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Abstract. This paper present a novel methodology for dealing with
nonlinear and unconstrained multi-objective optimization problems (MOPs).
The proposed algorithm adopts a nonlinear simplex search scheme in or-
der to obtain multiple approximations of the Pareto optimal set. The
search is directed by a well-distributed set of weighted vectors, which de-
fine each, a scalarization problem, that is solved by deforming a simplex
according to the movements described by Nelder and Mead’s algorithm.
Considering a MOP with n decision variables, the simplex is constructed
using n+1 solutions which minimize different scalarization problems de-
fined by n+1 neighbor weighted vectors. All solutions found in the search
are used to update a set of solutions considered to be the minima for each
separate problem. In this way, the proposed algorithm collectively ob-
tains multiple trade-offs among the different conflicting objectives, while
maintaining a well distributed set of solutions along the Pareto front.
In this work, we show that a well-designed strategy using just mathe-
matical programming techniques can be competitive with respect to a
state-of-the-art multi-objective evolutionary algorithm against which we
compare our results.
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1 Introduction

In engineering and scientific applications commonly there exist problems can be
stated as multi-objective optimization problems (MOPs). Such problems define
a vector function whose elements represent the objective functions, which, rep-
resent a mathematical description of performance criteria. As the measures of
the objectives usually are in conflict with each other, no unique best solution
may exist, and then, good trade-offs among the objectives, which are obtained
by using the definition of Pareto optimality, should be achieved. Such definition
will provide us to obtain not one, but a set of (Pareto) optimal solutions (the as
well know Pareto optimal set, PS).



Throughout the years, several mathematical programming techniques for
dealing with MOPs have been proposed. Most of theses methods, transform
a MOP into a single-objective scalarization function, in which, the objective
is an aggregation of all objective functions fi’s (the well known scalarization
approaches). Once the aggregating function is formulated, a mathematical pro-
gramming method is employed for finding a Pareto solution. These mathematical
methods have shown to be an effective tool in many domains, at a reasonably
low computational cost. However, they have several limitations, including the
fact of obtaining a single Pareto solution per run, and that most of them cannot
properly deal with nonconvex, multi-modal or non-differentiable optimization
problems. That has motivated the development of stochastic methods, such as
the so-called multi-objective evolutionary algorithms (MOEAs), which, for their
simplicity and ease of use have became very popular and applicable in many
optimization problems, see for example [1].

Based on certain mathematical foundations, and assuming some assumptions,
the development of multi-objective programming techniques has been encour-
aged since early days of multi-objective optimization. In the specialized litera-
ture, there exist more than 30 multi-objective programming techniques, and in
the last few years the design of new methods have drawn the interest of some re-
searchers. Recently, Fliege et al. [2] proposed an extension of Newton’s method
for unconstrained multi-objective optimization. Fischer and Shukla presented
an algorithm based on Levenberg-Marquardt method to solve unconstrained
MOPs [3]. Although the existence of this sort of methods dates back more than
three decades (see for example [4]). Unfortunately when the function gradient
is not available, the above mentioned methods become impractical, and then, a
directed search technique needs to be adopted (i.e. a method that do not require
gradient information).

The use of directed search methods is scarce in the multi-objective con-
text, although some researchers have used them as local search operators into
MOEAs (see for example [5–7]). However, to the previous knowledge of the au-
thors, there is not a full methodology to approximate multiple solutions towards
the Pareto set (maintaining a good representation of the Pareto front) by using
just non-gradient mathematical programming techniques. One of the main rea-
sons of the shortage in such strategies, is that it is not efficient to approximate
different solutions towards different parts of the Pareto front. These drawbacks
have naturally motivated the idea of hybridizing either gradient or non-gradient
mathematical programming techniques with MOEAs. However, the development
of multi-objective mathematical programming approaches that take ideas from
MOEAs and show a similar or better performance than them has been rare (see
for example [8]), and it is precisely the focus of this work.

In this paper, we present a novel methodology for dealing with unconstrained
MOPs based on direct search methods. The proposed approach analyzes and ex-
ploits the properties of Nelder and Mead’s method [9] (which was originally pro-
posed for single-objective optimization) in order to generate multiple solutions
along the Pareto front of a problem. The main goal of the proposed strategy is to



speed up approximation by means of movements guided by mathematical pro-
gramming techniques, while maintaining a reasonably good representation of the
Pareto front. Preliminary studies show that the proposed approach is computa-
tionally efficient (in terms of the objective function evaluations that it performs)
and produces competitive results when dealing with MOPs of low and moderate
dimensionality. As it will seen after, our proposed approach showed competitive
results when it was compared with a current state-of-the-art MOEA.

The remainder of this paper is organized as follows. In Section 2, we introduce
the basic concepts required for understanding the rest of the paper. Section 3
shows the original template of the Nelder and Mead’s algorithm adopted in this
work. In Section 4, we describe in detail our proposed approach. Section 5 shows
the results obtained by our proposed approach. Finally, in Section 6, we provide
our conclusions and some possible paths for future research.

2 Multi-objective Optimization

Without loss of generality, an unconstrained multi-objective optimization prob-
lem (MOP), can be stated as 1:

min
x∈Ω

{F (x)} (1)

where Ω define the decision space and F is defined as the vector of the objective
functions:

F : Ω → R
k, F (x) = (f1(x), . . . , fk(x))

T

where fi : R
n → R is an unconstrained function.

In multi-objective optimization, it is desirable to produce a set of trade-off
solutions representing the best possible compromises among the objectives (i.e.,
solutions such that no objective can be improved without worsening another).
Therefore, in order to describe the concept of optimality in which we are inter-
ested, the following definitions are introduced [10].

Definition 1. Let x,y ∈ Ω, we say that x dominates y (denoted by x ≺ y) if
and only if, fi(x) ≤ fi(y) and F (x) 6= F (y).

Definition 2. Let x⋆ ∈ Ω, we say that x⋆ is a Pareto optimal solution, if there
is no other solution y ∈ Ω such that y ≺ x⋆.

Definition 3. The Pareto optimal set PS is defined by:

PS = {x ∈ Ω|x is Pareto optimal solution}

Definition 4. For a Pareto optimal set PS, the Pareto optimal front PF is
defined as:

PF = {F (x)|x ∈ PS})

1 assuming minimization



As in most of multi-objective algorithm, we are interested in maximizing the
number of elements of the Pareto optimal set and maintaining a well-distributed
set of solutions along the Pareto front.

3 The Nonlinear Simplex Search

Nelder and Mead’s method [9] also known as the Nonlinear Simplex Search

(NSS), is an algorithm based on the simplex algorithm of Spendley et al. [11],
which was introduced for minimizing nonlinear and multi-dimensional uncon-
strained functions. While Spendley et al.’s algorithm uses regular simplexes,
Nelder and Mead’s method generalizes the procedure to change the shape and
size of the simplex. Therefore, the convergence towards a minimum value at
each iteration of the NSS method is conducted by three main movements in a
geometric shape called simplex. The following definitions are of relevance in this
work.

Definition 4. A simplex or n-simplex ∆ is a convex hull of a set of n+1 affinely
independent points∆i (i = 1, . . . , n+1), in some Euclidean space of dimension n.

Definition 5. A simplex is called nondegenerated, if and only if, the vectors in
the simplex denote a linearly independent set. Otherwise, the simplex is called
degenerated, and then, the simplex will be defined in a lower dimension than n.

The Nelder and Mead’s method is fully defined stating three scalar param-
eters to control the movements performed in the simplex: reflection (α), ex-
pansion (γ) and contraction (β). At each iteration, the n + 1 vertices ∆i of
the simplex represent solutions which are evaluated and sorted according to:
f(∆1) ≤ f(∆2) ≤ · · · ≤ f(∆n+1). In this way, the movements performed in the
simplex by the NSS method are defined as:

1. Reflection: xr = (1 + α)∆c − α∆n+1.

2. Expansion: xe = (1 + αγ)∆c − αγ∆n+1.

3. Contraction:

(a) Outside: xco = (1 + αβ)xc − αβ∆n+1.

(b) Inside: xci = (1 − β)xc + β∆n+1.

where xc = 1
n

∑n
i=1 ∆i is the centroid of the n best points (all vertices except

for ∆n+1), ∆1 and ∆n+1 are the best and the worst solutions identified within
the simplex, respectively. Figure 1 shows all the possible movements performed
by the NSS method.

At each iteration, the initial simplex is modified by one of the above move-
ments, according to the following rules:



1. If f(∆1) ≤ f(xr) ≤ f(∆n), then ∆n+1 = xr.
2. If f(xe) < f(xr) < f(∆1), then ∆n+1 = xe,

otherwise ∆n+1 = xr.
3. If f(∆n) ≤ f(xr) < f(∆n+1) and f(xco) ≤ f(xr),

then ∆n+1 = xco.
4. If f(xr) ≥ f(∆n+1) and f(xci) < f(∆n+1),

then ∆n+1 = xci.

Fig. 1. Illustration of the possible movements in the simplex performed by the NSS
method. The constructed simplex corresponds to an optimization problem with two
decision variables, where ∆1 and ∆3 are the best and the worst points, respectively.

4 The Nonlinear Simplex Search for Unconstrained

Multi-Objective Optimization

4.1 Decomposing Multi-objective Optimization Problem

There are several approaches for transforming a MOP into a single-objective
optimization subproblem [12, 10, 13]. These approaches use a weighted vector
as their search direction. In this way and under certain assumptions (e.g. the
minimum is unique, the weighting coefficients are positive, etc.), a Pareto op-
timal solution is achieved by solving such subproblem. Among these methods,
probably the two most widely used are the Tchebycheff and the Weighted Sum

approaches. However, as it has been previously discussed in [14, 15], the ap-
proaches based on boundary intersection possess certain advantages over those
based on either Tchebycheff or the Weighted Sum. In the following, a boundary
intersection approach adopted in this work is described.

The Penalty Boundary Intersection: The Penalty Boundary Intersection (PBI)
approach2 was proposed by Zhang and Li [15], and uses a weighted vector w

2 PBI is based on the well-known Normal Boundary Intersection (NBI) method [14]



and a penalty value θ for minimizing both the distance to the utopian vector
(d1) and the direction error to the weighted vector (d2) from the solution F (x).
Mathematically, the PBI problem can be formulated as follows:

Let w = (w1, . . . , wk)
T be a weighted vector, i.e., wi ≥ 0 for all i = 1, . . . , k

and
∑k

i=1 wi = 1. Then, the optimization problem is defined as:

minimize: g(x|w, z⋆) = d1 + θd2 (2)

such that:

d1 =
||(F (x)− z⋆)Tw||

||w||

and d2 =
∣

∣

∣

∣

∣

∣(F (x)− z⋆)− d1
w

||w||

∣

∣

∣

∣

∣

∣

where x ∈ R
n, θ is the penalty value and z⋆ = (z⋆1 , . . . , z

⋆
k)

T is the utopian
vector, i.e., z⋆ = min{fi(x)|x ∈ Ω} for each i = 1, . . . , k. Figure 2 illustrates the
PBI for a bi-objective optimization problem.

An appropriate representation of the Pareto front could be reached by solv-
ing different scalarization problems. Such problems can be defined by a set of
well distributed weighted vectors, which define the search direction in the opti-
mization process. This strategy is employed in this work, and its mode of use is
described in Section 4.3.

d1

d2

F(x)

z
l

w

f2

f1

Attainable Objective Set

Pareto Front

Fig. 2. Illustration of the Penalty Boundary Intersection (PBI) approach.

4.2 About the Nonlinear Simplex Search and Multi-objective

Optimization Problems

Mathematical programming techniques are know to have several limitations com-
pared with respect to evolutionary algorithms. As mentioned before, most of
these strategies are designed to deal with convex functions and usually require



the gradient information. Nelder and Mead’s method does not require the gradi-
ent information, instead of this, the NSS algorithm trusts in obtaining a better
solution by deforming a simplex shape along the search process. Nonetheless,
the Nelder and Mead’s method possess a strong disadvantage: the convergence
towards an optimal value can fail when the simplexes elongate indefinitely and
their shape goes to infinity in the space of simplex shapes (as, for example, in
McKinnon’s functions [16]). For this family of functions and others having simi-
lar features, a more appropriate strategy needs to be adopted (e.g., adjusting the
control parameters, constructing in a different way the simplex, modifying the
movements into the simplex, etc.). In recent years, several attempts to improve
the NSS method have been reported in the literature (see for example [17–20]).
However, for its inherent nature (based on heuristic movements), these modi-
fies implement badly or even fails for certain optimization problems. But not
just these improvements have been reported in the literature, but also different
strategies for the construction of the simplex also have been explored by several
researchers (see for example [21, 6]).

The construction of the simplex plays an important role in the performance
of the simplex search method. To employ a degenerated simplex (i.e., to use
a simplex defined in a lower dimension than the number of decision variables)
in the minimization process, is not an appropriate idea. That is because the
search is restricted to find an optimal solution in a lower dimension, which avoids
achieving this optimal solution if it is not allocated in the same dimensionality
as the simplex [22]. However, the use of a degenerated simplex could obtain local
minima, at least, in the dimensionality defined by the simplex.

In most real-worldMOPs, the features of the Pareto optimal set are unknown.
If the Pareto optimal set is contained in a lower dimension than the number of
decision variables, then, the property that exists when using a degenerated sim-
plex in the search could be exploited. Since the MOP is decomposed into several
single-objective optimization subproblems and assuming that each subproblem is
solved throughout the search, then, the simplex could be constructed using such
solutions. In this way, multiple trade-off solutions are achieved while the search
eventually converges to the region in which the Pareto optimal set is contained.

The convergence towards a better point given in the Nelder and Mead’s
method should be achieved at most in n+ 1 iterations (at least in convex func-
tions with low dimensionality) [22]. Thus, for solving each subproblem (of the
decomposition) a considerable number of function evaluations could be required.
Therefore, an appropriate strategy for approximating solutions to the Pareto op-
timal set needs to be adopted.

The above observations are taken into account and they are used to design
an effective nonlinear simplex search approach for unconstrained multi-objective
optimization. The proposed methodology is described in the next section.

4.3 The Multi-Objective Nonlinear Simplex Search

The proposed Multi-objective Nonlinear Simplex Search (MONSS) decomposes a
MOP into several single-objective scalarization subproblems. Therefore, a well-



distributed set of weighted vectors W = {w1, . . . ,wN} has to be previously
defined. In this work, we use the same method as in [15], however, other methods
can be used, see for example [23].

At the beginning, a set of N solutions S = {x1, . . . ,xN} having an uniform
distribution is randomly initialized. Each vector xi ∈ S represent a solution for
the ith subproblem defined by the ith weighted vector wi ∈ W . In this way,
different subproblems are simultaneously solved by the MONSS algorithm and
the set of solutions S will constitute an approximate to the Pareto optimal set
lengthwise of the search process. In order to find different solutions along the
Pareto front, the search is directed towards different non-overlapped regions (or
partitions) Ci’s from the set of weighted vectors W , such that, each Ci defines
a neighborhood. That is, let C = {C1, . . . , Cm} be a set of partitions from W ,
then, the claim is the following:

m
⋂

i=1

Ci = ∅ and

m
⋃

i=1

Ci = W (3)

and all the weighted vectors wc ∈ Ci are contiguous among themselves.
The simplex search is focused on minimizing a subproblem defined by a

weighted vector ws which is randomly chosen from Ci. The n-simplex (∆) used
in the search, is defined as:

∆ = {xs,x1, . . . ,xn} (4)

such that: xs ∈ S is a minimum of g(xs|ws, z
⋆) for any ws ∈ W . xj ∈ S

represents the n solutions that minimize the subproblems defined by the nearest
n weighted vectors of ws, where j = 1, . . . , n and n represents the number of
decision variables of the MOP.

After a movement made by the NSS method, it is common that the new
solution obtained, xn, leaves the search space. In order to deal with this problem,
(as in [6]) we bias deterministically the boundaries. Therefore, the ith bound of
the new solution xn is re-established as follows:

xi
n =

{

xi
lb, if xi

n < xi
lb

xi
ub, if xi

n > xi
ub

(5)

where xi
lb and xi

ub are, respectively, the lower and upper bounds in the ith com-
ponent of the search space.

To speed up the convergence towards the Pareto set, the search is relaxed at
each iteration by changing the direction vector for any other direction ŵs ∈ Ci.
In this way, an agile search into the partition Ci is performed and collapsing the

simplex search in the same direction ws is avoided. Here, we define m = |W |
n+1

partitions of the set W , guaranteeing at least n+1 iterations of the NSS method
for each partition, which can be constructed using a naive modification of the
well-known k-means algorithm [24].

One iteration of the MONSS is carried out, when the simplex search iterates
n+1 times in each defined partition Ci. Therefore, at each iteration the proposed



algorithm performs |W | function evaluations. All of the new solutions found in
the search process are stored in a pool called intensification set (I). At the end
of each iteration, the set S is updated using both the intensification set I and
the weighted set W , such as it is shown in Algorithm 1.

Algorithm 1: update(W,S, I)

Input:
W : A well-distributed set of weighted vectors.
I: The intensification set.
S : The current approximation to the Pareto set.
Output:
R: An approximation to the Pareto front.

1 begin

2 T = S ∪ I;
3 R = ∅;
4 forall the wi ∈ W do

5 R = R∪ {x⋆| min
x
⋆∈T

g(x⋆|wi, z
⋆)};

6 T = T \ {x⋆};

7 end

8 return R;

9 end

In this way, the simplex search minimizes each subproblem, generating new
search trajectories among the solutions of the simplex, while the updating mech-
anism replaces the misguided paths by selecting the best solutions according to
the PBI approach, simulating the Path Relinking method [25]. In Figure 3, we
show a possible partition of the weighted set W for a MOP with three objective
functions and five decision variables, i.e. defining an n-simplex with six vertices.
Summarizing, the MONSS algorithm can be stated as in Algorithm 2.

5 Experimental Studies

5.1 Test Problems

In order to assess the performance of the proposed approach, we compare its re-
sults with respect to those obtained by a state-of-the-art MOEA, the well know
“Multi-Objective Evolutionary Algorithm based on Decomposition” (MOEA/D),
which has shown a good performance compared with respect to other MOEAs [15].
Similar to MONSS, MOEA/D decomposes a MOP into several scalarization
problems. However, instead of using mathematical programmingmethods, MOEA/D
uses genetic operators to approximate solutions to the Pareto set (for more de-
tails see [15]).
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Fig. 3. Illustration of a well-distributed set of weighted vectors for a MOP with three
objectives, five decision variables and 66 weighted vectors, i.e. m = |W |

n+1
= 11 partitions.

The n-simplex is constructed by six solutions contained in four different partitions
(C5, C8, C9 and C10). The search is focused on the direction defined by the weighted
vector ws.

In our experiments, we adopted ten MOPs with two and three objectives.
The different characteristics in their Pareto optimal front and the definition of
such problems are summarized in Table 1.

5.2 Performance Measures

In order to assess the performance of our proposed approach, we compared with
respect to MOEA/D by using the following performance measures.

Hypervolume: The Hypervolume (Hv) metric was proposed by Zitzler [34]. This
performance measure is Pareto compliant [35], and quantifies both approxima-
tion and distribution of nondominated solutions along the Pareto front. The
hypervolume corresponds to the non-overlapped volume of all the hypercubes
formed by a reference point r (given by the user) and each solution p in the
Pareto set approximation (PFk). It is mathematically stated as:

Hv(PFk) = Λ





⋃

p∈PFk

{x|p ≺ x ≺ r}



 (6)

where Λ denotes the Lebesgue measure and r ∈ R
k denotes a reference vector

being dominated by all valid candidate solutions in PFk.

Two Set Coverage: The two Set Coverage (SC) was proposed by Zitzler et al. [36],
and it compares a set of non-dominated solutions A with respect to another set
B, using Pareto dominance. This performance measure is defined as:



Algorithm 2: The flowchart of themulti-objective nonlinear simplex search

algorithm

Input:
W = {w1, . . . ,wN}: A set of N weighted vectors.
maxit: A maximum number of iterations.
Output:
S : An approximation to the Pareto front.

1 begin

2 t = 0;
3 Generate initial solutions: Generate a set St = {x1, . . . ,xN} of N

random solutions;

4 Generate partitions: Generate m = |W |
n+1

partitions C = {C1, . . . , Cm}
from W (where n is the number of decision variables), such that: the eq.( 3)
is satisfied;

5 while t < maxit do

6 for i = 0 to m do

7 Randomly choose ws ∈ Ci;
8 Apply Simplex Search method:

a) Build the n-simplex: Construct the n-simplex from St,
such that: eq.( 4) is satisfied.

b) Apply the NSS method: Execute the NSS method during n+ 1
iterations. At each iteration:

* Repair the bounds according to eq.( 5).
* Relax the search changing the search direction ws for any other ŵs ∈ Ci.
* Each new solution generated by any movements of the NSS method is

stored in the intensification set I.

9 end

10 Update the leading set: Update the set S using Algorithm 1. That
is: St+1 = update(W,St, I);

11 t = t+ 1;

12 end

13 return St;

14 end

SC(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(7)

If all points in A dominate or are equal to all points in B, this implies that
SC(A,B) = 1. Otherwise, if no point of A dominates some point in B then
SC(A,B) = 0. When SC(A,B) = 1 and SC(B,A) = 0 then, we say that A is
better than B. Since the Pareto dominance relation is not symmetric, we need
to calculate both SC(A,B) and SC(B,A).

5.3 Parameter Settings

As indicated before, we compared our proposed approach with respect to MOEA/D
[15] (using the PBI approach). For a fair comparison, the set of weighted vectors



M
O
P

O
b
j
D
e
fi
n
it
io
n

P
F

fe
a
tu

re
s

M
O
P

O
b
j
D
e
fi
n
it
io
n

P
F

fe
a
tu

re
s

2
f
1
(x

)
=

x
1

N
o
n
c
o
n
v
e
x

2
f
1
(x

)
=

2
√
x
1

C
o
n
v
e
x

f
2
(x

,
g
(x

))
=

g
(x

),
·h

(x
)

D
is
c
o
n
n
e
c
te
d

f
2
(x

)
=

x
1
(1

+
x
2
)
+

5
C
o
n
n
e
c
te
d

a
n
d
:

x
1
∈

[1
,
4
],
x
2
∈

[1
,
2
]

g
(x

)
=

1
+

1
0
x
2

h
(x

)
=

1
−

(f
1
(x

)/
g
(x

))
2
−

f
1
(
x
)

g
(
x
)
×

si
n
(1

2
π
f
1
(x

))

D
E
B
2
[2
6
]

x
i
∈

[0
,
1
]

M
U
R

[2
7
]

3
f
1
(x

)
=

c
o
s(
θ
1
)
c
o
s(
θ
2
)h

(x
)

N
o
n
c
o
n
v
e
x

2
f
1
(x

)
=

1

x
2 1
+

x
2 2
+

1
N
o
n
c
o
n
v
e
x

f
2
(x

)
=

c
o
s
θ
1
si
n
(θ

2
)h

(x
)

C
o
n
n
e
c
te
d

f
2
(x

)
=

x
2 1
+

3
x
2 2
+

1
C
o
n
n
e
c
te
d

f
3
(x

)
=

si
n
(
π 2
x
α 1
)h

(x
)

x
i
∈

[−
3
,
3
]

g
(x

)
=

∑

n i
=

3
(x

i
−

0
.5
)2

h
(x

)
=

(1
+

g
(x

))
α

=
π

D
T
L
Z
5
[2
8
]

x
i
∈

[0
,
1
],
n

=
1
2

R
E
N
1
[2
9
]

2
f
1
(x

)
=

1
−

e
x
p
(−

∑

n i
=

1
(x

i
−

1
√

n
)2
)
N
o
n
c
o
n
v
e
x

2
f
1
(x

)
=

x
1
+

x
2
+

1
N
o
n
c
o
n
v
e
x

f
2
(x

)
=

1
−

e
x
p
(−

∑

n i
=

1
(x

i
+

1
√

n
)2
)
C
o
n
n
e
c
te
d

f
2
(x

)
=

x
2 1
+

2
x
2 2
−

1
C
o
n
n
e
c
te
d

F
O
N
2
[3
0
]

x
i
∈

[−
4
,
4
]

R
E
N
2
[2
9
]

x
i
∈

[−
3
,
3
]

2
f
1
(x

)
=

x
2 1
+

x
2 2

C
o
n
v
e
x

3
f
1
(x

)
=

(
x
1
−

2
)
2

2
+

(
x
2
+

1
)
2

1
3

+
3

N
o
n
c
o
n
v
e
x

f
2
(x

)
=

(x
1
+

2
)2

−
x
2 2

C
o
n
n
e
c
te
d

f
2
(x

)
=

(
x
1
+

x
2
−

3
)
2

3
6

+
(
−

x
1
+

x
2
+

2
)
2

8
−

1
7

C
o
n
n
e
c
te
d

x
i
∈

[−
5
0
,
5
0
]

f
3
(x

)
=

(
x
1
+

2
x
2
−

1
)
2

1
7
5

+
(
2
x
2
−

x
1
)
2

1
7

−
1
3

L
A
U

[3
1
]

V
N
T
2
[3
2
]

x
i
∈

[−
4
,
4
]

2
f
1
(x

)
=

8
√

x
2 1
+

x
2 2

N
o
n
c
o
n
v
e
x

3
f
1
(x

)
=

0
.5
(x

2 1
+

x
2 2
)
+

si
n
(x

2 1
+

x
2 2
)

N
o
n
c
o
n
v
e
x

f
2
(x

)
=

4
√

(x
1
−

0
.5
)2

+
(x

2
−

0
.5
)2

C
o
n
n
e
c
te
d

f
2
(x

)
=

(
3
x
1
−

2
x
2
+

4
)
2

8
+

(
x
1
−

x
2
+

1
)
2

2
7

+
1
5

C
o
n
n
e
c
te
d

x
i
∈

[−
5
,
1
0
]

f
3
(x

)
=

1

(
x
2 1
+

x
2 2
+

1
)
−

1
.1

e
x
p
(−

x
2 1
−

x
2 2
)

L
IS

[3
3
]

V
N
T
3
[3
2
]

x
i
∈

[−
3
,
3
]

T
a
b
le

1
.
T
es
t
p
ro
b
le
m
s



was the same for both algorithms. For each MOP, 30 independent runs were
performed with each approach. The parameters for both algorithms are sum-
marized in Table 2, where Nsol represents the number of initial solutions (100
for bi-objective problems and 300 for three-objective problems). Nit represents
the maximum number of iterations, which was set to 40 for all test problems.
Therefore, both algorithms performed 4, 000 (for the bi-objective problems) and
12, 000 (for the three-objective problems) function evaluations for each prob-
lem. For MONSS, α, β and γ represent the control parameters for the reflec-
tion, expansion and contraction movements of the NSS method, respectively.
For MOEA/D, the parameters Tn, ηc, ηm, Pc and Pm represent the neighbor-
hood size, crossover index, mutation index, crossover rate and mutation rate,
respectively. Finally, the parameter θ, represents the penalty value used in the
PBI approach for both the MONSS and MOEA/D.

Parameter MONSS MOEA/D

Nsol 100/300 100/300

Nit 40 40

Tn – 30

Pc – 1

Pm – 1/n

α 1 –

β 2 –

γ 1/2 –

θ 5 5

Table 2. Parameters for MONSS and MOEA/D

For each MOP, the algorithms were evaluated using the two performance
measures previously defined. (Hypervolume and Two Set Coverage). The results
obtained are summarized in Table 3. The table displays both the average and
the standard deviation (σ) of each performance measure for each MOP. The
reference vectors used for computing the Hv performance measure are shown
in Table 4. These vectors are established near to the individual minima for
each MOP, i.e., close to the extremes of the Pareto optimal front. With that, a
good measure of approximation and distribution is reported when the algorithms
converge along the Pareto front. In the case of the statistics for the SC comparing
pairs of algorithms (i.e. SC(A,B), they were obtained as average values of the
comparison of all the independent runs from the first algorithm with respect to
all the independent runs from the second algorithm. For an easier interpretation,
the best results are presented in boldface for each performance measure and
test problem adopted.



5.4 Discussion of results

The main goal of the simulation is to verify the effectiveness of the nonlinear sim-
plex search when dealing with MOPs. As indicated before, the results obtained
by our proposed approach (MONSS) were compared against those produced by
MOEA/D.

Table 3 shows the results obtained for both the Hypervolume (Hv) and the
Two Set Coverage (SC) performance measures. From this table, it can be seen
that the results obtained by the MONSS outperformed to MOEA/D in most of
the adopted test problems. This means that the proposed approach reached a
better approximation and distribution of solutions along the Pareto front. The
exception was VNT2, where MOEA/D obtained a better value in the Hv metric.
However, given the small difference in this performance measure, we consider
that MONSS was not significantly outperformed by MOEA/D in this problem.
Thereby, our proposed approach became as competitive as MOEA/D.

Regarding the SC performance measure, MONSS obtained better results
compared against those produced by MOEA/D in the majority of the test
problems. This means that, the solutions obtained by MONSS dominated a
higher ratio of solutions produced by MOEA/D. However, MOEA/D was better
for DTLZ5 and REN1 problems, though the ratio of solutions dominated by
MOEA/D was not significantly high. Although the SC performance measure
benefits to MOEA/D in these problems, it is worth noting that our proposed
approach reached better results in the Hv performance measure. Hv metric
not only measures the convergence but also the distribution of solution along
the Pareto front, that is a reason why the MONSS obtained better result in
Hv metric for DTL5 and REN1 problems, even when it was outperformed by
MOEA/D in SC metric.

Finally, Figures 4 and 5 show the hypervolume convergence at each iteration
of the algorithms. From these graphics, it is possible see the performance for
both algorithms (MONSS and MOEA/D) was similar in most of the cases, and in
some one more, MONSS approximated faster solutions to the Pareto front than
MOEA/D. With that figures, we validated the effectiveness of our methodology
when dealing MOPs with low and moderate dimensionality.

6 Conclusions and Future Work

We have proposed a novel methodology based on just mathematical program-
ming techniques for approximating solutions along the Pareto front of a MOP.
The proposed approach was, in principle, designed for dealing with uncon-
strained, and unimodal problems having low and moderate dimensionality (2, 3
and 12 decision variables).

Our results indicate that our proposed MONSS outperforms MOEA/D re-
garding convergence in most of the test problems adopted. The number of ob-
jective function evaluations in these test problems was restricted to 4,000 for
the bi-objective problems and 12,000 for the three-objective problems (i.e. a low



MOP

Hv(MONSS) Hv(MOEA/D) SC(MONSS,
MOEA/D)

SC(MOEA/D,
MONSS)

average average average average
(σ) (σ) (σ) (σ)

0.981552 0.969845 0.190446 0.146296
DEB2

(0.004504) (0.049164) (0.053016) (0.035893)
0.429676 0.426429 0.210250 0.311705

DTLZ5
(0.000917) (0.001175) (0.019020) (0.051739)
0.542006 0.539159 0.354962 0.116333

FON2
(0.001476) (0.001406) (0.090241) (0.030275)
13.934542 13.868946 0.072572 0.056333

LAU
(0.008218) (0.029341) (0.060321) (0.028459)
0.309713 0.259479 0.340798 0.097992

LIS
(0.007686) (0.009430) (0.124927) (0.045691)
3.141629 3.140806 0.147827 0.092632

MUR
(0.003791) (0.001290) (0.058459) (0.011971)
3.612650 3.596241 0.105443 0.146599

REN1
(0.000958) (0.019682) (0.053141) (0.042929)
18.925039 18.918943 0.026274 0.013468

REN2
(0.016614) (0.023277) (0.022809) (0.006563)
2.113570 2.114601 0.080900 0.057426

VNT2
(0.003068) (0.002688) (0.014464) (0.011687)
11.685911 11.599974 0.029109 0.000501

VNT3
(0.013195) (0.018481) (0.012831) (0.001278)

Table 3.Results ofHv and SC performance measures for MONSS and MOEA/D

MOP r MOP r

DEB2 (1.1, 1.1)T MUR (4.1, 4.1)T

DTLZ5 (1.1, 1.1, 1.1)T REN1 (37.1, 1.1)T

FON2 (1.1, 1.1)T REN2 (−1.9, 2.1)T

LAU (4.1, 4.1)T VNT2 (4.5,−16.0,−11.5)T

LIS (1, 1)T VNT3 (8.5, 17.5, 0.5)T

Table 4. Reference vectors for Hv performance metric

number of evaluations), which can make it a good choice for dealing with ex-
pensive objective functions. With that we are show that it is possible design
a competitive algorithm by using just directed search methods. Our proposed
approach has, however, some disadvantages. For example, when dealing with
highly accidented search spaces, the movements of the NSS method may not be
able to reach a better point during the search. Should that be the case, the step
sizes (i.e., the control parameters α, β and γ) must be fine-tuned until finding a
suitable search region.

In spite of the effectiveness of our proposed approach in MOPs with low and
moderate dimensionality, our main goal is to hybridize it with a MOEA so that



its use can be extended to problems of higher dimensionality and with highly ac-
cidented search spaces. The idea would be to use a MOEA for locating promising
regions of the search space, and then apply MONSS for exploiting those regions
in an efficient way. We believe that this sort of multi-objective memetic algorithm
could be a powerful engine for solving complex and computationally expensive
MOPs.
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