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email: ccoello@cs.cinvestav.mx

Abstract—In this paper, we propose a new selection mech-
anism based on the maximin fitness function and a technique
based on Euclidean distances between solutions to improve the
diversity of the population in objective function space. Our
new selection mechanism is incorporated into a multi-objective
evolutionary algorithm (MOEA) which uses the operators of
NSGA-II (crossover and mutation) to generate new individuals,
giving rise to the so-called “Maximin-Distances Multi-Objective
Evolutionary Algorithm (MD-MOEA)”. Our MD-MOEA is val-
idated using standard test functions taken from the specialized
literature, having three to six objective functions. MD-MOEA
is compared with respect to MC-MOEA (which is based on the
maximin fitness function and a clustering technique), MOEA/D
using Penalty Boundary Intersection (PBI), which is based on
decomposition, and SMS-EMOA-HYPE (a version of SMS-
EMOA that uses a fitness assignment based on the use of an
approximation of the hypervolume indicator). Our preliminary
results indicate that our MD-MOEA is a good alternative to
solve multi-objective optimization problems having both low
dimensionality and high dimensionality in objective function
space because it obtains better results than MC-MOEA and
MOEA/D in most cases and it is competitive with respect
to SMS-EMOA-HYPE (in fact, it outperforms SMS-EMOA-
HYPE in problems of high dimensionality) but at a much lower
computational cost.

I. INTRODUCTION

In the real word, there are many optimization problems
which involve multiple objective functions which must be
satisfied simultaneously. They are called multiobjective op-
timization problems (MOPs) and usually their objectives
are in conflict with each other. In MOPs, the notion of
optimality refers to the best possible trade-offs among the
objectives. Consequently, these MOPs have several solutions
(the so-called Pareto optimal set whose image is called the
Pareto front). The use of evolutionary algorithms for solving
MOPs has become very popular and they are generically
called Multi-Objective Evolutionary Algorithms (MOEAs).
MOEAs have two main goals [1]: (i) to find solutions that
are, as close as possible, to the true Pareto front and, (ii) to
produce solutions that are spread along the Pareto front as
uniformly as possible. Based on their selection mechanism,
MOEAs can be classified in two groups: (i) those that
incorporate the concept of Pareto optimality, and (ii) those
that do not use Pareto dominance to select individuals. Since
Pareto-based MOEAs have several limitations, mainly when

solving MOPs with many objective functions,1 MOEAs of
type (ii) have become relatively popular in recent years.

SMS-EMOA [3], [4] and MOEA/D [5] are two well-
known MOEAs of type (ii). However, both have some disad-
vantages. SMS-EMOA uses Pareto ranking (as in NSGA-II)
as well as the contribution to the hypervolume indicator in
order to decide which individual will be removed. It is worth
noticing, however, that when we only obtain one front after
performing Pareto ranking, SMS-EMOA needs to calculate
the contribution of all individuals in the population in order
to decide which will be removed. Since calculating the
contribution to the hypervolume is an NP-hard problem [6],
this MOEA is not practical when we want to solve MOPs
with many objective functions (more than six). There are
several proposals to address this problem. For example:
to approximate the hypervolume or the calculation of the
contribution to the hypervolume [7], [8], [9], [10]. However,
MOEAs that approximate the hypervolume lose quality in
their solutions in a significant manner. Other authors have
proposed an efficient algorithm to calculate the contributions
to the hypervolume but only for low dimensionality (two and
three objective functions) [11]. It is also worth mentioning
the new competition scheme for selection mechanisms based
on the hypervolume indicator that was proposed in [12].
With this scheme, the authors were able to have a significant
reduction of the running time of the original SMS-EMOA
without losing quality in the solutions that it produces.
However, this selection mechanism also needs to calculate
contributions to the hypervolume and, therefore, it is still
impractical for MOPs with many objective functions.

Regarding MOEA/D, it decomposes the MOP into N
scalar optimization subproblems and then it solves these
subproblems simultaneously using an evolutionary algorithm.
At each generation, the best solution found so far for
each subproblem survives. Although this MOEA has a low
computational cost and is able to find an approximation of
the Pareto front with a good distribution (this depends of the
approach used to decompose the MOP), MOEA/D always
needs to generate a set of well-distributed convex weights
and perhaps this is its most important disadvantage because
this task is difficult in several cases. There are some proposals

1The number of nondominated solutions grows exponentially as we
increase the number of objective functions, and this rapidly dilutes the
selection pressure of a MOEA [2].



to generate these weights [13], [14]. However, none of these
techniques ensures obtaining a uniformly distributed set of
weights for high dimensionality and they also have some
disadvantages. For example, in [13], when we increase the
number of objective functions, the number of weights grows
according to

(
n+p−1

p

)
, where n is the number of objective

functions and p = 1
δ (δ is the stepsize). Then, if we use

δ = 0.1, this technique generates 66, 286, 1001, 3003, 8008
and 19448 weights for 3, 4, 5, 6, 7 and 8 objective functions,
respectively. Since using population sizes as large as these
values suggest is not practical, it is necessary to use another
technique (for example, clustering) to select a subset of these
weights for running the algorithm.

Another approach, called MC-MOEA [15], [16] which
is based on the maximin fitness function [17], [18], [19],
was recently proposed. This is clearly a MOEA of type (ii).
The maximin fitness function has interesting properties. For
example, based on the fitness value of an individual, we
can know if an individual is non-dominated or dominated.
Also, its fitness value is a metric of the distance to the
non-dominated front. Additionally, the fitness value of an
individual is penalized if it is clustered together with other
individuals. Another important thing is that the complexity
of calculating the maximin fitness function is linear with
respect to the number of objective functions, which makes
this approach a good choice for dealing with many-objective
optimization problems. In [16], the authors mention some
disadvantages of the maximin fitness function and they make
some proposals to address them. One of these disadvantages
is that although the maximin fitness function penalizes indi-
viduals that are clustered together, the solutions generated
by MOEAs based on this sort of approach don’t have a
good distribution along the Pareto front. At this point, it
is important to mention that improving the diversity of
the solutions generated by a MOEA implies not to affect
its convergence properties. In this paper, we address this
issue by proposing a technique to correct the possible errors
generated (with respect to the diversity) when we use the
maximin fitness function to select the individuals which
will be part of the next generation. The proposed technique
is based only on Euclidean distances between solutions in
objective function space and it has linear complexity with
respect to the number of objective functions. Thus, both
our final selection mechanism based on the maximin fitness
function and our technique to improve diversity are linear
with respect to the number of objectives.

The remainder of this paper is organized as follows.
Section II states the problem of our interest. Section III
describes the maximin fitness function. The previous related
work is discussed in Section IV. Our proposal is discussed
in Section V. Our experimental validation and the results
obtained are shown in Section VI. Finally, we provide our
conclusions and some possible paths for future work in
Section VII.

II. PROBLEM STATEMENT

We are interested in the general multiobjective optimiza-
tion problem (MOP), which is defined as follows: Find

~x∗ = [x∗1, x
∗
2, . . . , x

∗
n]T which optimizes

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (1)

such that ~x∗ ∈ Ω, where Ω ⊂ Rn defines the feasible region
of the problem. Assuming minimization problems, we have
the following definitions.

Definition 1: We say that a vector ~u = [u1, . . . , un]T

dominates vector ~v = [v1, . . . , vn]T , denoted by ~u ≤p ~v, if
and only if fi(~u) ≤ fi(~v) for all i ∈ {1, ..., k} and there
exists an i ∈ {1, . . . , k} such that fi(~u) < fi(~v).

Definition 2: A point ~x∗ ∈ Ω is Pareto optimal if there
does not exist any ~x ∈ Ω such that ~x ≤p ~x∗.

Definition 3: A point ~x ∈ Ω is weakly Pareto optimal if
there does not exist another point ~y ∈ Ω such that fi(~y) <
fi(~x) for all i ∈ {1, ..., k}.

Definition 4: For a given MOP, ~f(~x), the Pareto optimal
set is defined as: P∗ = {~x ∈ Ω|¬∃~y ∈ Ω : ~f(~y) ≤p ~f(~x)}.

Definition 5: Let ~f(~x) be a given MOP and P∗ the
Pareto optimal set. Then, the Pareto Front is defined as:
PF∗ = {~f(~x) | ~x ∈ P∗}.

III. MAXIMIN FITNESS FUNCTION

The maximin fitness function was proposed by
Balling [17] and it works as follows. Let’s consider a MOP
with K objective functions and an evolutionary algorithm
whose population size is P . Let f ik be the normalized value
of the kth objective for the ith individual in a particular
generation. Assuming minimization problems, we have that
the jth individual weakly dominates the ith individual if:

mink(f ik − f
j
k) ≥ 0 (2)

The ith individual, in a particular generation, will be weakly
dominated by another individual, in the generation, if:

maxj 6=i(mink(f ik − f
j
k)) ≥ 0 (3)

Then, the maximin fitness function of individual i is defined
as:

fitnessi = maxj 6=i(mink(f ik − f
j
k)) (4)

where the min is taken over all the objective functions, and
the max is taken over all the individuals in the population,
except for the same individual i. From eq. (4), we can say
the following:

1) Any individual whose maximin fitness is greater
than zero is a dominated individual,

2) Any individual whose maximin fitness is less than
zero is a non-dominated individual.

3) Finally, any individual whose maximin fitness is
equal to zero is a weakly-dominated individual.

Some interesting properties of the maximin fitness function
are the following:

1) The maximin fitness function penalizes clustering
of non-dominated individuals. See Figure 1(b).

2) The maximin fitness of dominated individuals is a
metric of the distance to the non-dominated front.
See Figure 1(c).
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Fig. 1. Properties of the maximin fitness function. In (a) all individuals have the same
fitness because they are non-dominated to each other and they are well distributed. In
(b), we can see that if we incorporate individual D, individuals B, C and also D are
penalized because they are close from each other. In (c), we can see that the fitness
of individuals D, E and F is controlled by the non-dominated individual B, and their
fitness is a metric of the distance to the individual B. Also, we can see that the fitness
of individual B is affected by the dominated individual D because they are close.

3) The max function in the maximin fitness of a
dominated individual is always controlled by a non-
dominated individual and is indifferent to cluster-
ing. The max function in the maximin fitness of
a non-dominated individual may be controlled by
a dominated or a non-dominated individual. See
Figure 1(c).

The author of the maximin fitness function proposes in
[18] the following modified maximin fitness function:

fitnessi = maxj 6=i,j∈ND(mink(f ik − f
j
k)) (5)

where ND is the set of non-dominated individuals. Using
eq. (5) to assign the fitness of each individual, we guarantee
that the fitness of a non-dominated individual is controlled
only by non-dominated individuals and then we only penalize
clustering between non-dominated individuals. For example,
if we use the modified maximin fitness function in Fig-
ure 1(c), individual B would not be penalized and it would
retain a fitness equal to -1.

IV. PREVIOUS RELATED WORK

The maximin fitness function has been incorporated in
genetic algorithms [18], [19], [16], particle swarm optimiz-
ers [20], [21], ant colony optimizers [22] and differential
evolution [15]. In most of these papers, only low dimension-
ality MOPs were considered (i.e., MOPs with 2 objectives)
and no extra diversity mechanism was adopted.

In [15], two important disadvantages of the maximin
fitness function were identified. The main disadvantage arises
from the following question: Is it better to prefer weakly

dominated individuals than dominated individuals? The an-
swer was that it is not good to prefer weakly dominated
individuals or individuals which are close to being weakly
dominated (even if they are weakly dominated by any dom-
inated individual). For example, if we assign the fitness of
each individual using the maximin fitness function, and then
we sort the individuals according to their fitness values, we
can obtain many (even only) weakly Pareto points. In order to
address this problem, the following constraint was proposed
in [15]: Any individual that we want to select must not be
similar (in objective function space) to another (selected)
individual.

The second disadvantage has to do with the poor diversity
obtained in objective function space when we use the max-
imin fitness to select individuals. In [15], the authors showed
that the maximin fitness function has difficulties in some
cases. For example, in Figure 1(b), individuals B, C and D
have the same maximin fitness. Then, we cannot know which
of these three individuals is the best choice to form part
of the next generation. In order to address this problem, in
[15] it was proposed to use a clustering technique to correct
the possible errors produced in the selection process when
using the maximin fitness as follows: If we want to select S
individuals from a population of size P , then, we choose the
best S individuals with respect to their maximin fitness value,
and we use them as centers of the clusters. Then, we proceed
to place each individual in the nearest cluster. Finally, for
each of the resulting clusters, we recompute the center and
we choose the individual closest to it. This technique is only
effective in cases when more than S individuals are non-
dominated. The clustering technique does not iterate many
times to improve the distribution of the centers, because we
choose the initial centers according to the maximin fitness
value and we only want to do a small correction based on
the idea on which the maximin fitness function penalizes
clustering. Because of this, in [16] the authors studied
the effect of using different selection operators based on
either the original maximin fitness function or the modified
maximin fitness function and the above clustering technique.

V. OUR PROPOSED SELECTION MECHANISM

We based our selection mechanism on the mechanisms
proposed in [15], [16] but instead of using a clustering
technique to improve de diversity in the population (objective
function space) we propose here the use of a technique based
on Euclidean distances between solutions. We choose this
type of distance because we want that the solutions are
uniformly distributed in objective function space. Also, it
is important to mention that if all the objectives are equally
important, we need to calculate the Euclidean distance on the
normalized values of the objective functions. Our selection
mechanism works as follows: Let’s assume that we want to
select S individuals from a population of size P . First, we
assign fitness to each individual using the modified maximin
fitness function (see equation (5)). Then, we proceed to select
individuals according to their fitness, verifying similarity
between selected individuals (see Algorithm 1, lines 1 to
20). If we already selected the S individuals but there are
still non-dominated individuals who have not participated in
the selection process, then we proceed to use the technique



proposed in the next Subsection to improve diversity (see
Algorithm 1, lines 22 to 41). The process to verify similarity
is shown in Algorithm 2, where min dif is the minimum
difference allowed between solutions with respect to all ob-
jective functions and K is the number of objective functions.

A. Improving Diversity

Our aim now will be to maximize the minimum distance
between solutions in objective function space. For this sake,
we will do the following: Let X be the population from which
we want to select S individuals and let S be the set of already
selected individuals. For each nondominated individual X[i]
who has not participated in the selection process (because its
fitness is low), we obtain its nearest neighbor from S (S[X])
and we choose a random individual2 from S (S[R], such that
X 6= R). Then, X[i] will compete with S[R] and S[X] to
survive. We use S[X] with the idea of improving the diversity
locally: If we move S[X] to X[i], do we increase the distance
with respect to its nearest neighbor in S? And, we use S[R]
because we consider the scenario in which the solution S[X]
is in an unexplored region and, therefore, it is not a good
idea to delete S[X] or X[i]. Therefore, we propose that first,
X[i] competes with the randomly chosen solution S[R]: If the
Euclidean distance from X[i] to its nearest neighbor in S is
greater than the Euclidean distance from S[R] to its nearest
neighbor in S, we replace S[R] with X[i]. If X[i] loses the
competition, then X[i] competes with its nearest neighbor to
survive. If the Euclidean distance from X[i] to its nearest
neighbor in S (without considering S[X]) is greater than the
Euclidean distance from S[X] to its nearest neighbor in S,
then we replace S[X] with X[i].

In Figure 2(a), we can see an example of selection
using only the maximin fitness function; the black points
are the selected individuals. Figures 2(b,c) show the selection
process using the maximin fitness function and the clustering
technique proposed in [15]. In (b), we can see the clusters
constructed and, in (c), we can see the selected individuals.
Figures 2(d,e) show the selection process using the maximin
fitness function and our technique based on Euclidean dis-
tances. Since individuals C and D are not considered in (a),
in (d), C competes with A and B, and C replaces B. In (e),
D competes with A and C, and D replaces C. As we can
observe in Figure 2, our selection mechanism obtains better
results than the other two.

B. Maximin-Distances Multi-Objective Evolutionary Algo-
rithm (MD-MOEA)

In order to validate our selection mechanism, we designed
a multi-objective evolutionary algorithm that uses the oper-
ators of NSGA-II (crossover and mutation) to create new
individuals. This is because our main aim is to validate
the effect of our proposed selection mechanism comparing
it with respect to other three selection mechanisms based
on different techniques: (1) the first is based on the same
maximin fitness function, (2) the second is based on the
approximation of the hypervolume indicator and, (3) the

2We assume that the probability of choosing an individual in a crowded
region is higher than the probability of choosing an individual in an
unexplored region.

Algorithm 1: Maximin selection
Input : X (Population), S (number of individuals to choose

S < ‖X‖).
Output: S (Selected individuals).

1 AssignFitness(X);
2 numNonDom← Number of nondominated solutions in X;
/*Sorting with respect to the maximin
fitness */

3 Sort(X);
4 s← 1, i← 1, S← ∅;
/*Fill up the new population with the
best copies according to the maximin
fitness, verifying that there is not a
similar one */

5 while s ≤ S AND i ≤ ‖X‖ do
6 if X[i] is not similar to any individual in S then

/*Select individual i */

7 S← S ∪ X[i];
8 s← s+ 1;
9 end

10 i← i+ 1;
11 end
12 if s ≤ S then

/*Choose the remaining individuals
considering only the maximin fitness
*/

13 i← 1;
14 while s ≤ S do
15 if X[i] has not been selected then
16 S← S ∪ X[i];
17 s← s+ 1;
18 end
19 i← i+ 1;
20 end
21 else

/*Improve diversity according to the
Euclidean distances between
solutions. */

22 while i < numNonDom do
23 if X[i] is not similar to any individual in S then
24 X ← Index of nearest neighbor to X[i] in S;
25 dItoX ← Distance from X[i] to S[X];
26 R← Obtain a random index between 1 and S

such that R 6= X;
27 Y ← Index of nearest neighbor to S[R] in S;
28 dRtoY ← Distance from S[R] to S[Y ];
29 if dItoX > dRtoY then
30 Replace S[R] with X[i];
31 else
32 Z ← Index of nearest neighbor to X[X] in

S;
33 dXtoZ ← Distance from S[X] to S[Z];
34 W ← Index of nearest neighbor to X[i],

without regard to X , in S;
35 dItoW ← Distance from X[i] to S[W ];
36 if dItoW > dXtoZ then
37 Replace S[X] with X[i];
38 end
39 end
40 end
41 end
42 end
43 return S;
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Fig. 2. Let’s assume that we want to select two individuals. If we use only the
maximin fitness function and we assume that A, B, C and D is the ordering of the
solutions after sorting them with respect to their fitness value, then we select individuals
A and B and individuals C and D are not considered (see (a)). This is clearly not a
good selection. If we use the clustering technique proposed in [15], we take A and
B as initial centers of the clusters and we obtain two clusters: the first one only has
A and the second has B, C and D, see (b). When we recalculate the centers of the
clusters and choose the closest solution to the centers, we select A and C, see (c). If
we use our proposed technique, first we select A and B (S = A,B). After that, we
consider individual C; its nearest neighbor is B and we choose A as a random solution.
First, C competes with A and C loses because the distance from A to B is greater than
the distance from C to B. Then, C competes with B and C wins because the distance
from C to A is greater than the distance from B to A. Finally, we consider D, and D
loses with A but it wins with C. Then, we select A and D, see (e). We can say that
(e) is a better choice than (a) and (c) in the selection process.

Algorithm 2: Verify similarity
Input : x (individual), S (population).
Output: Returns 1, if the individual x is similar to any individual in the

population S; otherwise, it returns 0.
1 for i← 1 to ‖S‖ do
2 for k ← 1 to K do
3 if |x.f [k]− S[i].f [k]| < min dif then
4 return 1;
5 end
6 end
7 end
8 return 0;

third is based on decomposition. For this sake, we used
the following MOEAs: MC-MOEA [16] (the version in
which the modified maximin fitness is used all the time),
SMS-EMOA-HYPE (a version of SMS-EMOA [4] that uses
a fitness assignment based on the approximation of the
hypervolume indicator, proposed in [8]) and MOEA/D [5]
(using PBI to decompose the MOP). All of these MOEAs use
the same operators to create new individuals, which allows
a fair comparison.

Our MOEA is called “Maximin-Distances Multi-

Objective Evolutionary Algorithm (MD-MOEA)” and it
works as follows. First, it creates an initial population of size
P . After that, it creates P new individuals and it combines
the population of parents and offspring to obtain a population
of size 2P . Then, we use the selection mechanism described
in Algorithm 1 to choose the P individuals that will take part
of the following generation. Finally, this process is repeated
for a (pre-defined) number of generations.

VI. EXPERIMENTAL RESULTS

As we mentioned before, we validated our selection
mechanism by comparing our MD-MOEA with respect to
MC-MOEA, MOEA/D and SMS-EMOA-HYPE. In the case
of SMS-EMOA-HYPE, we used the source code of HyPE
available in the public domain [8] adopting 104 as our
number of samples to assign fitness in the original SMS-
EMOA. In the case of MOEA/D, we generated the convex
weights using the technique proposed in [13] and after that,
we applied clustering (k-means) to obtain a specific number
of weights.3

For our experiments, we used seven problems taken from
the Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [23]. We
used k = 5 for DTLZ1, DTLZ3 and DTLZ6 and k = 10 for
the remaining test problems. Also, we used seven problems
taken from the WFG toolkit [24], with k factor = 2 and
l factor = 10. For each test problem, we performed 30
independent runs. For all four algorithms, we adopted the
parameters suggested by the authors of NSGA-II: pc = 0.9
(crossover probability), pm = 1/n (mutation probability),
where n is the number of decision variables. We also used
ηc = 15 and ηm = 20, respectively. We performed a
maximum of 50,000 fitness function evaluations (in this case,
we used a population size of 100 individuals and we iterated
for 500 generations). Only in DTLZ3 we performed 100,000
evaluations (we used a population size of 100 individuals and
we iterated for 1000 generations).

A. Performance Indicators

We adopted only the hypervolume indicator (IH ) to
validate our results because it rewards both convergence
towards the Pareto front as well as the maximum spread
of the solutions obtained. Furthermore, IH is the only unary
indicator which is known to be “Pareto compliant” [25]. To
calculate the hypervolume indicator, we used the following
reference points: yref = [y1, · · · , yM ] such that yi = 0.7
for DTLZ1, yref = [y1, · · · , yM ] such that yi = 1.1 for
DTLZ(2-6), yref = [y1, · · · , yM ] such that yM = 6.1 and
yi 6=M = 1.1 for DTLZ7. In the case of the WFG test
problems, we generated the reference point using the highest
value found for each objetive function taking into account
all the outputs of the four algorithms (i.e., MC-MOEA,
MOEA/D, SMS-EMOA-HYPE and MD-MOEA).

B. Discussion of Results

Table I shows the results with respect to IH in problems
with three objective functions as well as the results of the

3The source code of the three algorithms (MOEA/D, SMS-EMOA-HYPE
and MD-MOEA) can be provided by the first author upon request. For
MOEA/D, we used the source code available in the MOEA/D webpage
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(0.077585) 0.000 (1)

WFG6 (3) 0.920378
(0.012003)

0.977053
(0.011069) 0.000 (1)

WFG7 (3) 17.286919
(0.727687)

18.961153
(0.389552) 0.000 (1)

~f
moead
IH

md-moea
IH P (H)

DTLZ1 (3) 0.303053
(0.000450)

0.311213
(0.001637) 0.000 (1)

DTLZ2 (3) 0.708105
(0.000205)

0.716900
(0.006070) 0.000 (1)

DTLZ3 (3) 0.702575
(0.004807)

0.720263
(0.007612) 0.000 (1)

DTLZ4 (3) 0.708295
(0.000133)

0.714999
(0.007642) 0.000 (1)

DTLZ5 (3) 0.416468
(0.000529)

0.433524
(0.005550) 0.000 (1)

DTLZ6 (3) 0.352563
(0.026612)

0.407466
(0.024926) 0.000 (1)

DTLZ7 (3) 1.607354
(0.202304)

1.854329
(0.208323) 0.000 (1)

WFG1 (3) 16.211830
(0.312977)

17.365532
(1.698654) 0.063 (0)

WFG2 (3) 0.088530
(0.006124)

0.116298
(0.010288) 0.000 (1)

WFG3 (3) 0.388538
(0.014871)

0.448216
(0.002539) 0.000 (1)

WFG4 (3) 22.853573
(0.541417)

25.854932
(0.333751) 0.000 (1)

WFG5 (3) 8.501790
(0.147219)

9.265981
(0.077585) 0.000 (1)

WFG6 (3) 0.845541
(0.009395)

0.977053
(0.011069) 0.000 (1)

WFG7 (3) 16.227431
(1.859549)

18.961153
(0.389552) 0.000 (1)

~f

sms-emoa
hype
IH

md-moea
IH P (H)

DTLZ1 (3) 0.314237
(0.000752)

0.311213
(0.001637) 0.000 (1)

DTLZ2 (3) 0.741222
(0.002104)

0.716900
(0.006070) 0.000 (1)

DTLZ3 (3) 0.000000
(0.000000)

0.720263
(0.007612) 0.000 (1)

DTLZ4 (3) 0.743932
(0.002429)

0.714999
(0.007642) 0.000 (1)

DTLZ5 (3) 0.438030
(0.000195)

0.433524
(0.005550) 0.000 (1)

DTLZ6 (3) 0.363403
(0.062094)

0.407466
(0.024926) 0.003 (1)

DTLZ7 (3) 1.830760
(0.195849)

1.854329
(0.208323) 0.004 (1)

WFG1 (3) 17.841521
(1.282806)

17.365532
(1.698654) 0.021 (1)

WFG2 (3) 0.116636
(0.010844)

0.116298
(0.010288) 0.046 (1)

WFG3 (3) 0.446381
(0.004118)

0.448216
(0.002539) 0.046 (1)

WFG4 (3) 27.035334
(0.224630)

25.854932
(0.333751) 0.000 (1)

WFG5 (3) 9.462112
(0.048270)

9.265981
(0.077585) 0.000 (1)

WFG6 (3) 0.987239
(0.007085)

0.977053
(0.011069) 0.000 (1)

WFG7 (3) 18.288252
(0.873704)

18.961153
(0.389552) 0.001 (1)

(a) (b) (c)
TABLE I. RESULTS OBTAINED IN THE DTLZ AND WFG TEST PROBLEMS WITH THREE OBJECTIVE FUNCTIONS. WE COMPARE OUR MD-MOEA WITH RESPECT TO

MC-MOEA, MOEA/D AND SMS-EMOA-HYPE, USING THE HYPERVOLUME INDICATOR (IH ). WE SHOW AVERAGE VALUES OVER 30 INDEPENDENT RUNS. THE VALUES
IN PARENTHESES CORRESPOND TO THE STANDARD DEVIATIONS. THE THIRD COLUMN OF EACH TABLE SHOWS THE RESULTS OF THE STATISTICAL ANALYSIS APPLIED TO
OUR EXPERIMENTS USING WILCOXONS RANK SUM. P IS THE PROBABILITY OF OBSERVING THE GIVEN RESULT (THE NULL HYPOTHESIS IS TRUE). SMALL VALUES OF P

CAST DOUBT ON THE VALIDITY OF THE NULL HYPOTHESIS. H = 0 INDICATES THAT THE NULL HYPOTHESIS (“MEDIANS ARE EQUAL”) CANNOT BE REJECTED AT THE 5%
LEVEL. H = 1 INDICATES THAT THE NULL HYPOTHESIS CAN BE REJECTED AT THE 5% LEVEL.

statistical analysis that we made to validate our experiments,
for which we used Wilcoxon’s rank sum. In (a), we can
see that our MD-MOEA outperformed MC-MOEA in twelve
cases and we can reject the null hypothesis (medians are
equal) in eleven of them. On the other hand, only in two cases
MC-MOEA obtained better results than our MD-MOEA and
in these two cases we cannot reject the null hypothesis. That
means that in eleven problems our MD-MOEA significantly
outperforms MC-MOEA and in the remaining three both
MC-MOEA and MD-MOEA have a similar behavior. Thus,
we can say that our MD-MOEA is better than MC-MOEA.
In (b), we can observe that our MD-MOEA is better than
MOEA/D because it outperforms MOEA/D in all cases and
only in one of them, we cannot reject the null hypothesis.
Finally, in (c), we can see that our MD-MOEA outperformed
SMS-EMOA-HYPE in five cases and it was outperformed in
nine cases (in all cases the null hypothesis can be rejected).
However, it is important to note that in DTLZ3, SMS-
EMOA-HYPE was unable to converge to the true Pareto
front. In contrast, our MD-MOEA was able to reach the true
Pareto front in that problem.

Table II shows a scalability study of our proposed
approach (using up to six objective functions). We chose
four problems from the DTLZ test suite: DTLZ1, DTLZ3,
DTLZ5 and DTLZ74 and two problems from the WFG

4We chose these problems because their Pareto fronts have different
forms: linear (DTLZ1), concave (DTLZ3), degenerate (DTLZ5) and dis-
connected (DTLZ7).

toolkit: WFG3 and WFG7.5 In (a), we can see that our
proposed MD-MOEA still outperforms MC-MOEA because
it obtained better results in all cases and only in three cases
we cannot reject the null hypothesis. In (b), we can see
that MOEA/D outperformed our MD-MOEA in five of the
eighteen MOPs adopted. An important observation is that
this happens in MOPs with degenerate Pareto fronts such
as DTLZ5 and DTLZ6 and in MOPs with a disconnected
Pareto front such as DTLZ7. In all problems, we can reject
the null hypothesis. Therefore; we can say that our MD-
MOEA is better than MOEA/D in most cases. Finally, in
(c), we can see that our MD-MOEA outperformed SMS-
EMOA-HYPE in most cases (fourteen out of eighteen), and
only in three of them, we cannot reject the null hypothesis.
Therefore, we claim that our proposed MD-MOEA maintains
its good behavior as we increase the number of objective
functions. In fact, our proposed MD-MOEA outperforms
SMS-EMOA-HYPE in most cases when we use four or more
objective functions. It is important to observe that SMS-
EMOA-HYPE outperformed our proposed MD-MOEA in the
same problems as MOEA/D did (DTLZ5 and DTLZ7).

Another important thing that we must consider is the
running time required by the four algorithms. In Table III,
we can see that our proposed MD-MOEA requires at most
five seconds to solve problems with three objective func-
tions while SMS-EMOA-HYPE requires up to 168 seconds.
Then, although SMS-EMOA-HYPE obtains better results
than our MD-MOEA in several three-objective MOPs, our

5We chose these problems because MD-MOEA outperformed SMS-
EMOA-HYPE in them, when using three objective functions and we wanted
to see if this behavior would hold if we increased the number of objectives.



~f
mc-moea
IH

md-moea
IH P (H)

DTLZ1 (4) 0.209699
(0.050196)

0.227252
(0.001531) 0.695 (0)

DTLZ3 (4) 0.857388
(0.036140)

0.940285
(0.015157) 0.000 (1)

DTLZ5 (4) 0.205774
(0.028565)

0.232610
(0.033320) 0.003 (1)

DTLZ7 (4) 0.554462
(0.066262)

0.571259
(0.078772) 0.004 (1)

DTLZ1 (5) 0.077149
(0.074751)

0.161622
(0.000807) 0.000 (1)

DTLZ3 (5) 0.999126
(0.042205)

1.132718
(0.014944) 0.000 (1)

DTLZ5 (5) 0.164502
(0.026344)

0.165387
(0.026130) 0.994 (0)

DTLZ7 (5) 0.064793
(0.013324)

0.069806
(0.028375) 0.045 (1)

DTLZ1 (6) 0.033675
(0.044938)

0.113517
(0.000686) 0.000 (1)

DTLZ3 (6) 1.060825
(0.096036)

1.272017
(0.022573) 0.000 (1)

DTLZ5 (6) 0.138851
(0.044069)

0.195823
(0.027087) 0.000 (1)

DTLZ7 (6) 0.003920
(0.001524)

0.004332
(0.002933) 0.529 (0)

WFG3 (4) 0.133793
(0.006850)

0.186307
(0.001452) 0.000 (1)

WFG7 (4) 126.673434
(4.468933)

137.524340
(5.091123) 0.000 (1)

WFG3 (5) 0.006545
(0.003399)

0.034708
(0.000433) 0.000 (1)

WFG7 (5) 887.581970
(39.672574)

990.070618
(33.543485) 0.000 (1)

WFG3 (6) 0.000055
(0.000053)

0.004540
(0.000107) 0.000 (1)

WFG7 (6) 7058.029077
(371.172528)

7873.374654
(435.168613) 0.000 (1)

~f
moead
IH

md-moea
IH P (H)

DTLZ1 (4) 0.207214
(0.000826)

0.227252
(0.001531) 0.000 (1)

DTLZ3 (4) 0.849726
(0.008275)

0.940285
(0.015157) 0.000 (1)

DTLZ5 (4) 0.395004
(0.003938)

0.232610
(0.033320) 0.000 (1)

DTLZ7 (4) 0.510402
(0.136447)

0.571259
(0.078772) 0.000 (1)

DTLZ1 (5) 0.138851
(0.001183)

0.161622
(0.000807) 0.000 (1)

DTLZ3 (5) 0.907270
(0.016862)

1.132718
(0.014944) 0.000 (1)

DTLZ5 (5) 0.384474
(0.004732)

0.165387
(0.026130) 0.000 (1)

DTLZ7 (5) 0.090559
(0.025208)

0.069806
(0.028375) 0.000 (1)

DTLZ1 (6) 0.090773
(0.000779)

0.113517
(0.000686) 0.000 (1)

DTLZ3 (6) 0.836798
(0.127543)

1.272017
(0.022573) 0.000 (1)

DTLZ5 (6) 0.386218
(0.005819)

0.195823
(0.027087) 0.000 (1)

DTLZ7 (6) 0.017423
(0.001653)

0.004332
(0.002933) 0.000 (1)

WFG3 (4) 0.130169
(0.006990)

0.186307
(0.001452) 0.000 (1)

WFG7 (4) 65.878334
(9.319913)

137.524340
(5.091123) 0.000 (1)

WFG3 (5) 0.018217
(0.001263)

0.034708
(0.000433) 0.000 (1)

WFG7 (5) 292.456527
(30.794113)

990.070618
(33.543485) 0.000 (1)

WFG3 (6) 0.001995
(0.000324)

0.004540
(0.000107) 0.000 (1)

WFG7 (6) 2333.063125
(246.601646)

7873.374654
(435.168613) 0.000 (1)

~f

sms-emoa
hype
IH

md-moea
IH P (H)

DTLZ1 (4) 0.227248
(0.003551)

0.227252
(0.001531) 0.411 (0)

DTLZ3 (4) 0.000000
(0.000000)

0.940285
(0.015157) 0.000 (1)

DTLZ5 (4) 0.407141
(0.006175)

0.232610
(0.033320) 0.000 (1)

DTLZ7 (4) 0.471140
(0.233999)

0.571259
(0.078772) 0.258 (0)

DTLZ1 (5) 0.148712
(0.038414)

0.161622
(0.000807) 0.001 (1)

DTLZ3 (5) 0.020370
(0.073259)

1.132718
(0.014944) 0.000 (1)

DTLZ5 (5) 0.397983
(0.012657)

0.165387
(0.026130) 0.000 (1)

DTLZ7 (5) 0.054747
(0.052799)

0.069806
(0.028375) 0.082 (0)

DTLZ1 (6) 0.106482
(0.013763)

0.113517
(0.000686) 0.000 (1)

DTLZ3 (6) 0.014137
(0.053109)

1.272017
(0.022573) 0.000 (1)

DTLZ5 (6) 0.398966
(0.011553)

0.195823
(0.027087) 0.000 (1)

DTLZ7 (6) 0.013773
(0.011388)

0.004332
(0.002933) 0.000 (1)

WFG3 (4) 0.183098
(0.002400)

0.186307
(0.001452) 0.000 (1)

WFG7 (4) 98.364141
(7.586617)

137.524340
(5.091123) 0.000 (1)

WFG3 (5) 0.032837
(0.000599)

0.034708
(0.000433) 0.000 (1)

WFG7 (5) 497.644458
(43.994542)

990.070618
(33.543485) 0.000 (1)

WFG3 (6) 0.004313
(0.000114)

0.004540
(0.000107) 0.000 (1)

WFG7 (6) 3756.921293
(286.752275)

7873.374654
(435.168613) 0.000 (1)

(a) (b) (c)
TABLE II. RESULTS OBTAINED IN THE DTLZ AND WFG TEST PROBLEMS WITH FOUR, FIVE AND SIX OBJECTIVE FUNCTIONS. WE COMPARE OUR MD-MOEA WITH
RESPECT TO MC-MOEA, MOEA/D AND SMS-EMOA-HYPE, USING THE HYPERVOLUME INDICATOR (IH ). WE SHOW AVERAGE VALUES OVER 30 INDEPENDENT RUNS.
THE VALUES IN PARENTHESES CORRESPOND TO THE STANDARD DEVIATIONS. THE THIRD COLUMN OF EACH TABLE SHOWS THE RESULTS OF THE STATISTICAL ANALYSIS

APPLIED TO OUR EXPERIMENTS USING WILCOXONS RANK SUM. P IS THE PROBABILITY OF OBSERVING THE GIVEN RESULT (THE NULL HYPOTHESIS IS TRUE). SMALL
VALUES OF P CAST DOUBT ON THE VALIDITY OF THE NULL HYPOTHESIS. H = 0 INDICATES THAT THE NULL HYPOTHESIS (“MEDIANS ARE EQUAL”) CANNOT BE

REJECTED AT THE 5% LEVEL. H = 1 INDICATES THAT THE NULL HYPOTHESIS CAN BE REJECTED AT THE 5% LEVEL.

MD-MOEA requires much less time while obtaining com-
petitive results. As we increase the number of objectives,
our proposed MD-MOEA requires at most seven seconds
while SMS-EMOA-HYPE requires up to 445 seconds. Fur-
thermore, MD-MOEA outperformed SMS-EMOA-HYPE in
most of these problems with more than three objectives.
With respect to MC-MOEA, our approach requires a similar
running time. MOEA/D is faster than our proposed MD-
MOEA but not for a significant time difference.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a new selection mechanism based
on the modified maximin fitness function and the use of
Euclidean distances between solutions (in objective function
space). Our idea is to use this modified maximin fitness
function to select individuals and, after that, correct the
possible errors in the selection process with respect to
diversity in the population using the Euclidean distances
between solutions. Our new selection mechanism has a linear
complexity with respect to the number of objective func-
tions and it is therefore suitable for solving many-objective
optimization problems. Our preliminary results indicate that
our proposed MD-MOEA is able to outperform MOEAs
such as MC-MOEA and MOEA/D and that it is competitive
with respect to a version of SMS-EMOA that uses a fitness
assignment mechanism based on the approximation of the

hypervolume (SMS-EMOA-HYPE). Indeed, as we increase
the number of objective functions, our proposed MD-MOEA
outperforms SMS-EMOA-HYPE in most cases. Finally, it is
important to mention that our proposed approach requires
much less running time than SMS-EMOA-HYPE and it does
not require any additional information such as MOEA/D and
SMS-EMOA.

As part of our future work, we are interested in further
studying the reasons for which our proposed mechanism
has difficulties to deal with MOPs having degenerate Pareto
fronts (e.g., DTLZ5 and DTLZ6) and disconnected Pareto
fronts (e.g., DTLZ7). Also, we want to study the possibility
of hybridizing our selection mechanism with some perfor-
mance indicator such as the hypervolume or R2.
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