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Abstract

Multi-objective optimization is an active research field which is—among others—

currently successfully applied in the design of interplanetary space missions. In this

chapter, we give a short introduction to multi-objective optimization and give an

overview of commonly used methods for the numerical treatment of such problems,

addressing both deterministic and stochastic approaches. Further on, we briefly

summarize recent works that deal with multi-objective space mission design.
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1 Introduction

In a variety of applications in industry and finance the problem arises that several objec-

tive functions have to be optimized concurrently leading to a multi-objective optimization

problem (MOP). For instance, in space mission design, which we address in this chapter,

two typcal important objectives are the time of flight (TOF) of the spacecraft to reach its

destiny, and the cost of the mission (e.g., measured by the change in velocity ∆v which

has a direct impact on the fuel consumption and hence also on the overall cost of the

mission). Since these objectives are typically contradicting—the ‘cheapest’ trajectory is

certainly not the fastest one and vice versa—it comes as no surprise that the solution set,

the so-called Pareto set, does not consist of one single solution (as for ‘classical’ scalar

optimization problems). Instead, it forms a (k − 1)-dimensional object where k is the

number of objectives involved in the MOP.

In this chapter, we introduce the concept of multi-objective optimization (MOO) and

state some theoretical background. Further, we present the state-of-the-art of both de-

terministic and stochastic search methods to compute a finite size representation of the

Pareto set, respectively its image, the Pareto front. Furthermore, we discuss scenarios

where MOO has been considered for MOPs related to space mission design.

The remainder of this chapter is organized as follows: In Section 2, we give a brief

introduction to multi-objective optimization. In Section 3, we state the most com-

monly used mathematical programming techniques for MOPs and in Section 4 we give

an overview of evolutionary multi-objective optimization algorithms. In Section 5, we

briefly summarize some research works for which MOO techniques have been used to

solve space mission design problems. Finally, in Section 6, we discuss potential future

research trends in this field.
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2 Multi-objective Optimization

In the following we give a brief introduction to continuous multi-objective optimization.

For a more thorough discussion the reader is referred e.g. to [1, 2].

A multi-objective optimization problem (MOP) can in mathematical terms be ex-

pressed as follows:

min
x∈Q

F (x), (1)

where the map F consists of the objective functions fi : Q→ R under consideration,

i.e.,

F : Q→ Rk, F (x) = [f1(x), . . . , fk(x)]
T .

The set Q ⊂ Rn is the domain of F , where n is the dimension of the parameter space

(also called decision space). In general, Q can be expressed by constraint functions, i.e.,

Q = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . , l, and hj(x) = 0, j = 1, . . . , m},

where the gi’s are called inequality constraints and the hi’s equality constraints. If

Q = Rn, then the problem is called unconstrained. In many cases, Q is defined by box

constraints, i.e., the domain forms the n-dimensional box

Q = Bl,u := {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n}, (2)

where l, r ∈ Rn with li ≤ ui, i = 1, . . . , n, are the lower and upper bounds, respectively.

Next, we have to define optimal solutions of a given MOP. Note that we cannot proceed

as for classical scalar optimization problems (i.e., problems of the kind (1) where k = 1):

While for any two (objective) values a, b ∈ R it is either a = b or one of the values is

lower than the other one (and hence this value can be considered as ‘better’ according

to the given optimization problem), this does not hold for vectors in Rk. Instead, we
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have to use another way to compare solutions. This is usually done using the concept of

dominance [3].

Definition 1 (dominance relation). (a) Let v,w ∈ Rk. Then the vector v is less than

w (in short: v <p w), if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined

analogously.

(b) A vector y ∈ Q is called strictly dominated (or simply dominated) by a vector x ∈ Q

(x ≺ y) with respect to (1) if

F (x) ≤p F (y) and F (x) 6= F (y),

else y is called non-dominated by x.

(c) A vector y ∈ Q is called weakly dominated by a vector x ∈ Q (x � y) with respect

to (1) if F (x) ≤p F (y).

If a vector x dominates a vector y, then x can be considered to be ‘better’ according

to the given MOP. The definition of optimality (i.e., of the ‘best’ solution) of a given

MOP is now straightforward.

Definition 2 (Pareto point, Pareto set, Pareto front). (a) A point x ∈ Q is called (Pareto)

optimal or a Pareto point of (1) if there is no y ∈ Q which dominates x.

(b) A point x ∈ Q is called a weak Pareto point or weakly opimal if there exists no

y ∈ Q such that F (y) <p F (x).

(c) The set of all Pareto optimal solutions is called the Pareto set, i.e.,

P := {x ∈ Q : x is a Pareto point of (1)}. (3)

(d) The image F (P) of P is called the Pareto front.

To familiarize with the concept of dominance, we consider the following hypothetical

setting for a bi-objective problem (i.e., k = 2): Assume we are given six candidate so-

lutions x1, . . . ,x6 such that the images are given by y1 = F (x1) = [1, 6]T , y2 = [1, 4]T ,
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y3 = [2, 3]T , y4 = [3, 2]T , y5 = [5, 1]T , and y6 = [3.5, 3.5]T (compare to Figure 1). x6 is

dominated by x3 as well as by x4. Further, x1 is weakly dominated by x2, but not strictly

dominated by x2 nor any other of the candidate solutions. The solutions y2, . . . ,y5 are

mutually non-dominated. Hence, in this example there does not exist one single ‘best’

solution but rather a set of optimal solutions. We will see shortly that this is typically

the case.

If the objectives of the given problem are differentiable one can state a necessary

condition for optimality analog to the scalar objective case. Here, we state the theorem

for unconstrained problems. For further variants the reader is referred e.g. to [4, 1].

Theorem 1 (Theorem of Kuhn and Tucker [4]). Let x∗ be a Pareto point of (1), then

there exists a vector α ∈ Rk with αi ≥ 0, i = 1, . . . , k, and
∑k

i=1 αi = 1 such that

k∑

i=1

αi∇fi(x
∗) = 0. (4)

A vector α ∈ Rk is called a convex weight if αi ≥ 0, i = 1, . . . , k and
∑k

i=1 αi = 1.

Equation (4) says that the zero vector can be expressed as a convex combination of the

gradients ∇fi(x
∗) at each Pareto point x∗. Note that for k = 1 the equation reads as

∇f1(x
∗) = 0 which is a well-known fact from scalar optimization (e.g., [5]). A point

x ∈ Q satisfying Equation (4) is called a Karush–Kuhn–Tucker point1 or short KKT

point.

Theorem 1 can be used to give a qualitative description of the Pareto set. For this, define

the following map:

F̃ :Rn+k → Rn+1

F̃ (x, α) =








k∑

i=1

αi∇fi(x)

k∑

i=1

αi − 1








.
(5)

1Named after the works of Karush [6] and Kuhn & Tucker [4].
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If x∗ is a Pareto point there exists by the above theorem a vector α∗ ∈ Rk such

that F̃ (x∗, α∗) = 0. Hence, the Pareto set plus the according set of weight vectors are

contained in the preimage F̃−1(0), and we expect by the Implicit Function Theorem (e.g.,

[7]) that this set forms a set of dimension k − 1. This is indeed the case under certain

assumptions on the MOP, see [8] for a thorough discussion.

Example 1. We consider the following unconstrained MOP [9, 10]:

f1, . . . , fk : Rn → R
fi(x) =

n∑

j=1

(xj − aij)
2,

where ai ∈ Rn, i = 1, . . . , k. The minimizer of each objective is given by ai, and the

set of KKT points is given by the (k − 1)-simplex that contains all the ai’s as vertices,

i.e.,

S := S(a1, . . . , ak) =

{
k∑

i=1

µia
i : µ1, . . . , µk ≥ 0 and

k∑

i=1

µi = 1

}

.

One can see this for instance by mutual inclusion: Let x ∈ S, i.e., there exists a

convex weight µ ∈ Rk such that
∑k

i=i µiα
i = x. We obtain

k∑

i=1

µi∇fi(x) =
k∑

i=1

2(x− ai) = 2
k∑

i=1

µix

︸ ︷︷ ︸

=x

−2
k∑

i=1

µia
i

︸ ︷︷ ︸

=x

= 0

Hence, x is a KKT point with weight vector µ.

Let on the other hand x be a KKT point, i.e., there exists by Theorem 1 a convex weight

α ∈ Rk such that

0 =

k∑

i=1

αi∇fi(x) = 2

k∑

i=1

αix

︸ ︷︷ ︸

=x

−2

k∑

i=1

αia
i,
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and we obtain x =
∑k

i=1 αia
i ∈ S. Hence, for each KKT point the associated weight

vector is simply the weight vector within the simplex. The preimage F̃−1(0) is thus given

by

F̃−1(0) =

{

(x, α) : x =

k∑

i=1

αia
i, αi ≥ 0, i = 1, . . . , k,

k∑

i=1

αi = 1

}

(6)

Since further the Pareto set is equal to the set of KKT points in case the problem is

convex (e.g., [2]) we have that the Pareto set of MOP (1) is given by S.

For the special case n = 1, k = 2, a1 = 0, and a2 = 2 one obtains

F : R→ R2

F (x) = [x2, (x− 2)2]T ,

(7)

which is also known as Schaffer’s problem [11]. Figure 2 shows the objective functions

and the Pareto front of the problem. The Pareto set is given by the interval P = [0, 2]

and the Pareto front is a curve connecting the points [0, 4]T and [4, 0]T .

3 Mathematical Programming Techniques for MOPs

In this section we present the most common mathematical programming techniques for

the numerical treatment of MOPs. Since we assume that the models related to space

mission design are non-linear we restrict ourselves to methods for such models.

3.1 Scalarization Methods

One way to to attack MOPs is to use scalarization methods, i.e., to transform the original

problem (1) into a scalar optimization problem (SOP) of the form
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min
x∈Q

fα(x), (8)

where fα : Q→ R and α ∈ Rk is an external parameter. Note that for a given value

of α the solution of (8) is typically a single point rather than a (k − 1)-manifold. Finite

size Pareto set/front approximations can hence only be obtained by choosing a clever

sequence of optimization problems of the form (8) which in turn calls for a suitable set

A := {α(1), . . . , α(m)} ⊂ Rk of external parameters. For problems of that kind we refer

e.g. to [12, 1, 13, 14, 15, 16].

The general advantage of the use of scalarization methods is that they can be tackled with

any solver for SOPs (i.e., ones that ‘fit’ to be problem at hand, for instance, methods that

do not exploit gradient information). On the other hand, it is not always ensured that

the resulting set of minimizers forms a suitable approximation of the Pareto set/front

(e.g., in terms of the spread along the set of interest).

Weighted Sum Method The Weighted Sum Method is probably the oldest scalar-

ization method [17]. The underlying idea is to assign to each objective a certain weight

αi ≥ 0, and to minimize the resulting weighted sum. Given problem (1), the Weighted

Sum Problem can be stated as follows:

min fα(x) :=
k∑

i=1

αifi(x)

s.t. x ∈ Q

(9)

The main advantage of the Weighted Sum Method is that one can expect to find

Pareto optimal solutions, to be more precise:

Theorem 2 ([17]). Let αi > 0, i = 1, . . . , k, then a solution of (9) is Pareto optimal.

For instance, for MOP (1) for a given vector α the solution of (9) is given by x∗
α =

∑k

i=1 αia
i as the discussion in Example 1 shows. One can show that for problems where
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the Pareto front is convex all points on this set can be reached by solving (9) for a

particular value of α (compare also to Figure 3).

On the other hand, the proper choice of α—though it appears to be intuitive at first

sight—is in certain cases a delicate problem. Further, the images of (global) solutions of

(9) cannot be located in parts of the Pareto front where it is concave. That is, not all

points of the Pareto front can be reached when using the Weighted Sum Method which

represents a severe drawback. For more details we refer to [1, 18].

Weighted Tchebycheff Method The aim of the Weighted Tchebycheff Method is to

find a point those image is as close as possible to a given reference point Z ∈ Rk. For the

distance assignment the weighted Tchebycheff metric is used: Let α ∈ Rk with αi ≥ 0,

i = 1, . . . , k, and
∑k

i=1 αi = 1, and let Z = [z1, . . . , zk]
T , then the Weighted Tchebycheff

Method [19] reads as follows:

min
x∈Q

max
i=1,...,k

αi|fi(x)− zi| (10)

Note that the solution of (10) depends on Z as well as on α. The main advantage of the

Weighted Tchebycheff Method is that by a proper choice of these vectors every point on

the Pareto front can be reached. See Figure 4 for an example.

Theorem 3. The solution of (10) is weakly Pareto optimal if α ∈ Rk
+.

Theorem 4. Let x∗ ∈ Q be Pareto optimal. Then there exists α ∈ Rk
+ such that x∗ is a

solution of (10), where Z is chosen as the utopian vector of the MOP.

The utopian vector F∗ = [f ∗
1 , . . . , f

∗
k ]

T of a MOP consists of the minimal objective

values f ∗
i of each function fi.

On the other hand, the proper choices of Z and α might also present a delicate problem

for a particular problem. More details on this method can e.g. be found in [1, 20].

ǫ-Constraint Method The idea of the ǫ-constraint Method [21] is to select one ob-

jective fi, i ∈ {1, . . . , k}, and to treat all the others as constraints by imposing upper
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bounds on the function values. This leads to the following optimization problem:

min
x∈Q

fi(x)

s.t. fj(x) ≤ ǫj ∀j ∈ {1, . . . , k}\{i}

(11)

Theorem 5. A vector x∗ ∈ Q is Pareto optimal if and only if it is a solution of the ǫ-

constraint problem (11) for every i = 1, . . . , k, where ǫj = fj(x
∗) for j ∈ {1, . . . , k}\{i}.

Hence, using the ǫ-constraint Method, it is possible to find every Pareto optimal

solution regardless of the form of the Pareto front. Similar to the other scalarization

methods presented above, the proper choice of the values of ǫ may get difficult.

Figure 5 shows the solution of

min
x∈Q

f1(x)

s.t. f2(x) ≤ ǫ2

(12)

for a bi-objective problem.

Normal Boundary Intersection (NBI) The NBI method [12] computes finite size

approximations of the Pareto front in the following two steps (compare to Figure 6):

First, the convex hull of individual minima (CHIM) is computed which is the (k − 1)-

simplex connecting the objective values of the minima of each objective. In the second

step, points yi from the CHIM are selected and the point z∗i ∈ Q is computed such that

the image F (x∗
i ) has the maximal distance from yi in the direction that is normal to the

CHIM and points toward the origen.

To be more precise, let x∗
i be a global minimizer of the i-th objective, let F∗

i := F (x∗
i ),

and denote

Φ := [F∗
1, . . . ,F

∗
k] ∈ Rk×k. (13)

Then the CHIM is defined as

CHIM = {Φω : ω ∈ Rk :
k∑

i=1

ωi = 1, ωi ≥ 1, i = 1, . . . , k}. (14)
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The optimization problem in the second step is called the NBI-subproblem. Given an

initial value Φω =
∑k

i=1 ωiF
∗
i and the direction η ∈ Rk which is orthogonal to the CHIM

and points toward the origin, the NBI-subproblem can be stated in mathematical terms

as follows:

max
x,l

l

s.t. F (x0) + lα = F (x)

x ∈ Q

(15)

The usage of the scalarization (15) can be helpful since there are scenarios where the

aim is to steer the search in a certain direction given in objective space (e.g., [22, 23, 24]).

On the other hand, solutions of (15) do not have to be Pareto optimal [12].

Further methods that utilize search directions in objective space can be found in [25, 26,

27, 28, 12, 29, 30].

3.2 Pareto Descent Methods

Another prominent way to perform a local search toward the set of optimal solutions is

to use descent directions. A vector ν ∈ Rn is called a descent direction if a search in

this direction leads to an improvement of all objective values. To be more precise, ν is a

descent direction of (1) at a point x ∈ Rn if there exists a t̄ ∈ R+ such that

F (x+ tν) <p F (x), ∀ t ∈ (0, t̄). (16)

If all objectives of the MOP are differentiable, then (16) is equivalent to

∇fi(x)
Tv < 0, i = 1, . . . , k. (17)

Hence, if such a descent direction ν is given at a point x, a further candidate solution

xnew that dominates x can easily be found by a line search, i.e., by setting
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xnew = x + tν, (18)

where t ∈ R+ is a (sufficiently small) step size.

In the following we present the approach of Schäffler, Schultz and Weinzierl [31] for

the computation of a descent direction for unconstrained MOPs. For further ways to

compute descent directions we refer e.g. to [13, 32, 33, 30, 34, 35].

Theorem 6 ([31]). Let problem (1) be given and the map q : Rn → Rn be defined by

q(x) =
k∑

i=1

α̂i∇fi(x), (19)

where α̂ is a solution of

min
α∈Rk







∥
∥
∥
∥
∥

k∑

i=1

αi∇fi(x)

∥
∥
∥
∥
∥

2

2

;αi ≥ 0, i = 1, . . . , k,
k∑

i=1

αi = 1






. (20)

Then the following statements hold.

(a) Either q(x) = 0 or −q(x) is a descent direction.

(b) For each x̂ ∈ Rn, there exists a neighborhood N(x̂) and a constant Lx̂ ∈ R+
0 such

that

‖q(x)− q(y)‖2 ≤ Lx̂‖x− y‖2, ∀ x,y ∈ N(x̂). (21)

Note that if q(x) = 0, then x is a KKT point. Thus, the solution of the initial value

problem

x(0) = x0 ∈ Q

ẋ(t) = −q(x(t)), t > 0

(22)

from an initial solution x0 ∈ Q leads to a KKT point. Note that the computation of q
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also contains a test for a first order necessary optimality which can be used as a stopping

criterium for the numerical realization of this method.

3.3 Multi-objective Continuation Methods

Since the set of interest, the Pareto set/front, forms at least locally a manifold, it can

make sense to perform a search along this set once locally optimal solutions are detected.

Such methods are particularly advantageous if the Pareto front is connected.

In the following we describe the core of the predictor-corrector (PC) methods as described

in [36] for general implicitly defined manifolds and in [8] in the context of multi-objective

optimization. Related methods and further adaptions to the context of multi-objective

optimization can e.g. be found in [37, 38, 30, 39].

Crucial for the PC methods presented in [36, 8] is the map F̃ as described in Equation

(5) that transforms problem (1) into a root finding problem: The set of interest is now

M := {(x, α) ∈ Rn+k | F̃ (x, α) = 0}. (23)

Before we come to the description of PC methods we state some technichal details.

The tangent space of M at (x, α) ∈M is given by

T(x,α)M = kerJF̃(x, α) = {u ∈ Rn+k | JF̃(x, α)u = 0}, (24)

where JF̃(x, α) denotes the Jacobian of F̃ at (x, α) and kerA the kernel of a matrix A.

Well-spread tangent vectors can e.g. be obtained by computing a QR-factorization (e.g.,

[5]) of JF̃(x, α)T :

Let Q = (Q1|Q2) ∈ R(n+k)×(n+k) be an orthogonal matrix where Q1 ∈ R(n+k)×(n+1),

Q2 ∈ R(n+k)×(k−1), and R =
(
R1

0

)
∈ R(n+k)×(n+1), where R1 ∈ R(n+1)×(n+1) is a right
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upper triangular matrix such that

JF̃(x, α)T =
















∑k

i=1 αi∇
2fi(x) 0

∇f1(x)
T 1

...
...

∇fk(x)
T 1
















= QR. (25)

Hereby, ∇2f(x) ∈ Rn×n denotes the Hessian of f at x. Then the columns of Q2 build an

orthonormal basis of T(x,α)M .

Now we are in the position to formulate the general idea of PC methods together

with a common implementation: Given a point (x∗, α∗) ∈M , further points along M are

computed in the following two steps (compare to Figure 7):

(P) Predict a set {p1, . . . ,ps} ⊂ Rn+k of distinct and well-distributed points that are

near both to (x∗, α∗) and M . This can e.g. be done by using (25), i.e., by choosing

pi = (x∗, α∗) + tiqi, (26)

where ti ∈ R\{0} is a step size and qi the i-th column vector of Q2.

(C) for i = 1, . . . , s

Starting with the predicted point pi, compute by (typically few) iterative steps

an approximated element (x(i), α(i)) ∈M , i.e., such that F̃ (x(i), α(i)) ≈ 0. This

can e.g. be done by applying root finding methods such as the Gauss-Newton

method (e.g., [5]) to F̃ .

Note that in the above realizations one needs to compute or approximate the Hessians

of the objectives. Continuation methods that only require the gradient information can

be found in [30, 39, 40].

14



3.4 Set Oriented Approaches

Next to the point-wise iterative methods described above there exist other approaches

that generate an entire set in each iteration step with the aim that the resulting sequence

of sets converges to the Pareto set in a suitable sense (e.g., in the Hausdorff sense).

Subdivision techniques [41, 42, 43, 44, 45, 46] start with a compact subset Q0 of the

domain, represented by a collection of n-dimensional boxes. Each box gets subdivided into

smaller sub-boxes and after certain conditions it is decided if a box is promising – i.e., if it

could contain a part of the Pareto set—or not. The ‘unpromising’ boxes are deleted from

the collection while the process—subdivision and selection—is continued successively on

the remaining boxes until the desired granularity of the boxes is reached. In this manner,

the sequence Qi of box collections obtained in each iteration step converges toward the

set of interest.

Figure 8 shows a numerical result of the algorithm DS−Subdivision [43] applied on the

bi-objective problem

f1, f2 :R2 → R
f1(x) = (x1 − 1)4 + (x2 − 1)2,

f2(x) = (x1 + 1)2 + (x2 + 1)2

(27)

The Pareto set P of MOP (27) is a curve connecting the points [−1,−1]T and [1, 1]T .

After 20 iteration steps the resulting box collection Q20 already forms a tight covering of

P.

Similar in spirit are methods based on interval analysis (e.g., [47, 48, 49, 50]). These

interval analysis techniques ensure that the box collection is always a superset of the

Pareto set, i.e., that no sub-box that contains a part of P is rejected wrongly, leading to

reliable numerical computations of the Pareto set.

Further, there exist cell mapping techniques [51] that can be seen as the predecessors of

the subdivision techniques. Methods of that kind divide the domain into a set of small
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n-dimensional cells and perform a cell-to-cell mapping of a given dynamical system g. In

doing so, a global view on the dynamics of g on the domain is obtained. If, for instance,

multi-objective descent directions are chosen as dynamical systems, one can compute the

Pareto set [52] or the set of approximate solutions [53] of a given MOP.

Common to all the methods is that they are restricted to a moderate dimension of the

parameter space (say, n ≤ 20) and to a low number of objectives (k < 5).

4 Evolutionary Multi-objective Optimization

Most real-world multi-objective optimization problems are difficult to solve. Specific

algorithms to solve this type of problems can be so specialized, that they can only be

applied to a small range of problems, or they can be instead, more general, but rather

inefficient. Some general search heuristics might require high computational time and

will eventually fail if the problem’s search space is very large, i.e., large scale problems

considering the decision variable space. Also, hill-climbing algorithms face problems when

searching for optimal solutions in cases in which the problem’s space is multimodal2, since

in such cases, they will get stuck in local optima most of the time.

In order to tackle difficult multi-objective optimization problems with large, multi-

modal and accidented search spaces, a number of metaheuristics have been proposed.

From the many metaheuristics currently available, multi-objective evolutionary algo-

rithms (MOEAs) are perhaps the most popular [54]. MOEAs are inspired by nature

and one of their main advantages, as compared to traditional (i.e., mathematical pro-

gramming) methods, is that they need very little problem specific knowledge and can,

therefore, be applied to a broad range of problems. Because of their stochastic nature,

MOEAs can be applied to discontinuous, non-differentiable and possibly noisy and/or

highly nonlinear search spaces. The following are some of the reasons, for which MOEAs

are well suited for complex optimization problems:

• They are improvement-driven. MOEAs are designed to continuously improve the

2Multimodal search spaces contain not only one global optimum but many suboptima, which might
deceive a simple search algorithm.
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fitness function defined in the problem.

• MOEAs are inherently quantitative and, therefore, they are well suited for param-

eter optimization.

• MOEAs allow the incorporation of a wide variety of extensions and constraints than

cannot be provided in traditional methods.

• MOEAs are robust, balancing, at the same time, efficiency and efficacy.

• MOEAs are easily coupled to other optimization techniques. For example, the use

of memetic algorithms allows the combination of global and local search processes.

MOEAs are stochastic search techniques which are inspired on nature, namely on

Darwin’s evolutionary theory. The basic idea of an evolutionary algorithm is that the

fittest individuals of a population are given a higher probability of reproducing, with the

aim that their offspring can improve their fitness values. Over time, the population is

expected to converge to a set of individual with high fitness values. Evolutionary algo-

rithms also incorporate a mutation operator, which allows to explore unknown regions of

the search space, and aims to avoid getting trapped in local optima. MOEAs incorporate

two main mechanisms that are not present in single-objective evolutionary algorithms:

(1) a selection mechanism that normally, but not necessarily, incorporates the definition

of Pareto optimality and (2) a density estimator, which blocks the selection mechanism

and allows the generation of as many different solutions as possible. A MOEA follows

the basic scheme shown in Algorithm 1.

In the first step, a population of random solutions is created, and then the MOEA

generational loop is entered. At each generation, the individual’s fitness Φi is obtained

which is further used to assign a probability of selection pi. Individuals with higher

fitness values will receive higher selection probabilities, and will be able more times to

participate in the creation of offspring (descendants) for the next generation. From

the selected parents, an offspring population is created by applying the Evolutionary

Operators (EVOPs), namely crossover and/or mutation. In all MOEAs, descendants

17



Algorithm 1 Basic MOEA
1: t← 0
2: Generate an initial population P (t = 0)
3: while Stopping criterion not met do
4: Evaluate the fitness Φi for each individual in P (t), based on Pareto dominance,

crowding distance, or any other metric.
5: Compute the probability selection pi for each individual in P (t) based on its fitness

value Φi.
6: Select the fittest P ′(t) as parents from P (t)
7: Apply the Evolutionary Operators (EVOPs) of crossover and mutation to create

an offspring population P (t+ 1).
8: From the populations P (t) and P (t+1), select the best individuals to pass to the

next generation.
9: t← t + 1
10: end while

can be imperfect clones of the parents with small variations (this corresponds to the

naturally occurring mutations in nature), or the descendants are a combination of multiple

parents (this corresponds to the sexual reproduction in nature) or both. Finally, from

the populations of parents and offspring, a selection process is performed, allowing the

best individuals, measured in terms of Pareto dominance or other related metric, to pass

to the next generation.

MOEAs can be classified in several ways [54]. However, for the purposes of this

chapter, we present a simple high-level classification that considers only three types of

MOEAs: (a) Non-Pareto-based, (b) Pareto-based, and (c) Indicator-based. The first

group contains MOEAs that do not adopt the concept of Pareto optimality in their

selection mechanism, whereas the second comprises MOEAs that adopt Pareto optimality

in their selection mechanism. Finally, the third group considers more recently developed

MOEAs which adopt a performance measure in their selection process.

4.1 Non-Pareto based algorithms

Some of the most popular non-Pareto-based MOEAs are the following:

• Lexicographic method: The user ranks the objectives of the problem in a de-

creasing order and the optimization proceeds from higher to lower order objectives,

one at a time. Once an objective is optimized, the aim is to improve as much as
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possible the following objective(s) without decreasing the quality of the previous

one(s) [54].

• Aggregating functions: All the objectives are added up into a single (scalar)

value which constitutes the objective to be optimized. i.e. f̄ =
∑k

i=1 ωifi(x), where

ωi ≥ 0, i = 1, 2, . . . , k are the weighting factors representing the decision maker’s

opinion for each objective (i.e., objective importance). Since objectives tend to

be defined in very different ranges, a normalization is normally required. Also,

weights tend to be assigned to each objective in order to define preferences from

the user [54]. Varying the weights during the run allows, in general, the generation

of different nondominated solutions in one run [55, 56]. Figure 9 illustrates the

aggregating function approach.

• Population-based methods: A number of sub-populations (usually as many

as the number of objective functions of the problem) are generated from a main

population of an EA. Each sub-population optimizes a single objective function

and then all the sub-populations are merged and mixed. The aim is that, when

performing crossover, individuals that are good in one objective will recombine with

individuals that are good in another one [57]. This sort of approach typically misses

good compromises among the objectives because of the way in which individuals

are selected in each population [54].

4.2 Pareto-based approaches

Among the Pareto-based methods, there are two sub-classes: the non-elitist MOEAs

and the elitist MOEAs. Non-elitist MOEAs do not retain the nondominated solutions

that they generate and could, therefore, lose them after applying the evolutionary oper-

ators. Elitist MOEAs retain these solutions either in an external archive or in the main

population.

The most representative non-elitist MOEAs are the following:

• Nondominated Sorting Genetic Algorithm (NSGA): It was proposed by Srini-
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vas and Deb [58]. It is based on several layers of classifications of the individuals.

Before selection is performed, the population is ranked on the basis of nondomina-

tion: all nondominated individuals are classified into one category (with a dummy

fitness value, which is proportional to the population size, in order to provide an

equal reproductive potential for these individuals). To maintain the diversity of the

population, these classified individuals are shared with their dummy fitness values

(i.e., fitness sharing [59] is adopted). Then, this group of classified individuals is

ignored and another layer of nondominated individuals is considered. The process

continues until all individuals in the population are classified. Figure 10 illustrates

the Pareto ranking and sharing mechanisms used in NSGA.

• Niched-Pareto Genetic Algorithm (NPGA): Proposed by Horn et al. [60].

It uses a tournament selection scheme based on Pareto dominance. The basic

idea of the algorithm is the following: Two individuals are randomly chosen and

compared against a subset from the entire population (typically, around 10% of

the population). If one of them is dominated (by the individuals randomly chosen

from the population) and the other is not, then the nondominated individual wins.

When both competitors are either dominated or nondominated (i.e., there is a tie),

the result of the tournament is decided through fitness sharing [59].

• Multi-Objective Genetic Algorithm (MOGA): This algorithm was proposed

by Fonseca and Fleming [61]. For this approach, the rank of a certain individual

corresponds to the number of individuals in the current population by which it is

dominated plus one. All nondominated individuals are assigned the lowest possible

rank (i.e., one), while dominated ones receive as their rank the number of individuals

that dominate them plus one, i.e. rank(i) = 1 + qi where qi is the number of

individuals that dominate individual i in objective space. Fitness sharing is applied

in objective space in order to obtain a good distribution of solutions along the

Pareto front. Figure 11 illustrates the ranking mechanism used in MOGA.

Among the most popular Pareto-based elitist MOEAs, we have the following:
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• Strength Pareto Evolutionary Algorithm (SPEA): Zitzler and Thiele intro-

duced this MOEA in [62]. It uses an archive containing nondominated solutions

previously found (the so-called external nondominated set). At each generation,

nondominated individuals are copied to the external nondominated set, removing

the dominated solutions. For each individual in this external set, a strength value

is computed. This strength is similar to the ranking value of MOGA [61], since it

is proportional to the number of solutions to which a certain individual dominates.

The fitness of each member of the current population is computed according to

the strengths of all external nondominated solutions that dominate it. The fitness

assignment process of SPEA considers both closeness to the true Pareto front and

even distribution of solutions at the same time. The effectiveness of this approach

relies on the size of the external nondominated set, since such a set participates in

the selection process of SPEA. In fact, since the external nondominated set partic-

ipates in the selection process of SPEA, if its size grows too large, it might reduce

the selection pressure, thus slowing down the search. Because of this, the authors

decided to adopt a technique that prunes the contents of the external nondominated

set so that its size remains below a certain threshold. The approach adopted for

this sake was a clustering technique called “average linkage method” [63].

• Strength Pareto Evolutionary Algorithm 2 (SPEA2): It was proposed by

Zitzler et al. [64] and has three main differences with respect to its predecessor [62]:

(1) it incorporates a fine-grained fitness assignment strategy which, for each indi-

vidual, takes into account both the number of individuals to which it dominates

and the number of individuals that dominate it; (2) it uses a nearest neighbor den-

sity estimation technique which guides the search more efficiently, and (3) it has an

enhanced archive truncation method that guarantees the preservation of boundary

solutions.

• Pareto Archived Evolution Strategy (PAES): This algorithm was introduced

by Knowles and Corne [65]. PAES consists of a (1+1) evolution strategy (i.e., a

single parent that generates a single offspring) in combination with a historical
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archive that records the nondominated solutions previously found. This archive is

used as a reference set against which each mutated individual is compared. Such a

historical archive is the elitist mechanism adopted in PAES. However, an interesting

aspect of this algorithm is the method used to maintain diversity which consists

of a crowding procedure that divides objective space in a recursive manner. Each

solution is placed in a certain grid location (see Figure 12) based on the values

of its objectives (which are used as its “coordinates” or “geographical location”).

The archive is fixed in size, and once its upper bound is reached, a new generated

solution is inserted and the archive is pruned, by deleting individuals in the most

crowded grid cells.

• Nondominated Sorting Genetic Algorithm II (NSGA-II): This approach was

proposed by Deb et al. [66] as an improved version of the NSGA. In the NSGA-

II, solutions are ranked using a nondominated sorting scheme, and the density

of solutions surrounding a particular solution in the population is estimated by

computing the average distance of two points on either side of this solution along

each of the objectives of the problem. This value is the so-called crowding distance

(see Figure 13). During selection, the NSGA-II uses a crowded-comparison operator

which takes into consideration both the nondomination rank of an individual in the

population and its crowding distance (i.e., nondominated solutions are preferred

over dominated solutions, but between two solutions with the same nondomination

rank, the one that resides in the less crowded region is preferred). The elitist

mechanism of the NSGA-II consists of combining the best parents with the best

offspring obtained (i.e., a (µ+ λ)-selection).

In general, MOEAs have two main goals: (i) to produce approximations that minimize

the distance to the true Pareto-optimal set, and (ii) to maximize diversity along the Pareto

front (i.e., to produce solutions that are spread along the Pareto front).

In the most popular MOEAs, these two goals are tackled using a selection mechanism

based on Pareto optimality and a density estimator, which is responsible for maintaining

different solutions in the population of a MOEA. The most popular density estimators

22



include the use of fitness sharing [59] (which penalizes solutions that are too close either

in decision variable space or in objective function space), clustering [62], crowding [66],

entropy [67] and adaptive grids [65].

4.3 Indicator-based algorithms

A relatively recent trend regarding the design of MOEAs has been the use of a selection

mechanism based on a performance indicator. These MOEAs are referred to as Indicator-

based MOEAs. Next, we describe two algorithms (IBEA and SMS-EMOA) that belong

to this class:

• Indicator-Based Evolutionary Algorithm (IBEA): It was proposed by Zitzler

and Künzli [68]. The main idea of this algorithm is to first define the optimization

goal in terms of a binary performance indicator, and then to directly use the value

of this indicator in the selection process. This MOEA can be considered as a general

indicator-based approach, since any binary performance indicator can be used in

the fitness assignment function for each of the solutions in the current population.

The fitness function definition is:

Fitness(x) =
∑

y∈P\{x}

−e−I({x},{y})/κ (28)

In equation (28), P is the actual population and κ is a scaling factor which needs

to be defined by the user and depends on the problem being solved. Also, this

fitness function definition requires that the binary quality indicator I({x}, {y}) be

dominance preserving3. Next, we present the formal definition for a dominance

preserving binary quality indicator.

Definition 3. A binary quality indicator I({x}, {y}) is denoted as dominance pre-

serving if (i) x ≺ y ⇒ I({x}, {y}) < I({y}, {x}), and (ii) x ≺ y ⇒ I({z}, {x}) ≥

I({z}, {y}) for all x , y , z ∈ X .

3Some binary quality indicators with this property can be found in [69].
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With this condition, the fitness assignment scheme is also Pareto-compliant [69].

The fitness assignment mechanism tries to rank the population members according

to their usefulness, regarding the reformulated optimization goal, i.e., to maxi-

mize/minimize the performance indicator. In summary, the proposed fitness func-

tion measures the “loss in quality” in the binary quality indicator if a solution is

removed from the actual population.

In its basic form, IBEA performs binary tournaments for mating selection, and

implements environmental selection by iteratively removing the worst individual

from the population, in terms of the binary quality indicator measure, and up-

dating the fitness values of the remaining individuals in the population. In their

proposed approach, its authors make use of the binary additive ǫ-indicator Iǫ+ and

the Hypervolume inidicator IHV . One particular aspect of IBEA is that for both,

mating selection and environmental selection processes, comparisons are made in a

pairwise sense, reducing in consequence the computational overhead in computing

the binary indicator values.

• S-Metric Selection - Evolutionary Multi-Objective Algorithm (SMS-EMOA):

It was proposed by Beume et al. [70]. For this algorithm the hypervolume (or S-

Metric) contribution is used in the environmental selection process. SMS-EMOA is

a steady state algorithm in which only one solution is created at a time and inserted

into the actual population for performing the environmental selection. Then, for

each solution in the extended population, its contribution to the hypervolume mea-

sure is computed as the difference of the hypervolume measure with and without

it. This difference is assigned as a fitness value to each solution in the population:

Fitness(x) = IHv(P )− IHv(P\{x}) (29)

In equation (29), P corresponds to the extended population, i.e., including the

newly generated solution. Since the maximization of the hypervolume measure

attains both, the goals of convergence towards the Pareto-optimal solutions and
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maximizes the spread of solutions along the Pareto-front approximation [71, 72],

the solution with the lowest contribution to the Hv measure is then discarded.

In Figure 14, the basic ranking mechanism of solutions used in SMS-EMOA is

illustrated. In this figure the number close to each solution corresponds to its rank,

based on the hypervolume contribution, which is depicted as the shaded area to

the right of each solution. Also, in this figure it can be observed that the Pareto

extreme solutions receive the first k higher ranks (k is the number of objectives in

the MOP) in order to avoid losing them.

At the beginning of the evolutionary process, many solutions in the current pop-

ulation will normally be dominated and, therefore, they do not contribute to the

hypervolume measure of the Pareto-front approximation. For these cases, the SMS-

EMOA algorithm relies on the Pareto ranking approach used in the NSGA-II. The

hypervolume measure contribution is computed for each rank layer of solutions.

In consequence, discarded solutions will be selected as the less contributing in the

hypervolume measure but in the highest rank layer.

4.4 Use of Decomposition

Another relatively recent trend regarding the design of MOEAs has been the use of

scalarization methods. The most representative approach within this class is the multi-

objective evolutionary algorithm based on decomposition (MOEA/D) [73]. This MOEA

is based on the use of a decomposition process that transforms a MOP into a number

of scalar optimization problems (SOPs). Each SOP (or subproblem), is a (linearly or

nonlinearly) weighted aggregation of the individual objectives. Neighborhood relations

among these subproblems are defined based on the distances between their aggregation

weight vectors. Thus, subproblem i is a neighbor of subproblem j if the weight vector of

subproblem i is close to that of subproblem j. Each subproblem is optimized in MOEA/D

by using information mainly from its neighboring subproblems. Figure 15 illustrates the

MOEA/D approach.

In a simple version of MOEA/D, each individual subproblem keeps one solution in
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its memory, which could be the best solution found so far for the subproblem. It then

generates a new solution by applying evolutionary operators on several solutions from its

neighboring subproblems, and updates its memory if the new solution is better than the

old one for the subproblem. A subproblem also passes on its newly generated solution to

some (or all) of its neighboring subproblems, which will update their current solutions if

the received solution is better. A major advantage of MOEA/D is that scalar objective

local search can be used in each subproblem in a natural way since its task is optimizing

a scalar objective subproblem.

4.5 Other metaheuristics

There are several other multi-objective metaheuristics available. Two of them are briefly

discussed next:

• Particle Swarm Optimization (PSO): This metaheuristic is inspired on the

choreography of a bird flock which aim to find food [74]. It can be seen as a

distributed behavioral algorithm that performs (in its more general version) a mul-

tidimensional search. The implementation of the algorithm adopts a population of

particles, whose behavior is affected by either the best local (i.e., within a certain

neighborhood) or the best global individual. PSO has been successfully used for

both continuous nonlinear and discrete binary optimization [75]. For extending

PSO to deal with MOPs, the main issues are: (1) how to select particles (to be

used as leaders) in order to give preference to nondominated solutions over those

that are dominated?, (2) how to retain the nondominated solutions found during

the search process in order to report solutions that are nondominated with respect

to all the past populations and not only with respect to the current one?, and 3)

how to maintain diversity in the swarm in order to avoid convergence to a single so-

lution? Normally, mechanisms very similar to those adopted with MOEAs (namely,

Pareto-based selection and external archives) have been adopted in multi-objective

particle swarm optimizers (MOPSOs). However, the addition of other mechanisms

(e.g., a mutation operator) is also relatively common in MOPSOs. An important
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number of multi-objective versions of PSO currently exist (see for example [76]),

and this remains as a very active research area.

• Differential Evolution (DE): This metaheuristic was proposed by Kenneth Price

and Rainer Storn [77, 78] to optimize problems over continuous domains. The core

idea of this approach is to use vector differences for perturbing a vector popula-

tion, and it aims to estimate the gradient in a region (rather than in a point).

DE performs mutation based on the distribution of the solutions in the current

population. In this way, search directions and possible step sizes depend on the

location of the individuals selected to calculate the mutation values. Several DE

variants are possible, and they differ in the way in which the parents are selected

and in the form in which recombination and mutation takes place (see [78] for more

information on DE). The high success of DE in single-objective optimization has

made it an interesting candidate for solving MOPs. The main issues for extending

DE to multi-objective optimization are very similar to those of PSO (i.e., how to

select parents, how to store nondominated solutions and how to maintain diversity

in the population). As with MOPSOs, very similar mechanisms to those adopted

by MOEAs have been used with multi-objective differential evolution (MODE). A

variety of MODE approaches currently exist (see for example [79]), and this also

remains as a very active research area.

Although many other MOEAs exist (see for example [80, 81]), it is not the intention

of this chapter to be comprehensive. The interested reader may refer to [54, 82, 83] for

more information on this topic. The main advantages of MOEAs are their generality,

ease of use and the fact that they require little or no specific domain information to

operate. Also, they are less susceptible to the specific features of the problem (e.g., shape

or continuity of the Pareto front) than traditional mathematical programming techniques

[54].
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5 MOO for Space Mission Design Problems

In the context of Space Exploration, recent initiatives involve developing a robust and

flexible capability to visit potential destinations. A Lunar Gateway Station near L1, a

point of balance between the Earth and the Moon has been proposed as a 21st century hub

for science and a jumping off point for deep space missions, eventually to land humans on

Mars. Space missions to reach such a destination are complex and challenging to design,

requiring new and unusual kinds of orbits to meet their goals, orbits that cannot be found

by classical approaches to the problem [84, 85, 86]. Classical approaches to spacecraft

trajectory design have been quite successful in the near past, but these missions were

costly in terms of fuel, e.g., large burns for orbit entry are required. The minimization of

fuel (i.e., energy) requirements for a spacecraft’s trajectory is important for the feasibility

of any deep space mission. An unreasonably high fuel requirement can render a mission

infeasible.

In recent years, pressure to reduce the cost of interplanetary missions has derived in

designing missions with shorter flight times, smaller launch vehicles, and simpler flight

systems. This situation has increased interest in designing spacecraft systems with con-

tinuous low propulsion systems. Additionally the need to optimize the continuous thrust

profile required in these systems, offers new challenges to trajectory designers. Traditional

techniques used in interplanetary mission trajectory design needed only a model with a

series of discrete events: launch and planetary flyby times (including characteristics of

the flyby trajectory), plus any deep space maneuvers which may be required. Even this

discrete case is not a trivial one when complicated multiple gravity assist trajectories

are considered, but the additional requirement of optimizing a continuous thrust profile

severely constrains, and in many cases exceeds the capability of traditional techniques.

The goal of trajectory design is to find a transfer trajectory, such as the one shown in

Figure 16, which takes the spacecraft from a prescribed initial orbit (Earth’s orbit in the

example) to a prescribed final orbit (Mars’ orbit in the example) using thrust controls

during the flight and a different times. To effect this transfer, propulsion systems are

used. In the low thrust propulsion system case, a small continuous control can operate at
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any time. In the Figure 16 several transfer orbits are shown, each one requiring different

energy budgets (
∑n

i=1∆Vi), as well as different transfer times. It can be anticipated that

the shortest trajectory, will require the highest energy budget, applied in a lesser number

of high velocity impulses ∆Vi; while the longest trajectory will require the lowest energy

budget, applied in a higher number of low velocity impulses ∆Vi. Both these conditions

give rise to a Multiobjective Optimization Problem, which have been recently solved using

several techniques. In this section, we briefly summarize some research works for which

MOO techniques have been used to solve space mission design problems.

- Hartman et al. [85] and Coverstone-Carroll et al. [86] presented the application

of a multi-objective evolutionary algorithm (MOEA) to the design of low-thrust

spacecraft trajectories. The authors considered two study cases: a) Earth-Mars

rendevouz [85, 86], and b) Earth-Mercury rendevouz [86]. The authors adopted

the Nondominated Sorting Genetic Algorithm (NSGA) [58] and considered three

objectives: i) maximize spacecraft mass delivery at rendevouz, ii) minimize the

spacecraft mission flight time, and iii) maximize the spacecraft heliocentric revo-

lutions. Three constraints were also imposed on the MOP, from which two were

related to the minimum and maximum values for the heliocentric revolutions (i.e.,

they constrain the range value that the third objective can attain). The third con-

straint was the convergence error that results from solving a two-point boundary

value problem (TPBVP), which includes two sets of seven nonlinear and coupled

differential equations each. Since for this case there is no closed form solution, a

numerical approximation, based on the calculus of variations is used. In fact, this

latter process corresponds to an optimization process by itself, since it involves

computing the optimal spacecraft thrust schedule as well as the thrust orientation,

along with the optimal orbit that maximizes the delivered weight at the rendevouz

point, with its specific constraints at launch/rendevouz points as well as along the

transfer orbit. This last optimization process corresponds to the objective function

evaluation, which is computationally intensive, since many of the solutions gener-

ated by the MOEA might not be feasible. The NSGA was hybridized with a local
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search procedure 4 based on a gradient method implemented in NASA’s JPL SEP-

TOP (Solar Electric Propulsion Trajectory Optimization Program) software. So,

the MOEA (NSGA in this case) is used for the global search, and the parameters

obtained for each individual in the population, are used as input parameters for the

SEPTOP software. It is interesting to note that, as reported by Hartmann [87],

after applying the local search, the individuals are not updated in their parame-

ters, but only in their fitness values (i.e., the authors adopt a Baldwinian learning

strategy). Thus, the authors argue that diversity is preserved in the population.

The authors adopt a penalty function to handle the constraints of the problem.

The authors were able to find several families of optimal trajectories for the two

spacecraft missions analyzed, including some novel trajectories.

- Lee et al. [88] addressed a low-thrust orbit transfer from a geostationary orbit to a

retrograde Molnya-type orbit. The challenge in this problem is that it requires to

modify five out of six orbital parameters, which is performed with low-thrust applied

during long periods of time. The authors considered two objectives: i) minimize the

required propellant mass, and ii) minimize the toal flight time. The authors relied

on the Q-law (a Lyapunov feedback control law) theory, which requires the tuning

of 13 control parameters defining the decision vector. Three different MOEAs were

adopted: 1) NSGA [58], 2) The Pareto-based Ranking Genetic Algorithm5 (PRGA),

and 3) the Strength Pareto Genetic Algorithm6 (SPGA). The results obtained by

these three MOEAs are compared based on two performance measures: the size

of the dominated space, and the coverage of two sets. For each candidate solution

in the MOEA’s population, an optimal orbital transfer was estimated, using the

Q-law, such that it satisfied the orbital’s initial and final boundary conditions,

while minimizing the total flight time. Once the schedule and orientation of the

thrust along the orbit are obtained, the required propellant mass, and the flight

4In Hartmann [87] the approach is called NSMA which stands for Non-dominated Sorting Memetic
Algorithm.

5The description of this algorithm provided by the authors corresponds to that of the Multi-Objective
Genetic Algorithm (MOGA) [61].

6This is really the Strength Pareto Evolutionary Algorithm (SPEA) [62].
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time, allow to evaluate the two objective functions previously indicated. From

their comparative study, the authors concluded that both NSGA and SPGA had

a similar performance with respect to the measures adopted. These two MOEAs

outperformed PRGA. It is worth noting, however, that the authors performed only

three runs with each algorithm, because of the high computational cost involved in

the evaluation of the objective functions of this problem.

- Luo et al. [89] solved the problem of rendez-vous trajectory parameter optimiza-

tion. In this case, three objective functions were considered: (i) the time of flight for

the spacecrafts to accomplish the rendez-vouz, (ii) the total velocity characteristic

which is a function of multiple impulses performed by the chaser spacecraft, and

(iii) the trajectory safety performance index, which is a measure of the distance the

chaser spacecraft attains in “free path” with respect to the target spacecraft, in case

the thrust control ceases. A simplified model (linearized) was adopted for solving

the trajectory of the rendez-vouz problem. The problem consisted of a decision

vector that could vary in size due to the number of impulses considered in the op-

timization problem. In the application problems presented, the authors used either

three or four impulses, originating decision vectors of seven or eight variables, re-

spectively. Constraints were imposed on the times of applying the impulse and the

interval time between two consecutive impulses. The authors adopted the Nondom-

inated Sorting Genetic Algorithm-II (NSGA-II) [66] with real-numbers encoding,

arithmetical crossover and nonuniform mutation. Binary tournament selection was

adopted, making the solution with the lower front number the winner of the tour-

naments. If solutions were from the same front, then the solution with the highest

crowding distance was selected as the winner. The original constraint-handling

mechanism incorporated into the NSGA-II was adopted without any changes. The

evaluation of the objective functions was obtained by an iterative method, i.e., a set

of differential equations, governing the spacecraft motion. The example problems

presented by the authors were for three and four impulses rendez-vouz trajectory

optimization. In each case, 10 runs were performed and a “global” Pareto front was
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constructed considering the Pareto fronts obtained in each execution. The authors

did not report the number of nondominated solutions obtained in any case.

- In a similar work, Luo et al. [90] extended their application for the multiple-impulse

rendez-vouz trajectory optimization problem, but in this case using a more sophis-

ticated model (non-linear) for evaluating the objective functions. Additionally,

constraints on the path were included to solve a problem with more realistic opera-

tional conditions. As before, the NSGA-II was adopted [66] with the modifications

previously indicated. The problems that were solved corresponded to a three and

four impulses rendez-vouz trajectory optimization. In both cases, trade-offs were

obtained among the time of flight, the propellant cost, and the trajectory safety

for rendez-vouz missions, with and without path constraints. This information was

useful for identifying multiple solutions from which to select one that met specific

needs.

- Vavrina and Howell [91], presented the design of three different spacecraft missions:

a) Earth-Mars rendevouz, b) Earth-Jupiter rendevouz, and c) Earth-Earth-Jupiter

rendevouz. In all cases, two objectives were considered: i) maximize spacecraft

mass delivery at rendevouz, and ii) minimize the spacecraft mission flight time.

The authors adopted the NSGA-II (as described in [92]) hybridized with a gradient-

based local search approach, for obtaining optimal trajectories for each individual

in the population of the NSGA-II. The local search engine adopted was a calculus-

based method named GALLOP (Gravity-Assist Low-Thrust Local Optimization

Program). The application of the local search operator allowed to apply both

Lamarckian and Baldwinian learning strategies, but in the examples presented by

the authors, a Lamarckian learning strategy was applied only to the feasible so-

lutions obtained by GALLOP. The authors adopted a penalty function to handle

the constraints of the problem. The authors reported finding promising and novel

optimal trajectories, and discussed the benefits of having the trade-offs between the

two objectives previously indicated.
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- Croisard et al [93], and Vasile and Croisard [94] addressed the robust preliminary

and multidisciplinary design for an interplanetary spacecraft mission, namely, the

BepiColombo mission. The robust design considered uncertainties in several design

parameters, and aims at reducing the impact of these on the optimal value for the

design criteria. Unlike other approaches presented above, which make use of the

Taguchi method as the robust design framework, in this case, the authors made

use of Evidence theory [95, 96]. This allows to model both, stochastic and epis-

temic uncertainties (i.e., the authors assume a poor or incomplete knowledge of the

design parameters) [97]. The latter situation is commonly present in the prelimi-

nary design phase of the spacecraft mission considered. The authors considered two

objectives in this case: i) maximize the Cumulative Belief Function (CBF) (i.e, a

measure of the maximum confidence that a design is better than a certain threshold,

in the cost function), and ii) minimize a given cost function, which in the examples

presented, corresponds to minimizing the wet mass (related to the mass of propel-

lant required to perform the low-thrust transfer) of the spacecraft being designed.

The MOEA used by the authors was the NSGA-II [66]. In the solution of robust

design problems, design candidates are not evaluated at fixed values of the design

parameters, but considering uncertainties in them. In this case, three uncertain

parameters were considered with four threshold intervals and a corresponding BPA

(Basic Probability Assignment) each. Thus, for evaluating the CBF, a total of 64

Focal Elements (intersection threshold regions for all the uncertain parameters with

different BPAs each), had to be searched for. In each of these threshold regions, a

local optimizer was used to estimate the maximum of the system’s function. Thus,

if the whole evolutionary process is considered, it is evident that this is a com-

putationally expensive application. Furthermore, the authors reported the use of

a Kriging model for approximating the relation between the spacecraft maximum

thrust and the power to be generated by the solar arrays, with the Delta budget

(∆V ), which is an important value for the objective function evaluation. The au-

thors compared the use of the NSGA-II to a reference (nearly optimal) solution, and
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concluded that their hybrid approach was very useful for estimating the optimum

and for narrowing down the search in the presence of uncertainties.

In similar research work, Vasile and Zuiani [98] and Zuiani and Vasile [99], have

recently proposed an interesting approach based on the collaboration of multiple

agents (MACS). The first approach [98] blends a number of metaheuristics, includ-

ing particle swarm optimization and differential evolution. This approach, has been

succesfully applied to the design of multi-impulse trajectories [98], to the robust de-

sign optimization of low-thrust transfers, and aerocapture manoeuvres [97]. In the

second approach [99], MACS is extended by adding to the action set of each agent;

a first mechanism to perform a local search based on a decomposition method using

the Tchebycheff approach [73]; and a second mechanism for Monotonic Basin Hop-

ping (MBH) steps. These combined mechanisms proved to be very effective and

efficient for solving the multi-gravity assist transfer to Saturn for the Cassini mis-

sion [98], attaining better performance both for convergence and spread of solutions,

as compared to the base MACS approach.

- Schütze et al. [100] addressed the multiobjective design of low-thrust gravity-assisted

trajectories, used for interplanetary misions, as well as for orbital transfers. The

MOP comprised two objectives: i) minimize the propellant mass fraction, and ii)

minimize the flight time of a given trajectory. It is important to remark that the

design of low-thrust space trajectories requires the solution of an optimal control

problem that does not have, in general, a closed form solution. For this latter

problem, the optimization process needs to be initialized with a suitable first-guess

solution. Contraints in the problem are considered both for velocity and trajectory

positions. This situation renders the design space with many infeasible regions. For

tackling this situation, Schütze et al. [100] have proposed a novel technique based on

the pruning of the design space, and the application of a multiobjective optimiza-

tion technique in each subregion. The application problems presented corresponded

to both Earth-Venus-Mercury, and Earth-Venus-Earth-Jupiter orbital transfers.
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- Dellnitz et al. in [101] proposed a novel three-step approach for solving low thrust

space trajectories, specifically for solving flight formation of spacecrafts. In their

approach, the optimization comprised two objectives: i) minimize the time of flight,

and ii) minimize the propulsion effort. The particular problem that they solved con-

sisted of a formation of four spacecrafts to be positioned along the L1,2 halo orbits

between the sun and the Earth. The authors’ proposed approach for solving the

Circular Restricted Three Body Problem (CRTBP) in this case, starts by solving,

in the first phase, the global multiobjective problem, i.e., by finding feasible trajec-

tories but with a relaxed thrust control law, in order to reduce the computational

effort and to find the best possible trade-offs among the objectives. The algorithm

used in this phase corresponded to a space subdivision technique similar to the one

used in [100]. Then, in the second phase, Pareto-optimal solutions obtained in the

previous phase were improved by the use of a local search operator and with a more

accurate thrust control law. Finally, in the third phase, a compromise solution is

selected in order to solve the fomation flight. A major conclusion of this study

is that the pre-selection of trajectories by the global method, even when a simple

control law is used, substantially contributes to improve the quality of the solutions

obtained in the local search phases.

- Coffee et al. [102] adressed a similar problem to the one described by [101] and [103].

In the first research work, the aim was to generate Pareto optimal solutions for ob-

taininig L1,2 halo orbits between the sun and the Earth. In this approach, two main

phases were employed. The first consisted of a global multiobjective optimization

process, but in this case, the authors solved for near-efficient Pareto solutions, ex-

tracting solutions from dynamical channels formed by invariants methods of the

CRTBP problem. Different to the work of [101], this gloabl phase is solved by the

use of Numerical Continuation Methods. From these near-optimal solutions, a lo-

cal search operator is applied to improve the solutions by using an optimal control

method.

- Schütze et al. [104] and Schütze et al. [105] proposed a multiobjective evolutionary
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approach for two different space mission designs. In the first case, a two impulse or-

bital transfer from Earth to the Apophis Asteroid is solved, while in the second case,

a space trajectory for the sequence Earth-Venus-Mercury is solved. In both exam-

ples, two objectives are considered and minimized: i) the propellant mass fraction,

and the trajectory time of flight. In both examples, constraints are considered for

velocities and position along the orbital trajectories. In this research work, authors

proposed a novel approach for finding not only Pareto-optimal solutions, but also

ǫ-efficient solutions. The evolutionary approach is based on the ǫ-NSGA-II, and

includes an archiving technique for storing the ǫ-efficient solutions. The authors

clearly show in these applications, how each part of the Pareto front can belong

to a different launch opportunity, and most important, how the reliability of the

mission design can be increased, i.e., by having a wider launch window for each

mission design example.

- Nakamiya et al. [106], in a recent paper, studied the multiobjective trade-off from

the Earth-to-Moon orbital trajectory for the DESTINY (DEmonstration and Space

Technology for INterplanetary voYage) space mission. One particular aspect of

this study is that a three objective MOP was defined, comprising the following

objectives: i) minimize the transit time in the Van Allen Belt (VAB), ii) minimize

the use of the ion engine, and iii) minimize the TOF to the Moon. Tha aim of the

first objective was to reduce the degradation of the solar array which the electric

propulsion depends on for having a succesful mission. This significantly increased

the trade-off for the objectives and the design parameters, since design constraints

have to account for eclipses, and solar incidences with respect to the solar array.

The MOEA adopted to solve this problem was the NSGA-II, and, of particular

interest is the MODE (Multi-Objective Design Exploration) approach adopted by

the authors [107], which is based on correlation of the design variables with respect

to the design objectives. With this approach, the authors were able to extract some

basic knowledge from the problem that they solved.
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6 Future Research Trends

As we have seen in this chapter, multi-objective space mission design problems are mainly

defined by two objective functions or, in some cases, using three objectives. In this regard,

there are several MOEAs that are designed to perform well with this low number of

objective functions (e.g., NSGA-II). There are, however, certain difficulties that may arise

in these problems. Here, it is important to realize that MOPs comprise a coupled and two-

level optimization problem in which the design space might contain a very high number

of infeasible solutions. For the two-level optimization problem, one level (the upper one)

deals with obtaining the best possible trade-offs among the objectives, whereas the second

level (the lower one) aims to solve an optimal control problem for finding a control law for

a given system of differential equations, describing the paths of the control variables, such

that a certain optimality criterion and constraints are achieved. This latter process is

used to evaluate the objective functions for each design candidate, and its computational

cost is very high, since it is done by iterative methods.

It is worth noticing that several multi-objective techniques have been used in the

solution of multi-objective space mission design problems, ranging from MOEAs [85, 87,

86, 88, 89, 90, 92, 104, 105, 91, 93, 97, 94, 106], Set Oriented Numerics techniques based

on the pruning of the design space [100, 101], Numerical Continuation Methods [102],

to hyperheuristics [98]. Also, it is important to emphasize that most of the applications

discussed in this chapter involve the use of a coupled global-local search optimization

scheme. This is to say that a MOEA is used to find a set of good solutions, at a

coarse granularity, which are further improved using a local search engine (gradient-based

techniques are normally used for this sake). Although memetic MOEAs have existed for

several years in the specialized literature [108], the development of specific MOEA-based

approaches that properly combine a global and a local search scheme in an efficient and

effective way when dealing with mission space design applications, is still an open research

area. Issues such as how to couple the global search engine with the local search engine,

how to handle the constraints (particularly when dealing with large scale applications

having many nonlinear constraints), how to handle mixed problems that combine, for
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example, integer and real-numbers decision variables (which could be handled separately

or at different granularities by the global and the local search engines), how to make the

search less expensive (computationally speaking) are some of the possible paths for future

research in this area.

Another interesting issue that arises in the problems discussed in this chapter is the

size of the feasible region, which can be very small with respect to the entire search

space. In most of the applications reviewed in this chapter, constraints are dealt with,

by using a simple external penalty function. However, many other constraint-handling

approaches exist, which could be very useful in multi-objective optimization, since they

can explore the boundary between the feasible and the infeasible region in a more efficient

way than traditional penalty functions (see for example [109, 110, 111]).It would also be

interesting to design approaches that can efficiently deal with problems having many

nonlinear constraints. In this sense, a promising research area is the development of

efficient and ad-hoc constraint-handling techniques for MOO in space mission design

problems.

Most of the MOEAs that have been used so far for space mission design problems

rely on the use of genetic algortithms (NSGA, NSGA-II, MOGA), and the use of alter-

native metaheuristics (e.g., evolution strategies, ant colony optimization, particle swarm

optimization, differential evolution, etc.) is still scarce. Therefore, this is another inter-

esting research path that could be explored, since some of these metaheuristics are very

effective in certain domains (e.g., differential evolution is known to be very effective in

continuous search spaces). Additionally, the use of more recent MOEAs that rely on the

use of indicator-based selection mechanisms [70], decomposition [73] and relaxed forms

of Pareto dominance [112] is also very scarce and could be another interesting venue for

future research in this area.

The evaluation of the objective functions in space mission design problems is very

costly (computationally speaking). Since MOEAs normally require a relatively high

number of objective function evaluations, it seems natural to think about the use of

parallelism, and, in fact, parallel MOEAs are relatively common in other aeronautical
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and aerospace engineering applications [113]. However, in the applications reviewed in

this chapter, no parallel MOEAs were adopted. This is, clearly, a very promising path

for future research, since a wide variety of parallelization techniques are currently avail-

able for MOEAs, including those based on coevolution [114], cellular computing [115],

GPU-based computing [116] and asynchronous techniques [117].

Another approach that is commonly used for reducing the computational cost in-

volved in a multi-objective optimization task, is the adoption of approximation models

(or surrogates). In this regard, it is important to remark the use of this type of techniques

in the research work of Croisard et al. [93], and Vasile and Croisard [94], which make

use of a Kriging model for approximating the relation between the spacecraft maximum

thrust and the power to be generated by the solar arrays, with the Delta budget (∆V ),

which is an important value for the objective function evaluation. Additionally, and with

the aim of reducing the associated computational cost, Dellnitz et al. [101] applied in

a first phase of the MOP, a relaxed thrust control law for finding Pareto feasible tra-

jectories, which were further improved by the use of a local search operator and with

a more accurate thrust control law. This procedure can be regarded as the use of an

approximation model. In this sense, and for reducing the computational cost in MOO

space mission design problems, a possible research path is the adoption of (probably lo-

cal) surrogate/approximation models for the selection of promising solutions, specially

for distinguishing between feasible and infeasible solutions. Another possible option for

improving efficiency is to adopt knowledge extraction techniques and then reuse this in-

formation during the evolutionary search. Although such techniques have been normally

used in an a posteriori manner (adopting self-organizing maps and ANOVA, as in [106]),

it is also possible to use them as a priori techniques. For example, Gräning et al. [118]

successfully applied this type of approach. The extension of this type of approach to

MOO in space mission designs is, indeed, a very promising research path.
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Figure 1: Hypothetical setting for a bi-objective problem
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Figure 2: Objective functions and Pareto front of MOP (7). The Pareto set for this
problem is P = [0, 2].
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α3 = (0.25, 0.75) and the respective solutions F (x∗

i ), i = 1, 2, 3.
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Figure 8: Box collections for different iteration steps obtained by the algorithm DS-
Subdivision applied on MOP (27) for different iteration steps (taken from [46]).
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Figure 10: Illustration of the Pareto Ranking and Sharing mechanisms used in NSGA
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Figure 11: Illustration of the ranking mechanism used in MOGA
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Figure 12: Illustration of the grid archive used in PAES
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Figure 13: Illustration of the crowding mechanism used in NSGA-II
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Figure 14: Illustration of the ranking mechanism of solutions based on the hypervolume
contribution used in SMS-EMOA.
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Figure 16: Illustration of different orbital transfer trajectories for the Earth-Mars case.

70


