have a negative effect on
the others (they compete for the same resources); predation
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involves a benefit for the predator and, conversely, a negative
impact for the prey.

This last scheme (predator-prey) is the one selected by the
authors in this work. They underline that, in addition to the
diversity preservation aspect, co-evolution provides a useful
analogy with market-oriented economic systems. In this sense,
agents can be seen as virtual entities interacting with their
environment and with other agents, making them an ideal tool
for modeling social or financial structures. Co-Evolutionary
Multi-Agent Systems (CoEMAS) therefore consists in evolv-
ing a population of agents, divided into several species.

The implementation of the CoEMAS requires the definition
of an environment (with its associated topology), of the species
evolving in this environment and of the nature of the existing
information and resources. The selection mechanism is based
on the closed circulation of resources within the system,
this transfer being possible between preys and from preys to
predators. To completely determine a species, sets of sexes,
actions and relationships (with other species) must be defined
for each of them. The genotype of each agent consists of two
vectors: the first one represents the decision variables of the
tackled problem, while the second one is used to compute the
standard deviation implemented in the self-adaptive mutation
step. Additionally, each agent is assigned a profile, a goal
corresponding to this profile and a strategy to attain the goal.

This modelling and solution system was implemented for
the solution of the Markowitz’ mean-variance formulation. For
this problem, elitism had to be integrated into the evolutionary
process in order to preserve non-dominated agents that, as
simulation time passed, only met a majority of the other non-
dominated agents and, thus, could not increase their resources’
level. The computational experiments were carried out on
data considering 3 and 17 stocks from the Warsaw stock
exchange, on a 3-years period. The results were compared
against those generated by NPGA [80] and a “classical”
predator-prey evolution strategy (PPES). They showed that, if
the number of non-dominated solutions found was similar for
all three solution techniques, CoEMAS was unable to provide
a good diversity of solutions over the whole Pareto front
(which was one of the main justifications for the use of co-
evolution): CoEMAS only identified a small, restricted subset
of the Pareto front, located on the low risk, low return region.
This trend became even more pronounced as the number of
iterations increased. The authors however argued that, when
applied to test problems (proposed by Laumanns, Kursawe and
Zitzler), CoEMAS had presented the best results.
• Zhang et al. [81]

In this work, the authors’ objective, rather than improving
state-of-the-art solutions on a specific portfolio optimization
formulation, present an improvement for the original ver-
sion of an algorithm introduced a few years earlier, namely
MOEA/D (its main features are described in section II).
Actually, they propose the Normal Boundary Intersection
- Chebyshev style decomposition to derive single-objective
subproblems from the initial multi-objective problem. The
portfolio optimization problem is only used to provide test
instances to evaluate the performance of the novel decomposi-
tion approach proposed. The used model is the classical mean-

variance of return model, furthermore including cardinality
constraints (an upper bound for the number of selected assets).
The authors tested their algorithm on 8 instances with a
number of assets ranging from 30 to 150. They conclude
that their approach finds the best solutions in almost all cases
when comparing it against the NSGA-II [15]. However, they
highlight that the implementation of their method is non-
trivial, since it involves extra constraints and, therefore, the
need for an efficient constraint-handling technique.

3) Studies comparing different solution strategies:
• Vedarajan et al. [56]

Considering the Markowitz’ mean-variance model, the authors
first adopted a GA with a linear aggregating function combin-
ing the two objectives into a single scalar value. The weights
were varied in order to generate different non-dominated
solutions. Binary tournament selection, one-point crossover
and bit-flip mutation were implemented within the GA. The
latter was compared against the NSGA [21].

As mentioned in Section III-B1, both genetic algorithms
use random keys encoding, which requires that the solutions
are sorted. The results from both solution techniques were
compared only in a graphical form (no real numerical compar-
ison, using performance measures, was reported in the paper)
and seemed similar in quality, although the NSGA provided a
much more diverse set of solutions.

According to the authors, there are, however, other advan-
tages of using the NSGA: when adopting QP techniques, one
has to work with a covariance matrix and such matrix needs to
be positive definite at all times. It turns out that, when working
with real-world problems, as the number of portfolio holdings
increases, it becomes difficult to maintain this matrix as
positive definite because of numerical imprecisions associated
to the use of floating point arithmetic. This is not an issue
with MOEAs, since they do not use this matrix. Later on,
the authors underlined that, in practice, portfolio management
involves other costs as well, such as transaction costs, broker
fees, etc. So, the authors added another objective: minimizing
the transaction costs. The new problem has one additional
constraint related to the maximum allowable transaction cost,
which is difficult to handle with QP because of the way in
which transactions normally take place in practice. Thus, in
this case, the use of a MOEA brings even more advantages,
since the NSGA was able to produce the three-dimensional
Pareto front in a single run.
• Radziukyniene and Zilinskas [51]

Four algorithms were compared by these authors on two port-
folio selection problem formulations: the first one considers
the two classical objectives, while the second one includes
the annual dividend yield as a third criterion. The algorithms,
whose main features have been described in section II, are
FastPGA[16], MOCell [18], AbYSS [13] and the NSGA-II
[15].

These four algorithms were compared according to five
criteria (merging the Pareto optimal solutions generated by
the four algorithms, in order to form the reference true Pareto
front): Generational Distance (GD), Inverted Generational
Distance (IGD), Hypervolume (HV), Spread (S) and computa-
tional time. GD and IGD [66] represent, respectively, how far
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the approximation is from the true Pareto front and how far are
the elements in the Pareto optimal set from those in the approx-
imated set. Each algorithm had its own set of parameters, but
all of them were run with an equal number of fitness function
evaluations. For the two-objective problem, MOCeLL (for GD,
IGD and HV) and AbySS (for S and computational time)
were found to be the most competitive solution techniques.
For the three-objective problem, MOCeLL outperformed the
other algorithms for all the performance measures adopted,
except for the computational time (NSGA-II was the fastest
technique).
• Duran et al. [57]

The authors of this paper compared the performance of
three MOEAs and a Single-Objective Evolutionary Algorithm
(SOEA), according to two criteria: (i) the efficiency of the
algorithms in achieving a good quality Pareto front for the
Markowitz’ model; and (ii) the performance in locating the
efficient portfolio, determined with Sharpe’s ratio (see Sec-
tion III-A3). The SOEA used Sharpe’s index as its (only)
objective function and approximated the Pareto front by per-
forming several runs for different values of Sharpe’s index.

The MOEAs adopted were NSGA-II [15], SPEA2 [14] and
IBEA [17], whose main features were defined in section II.

The Pareto fronts generated by each of these approaches
were compared according to the hypervolume and to the
R2 performance measure [82], which estimates the extent to
which a certain front approximates another one (the reference
set in this case, which was formed with the union of the
nondominated sets generated by the four approaches being
compared). The solution sets found by the three MOEAs
were quite similar, but IBEA seemed to be the best one with
respect to the two above-mentioned performance measures.
Because of its discretized working mode, the SOEA could not
reach a good coverage of the Pareto front, but it produced an
approximation that was not too far from the “true” Pareto front.
Focusing on Sharpe’s ratio, the SOEA obviously identified
with more accuracy the best portfolio with respect to it. The
differences with respect to the values obtained by the MOEAs
became larger as the risk-free return rate parameter increased.
• Skolpadungket et al. [33]

In this study, six MOEAs were compared on the classical
mean-variance model, including (exact) cardinality constraints,
round-lot constraints and fixed asset weights bounds: the
canonical version of VEGA [10], two fuzzy versions of
VEGA, MOGA[20], NSGA-II [15] and SPEA2 [14]. The
fuzzy versions of VEGA are designed to overcome this draw-
back and make use of fuzzy decision rules, based on verbal
statements on the quality of each objective.

For all the considered algorithms, a mixed binary-real
encoding was adopted, while a repair procedure was imple-
mented in order to produce feasible offspring after the (three-
point) crossover and (uniform perturbation) mutation steps.

The efficient frontiers produced by the six MOEAs were
compared with respect to the distance to the true (uncon-
strained) Pareto front (i.e., generational distance) and in terms
of the diversity of the solutions obtained (this latter feature
was accounted for by visual inspection of the Pareto fronts).

The computational results indicated that SPEA2 was the best
solution technique, with respect to both generational distance
and solutions dispersion. MOGA and NSGA-II solutions lie
quite close, while the three VEGA versions are strongly
outperformed by the Pareto-ranking based techniques.
• Diosan [83]

Within the mean-variance formulation framework, this author
compared the performance of three MOEAs: PESA [23],
NSGA-II [15] and SPEA2 [14]. For the three algorithms, a
real-number encoding scheme was adopted, followed by a
normalization repair procedure in order to satisfy the capital
constraint.

The algorithms’ performances, evaluated on a real-world
data set, were compared with respect to two unary metrics:
S (portion of the objective space dominated by the approx-
imation of the Pareto front generated by the MOEA) and δ
(uniformity of the distribution of the points along the Pareto
front) [15]. Additionally, binary set coverage [65] was also
adopted: this metric, comparing the Pareto sets produced by
any two algorithms A1 and A2, is computed as the ratio of
non-dominated solutions produced by algorithm A1 that dom-
inate the solutions produced by algorithm A2, and conversely.
The author concluded that PESA outperformed the other
two algorithms regarding the S and coverage performance
measures, while NSGA-II was the best with respect to the
δ measure.
• Anagnostopoulos and Mamanis [55]

The authors of this paper solved a variation of the Markowitz’
model with three objectives: return value, risk and number of
assets in the portfolio. Three different MOEAs were compared
in this study: NSGA-II [15], PESA [23] and SPEA2 [65].
The performance of the algorithms was evaluated using the
hypervolume and the ε-indicator. The experiments showed
that SPEA2 was the best for both the constrained and the
unconstrained multi-objective portfolio optimization problem.

IV. OTHER FINANCIAL APPLICATIONS

In this section, several financial problems, for which a
solution technique based on MOEAs has been proposed,
are briefly reviewed. Unlike the previously treated portfolio
selection problem, in this case, the diversity of works is not
big. Thus, the topics addressed in this section do not share
specific similarities and, therefore, they are presented in an
independent manner.

A. Financial time series

The aim of this research topic is to find patterns in financial
time series, such that predictions can be made regarding the
behavior of a certain stock. Typically, neural networks have
been applied on this problem, but the use of different types of
evolutionary algorithms has also been reported, independently
or in combination with the use of neural networks.

The use of an evolutionary multi-objective approach in this
area has not attracted much interest so far and the references
devoted to this topic are, therefore, scarce. There are, however,
some references in which MOEAs have been used for time
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series prediction, although not in a finance-related domain (see
for example [84]). Additionally, there is also some work on
predicting customers patterns [85], which is also related to this
topic.
• Ruspini and Zwir

Ruspini & Zwir [86] and Zwir & Ruspini [87] used the
Niched-Pareto Genetic Algorithm (NPGA) [80] for automatic
derivation of qualitative descriptions of complex objects. The
NPGA is a non-elitist MOEA that uses a tournament selection
scheme based on Pareto dominance. The authors applied their
methodology to the identification of significant technical-
analysis patterns in financial time series. Two objectives
were considered: quality of fit (which measures the extent
to which the time-series values correspond to a financial
uptrend, downtrend, or head-and-shoulders interval) and extent
(which measures, through a linear function, the length of the
interval being explained). The NPGA was actually adopted
to determine crisp intervals corresponding to downtrends, up-
trends and head-and-shoulders intervals. Niching and tourna-
ment selection were used in this application. The authors of
this work concluded, from a graphical analysis of the obtained
results, that their approach allows a satisfactory description of
complex qualitative problems such as financial time series.
• Abraham et al. [88]

These authors proposed the unification of five types of neu-
ral networks (Levenberg-Marquardt algorithm, support vector
machine, difference boosting neural network, Takagi-Sugeno
fuzzy inference system using a neural network algorithm and
Multi-Expression Programming) to model the trends of two
stock market indexes (NASDAQ and NIFTY). The quality of
the approximation was evaluated according to four criteria,
which basically represent different ways of computing the
error between the predicted and the actual index values. The
data set, consisting of a large number of historical values for
both indexes, was divided into two parts, for training and
testing respectively.

The unification of these five Neural Networks (NNs) al-
gorithms was carried out through a linear combination of
the outputs from each algorithm. The weights in this lin-
ear function represented the decision variables of a multi-
objective optimization problem, which considered the above-
mentioned error metrics as the optimization criteria. Two
solution schemes were adopted, namely NSGA-II [15] and
PAES [22].

The computational experiments conducted by the authors
showed that the output combinations obtained by any of the
MOEAs adopted in this study reached better error measures
than any NN used in an independent manner. However, even
though the weights obtained by each optimization method
were different, no superiority between them could be estab-
lished.

B. Stock ranking

The aim of this problem is to classify stocks as strong or
weak performers based on technical indicators and then use
this information to select stocks for investment and for making

recommendations to customers. Next, we report the use of
MOEAs in this application area.
• Mullei and Beling [89]

The authors of this paper used a GA with a linear combination
of weights to select rules for a classifier system adapted to
rank stocks based on profitability. Up to nine objectives were
considered in this case, related to conjunctive attribute rule
tests. This problem was solved using a classifier system from
the so-called Pittsburgh approach [2]. The authors used binary
encoding, roulette wheel selection, one-point crossover and
uniform mutation. The approach was validated using five large
historical (U.S.) stock data sets covering approximately 3 years
(1995-1998) of weekly data on a universe of 16 stocks. Results
were compared against those produced by a technique related
to the synthesis of polynomial networks called STATNET.
The results were inconclusive since no technique was able
to outperform the other in all cases.
• Hassan and Clack [90]

Stock-picking refers to a low-frequency investment practice,
which applies models that guide the choice for buying or
selling stocks in an extremely unstable market environment.
The main objective is not that much to accurately predict
stock prices, but rather to determine a consistent stock ranking.
Genetic Programming (GP) is a popular technique for evolving
stock-picking models, but the time series used for model
training are very likely to be subject to fluctuations that might
affect the model effectiveness: the environment is not the same
as that used for training, and the model is not appropriate any-
more. When considering the optimization of several objectives
(typically, risk and return), this loss of effectiveness results in
a Pareto front that could be far away from the optimal in
the new environment; in addition, the relative position of the
solutions on the Pareto front might switch. The authors of
this paper, noting that re-training is not an adequate parry,
proposed to look for robust models that would still perform
reasonably well when changes in the environment occur. In
this view, they put forward two hypotheses and suggested
appropriate responses. The first one was that the search process
should focus on particular niches in phenotypic space, rather
than trying to fit to specific data. Thus, it might be useful to
cluster the solutions and applying mating restrictions in order
to only recombine solutions belonging to the same cluster.
The second assumption is that diversity would favor smaller
trees, would avoid over-fitting and would promote more robust
solutions: increasing the mutation rate might help to obtain
a better robustness. Note that these two techniques (mating
restriction and diversity preservation) are antagonistic since
they are methods devoted to intensification and exploration,
respectively.

Then, the aim of the study was to produce solutions that
worked reasonably well when applied to another data set (i.e.,
that the model could properly adapt to new environments). To
quantify robustness in this dynamic environment, three aspects
must be accounted for:

- The nearness of the solutions with respect to the (new)
Pareto front.

- The change in the relative position of the solutions.
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The k-means clustering algorithm was used to group
together solutions into three clusters (high risk-high re-
turns, low risk-low returns and intermediate location) and
the change in the cluster membership of any solution
was recorded. Additionally, any change in the rank-order
(computed in objective function space) was also taken
into account.

- The good spread and distribution of the new Pareto front
formed during the validation stage.

The first and last aspects could be evaluated through clas-
sical performance indexes used for classical MOEAs (the
spacing and hole-relative-size [91] performance measures were
adopted here), and new performance measures were developed
by the authors to account for the cluster and rank-order
preservation.

A MOEA similar to SPEA2 [14] was adapted by the authors
to operate in a GP working mode (i.e., a multi-objective
genetic programming (MOGP) approach). The only important
change introduced was that mating was allowed only for
parents belonging to the same cluster. The resulting algorithm
was tested on an investment strategy problem with 25 stocks
from the UK market. The training set used the data from 48
months and the validation set data from 20 months. At the start
of each month, the stocks were ranked according to the model
produced by the MOGP implementation. The stocks from the
bottom quartile were sold and, if the number of stocks in the
portfolio was insufficient, then stocks from the top quartile
were bought. The experiments investigated and compared the
results obtained by four algorithms: standard SPEA2 (without
mating restrictions nor mutation); SPEA2 without mating
restrictions but with mutation; SPEA2 without mutation but
with mating restrictions; SPEA2 with mating restrictions and
mutation. Finally, the computational results highlighted the
benefits brought by both mating restrictions and diversity
preservation strategies, since for all the performance measures
adopted, except for one (the hole-relative-size metric), SPEA2
(with its new mechanisms) obtained the best solutions.

C. Risk-return analysis

Credit portfolios handled by banks are also investment
portfolios, but they operate under different rules and, therefore,
they are not modeled using the original Markowitz approach.
Next, we will describe applications of MOEAs to this area.
• Schlottmann and Seese [92], [93]

An approach similar to the NSGA-II [15] was used in this
case for solving portfolio selection problems relevant to real-
world banking. In the problem studied by the authors, a bank
has a fixed supervisory capital budget. This is an upper limit
for investments into a portfolio consisting of a subset of
assets (e.g., loans to be given to different customers of the
bank), each of which is subject to the risk of the default
(capital risk). So, in this case, besides having an expected
rate of return (as in the original Markowitz problem), each
asset has also an expected default probability (which is set
a priori) and a net exposure, within a fixed risk horizon.
The authors adopted binary decision variables to indicate
whether or not a certain net exposure would be held in the

portfolio or not. Only if an asset was held in the portfolio,
the bank had to allocate a supervisory capital amount from
its available (but scarce) resources. Thus, the return objective
function had to be adjusted for default risk (i.e., expected
loss). The resulting problem had a discrete constrained search
space with many local optima and two conflicting objective
functions. Unlike the original NSGA-II, the authors adopted an
external archive containing the non-dominated solutions found
during the search. They also incorporated a gradient-based
local search operator which was, however, rather heuristic. For
validation purposes, the authors designed their own test cases
with a structure similar to real-world data from German banks.
They compared their hybrid MOEA with respect to the same
MOEA without the local search mechanism. Results indicated
that the use of local search significantly improved performance
(the average improvement was found to be between 17% and
95% for the set coverage metric [65]).
• Mukerjee et al. [94]

The authors used the NSGA-II [15] to determine risk-return
trade-offs for a bank loan portfolio manager. The idea is
the same as before: the bank manager aims to maximize
shareholder wealth. This implies maximizing the net worth
of the bank, which in turn involves maximizing the net
interest margin of the bank. However, there are a number
of regulatory constraints imposed on the bank, such as the
maintenance of adequate capital, interest-rate risk exposure,
etc. The authors adopted a portfolio credit risk model based on
the standard deviation of the return over the entire portfolio.
Two objectives were considered: (1) maximize mean return
on the portfolio, and (2) minimize the variance on the return.
For validating their approach, the authors adopted data from
the CreditMetrics Technical Document. The authors studied
an elastic loan demand model in which they assumed that the
amount of loan applications received in a given loan category
was a function of the interest rate charged. The authors used
the NSGA-II for this model, adopting the interest rates as their
decision variables.

An interesting aspect of this work is that the authors
compared the performance of the NSGA-II with respect to that
of the ε-constraint method (using a simple genetic algorithm
for the individual single-objective optimizations performed by
this method). Only graphical comparisons were presented,
since the aim was to show that the NSGA-II could achieve the
same convergence as the ε-constraint method, while providing
a much wider distribution of non-dominated solutions.
• Teive et al. [95]
As well as in stock market portfolios, risk management

plays an important role in the electricity market to guide
investors under both contract uncertainties and energy prices.
The above authors proposed solving the portfolio optimization
problem in the electricity market by using a MOEA associated
with a multi-criteria decision strategy to select the most
appropriate alternative. One particular aspect of this work
is the consideration of flexible contracts, such as the option
contracts (call or put options). The return value of the contracts
portfolio was computed taking into account: sport market,
forward contracts, and option contracts (call or put options).
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The authors developed a MOEA called Pareto Genetic Algo-
rithm. The optimization problems considered four objectives:
minimize risk, minimize VaR, minimize CVaR, and maximize
the return value. The proposed algorithm was applied to a
problem taken from the Brazilian electricity market in which
it was assumed that the trader agent would buy and sell 1000
MWh at the liberalized market in the same region. After
obtaining an approximation of the Pareto front, a multi-criteria
analysis was performed to reduce the set of alternatives.

D. Financial and trading decision-support tools

Many decision-making problems in financial forecasting are
based on the analysis of time series, typically indicating the
market price movements, in order to decide what behavior
should be adopted (for instance, sell, buy or hold). However,
the large number of interactive factors and multiple conflicting
objectives involved in a financial forecasting problem gener-
ally leads to a huge and complex search space.

In this framework, objective technical analysis is widely
used by professional traders, because its accuracy can be indis-
putably quantified. The two following studies adopt MOEAs
in order to derive trading rules or strategies, which constitute
efficient decision-support tools within the financial forecasting
problems.
• Li and Taiwo [96]

These authors proposed an extension of a single-objective
strategy (Financial Genetic Programming: see [97]) consisting
on the use of Genetic Programming to define rules that might
help for financial decision making. Let us highlight, besides,
that some (single-objective) improvements of Financial Ge-
netic Programming have been subsequently proposed in [98],
[99] and [100]. These rules are built through decision trees
constituted by elemental blocks such as operators, thresholds
and financial indicators. The terminal leaves of the tree were
binary recommendations (positive/negative) about buying or
selling, according to the prediction of an increase of closing
prices over a defined period. The rules were derived from a
training data set and were subsequently applied on a test set in
order to validate the rules’ responses and their extrapolating
efficacy.

The Multi-Objective Financial Genetic Programming ap-
proach adopted by the authors was based on SPEA2 [14] (i.e.,
they used an external archive, and a strength-based selection
step applying non-domination ranking and diversity) in order
to produce near-optimal, well-spread and evenly distributed
Pareto fronts. The objectives were: (1) the Rate of Failure
(RF: proportion of positions, i.e., decisions, that were wrongly
predicted positive over the number of actual positive positions)
and (2) the Rate of Missing Chances (RMC: number of
wrongly predicted negative positions over the number of actual
positive positions).

Numerical experiments were carried out on a 6.5 years
training data set and on a 3.5 years testing data set. The
MOFGP was compared with respect to the outcome generated
from multiple runs of FGP and the (decomposed) results
showed that FGP performed slightly better than its multi-
objective counterpart. However, the authors underlined the

fact that the solutions generated by MOFGP were obtained
with a single run of the algorithm. Additionally, they noted a
significant difference between the Pareto fronts produced on
the training set and those produced on the testing set, which
means that the generalization ability of MOFGP needs to be
improved. Finally, the authors highlighted the good spread
of solutions along the Pareto front that they obtained, which
covered almost the whole range of variation of the objectives.
They also emphasized the fact that there was no need of any
extra parameter-tuning (unlike the FGP strategy which uses an
aggregation function and, therefore, requires that the user sets
the weight associated to each criterion).
• Chiam et al. [101]

Technical Trading Strategies (TTS) are trading rules that
analyze the forecasting of future market movements, based on
the past history of market actions. “Technician” traders usually
make decisions (basically: sell, buy or hold for short or long
positions) relying on several technical indicators (TIs), which
account for the past market information: weighted average of
the closing prices on a certain period, magnitude of market
oscillations, etc. Then, these TIs are aggregated in a (generally)
weighted linear function and, at each instant, a decision is
taken if the function value exceeds (upwards or downwards)
certain threshold.

The aim of this work is, therefore, to evolve a population of
trading agents, each of which consists of several TIs that are
taken into account in the design of a TTS (i.e., the aggregation
function defining the trading decisions to be taken) and of
specific thresholds for the decision-making process. Each TI
considered in an agent has its associated weight (for the aggre-
gation function) and parameters. The agents may consider a
variable number of TIs, so the associated chromosomes have a
variable size. In addition to the maximization of the total return
used in single-objective approaches, the authors proposed the
simultaneous minimization of risk exposure, computed as the
ratio of days with holding assets (i.e., for each trade, the
difference between sell and buy dates) with respect to the
considered period length.

In the MOEA proposed for solving this problem, a binary
tournament was carried out for the selection step, evaluating
the individuals through a Pareto ranking procedure that inte-
grated fitness sharing in the presence of ties (this is similar to
NPGA [80]). Additionally, problem-oriented genetic operators
were designed: a crossover operator that mixes the parent
TIs between two offspring chromosomes (without modifying
their associated weights and parameters) while, for mutation,
a TI can be added to or removed from an individual, or
some random noise can be introduced to the TI parameters.
Also, weights or noise can be added to the decision-making
thresholds. Furthermore, an insertion procedure introducing
some new randomly created individuals was performed at each
generation, in order to enhance the population diversity.

The computational experiments first aimed at evaluating the
accuracy and distribution of the obtained Pareto front when
varying the number and nature of the TIs to be considered by
the trading agents. The solutions resulting from the different
TIs combination were compared according to the coverage
and spread measures [67]. The results showed that some TIs
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biased the search, focusing it on particular regions of the
non-dominated set (for instance, preferentially providing high-
return, high-risk solutions). In a second set of experiments,
the authors tried to evaluate the ability of the strategies
generated by the MOEA on a training data set, to generalize
to another (testing) data set. Their results highlighted the low
correlation between the return obtained on the training set and
on the testing set, which invalidated this assumption, which is
traditionally made in single-objective approaches. However, a
low positive correlation was established with respect to risk,
between the training set and the testing set.
• Lohpetch and Corne [102]
Recently, Lohpetch and Corne [102] used GP for discov-

ering technical trading rules. This kind of approach attempts
to forecast the future direction of equity prices based on the
patterns that are revealed from historical equity price data.
GP uses a tree-based encoding to express trading rules, in
which nodes represent a function set composed by arithmetic,
Boolean and relational operators, while the terminal set com-
prises a collection of basic financial indicators (e.g., opening
and closing price, trend lines indicators). The rules can be
interpreted, for instance, as a recommendation to buy. A simple
but effective trading approach is the buy-and-hold strategy
(B&H) which states that for a given period, one should buy
the stock at the beginning of the period, and sell it at the end.
In this work, the performance of the proposed multi-objective
GP algorithm was compared against that of the B&H strategy.
The authors evaluated several multi-objective configurations
using a combination of 2 or 3 of the following objectives:
• Market return (MR), which represents the excess of return

over that of the B&H strategy.
• Performance consistency, which is the number of times

for which MR outperformed the B&H strategy in several
successive periods.

• Complexity penalizing factor, which is the depth of the
tree.

For the multi-objective approach the authors adopted
NSGA-II [15]. This way, instead of evaluating a single rule,
a set of rules were evaluated. The main finding of this study
was that multi-objective approaches were able to outperform
single-objective approaches, as well as the B&H strategy.
• Butler and Daniyal [103]

In this work, the authors proposed a robust trading model
by predicting the movements of a stock market index (Dow
Jones Industrial Average). The model was created using an
evolutionary artificial neural network (EANN) trained for
multi-objective optimization. Many approaches for classifying
investment returns only take into account the direction of
prices changes. For this reason, the authors adopted a multi-
objective approach that trains the neural network on movement
and magnitude. The proposed approach was based on the Neu-
roEvolution of Augmenting Topologies (NEAT) method [104],
which starts with a population of simple perceptrons and grad-
ually evolves more complex network structures. The crossover
operator took the genomes of two candidate ANNs and, for
each innovation number, in either of the genomes, a copy
was created in the new genome. An innovation number is

a historical marker that identifies the original ancestor of
each genome. Mutation consisted of four operations: add
a node, add a connection, change connection weights, and
backpropagation mutation. The main finding of this study was
that an EANN trained to recognize direction and magnitude in
stock market was better equipped to create superior investment
returns than one trained only to recognize direction changes.
• Larkin and Ryan [105]

These authors proposed a Hybrid Forecasting System for
markets whose goal is to predict events based on historical
events and finding the optimal way to capitalize on those
predictions. The Hybrid System consisted of a master GA and
a slave GP. The GA was responsible for finding the best way
to teach the slave GP how to spot rising and falling markets
as they occurred. The goal of GP was to build classifiers for
forecasting rises or falls from historical trading exchanges.
Classifiers took the form of a Signal Generation Tree, and
both were found with separate GP runs. The signal generators
took the form of a standard GP tree comprised of primitive
mathematical operations and functions regularly found in the
field of technical analysis (e.g., moving average of the price
difference over a given range, and highest price difference
observed in given range). This Hybrid Forecasting system was
evaluated using 10 well-known equity stocks from the NYSE
and NASDAQ trading exchange.
• Li and Krause [106]

In this study, the optimization of financial markets is addressed
through a strategy based on near-zero intelligence trading
agents. This agents apply specific trading rules, such as tick
size (i.e., minimum differences between prices at which orders
can be submitted), priority rules (determining the rationing
of orders in the case of an imbalance between buy and sell
orders at the transaction price), multiple prices (determining
the transaction prices) or market transparency (defined as the
ability of market participants to observe the information in
the trading process). The impact on the financial market is
evaluated in terms of the trading volume and bid-ask spread.

The optimization technique is a multi-objective extension of
the Population-Based Incremental Learning (PBIL) algorithm,
which attempts to create a probability vector, measuring the
probability of each bit position having a “1” in a binary
solution string. Then, the probability vector is moved towards
the vector that shows the best performance in a similar manner
to a competitive learning process. The probabilities are subject
to mutation controlled by a parameter determining the degree
of randomness involved in the new probability.

The numerical experiments confirmed the fact that objec-
tives are conflicting (low spread are associated with a low
trading volume, and conversely). The authors also highlight
that their major conclusion is that larger tick sizes are required
for higher trading volumes (and associated higher bidask
spreads).

E. Economic modelling

• Mardle et al. [107], [108]
In this study, the authors used a GA with a weighted goal
programming approach to optimize a fishery bioeconomic
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model. Bioeconomic models have been developed for a num-
ber of fisheries as a means of estimating the optimal level of
exploitation of the resource and for assessing the effectiveness
of the different management plans available at achieving the
desirable objectives. The foundations of fisheries bioeconomic
modelling comes from the economic theory of the open-access
or common-property fishery, which is based on a logistic
population growth model. In this case, the authors developed
a model for the North Sea fishery. Four objectives were
considered: (1) maximize profit, (2) maintain historic relative
quota shares among countries, (3) maintain employment in
the industry and (4) minimize discards. GENOCOP III [73]
was used for the evolutionary optimization process. Real-
numbers encoding and arithmetic crossover were adopted. This
evolutionary approach was compared to the application of
traditional goal programming (as implemented within GAMS
[109] and solved with CONOPT) in a model of the North Sea
Demersal fishery. The GA was considered to be competitive
but not necessarily better than goal programming in this
application.
• Huang [110]

In this work, the capital budgeting problem was presented
through an example in which resources (machines) were
bought in order to maximize profits. The constraints accounted
for the available capital for buying as well as for the production
capacities that had to meet a fixed demand. The author
considered an uncertain environment for the unitary net profit,
resource unit price and future demands: these parameters were
represented as trapezoidal fuzzy numbers. Thus, the profit
maximization subjected to capital and demand constraints was
re-formulated in two different ways, by means of a fuzzy
simulator which computed the credibility indexes required to
evaluate the “possibility” of the fuzzy events:

- a single-objective model, which maximized the profit,
given the assumption of predefined levels of credibility
(for the objective and for the constraints);

- a multi-objective model, which simultaneously mini-
mized the deviation between cost of bought resources
and available capital and the distance between real profit
and target profit (also given the assumption of predefined
levels of credibility).

The multi-objective nature of the second model was ad-
dressed through a lexicographic-goal programming (since tar-
gets were fixed in the problem definition) approach. The
solution technique was a simple genetic algorithm imple-
menting two-point crossover and a uniform perturbation-based
mutation operator. The selection was carried out by a roulette
wheel, while a rank-based fitness evaluation was performed in
order to determine the best individuals in the current popula-
tion. For the multi-objective case, the lexicographic approach
(which imposes priority objectives) was implemented in the
individuals’ rank computation. Feasibility was maintained dur-
ing the search by forbidding the genetic operators to produce
infeasible offspring.

The proposed methodology was validated on a 5-resources
problem, successively treated with both the single-objective
and the multi-objective strategies. The solutions were not com-

pared against the optimal values, nor against those provided
by any other optimization technique.
• Elazouni adn Abido [111]

In the construction industry, the management of financial
resources of ongoing projects within a contractor’s portfo-
lio guarantees to run profitable and sustainable business.
Typically, contractors manage financial resources to timely
procure cash for all projects in their portfolios. Finance-based
scheduling ensures that the expenditures of individuals projects
within the portfolio do not exceed the credit limit. In this
context, the authors of this work proposed designing finance-
based schedules for simultaneous construction projects. The
resulting multi-objective optimization problem involved G
objectives representing the profit values of individual projects
to be maximized subject to financial constraints. The problem
was solved using SPEA2 [14] with problem-specific crossover
and mutation operators. The experimental results showed that
SPEA2 was able to generate results similar to those reported
in the literature using a single run.
• Gaspar-Cunha et al. [112]
The authors of this work proposed an application, which

could be regarded as a financial-related subject, of a MOEA
to perform bankruptcy prediction. In the bankruptcy pre-
diction problem the aim is to infer the probability that a
company becomes distressed, over a specified period, given
a set of financial statements. The relying problem consisted
in classifying data into two groups: healthy and bankrupted
companies, and then training a binary classifier to learn the
pattern to distinguish between the two cases. In this work
a SVM was adopted as a classifier. A classifier can be
evaluated considering the proportion of misclassified cases.
Two different types of errors can occur. The proportion of
positive cases incorrectly classified (eI ), and the proportion
of negative cases incorrectly classified (eII ). Another way
of evaluating a classifier is by means of the sensitivity and
the precision. The authors also defined the harmonic mean of
the sensitivity and precision (Fm) as a measure to evaluate
a classifier. In this work, the Reduced Pareto Set Genetic
Algorithm (RPSGA) was adopted [113]. The variables of the
problems were the parameters for the SVM (i.e., regularization
and kernel parameters). Eight different formulations of the
problem were evaluated combining 2 or 3 of the following
objectives: minimization of the number of cases incorrectly
classified, maximization of Fm, and minimization of either eI

or eII .
To the authors’ best knowledge, no other application of

MOEAs in economics exist, although several of them are
certainly possible (e.g., in negotiation strategies [114]).

V. CONCLUSIONS AND GUIDELINES FOR FUTURE
RESEARCH

This paper has provided a state-of-the-art survey of applica-
tions of multi-objective evolutionary algorithms in economics
and finance reported in the specialized literature. We have
presented a taxonomy of applications divided in two large
groups. The first one deals with the portfolio optimization
problem and represents the vast majority of the work reported
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in this domain. The main research lines for this research area,
have been devoted to: (i) the development of models that,
in addition to classical formulations, include more realistic
features, particularly by proposing new classes of constraints
and objectives; (ii) the adaptation of MOEAs’ working mode
to these new models, taking advantage of their ability to
produce a set of non-dominated solutions in a single run and
to dealing with complex formulations of problems arising in
this application domain.

It is worth noting, however, that MOEAs do not constitute
the only alternative for solving these complex optimization
problems: other metaheuristics have also been found to be
able to provide robust and good quality results. For example,
Armananzas and Lozano [115], applied a greedy local search
algorithm [116], simulated annealing [70] and ant colony
optimization (ACO) [117] to portfolio optimization problems,
adopting a lexicographic approach by which the objectives are
optimized separately. Another example is the work of Stummer
and Sun [118], in which the results obtained by simulated
annealing, tabu search and variable neighborhood search are
compared. The three techniques addressed the multi-objective
nature of the problem by minimizing the Chebyshev distance
to an utopian point.

The second class mentioned in our taxonomy groups to-
gether all other financial and economics applications: (i) finan-
cial time series, (ii) stock ranking, (iii) risk-return analysis, (iv)
financial and trading decision-support tools and (v) economic
modelling.

It is clear, however, that the use of MOEAs in economics
and finance still remains relatively scarce and that a number of
areas remain to be explored. Some of them are the following:
• Model discovery. This is an interesting area in economet-

rics in which non-parametric models are assumed, and
one tries to use an evolutionary algorithm to derive a
model for a certain type of problem (e.g., forecasting
nonlinear time series). Normally, artificial neural net-
works (ANNs) have been used for the model itself, but
several researchers have used evolutionary algorithms to
find the most appropriate ANN that models the problem
of interest.

• Data mining. The use of data mining techniques for
learning complex patterns is a very promising research
area in economics and finance. For example, the mining
of financial time-series for finding patterns that can
provide trading decision models is a very promising topic
worth exploring.

• Forecasting stock prices. Although long-term forecast-
ing is not possible for the stock market, it is normally
possible to perform short-term forecasting with heuristics.
The use of genetic programming (GP) in this area has
become increasingly popular, since GP can be used for
symbolic regression, emulating the tasks traditionally
performed by ANNs.

• Risk management. The study of risk and the reaction of
an agent to it, is a very interesting research area. Some
researchers have studied, for example, the formation
process of risk preferences in financial problems.

Many other possible areas exist, including the study of
consumers’ patterns, credit scoring, economic growth, and
auction games, just to mention a few.
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