
MOEA/D assisted by RBF Networks for
Expensive Multi-Objective Optimization

Problems

Saúl Zapotecas Mart́ınez and Carlos A. Coello Coello

CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Computación
México D.F. 07300, MÉXICO

saul.zapotecas@gmail.com, ccoello@cs.cinvestav.mx

Abstract. The development of multi-objective evolutionary algorithms
(MOEAs) assisted by surrogate models has increased in the last few
years. However, in real-world applications, the high modality and di-
mensionality that functions have, often confuse such models. Therefore,
if the Pareto optimal set of a MOP is located in a search space in which
the surrogate model is not able to shape this region, the search could
be misinformed and converge to wrong regions. Because of this, most
of the researchers have tried to improve the prediction of the surrogate
models by adding the new solutions to the training set and retraining
the surrogate model. When the size of the training set increases, the
training complexity can increase significantly. In this paper, we present
a surrogate model which maintains the size of the training set, and the
function prediction is improved by using a set RBF networks in a coop-
erative way. Preliminary results have shown that our proposed approach
can produce good quality results when it is restricted to 200, 1,000 and
5,000 fitness function evaluations, which have been used for solving a set
of standard test problems and an airfoil design problem.

Keywords: Multi-objective optimization, RBF neural networks, expensive
optimization problems.

1 Introduction

Multi-Objective Evolutionary algorithms (MOEAs) have been successfully adop-
ted to solve multi-objective optimization problems (MOPs) in a wide variety of
engineering and scientific problems [1]. However, in real-world applications is
common to find objective functions which are very expensive to evaluate (in
terms of computational time). This has considerably limited the use of these
evolutionary techniques to these types of problems. In recent years, several re-
searchers have developed different strategies for reducing the computational time

(measured in terms of the number of fitness function evaluations) that a MOEA
requires to solve a determined problem. From such strategies, the use of sur-
rogate models has been one of the most common techniques adopted to solve
complex problems. In the specialized literature, several authors have reported
the use of surrogate models for dealing with MOPs—see for example [2–7] among
others. However, the features of some problems, such as high modality and di-
mensionality, often present major obstacles to surrogate models. Therefore, if
the Pareto optimal set of a MOP is located in a search space in which the sur-
rogate model is not able to shape the corresponding region, the search could
be misinformed and converge to wrong regions. Because of this, an important
number of researchers have tried to improve the prediction of surrogate models
by adding new solutions to the training set and then retraining the surrogate
model at each iteration of the MOEA, see for example [7, 6]. However, as the
training set gets larger, the complexity of the training also increases.

In this paper, we present an algorithm based on the well-known MOEA/D [8]
which is assisted by radial basis function (RBF) networks. The proposed ap-
proach uses a static size for the training set and the function prediction of the
surrogate model is improved by using a set of RBF networks in a cooperative
way. With this, the computational complexity (measured in terms of compu-
tational time) is not dependent on the size of the training set, being limited
only to the number of decision variables that the MOP has. The main goal of
this paper is to contribute to the state-of-the-art regarding MOEAs assisted by
surrogate models, which we believe is of interest in a wide variety of real-world
problems (given the wide applicability of MOEAs [1]). We show in this paper
that cooperative RBF networks can significantly reduce the number of fitness
function evaluations that are required to produce reasonably good approxima-
tions of MOPs of different complexity.

The remainder of this paper is organized as follows. In Section 2, we present
the basic concepts to understand the rest of the paper. In Section 3, we de-
scribe in detail our proposed approach. In Section 4, the test problems adopted
to validate our approach are described. In Section 5, we show and discuss the
results obtained by our proposed approach. Finally, in Section 6, we provide our
conclusions and some possible paths for future research.

2 Basic Concepts

2.1 Multi-Objective Optimization

Without loss of generality we will assume only minimization problems. Thus, a
nonlinear multi-objective optimization problem can be formulated as:

min
x∈Ω

{F (x)} (1)

where Ω defines the decision variable space and F : Ω → R
k defines the vector

of objective functions F (x) = (f1(x), . . . , fk(x))
T , such that fi : R

n → R is a

nonlinear function. In order to describe the concept of optimality in which we
are interested, the following definitions are introduced [9]:

Definition 1. Let x,y ∈ Ω, we say that x dominates y (denoted by x ≺ y) if
and only if, fi(x) ≤ fi(y) and F (x) 6= F (y).

Definition 2. Let x⋆ ∈ Ω, we say that x⋆ is a Pareto optimal solution, if there
is no other solution y ∈ Ω such that y ≺ x⋆.

Definition 3. The Pareto optimal set PS is defined by:

PS = {x ∈ Ω|x is Pareto optimal solution}

Definition 4. The Pareto optimal front PF is defined as:

PF = {F (x)|x ∈ PS}

We are interested in maximizing the number of elements of the Pareto optimal
set and maintaining a well-distributed set of solutions along the Pareto optimal
front.

2.2 Decomposing Multi-Objective Optimization Problems

It is well-known that a Pareto optimal solution to a MOP, under some assump-
tions, is an optimal solution of a scalar optimization problem in which, the
objective is an aggregation of all the objective functions fi’s. Therefore, an ap-
proximation of the Pareto optimal front can be decomposed into a number of
scalar objective optimization subproblems. In the specialized literature, there are
several approaches for transforming a MOP into multiple single-objective opti-
mization subproblems [10, 9]. In the following, we briefly describe an approach
based on the normal boundary intersection (NBI) [11] method, which is referred
to in this work.

Penalty Boundary Intersection Approach The Penalty Boundary Inter-
section (PBI) approach proposed by Zhang and Li [8], uses a weighting vector
w and a penalty value θ for minimizing both the distance to the utopian vector
d1 and the direction error to the weighting vector d2 from the solution F (x).
Therefore, the optimization problem can be stated as:

minimize: g(x|w, z⋆) = d1 + θd2 (2)

where

d1 =
||(F (x)− z⋆)Tw||

||w||

and d2 =
∣

∣

∣

∣

∣

∣(F (x)− z⋆)− d1
w

||w||

∣

∣

∣

∣

∣

∣

such that x ∈ Ω and z⋆ = (z1, . . . , zk)
T , such that: zi = min{fi(x)|x ∈ Ω}.

Therefore, a good representation of the Pareto front can be obtained by solv-
ing a set of problems defined by a well-distributed set of weighting vectors. This is
the main idea behind current decomposition-based MOEAs—see for example [8,
12, 13].

2.3 MOEA/D Framework

The Multi-Objective Evolutionary Algorithm Based on Decomposition (MO-
EA/D) [8], transforms a MOP into several scalarization problems. Therefore,
an approximation of the Pareto front is obtained by solving the N scalarization
subproblems in which a MOP is decomposed.

ConsideringW = {w1, . . . ,wN} as the set of evenly spread weighting vectors,
MOEA/D finds the best solution of each subproblem defined by each weighting
vector using the PBI approach. The objective function of the jth subproblem is
then defined by g(x|wj , z), where wj ∈W and z = (z1, . . . , zk)

T is the artificial
utopian vector whose component zi is the minimum value found so far for the
objective fi. In MOEA/D, a neighborhood of the weighting vector wi is defined
as a set of its closest weighting vectors in W . Therefore, the neighborhood of the
ith subproblem consists of all the subproblems with the weighting vectors from
the neighborhood of wi and it is denoted by B(wi).

At each generation, MOEA/D finds the best solution to each subproblem
throughout the evolutionary process and maintains: 1) a population of N points
P = {x1, . . . ,xN}, where xi ∈ Ω is the current solution to the ith subproblem; 2)
FV 1, . . . , FV N , where FV i is the F -value of xi, i.e., FV

i = F (xi) for each i =
1, . . . , N ; 3) an external population EP , which is used to store the nondominated
solutions found during the search. Algorithm 1 presents the general framework
of MOEA/D, although the interested reader can be referred to [8] for a more
detailed description.

2.4 Radial Basis Function Networks

Radial Basis Function (RBF) networks are a feed-forward kind of neural network,
which are commonly represented with three layers: an input layer with n nodes,
a hidden layer with h nonlinear RBFs (or neurons), and an output layer with
k nodes. The function value in a RBF depends on the distance from each point
x to the origin, i.e. g(x) = g(||x||). This function value can be generalized to
distances from some other point cj , commonly called center of the basis function,
that is:

g(x, cj) = g(||x− cj ||)

The zth output ϕz : Rn 7→ R of the network is defined as:

ϕz(x) =
h
∑

j=1

wjg(||x− cj ||), z = 1, . . . , k (3)

where h is the number of neurons in the hidden layer, cj is the center vector
for the jth neuron, and wj ’s are the weights of the linear output neuron. In its
basic form, all inputs are connected to each hidden neuron. The norm is typically
taken to be the Euclidean distance and the basis function g or kernel is taken to
be Gaussian, although other basis functions are also possible (see for example
those shown in Table 1).

Algorithm 1: General Framework of MOEA/D

Input:
a stopping criterion;
N : the number of the subproblems considered in MOEA/D;
W : a well-distributed set of weighting vectors {w1, . . . ,wN};
T : the number of weight vectors in the neighborhood of each weighting vector.
Output:
EP : the nondominated solutions found during the search;
P : the final population found by MOEA/D.

1 begin

2 EP = ∅;
3 Generate an initial population P = {x1, . . . ,xN} randomly;

4 FV i = F (xi);
5 B(wi) = {wi1 , . . . ,wiT } where wi1 , . . . ,wiT are the T closest weighting

vectors to wi, for each i = 1, . . . , N ;
6 z = (+∞, . . . ,+∞)T ;
7 while stopping criterion is not satisfied do

8 for xi ∈ P do

9 Reproduction: Randomly select two indexes k, l from B(wi), and
then generate a new solution y from xk and xl by using genetic
operators.

10 Mutation: Apply a mutation operator on y to produce y′.
11 Update of z: For each j = 1, . . . , k, if zj < fj(x), then set

zj = fj(y
′).

12 Update of Neighboring Solutions: For each index j ∈ B(wi), if

g(y′|wj ,z) ≤ g(xj |wj ,z), then set xj = y′ and FV j = F (y′).
Update of EP : Remove from EP all the vectors dominated by
F (y′). Add F (y′) to EP if no vectors in EP dominate F (y′).

13 end

14 end

15 end

RBF networks can be used to interpolate a function f : Rn 7→ R when the
values of that function are known on a finite number of points: f(xi) = yi, i =
1 . . . , N . Taking into account the h centers cj ’s (j = 1, . . . , h) and evaluating
the values of the basis functions at the points xi, i.e., φij = g(||cj −xi||, σj) the
weights can be solved from the equation:

φ11 φ12 . . . φ1m
φ21 φ22 . . . φ2m
...

. . .
...

φN1 φN2 . . . φNm

w1

w2

...
wm

=

y1
y2
...
yN

(4)

Therefore, the weights wi’s can be solved by simple linear algebra, using the
least squares method, that is:

w = (ΦTΦ)−1ΦTy (5)

Table 1. Kernels for a RBF neural network, where r = ||x− ci||

Kernel Description

Cubic g(r) = r3

Thin Plate Spline g(r) = r2 ln(r)

Gaussian g(r, σ) = exp(−r2/2σ2)

Multi-quadratic g(r, σ) =
√
r2 + σ2

Inverse multi-quadratic g(r, σ) =
√
r2 + σ2

The parameter σj of the kernels (Gaussian, multi-quadratic and inverse
multi-quadratic) determines the amplitude of each basis function and it can
be adjusted to improve the model accuracy.

3 Our Proposed Approach

3.1 General Framework

Our proposed MOEA/D assisted by Radial Basis Functions (MOEA/D-RBF)
decomposes the MOP (1) intoN single-objective optimization problems. MOEA/D-
RBF uses a well-distributed set ofN weight vectorsW = {w1, . . . ,wN} to define
a set of single-objective optimization subproblems by using the PBI approach.
Each subproblem is solved by MOEA/D, which is assisted by a surrogate model
based on RBF networks. For a better understanding of the proposed approach,
Algorithm 2 shows the general framework of the proposed MOEA/D-RBF. In the
following sections, we describe in detail the components of our MOEA/D-RBF
which are outlined in Algorithm 2.

3.2 Initialization

Initially, a training set Tset = {xi, . . . ,xNt
} of Nt well-spread solutions is gener-

ated. For this task, we employed the Latin hypercube sampling method [14]. The
set of solutions Tset is evaluated by using the real fitness function. The number of
current fitness function evaluations neval is initially set as neval = Nt. MOEA/D-
RBF uses an external archive A to store the nondominated solutions found so
far in the evolutionary process. This archive is initialized with the nondominated
solutions found in Tset. At the beginning, a population P̂ = {xi, . . . ,xN} of N
solutions is generated by employing the Latin hypercube sampling method. The
stopping criterion considered in MOEA/D-RBF is the number of fitness func-
tion evaluations and, therefore, the stopping criterion is initially set as false, i.e.
stopping criterion = FALSE.

3.3 Building the Model

As previously indicated, we use a surrogate model based on RBF networks. In
order to improve the prediction of the surrogate model, the Gaussian, the multi-
quadratic and the inverse multi-quadratic kernels are used in a cooperative way

Algorithm 2: General framework of MOEA/D-RBF

Input:
W = {wi, . . . ,wN}: A well-distributed set of weight vectors.
Nt: The number of points in the initial training set.
Emax: The maximum number of evaluations allowed in MOEA/D-RBF.
Output:
A: An approximation to the PF .

1 begin

2 Initialization: Generate a set Tset = {x1, . . . ,xNt} of Nt points such that
xi ∈ Ω (i = 1, . . . Nt), by using an experimental design method. Evaluate
the F -functions values of these points. Set A as the set of nondominated
solutions found in Tset. Set neval = Nt. Generate a population
P̂ = {x1, . . . ,xN} of N individuals such that xi ∈ Ω (i = 1, . . . N), by using
an experimental design method. stopping criterion = FALSE. For details
of this step see Section 3.2.

3 while (stopping criterion == FALSE) do
4 Model Building: Using the F -function values of the points in Tset,

build the predictive surrogate model by using different RBF networks.
Calculate the weights for each RBF network according to its training
error in Tset. For details of this step see Section 3.3.

5 Evaluate P̂ : Evaluate the population P̂ using the surrogate model.
6 Find an approximation to PF : By using MOEA/D, the surrogate

model and the population P̂ , obtain P̂ ⋆ = {x̂i, . . . , x̂Nt}, where P̂ ⋆ is an
approximation to PF , see Section 3.4.

7 Select points for updating Tset: By using the selection scheme,

select a set of solutions from P̂ ⋆ to be evaluated and included in the
training set Tset. Update A using the selected solutions. For each
evaluated solution, set neval = neval + 1. If neval < Emax then

stopping criteria = TRUE. For a detailed description of this step see
Section 3.5.

8 Update population P̂ : Update the population P̂ according to the
updating scheme, see Section 3.6.

9 end

10 return A;

11 end

for obtaining the approximated value of a solution. In the following sections, we
describe the necessary components for building the surrogate model.

Hidden Nodes The hidden nodes in an RBF network play an important role
in the performance of the RBF network. In general, there is no method available
for estimating the number of hidden nodes in an RBF network. However, it
has been suggested in [15–18] that Kolmogorov’s theorem [19] concerning the
realization of arbitrary multivariate functions, provides theoretical support for
neural networks that implement such functions.

Theorem 1 (Kolmogorov [19]). A continuous real-valued function defined as
f : [0, 1]n 7→ R, n ≥ 2, can be represented in the form:

f(x1, . . . , xn) =

2n+1
∑

j=1

gj

(

n
∑

i=1

φij(xj)

)

(6)

where the gj’s are properly chosen continuous functions of one variable, and the
φij ’s are continuous monotonically increasing functions independent of f .

The basic idea in Kolmogorov’s theorem is captured in the network architecture
of Figure 1, where a universal transformation M maps R

n into several uni-
dimensional transformations. The theorem states that one can express a contin-
uous multivariate function on a compact set in terms of sums and compositions
of a finite number of single variable functions.

x1

x2

xn g2n+1

g2

g1

P f

Fig. 1. Network representation of Kolmogorov’s theorem

Motivated by this idea, the surrogate model built here, uses 2n + 1 hidden
nodes (where n is the number of decision variables of the MOP). Considering Tset
as the training set of Nt solutions used by the surrogate model, the centers of the
2n+1 basis functions are defined by using the well-known k-means algorithm [20]
on the training set Tset (with k = 2n + 1). This criterion establishes that the
cardinality of Tset should be greater than 2n+ 1, i.e., 2n+ 1 < Nt.

Building the surrogate model The high modality and dimensionality of
some real-world functions, often produce problems to surrogate models. When
the surrogate model is not able to properly shape the region of the search space
in which the Pareto set is located, then the search may be biased towards inap-
propriate regions. In order to improve the function prediction, MOEA/D-RBF
uses different kernels for building different RBF networks. Each RBF network
provides different shape of the search space and all of them provide information
to predict the value of an arbitrary solution. Here, three different kernels are
adopted: Gaussian, multi-quadratic and inverse multi-quadratic; these kernels
are chosen because they possess the parameter σ which can be adjusted to im-
prove the model accuracy, see Table 1. Note however that other types of kernels
can also be adopted, although the use of more kernels could significantly increase

the training time. In the following description, we consider the case with one sin-
gle output node, i.e. with a single function. Note however, that this model can
be generalized for more than one function.

Let Tset = {x1, . . . ,xNt
} be the set of Nt solutions evaluated with the real

fitness function. Let h be the number of hidden nodes (or basis functions) consid-
ered in the RBF network. Let cj and σj (j = 1, . . . ,m) be the center and the am-
plitude of each basis function, respectively. The training of the RBF network for
a determined kernel K consists in finding the weight vector w = (w1, . . . , wm)T

such that it solves equation (5). Each parameter σj of each basis function is
initially defined by the standard deviation of the solutions contained in each
cluster obtained by the k-means algorithm (with mean cj).

Once the weight vector w is obtained, the model accuracy is improved by
adjusting the vector of parameters σ = (σ1, . . . , σm)T . Since the value of the
adopted kernel depends of σj , from equation (4), the training error on the train-
ing set Tset, can be written as:

ψ(σ) = ||Φw − y|| (7)

where y = (y1, . . . , yNt)
T is the vector of the real function values for each solution

xi ∈ Tset, i.e., yi = f(xi). Φ is the matrix which contains the evaluations of
each point xi ∈ Tset for each basis function, i.e., φij = g(||cj − xi||, σj), for
i = 1, . . . , Nt and j = 1, . . . , h.

The parameters σj are then adjusted by using the Differential Evolution
(DE) algorithm [21], whose objective is to minimize the training error defined in
equation (7). Once the σj parameters are adjusted, the prediction function for
a determined kernel K of a solution x ∈ Ω can be calculated by:

ϕ̂K(x) =

h
∑

j=1

wj · g(||x− cj ||, σj) (8)

Cooperative surrogate models and Function Prediction Once the three
RBF networks are built, each of them using the three above mentioned ker-
nels, the prediction of the function is carried out. Let ϕGK(x), ϕMK(x) and
ϕIMK(x) be the predicted value given by RBF networks using the Gaussian,
multi-quadratic and inverse multi-quadratic kernel, respectively. These three
RBF networks cooperate by providing information of the search space that they
model. Therefore, the function prediction f̂ for an arbitrary x ∈ Ω is defined
by:

f̂(x) = λ1 · ϕGK(x) + λ2 · ϕMK(x) + λ3 · ϕIMK(x) (9)

where Λ = (λ1, λ2, λ3)
T is a weight vector, i.e. λi ≥ 0 and

∑3
i=1 λi = 1. There-

fore, the weight for each predicted value needs to be calculated.
Let Tset be the knowledge set for training the different RBF networks. The

weight vector Λ is then calculated by:

λi =
αi

|Tset|
, i = 1, 2, 3 (10)

where αi is the number of solutions in Tset with the lowest prediction error for
the ith RBF network (Gaussian, multi-quadratic and inverse multi-quadratic,
respectively).

3.4 Finding an Approximation to PF

MOEA/D-RBF approximates solutions to PF by using the well-knowMOEA/D [8].
The search is conducted by the set of weight vectors W = {w1, . . . ,wN}.
MOEA/D searches the solutions to each scalar problem defined by each weight
vector wi ∈ W . The evolutionary process of MOEA/D is performed during a
determined number of generations by employing the prediction function defined
in equation (9). The final population denoted as P̂ ⋆ is then reported as an ap-
proximation to PF .

3.5 Selecting Points to Evaluate

Let W = {w1, . . . ,wN} be the well-distributed set of weight vectors used by
MOEA/D. Let P̂ ⋆ be the approximation to PF obtained by MOEA/D. LetWs =
{ws

1, . . . ,w
s
Ns

} be a well-distributed set of weight vectors, such that |Ws| < |W |.
For eachws

i ∈Ws, we define Bs(w
s
i) = {w1, . . . ,wNa

}, such thatw1, . . . ,wNa
∈

W are the Na = ⌊ N
Ns

⌋ closest weight vectors from W to ws
i . With that, an

association of weight vectors fromW toWs is defined. This association defines a
set of neighborhoods Bs(w

s
i) which are distributed along the whole set of weight

vectors W , see Figure 2. Once the neighborhoods Bs(w
s
i) have been defined, a

set of solutions is selected to be included in the training set Tset, according to
the next description.

w
s

1

w
s

5

w
s

2

w
s

3

w
s

4

w
s

1
Bs()

w
s

5
Bs()

Fig. 2. Association of weight vectors from W to Ws. The vectors in blue represent
the set W , while the vectors in red define the set Ws. This association defines the
neighborhoods Bs(w

s
1) to Bs(w

s
5)

Selecting Points to be Evaluated using the Real Fitness Function A set
S = {x1, . . . ,wNs

} of Ns solutions taken from P̂ is chosen to be evaluated using
the real fitness function. Each solution in S is selected such that it minimizes
the problem defined by a weight vector wj ∈ Bs(w

s
i), where i = 1, . . . , Ns and

j = 1, . . .Na.
At each call of the selection procedure, the weight vector wj is selected by

sweeping the set of weight vectors in Bs(w
s
i) in a cyclic way, i.e., once the last

weight vector is selected, the next one is picked up from the beginning. Since
the neighborhoods Bs(w

s
i) are distributed along the whole weight set W , the

selection of solutions in each neighborhood should obtain spread solutions along
the PF . No solution in S should be duplicated. If this is the case, the repeated
solution should be removed from S. For each new evaluated solution, we set
neval = neval + 1, if neval ≥ Emax then we set stopping criterion = TRUE,
where neval and Emax are the current and the maximum number of fitness
function evaluations, respectively.

Updating the Training Set and the External Archive The maximum
number of solutions in the training set Tset is defined by the parameter Nt.
The updating of Tset is carried out by defining a well-distributed set of Nt

weight vectors Wt = {wt
1, . . . ,w

t
Nt

}. Therefore, the best Nt different solutions
from T = {Tset ∪ S}, such that they minimize the subproblems defined by each
weight vector wt

i ∈ Wt, are used to update Tset. If after updating the training
set, any solution sj ∈ S was not selected to be included in Tset, then, it is added
by replacing the closest solution (in the objective space) in Ts. With this, all
solutions in S are included in Tset and the model can be improved even if it has
been misinformed formerly.

The external archive A contains the nodominated solutions found along the
search. For each sj ∈ S, the external archive is updated by removing from A all
the solutions dominated by sj , and then, sj is stored in A if no solutions in A
dominate si.

3.6 Updating the Population

Once the external archive is updated, the population P̂ is also updated for
the next iteration of MOEA/D. Considering the external archive A as the set
of nondominated solutions found by MOEA/D-RBF, the population P̂ of N
solutions is updated according to the following description.

Letm and σ be the average and standard deviation of the solutions contained
in A. Then, new bounds in the search space are defined according to:

Lbound = m− σ

U bound = m+ σ

where Lbound and U bound are the vectors which define the lower and upper
bounds of the new search space, respectively.

Once the new bounds have been defined, a well-distributed set Q of N − |A|
solutions is generated by means of the Latin hypercube sampling method [14]
in the new search space. The population P̂ is then redefined by the union of Q
and A, that is P̂ = {Q ∪ A}.

4 Test Problems

In order to assess the performance of our proposed approach (MOEA/D-RBF),
we compare its results with respect to those obtained by the original MOEA/D [8]
and by MOEA/D-EGO [7], which uses a surrogates model (based on the Gaus-
sian stochastic process model). We adopted the Zitzler-Deb-Thiele (ZDT) test
problems [22] except for ZDT5 (which is a discrete problem). The detailed de-
scription of such problems can be found in [22]. In order to evaluate the capabil-
ities of MOEA/D-RBF when dealing with computationally expensive problems,
we also tested its performance using a real-world problem, as a case study. Next,
we describe the airfoil problem which was adopted to validate our proposed
approach.

4.1 Airfoil Shape Optimization: A case study

Our case study consists of the multi-objective optimization of an airfoil shape
problem adapted from [23] (called here MOPRW). This problem corresponds
to the airfoil shape optimization of a standard-class glider, aiming to obtain an
optimum performance for a sailplane.

Problem Statement Two conflicting objective functions are defined in terms
of a sailplane average weight and operating conditions [23]. They are defined as:

i) minimize: CD/CL

s.t. CL = 0.63, Re = 2.04 · 106, M = 0.12

ii) minimize: CD/C
3/2
L

s.t. CL = 1.05, Re = 1.29 · 106, M = 0.08

where CD/CL and CD/C
3/2
L correspond to the inverse of the glider’s gliding ratio

and sink rate, respectively. Both are important performance measures for this
aerodynamic optimization problem. CD and CL are the drag and lift coefficients.

The aim is to maximize the gliding ratio (CL/CD) for objective (i), while
minimizing the sink rate in objective (ii). Each of these objectives is evaluated
at different prescribed flight conditions, given in terms of Mach and Reynolds
numbers. The aim of solving this MOP is to find a better airfoil shape, which
improves a reference design.

Table 2. Parameter ranges for our modified PARSEC airfoil representation

Design Variable Lower Bound Upper Bound

rleup 0.0085 0.0126
rlelo 0.0020 0.0040
αte 7.0000 10.0000
βte 10.0000 14.0000
Zte -0.0060 -0.0030
∆Zte 0.0025 0.0050
Xup 0.4100 0.4600
Zup 0.1100 0.1300

Zxxup -0.9000 -0.7000
Xlo 0.2000 0.2600
Zlo -0.0230 -0.0150

Zxxlo 0.0500 0.2000

Geometry Parametrization In the present case study, the PARSEC airfoil
representation [24] was adopted. Fig. 3 illustrates the 11 basic parameters used
for this representation: rle leading edge radius, Xup/Xlo location of maximum
thickness for upper/lower surfaces, Zup/Zlo maximum thickness for upper/lower
surfaces, Zxxup/Zxxlo curvature for upper/lower surfaces, at maximum thickness
locations, Zte trailing edge coordinate, ∆Zte trailing edge thickness, αte trailing
edge direction, and βte trailing edge wedge angle.

For the present case study, the modified PARSEC geometry representation
adopted here allows us to define independently the leading edge radius, both for
upper and lower surfaces. Thus, a total of 12 decision variables are used. Their
allowable ranges are defined in Table 2.

Fig. 3. PARSEC airfoil parametrization.

The PARSEC airfoil geometry representation uses a linear combination of
shape functions for defining the upper and lower surfaces. These linear combi-
nations are given by:

Zupper =
6
∑

n=1

anx
n−1

2 , Zlower =
6
∑

n=1

bnx
n−1

2 (11)

In the above equations, the coefficients an, and bn are determined as func-
tions of the 12 described geometric parameters, by solving two systems of linear
equations, one for each surface. It is important to note that the geometric pa-
rameters rleup/rlelo, Xup/Xlo, Zup/Zlo, Zxxup/Zxxlo, Zte, ∆Zte, αte, and βte are

the actual design variables in the optimization process, and that the coefficients
an, bn serve as intermediate variables for interpolating the airfoil’s coordinates,
which are used by the CFD solver (we used the Xfoil CFD code [25]) for its
discretization process.

5 Comparison of Results

5.1 Performance Measure

In order to evaluate the performance of our proposed approach, we compared its
results with respect to those obtained by MOEA/D and MOEA/D-EGO. For
comparing these algorithms, we adopted the I−H performance measure which is
described below.

I
−

H metric The Hypervolume (IH) performance measure was proposed by Zit-
zler [26]. This performance measure is Pareto compliant [27] and quantifies
the approximation of nondominated solutions to the Pareto optimal front. The
hypervolume corresponds to the non-overlapped volume of all the hypercubes
formed by a reference point r (given by the user) and each solution p in the
Pareto set approximation (P). It is mathematically defined as:

IH(P) = Λ

⋃

p∈P

{x|p ≺ x ≺ r}

where Λ denotes the Lebesgue measure and r ∈ R
k denotes a reference vector

being dominated by all valid candidate solutions in P . The I−H performance
measure is then defined as:

I−H(P ⋆, P) = IH(P ⋆)− IH(P)

where IH(P ⋆) is the hypervolume between the Pareto optimal front P ⋆ and a
reference point r. I−H assesses both convergence and spread of the Pareto front.
A low I−H value, indicates that our approximation P is close to PF and has a
good spread towards the extreme portions of the Pareto front.

In our experiments, as in [7], we select 500 evenly distributed points on the
Pareto optimal front PF and let these points be P ⋆ for each standard test prob-
lem. Since the Pareto optimal front of the the airfoil shape problem is unknown,
only the IH performance measure is used. In this case, obtaining a high IH value,
indicates that our approximation P is close to PF .

5.2 Experimental Setup

As indicated before, the proposed approach is compared with respect to MOEA/D
and MOEA/D-EGO. For each MOP, 30 independent runs were performed with
each algorithm. As in [7], the number of decision variables is set to be eight

for the ZDT benchmark. Each algorithm was restricted to 200 fitness function
evaluations and the results of MOEA/D-EGO were directly taken from [7].

For the airfoil design problem, the search was restricted to 5,000 fitness func-
tion evaluations. Since the computational complexity of the model building in
MOEA/D-EGO increases with the number of training points, MOEA/D-EGO
becomes impractical as the number of fitness function evaluations increases,
see [7]. Because of this, the comparison of results in the airfoil design problem
is carried out only between MOEA/D and MOEA/D-RBF. In addition, we also
show the results obtained by MOEA/D-RBF and MOEA/D using 30 and 10
decision variables for the ZDT test problems, as it was suggested by Zitzler et
al. [22]. Since the difficulty to solve the ZDT test problems increases with re-
spect to the number of decision variables, the search for these algorithms was
restricted to 1,000 fitness function evaluations.

The parameters used for both MOEA/D and MOEA/D-RBF, were set as
in [8], since there is empirical evidence that indicates that these are the most
appropriate parameters for solving the ZDT test suite—see [8]. The weight
vectors for the algorithms were generated as in [8], i.e., the setting of N and
W = {w1, . . . ,wN} is controlled by a parameter H . More precisely, w1, . . . ,wN

are all the weight vectors in which each individual weight takes a value from

{

0

H
,
1

H
, . . . ,

H

H

}

Therefore, the number of such vectors in W is given by:

N = Ck−1
H+k−1.

where k is the number of objective functions.

For all the MOPs, MOEA/D was tested with H = 99, i.e. N = 100 weight
vectors. For MOEA/D-RBF (and for MOEA/D-EGO) H = 299, i.e. 300 weight
vectors. The set Wt was generated with H = 10n − 1, therefore Nt = 10n
weight vectors (which define the cardinality of the training set), where n is
the number of decision variables of the MOP. The set Ws uses H = 9, i.e.
Ns = 10 weight vectors. For adjusting the parameter σ in the model building,
the DE/rand/1/bin strategy was adopted. The parameters for DE were set to:
CR = 0.5, F = 1, a population size 20 and the number of generations was
restricted to 50 generations. The execution of the algorithms was carried out on
a computer with a 2.66GHz processor and 4GB in RAM.

As indicated before, the algorithms were evaluated using the I−H and the
IH metrics. The results obtained are summarized in Tables 3–5. These tables
display both the average and the standard deviation (σ) of the I−H and IH
indicators for each MOP, respectively. The reference vector r used for computing
the performance measures, for each MOP, is shown in each table of results. For
an easier interpretation, the best results are presented in boldface for each test
problem adopted.

Table 3. Results of the I−H performance measure for MOEA/D-RBF, MOEA/D-EGO
and MOEA/D, using eight decision variables

MOP

MOEA/D- MOEA/D-
MOEA/D

RBF EGO reference
average average average vector (r)

(σ) (σ) (σ)

ZDT1
0.009170 0.067200 17.209529

(10, 10)T(0.000890) (0.080100) (3.310987)

ZDT2
0.009703 0.019800 26.223664

(10, 10)T(0.001520) (0.003500) (3.945007)

ZDT3
0.115358 0.117800 41.218250

(20, 20)T
(0.898476) (0.070700) (7.307372)

ZDT4
1681.548786 1709.520000 1749.365260

(50, 50)T
(469.374655) (593.510000) (436.261557)

ZDT6
1.690381 0.100000 68.134088

(10, 10)T
(2.006687) (0.100900) (2.672056)

5.3 Results and Discussion

ZDT Test Problems Table 3 shows the results obtained for the IH perfor-
mance measure when the algorithms are tested on the ZDT test problems using
eight decision variables. From this table, it can be clearly seen that the best
results were obtained by MOEA/D-RBF and MOEA/D-EGO. With respect to
MOEA/D-RBF and MOEA/D-EGO, it is possible to see that MOEA/D-RBF
obtained better results than those obtained by MOEA/D-EGO in most of the
adopted MOPs. The exception was ZDT6 where MOEA/D-EGO was signifi-
cantly better than MOEA/D-RBF. However, this does not mean that the per-
formance of MOEA/D-RBF is bad. The average CPU times of 30 independent
runs performed by MOEA/D-RBF oscillate between 15 and 16 seconds for each
ZDT test problem. According to studies by Zhang et al. [7] MOEA/D-EGO (us-
ing the Fuzzy C means method) employed between 936 and 1,260 seconds for
solving ZDT1 and ZDT2, respectively. From such studies and the one reported
here, we conclude that MOEA/D-RBF is much faster than MOEA/D-EGO,
when solving the ZDT test problems using eight decision variables.

In Table 4, we show the results obtained by MOEA/D-RBF and the orig-
inal MOEA/D in the ZDT test problems using 30 and 10 decision variables,
respectively (for a detailed description see [22]). From this table it is possible to
see that MOEA/D-RBF obtained a better approximation to PF than the one
achieved by MOEA/D in most of the test problems adopted. This comparison
was performed in order to show the effectiveness of our proposed MOEA/D-
RBF in terms of the quality of the solutions that it reached with respect to the
solutions obtained by MOEA/D. As we can see, MOEA/D-RBF significantly
outperformed MOEA/D in most of the ZDT test problems. The exception was
ZDT4 which is a multi-frontal MOP which evidently causes difficulties to the
surrogate model proposed here.

Airfoil Design Problem According to Table 5, we can see that MOEA/D-
RBF obtained better hypervolume values than MOEA/D. Figure 4 shows the
convergence graph for the IH performance measure. From this graph, we can see

Table 4. Results of the I−H performance measure for MOEA/D-RBF and MOEA/D,
using 30 and 10 decision variables, respectively

MOP

MOEA/D-RBF MOEA/D reference
average average vector (r)

(σ) (σ)

ZDT1
0.004831 9.758961

(5, 5)T
(0.000382) (1.235485)

ZDT2
0.006654 14.040807

(5, 5)T
(0.000744) (1.806522)

ZDT3
2.298589 11.029210

(5, 5)T
(0.952347) (1.526359)

ZDT4
1828.493909 575.670683

(50, 50)T
(382.604894) (185.030230)

ZDT6
1.244183 22.057469

(5, 5)T(0.996797) (2.385873)

that the results obtained by MOEA/D with 5,000 fitness function evaluations
were achieved by our MOEA/D-RBF using a lower number of fitness function
evaluation (only 1,250 evaluations, on average). MOEA/D employed, on average,
5,050 seconds to achieve the value reported in Table 5 in the IH performance
measure, while our MOEA/D-RBF required 2,000 seconds to achieve a simi-
lar value. Thus, we argue that our proposed MOEA/D-RBF is a good choice
for dealing with computationally expensive MOPs. The approximations to the
Pareto front for this problem is presented in Figure 5, which corresponds to the
set of nondominated solutions found by each algorithm in the run with the value
nearest to the mean value of the IH performance measure.

Table 5. Results of the IH performance measure for MOEA/D-RBF and MOEA/D
for the airfoil design problem

MOP
MOEA/D-RBF MOEA/D reference

average average vector (r)
(σ) (σ)

MOPRW1
2.493786e-07 2.149916e-07 (0.007610,

(6.483342e-09) (2.446593e-08) 0.005236)T

6 Conclusions and Future Work

We have proposed here a version of MOEA/D which is assisted by cooperative
RBF networks, with the aim of improving the prediction of the function value.
The RBF networks employed here, use different kernels in order to have different
shapes of the fitness landscape. With that, each RBF network provides infor-
mation which is used to improve the value of the objective function. According
to the results reported here, our proposed MOEA/D-RBF is able to outperform
both to the original MOEA/D and to MOEA/D-EGO (which is a version of
MOEA/D that also adopts surrogates) when performance only 200 and 1,000
fitness function evaluations. We also validated our proposed approach with a

0.00e+00

2.50e−08

5.00e−08

7.50e−08

1.00e−07

1.25e−07

1.50e−07

1.75e−07

2.00e−07

2.25e−07

2.50e−07

2.75e−07

3.00e−07

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

I H
m

e
tr

ic

Fitness Function Evaluations

MOEA/D−RBF

MOEA/D

Fig. 4. IH convergence graph for the airfoil design problem

4.90e−03

4.95e−03

5.00e−03

5.05e−03

5.10e−03

5.15e−03

5.20e−03

0.0064 0.0066 0.0068 0.007 0.0072 0.0074 0.0076

f 2

f
1

MOEA/D−RBF

MOEA/D

Fig. 5. Approximation to PF given by MOEA/D-RBF and MOEA/D for the airfoil
design problem

real-world computationally expensive multi-objective optimization problem: air-
foil design. In this case, our proposed MOEA/D-RBF was able to reduce by more
than half the CPU time required by MOEA/D to achieve a certain IH value. This
illustrates the potential of our proposed approach for solving computationally
expensive multi-objective problems.

As part of our future work, we plan to use our approach in problems having
three or more objectives. Also, we pretend to couple to our approach a local
search mechanism, so that, while MOEA/D-RBF obtains candidate solutions to
be evaluated with the real fitness function, the local search refines these solutions,
thus accelerating the convergence towards the true Pareto front. Finally, we are
also interested in testing our approach with more real-world problems having
more decision variables, and that is indeed part of our ongoing research.

References

1. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Second edn. Springer, New York
(2007) ISBN 978-0-387-33254-3.

2. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally
expensive problems via surrogate modeling. AIAA Journal 41(4) (2003) 687–696

3. Emmerich, M.T.M., Giannakoglou, K., Naujoks, B.: Single- and multiobjective
evolutionary optimization assisted by gaussian random field metamodels. IEEE
Transactions on Evolutionary Computation 10(4) (2006) 421–439

4. Knowles, J.: Parego: A hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems. IEEE Transactions on Evolution-
ary Computation 10(1) (2006) 50–66

5. Isaacs, A., Ray, T., Smith, W.: An evolutionary algorithm with spatially dis-
tributed surrogates for multiobjective optimization. In: ACAL. (2007) 257–268

6. Zapotecas Mart́ınez, S., Coello Coello, C.A.: A Memetic Algorithm with Non
Gradient-Based Local Search Assisted by a Meta-Model. In: PPSN XI. Volume
6238., Springer. Lecture Notes in Computer Science (2010) 576–585

7. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive Multiobjective Optimiza-
tion by MOEA/D with Gaussian Process Model. Evolutionary Computation, IEEE
Transactions on 14(3) (2010) 456 –474

8. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on
Decomposition. IEEE Transactions on Evolutionary Computation 11(6) (2007)
712–731

9. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, Boston, Massachuisetts (1999)

10. Ehrgott, M.: Multicriteria Optimization. 2nd edition edn. Springer, Berlin (2005)
11. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating

Pareto optimal points in multicriteria optimization problems. SIAM Journal on
Optimization 8(3) (1998) 631–657

12. Peng, W., Zhang, Q.: A decomposition-based multi-objective particle swarm opti-
mization algorithm for continuous optimization problems. In: IEEE International
Conference on Granular Computing, 2008. GrC 2008. (2008) 534 –537

13. Zapotecas Mart́ınez, S., Coello Coello, C.A.: A Multi-objective Particle Swarm
Optimizer Based on Decomposition. In: GECCO’2011, Dublin, Ireland, ACM Press
(2011) 69–76

14. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code.
Technometrics 21(2) (1979) 239–245

15. Hecht-Nielsen, R.: Kolmogorov’s mapping neural network existence theorem. In:
Proceedings of IEEE First Annual International Conference on Neural Networks.
Volume 3. (1987) 11–14

16. Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley, Redwood City, CA (1990)
17. Lippmann, R.P.: An introduction to computing with neural nets. IEEE Magazine

on Accoustics, Signal, and Speech Processing 4 (1987) 4–22
18. Sprecher, D.A.: A universal mapping for kolmogorov’s superposition theorem.

Neural Netw. 6(8) (1993) 1089–1094
19. Kolmogorov, A.K.: On the representation of continuous functions of several vari-

ables by superposition of continuous functions of one variable and addition. Dok-
lady Akademii Nauk SSSR 114 (1957) 369–373

20. MacQueen, J.B.: Some Methods for Classification and Analysis of Multivariate
Observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical
Statistics and Probability. Volume 1., University of California Press (1967) 281–297

21. Storn, R.M., Price, K.V.: Differential Evolution - a simple and efficient adaptive
scheme for global optimization over continuous spaces. Technical Report TR-95-
012, ICSI, Berkeley, CA (1995)

22. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results. Evolutionary Computation 8(2) (2000) 173–195

23. Szöllös, A., Smı́d, M., Hájek, J.: Aerodynamic optimization via multi-objective
micro-genetic algorithm with range adaptation, knowledge-based reinitialization,
crowding and epsilon-dominance. Advances in Engineering Software 40(6) (2009)
419–430

24. Sobieczky, H.: Parametric Airfoils and Wings. In Fuji, K., Dulikravich, G.S., eds.:
Notes on Numerical Fluid Mechanics, Vol.. 68, Wiesbaden, Vieweg Verlag (1998)
71–88

25. Drela, M.: XFOIL: An Analysis and Design System for Low Reynolds Number
Aerodynamics. In: Conference on Low Reynolds Number Aerodynamics, University
Of Notre Dame, IN (1989)

26. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary
Algorithms—A Comparative Study. In Eiben, A.E., ed.: PPSN V, Amsterdam,
Springer-Verlag (1998) 292–301

27. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE
Transactions on Evolutionary Computation 7(2) (2003) 117–132

