
An Analysis of the Automatic Adaptation

of the Crossover Rate in Differential Evolution

Carlos Segura∗, Carlos A. Coello Coello†, Eduardo Segredo‡, Coromoto León‡

∗UMI LAFMIA 3175 CNRS at CINVESTAV-IPN, Departamento de Computación,

Av. IPN No. 2508, Col. San Pedro Zacatenco, México D.F. 07300, MÉXICO
† CINVESTAV-IPN, Departamento de Computación (Evolutionary Computation Group),

Av. IPN No. 2508, Col. San Pedro Zacatenco, México, D.F. 07300, MÉXICO
‡Universidad de La Laguna, Dpto. Estadı́stica, Investigación Operativa y Computación

Avda. Astrofı́sico Francisco Sánchez s/n, 38271 La Laguna, Santa Cruz de Tenerife, Spain

Email: csegura@ull.es, ccoello@cs.cinvestav.mx, esegredo@ull.es, cleon@ull.es

Abstract—Differential Evolution (DE) is a very efficient meta-
heuristic for optimization over continuous spaces which has
gained much popularity in recent years. Several parameter
control strategies have been proposed to automatically adapt
its internal parameters. The most advanced DE variants take
into account the feedback obtained in the optimization process
to guide the dynamic setting of the DE parameters. Indeed, the
automatic adaptation of the crossover rate (CR) has attracted a
lot of research in the last decades. In most of such strategies,
the quality of using a given CR value is measured by considering
the probability of performing a replacement in the DE selection
stage when such a value is applied. One of the main contributions
of this paper is to experimentally show that the probability of
replacement induced by the application of a given CR value
and the quality of the obtained results are not as correlated
as expected. This might cause a performance deterioration that
avoids the achievement of good quality solutions even in the long-
term. In addition, the experimental evaluation developed with
a set of optimization problems of varying complexities clarifies
some of the advantages and drawbacks of the different tested
strategies. The only component varied among the different tested
schemes has been the CR control strategy. The study presented in
this paper, provides advances in the understanding of the inner
working of several state-of-the-art adaptive DE variants.

I. INTRODUCTION

Differential Evolution [1] (DE) is a very popular meta-
heuristic specially suited for real-parameter optimization. From
its inception, it has been consistently ranked as one of the
most efficient metaheuristics for solving continuous optimiza-
tion problems. It has been successfully applied both with
benchmark problems and with complex optimization problems
arising in practical applications [2]. Its success was initially
demonstrated at the First International Contest on Evolution-
ary Computation [3]. Subsequently, other DE variants also
performed adequately in several contests, such as in the 2005
IEEE Congress on Evolutionary Computation (CEC) compe-
tition on real parameter optimization [4], or in the special
issue on Scalability of Evolutionary Algorithms and other
Metaheuristics for Large Scale Continuous Optimization Prob-
lems, recently organized for the Soft Computing journal [5],
[6]. Some of the domains where DE has provided competitive
results are control systems [7] and electrical power systems [8].
The reader is referred to [9] for a historical overview of DE.

The amount of research conducted in DE in the last
decades is huge. For instance, DE has been adapted to face
multi-objective [10], constrained [11] and large-scale [12]
optimization problems. One of the topics that have attracted a
large amount of research concerns the proper parameterization
of DE. Initially, DE was presented as a robust scheme, with
a low number of easily tunable parameters [1]. However,
subsequent studies showed that DE is very sensitive to the
setting of the control parameters [13], [14], so generally, the
parameter setting stage is crucial to successfully apply DE.
Furthermore, several DE trial vector generation strategies have
been proposed [15], hampering the choice of DE parameters
and components.

The problem of properly setting the parameters is not
specific of DE. In fact, this is one of the persisting grand
challenges for Evolutionary Computation (EC) [16]. Parameter
setting strategies are commonly divided into two categories:
parameter tuning and parameter control. In parameter tuning
the objective is to identify the best set of values for the
parameters of a given Evolutionary Algorithm (EA), and then,
such an EA is executed using these values which remain
fixed during the complete run. On the contrary, the aim of
parameter control is to design control strategies that select
the most suitable values for the parameters at each stage of
the search process, while the algorithm is executed. It has
been empirically and theoretically shown that different values
of the parameters might be optimal at different stages of the
optimization process [17], [18]. In such cases, it seems more
appropriate to apply parameter control strategies that enable
the parameter values to adapt or change during the course of
an EA run.

In the case of DE, several schemes that consider the
simultaneous use of different DE components and parameter
values have been devised. For instance, in [19] two DE schemes
with random and varying parameters were proposed, while
in [20] three trial vector generation strategies were simulta-
neously considered. In addition, some adaptive schemes have
been developed [21], [22] that take into account the feedback
obtained in the own optimization process in order to set the
DE parameters dynamically. A large amount of research has
focused on the adaptation of the crossover rate (CR). The most
popular parameter control strategies grant more resources to

those CR values that maximize the number of replacements
carried out in the selection phase of DE. Since the selection
phase of DE is elitist, the principle behind such strategies is
that a larger amount of replacements induce the achievement
of solutions of higher quality. However, to the best of our
knowledge such a correlation has not been ever studied. It
is also interesting to mention that in most up-to-date DE

variants, not only CR is adapted, but other components are also
modified. Thus, most of the comparisons currently published in
the specialized literature do not measure the benefits obtained
by the single adaptation of CR.

In this research, an empirical analysis of the correlation
between the quality of the obtained solutions and the proba-
bility of replacement induced by different CR values is carried
out. Surprisingly, it shows that the correlation is not as clear
as expected, meaning that the performance of the schemes
based on such correlation can severely deteriorate in several
optimization problems. In fact, the experimental evaluation
shows that all the tested schemes fail to optimize some of
the considered benchmark problems even in the long-term.
The analyses also show that the reasons of the deterioration of
the performance differ among the tested adaptive DE variants.
In spite of that, the experimental validation developed in
this research shows that, in most cases, using such adaptive
schemes is preferable than using random strategies to set the
crossover rate.

The rest of the paper is organized as follows. Section II
presents the fundamentals of DE. A summary of some of the
most popular state-of-the-art adaptive DE variants is given in
Section III. Then, our experimental validation is presented in
Section IV. Finally, conclusions and some lines of future work
are given in Section V.

II. FUNDAMENTALS OF DIFFERENTIAL EVOLUTION

DE was originally devised as a search strategy for single-
objective continuous optimization problems [1]. In continuous
optimization, the variables governing the system to be opti-

mized are given by a vector ~X = [x1, x2, x3, ..., xD], where
each variable xi is a real number. The number of variables (D)
defines the dimensionality of the optimization problem. Fi-
nally, the objective function f(~x)(f : Ω ⊆ R

D → R)
measures the quality of each set of variables. The purpose
of the optimization — considering a minimization problem —
is to find a vector ~x∗ ∈ Ω in which f(~x∗) ≤ f(~x) holds
for all ~x ∈ Ω. The problems most typically addressed with
DE are box-constrained optimization problems. In these cases,
the region Ω is specified by indicating a lower (aj) and upper
(bj) bound for each variable in the problem. Thus, the feasible

region can be described as Ω =
∏D

j=1
[aj , bj].

DE is a population-based stochastic algorithm that belongs
to the broad class of Evolutionary Algorithms (EAs). As with
other EAs, it randomly initializes a population (P) with NP

individuals or vectors (P = { ~X1, ..., ~XNP }). Each individual
is a vector with D real numbers. The value of the jth variable
of individual Xi is denoted by Xi,j . Then, the population
evolves over successive iterations to explore the search space.

The DE vector generation strategy is used to create new
vectors based on the contents of the current population. Several
vector generation strategies have been proposed [15]. The

strategies proposed share the common property of taking into
account the differences among the vectors present in the
current population to create new vectors. The strategy applied
in this research is described in this section. The reader is
referred to [2], [9] for a more detailed description of other DE

variants.

At each DE iteration, the following steps are executed. First,
for each vector in the population — called target vector — a
new mutant vector is created using a vector generation strategy.
Then, the mutant vector is combined with the target vector
to generate the trial vector. After generating NP trial vectors,
each one is compared against its corresponding target vector.
In each comparison the best one is selected to survive. In case
of a tie, the survivor depends on the implementation. In our
case, the new generated trial vector survives.

In the vector generation strategy, the term base vector
denotes an initial vector that is subsequently perturbed to
generate the mutant vector. The perturbation is done by con-
sidering one or several differences among other vectors in the
population. In order to classify the different variants of DE, the
notation DE/x/y/z was introduced in [1]. The term x specifies
how to select the base vector. The term y is the number
of difference vectors used. Finally, z denotes the crossover
or combination scheme. Thus, x and y set up the mutation
strategy, and z the crossover scheme.

In this research the DE/rand/1/bin variant has been consid-
ered. Note that this scheme has attained competitive results
with respect to other variants [23]. In the “rand” strategy, any
vector in the population different from the target vector is
selected as the base vector. Thus, the mutant vector (Vi) for
target vector i is created with Eq. (1). In this equation, r1, r2
and r3 are mutually exclusive integers chosen at random from
the range [1, NP]. In addition, they are all different from the
index i. The mutation scale factor F is a control parameter for
scaling the difference vector.

~Vi = ~Xr1 + F × (~Xr2 − ~Xr3) (1)

The crossover strategy applied in this research is the
binomial (bin) one. As in other EAs, the crossover operator
is controlled by means of the crossover rate (CR). In the bin
strategy, the trial vector (Ui) is generated using Eq. (2). randi,j
is a uniformly distributed random number in the range [0,1],
and jrand ∈ [1, 2, ..., D] is a randomly chosen index which
ensures that at least one variable is taken from the mutant
vector. For the remaining cases, we see that the probability of
the variable being inherited from the mutant is CR. Otherwise,
the variable of the target vector is considered.

Ui,j =

{

Vi,j if (randi,j ≤ CR or j = jrand)
Xi,j otherwise

(2)

The vector generation strategy, as described above, might
generate trial vectors outside the feasible region. In the case of
box-constrained optimization problems — which are the ones
faced in this research — several ways of dealing with this
scenario have been proposed [15]. First, the brick wall penalty
scheme sets the offending vector’s objective function value

high enough to guarantee that it will not be selected. Since it
does not take into account the particular definition of Ω, this
scheme is, generally, not very appropriate. The bounce-back
method generates a new value that lies between the value of
the base variable and the bound being violated. Finally, another
widely used scheme is based on randomly reinitializing the
offending values. As this last approach is the most unbiased
and has yielded promising results, it is the one we have used
in this paper.

III. ADAPTIVE DE VARIANTS

Since the earliest years of DE, there has been a significant
amount of research focused on the proper parameterization
of DE. Specifically, the parameterization of CR and F have
been widely studied. The initial experimentation carried out
in [1] showed that “DE requires few control variables, is robust
and easy to use”. However, experimentation with additional
benchmark problems uncovered the sensitivity of DE’s control
parameters [13], [14]. Although some general recommenda-
tions have been given concerning the proper choice of CR

and F, the most up-to-date DE variants consider the automatic
adaptation of such parameters.

The most popular DE variants consider the simultaneous
adaptation of several components and/or parameters. For in-
stance, in DESAP [24], F, CR and NP are adapted, while
jDE [25] only considers the adaptation of CR and F. Some
comparative analyses including several of the most popular
schemes have been provided in the last years [26], [9].
However, since most of them differ in several components,
it is not easy to predict the benefits attained by each single
modification. Particularly, there have been some controversies
concerning the benefits obtained by adapting CR and F [27], so
it is interesting to study each single adaptation independently
from each other. The single adaptation of F is analyzed in [23].
The current research focuses on the single adaptation of CR.

In this section, some of the most popular adaptive DE

variants are presented. Specifically, considering the results
obtained in [26], the strategies jDE [25], competitive DE

(cDE) [28], JADE [22] and SaDE [29] have been selected. It
is important to mention that all of them try to grant more
resources to the CR values that produce a larger number
of replacements in the selection stage of DE. Thus, all of
them assume that a larger number of replacements provides
solutions with a higher quality. In the literature there are
other (not so popular) adaptive schemes that are not based
in such an assumption. For instance, in [30] the increase of
fitness obtained in each replacement is considered to perform
the adaptation, while in [31] the diversity is also taken into
account. The analysis of such kind of schemes is beyond the
scope of this paper.

A. jDE

jDE was presented by Brest et al. [25] as a simple and
efficient adaptive DE variant that self-adapts F and CR. A
pair containing a value for F and CR is encoded within
each individual of the population. Initially, F and CR are set
randomly for each individual of the population. Each time
a new individual is created, the CR and F values can be
acquired from the target vector or are randomly generated.

Specifically, they are randomly generated with probabilities τ1
and τ2, respectively. New values of F are generated in the
range [Fmin, Fmax], while new values of CR are generated in
the range [CRmin, CRmax].

B. cDE

cDE was presented by Tvrdı́k [28] as an adaptive scheme
where several trial vector generation strategies are stored in a
pool and compete for getting resources. The strategies stored
in the pool might differ in any component and/or parameter,
so this can be viewed as a general adaptive scheme. The pool
contains H strategies, and each time that a new individual
is created, a strategy is randomly selected with probability
qh, h = 1, 2, ...H . Specifically, the probability qh is given by
Eq. (3). In such equation, nh is the number of replacements
that has been carried out when the h setting has been used,
and n0 > 0 is an input parameter. The aim of n0 is to prevent
drastic changes in the probabilities between consecutive gen-
erations. Note that considering Eq. (3), the initial probabilities
are set uniformly, i.e., qh = 1

H
. In order to avoid degeneration

of the search process, if any probability decreases below some
given limit δ, the memory of the scheme is erased, i.e., the
probabilities are reset to their initial values. Experimentation
with this adaptive variant has shown that considering a large
number of strategies in the pool is not adequate [26].

qh =
nh + n0

∑H

j=1
(nj + n0)

(3)

C. JADE

JADE was presented by Zhang and Sanderson [22] as a
novel DE variant that includes the adaptation of CR and F. It
also includes other algorithmic modifications, such as the use
of a novel trial vector generation strategy and the incorporation
of an archive. Since in this work we are mainly interested in
the adaptation scheme, the other details of this approach are
omitted.

Adaptation of CR and F is carried out as follows. Each
time an individual must be created, new CR and F values are
created. The CR value is generated according to a normal
distribution of mean µCR and standard deviation 0.1, and
then truncated to [0, 1]. The F value is generated according
to a Cauchy distribution with location factor µF and scale
parameter 0.1. If the generated value is lower than 0, it is
regenerated. If it is higher than 1, it is truncated to 1. JADE

adapts µCR and µF considering the feedback obtained during
the optimization process. Specifically, in each generation t
each CR and F values that generate an individual that replaces
its corresponding target vector, are stored in the pools SCRt

and SFt
. At the end of each generation, µCR is updated with

Eq. (4) and µF is updated with Eq. (5), where meanA is
the arithmetic mean and meanL is the Lehmer mean. The
parameter c is an input parameter and represents the factor’s
adaptation speed.

µCRt+1
= (1− c)× µCRt

+ c×meanA(SCRt
) (4)

µFt+1
= (1− c)× µFt

+ c×meanL(SFt
) (5)

TABLE I. PARAMETERIZATION OF THE CR CONTROL STRATEGIES

jDE CRmin = 0, CRmax = 1, τ1 = 0.1

cDE H = 6, CRs equidistributed in [0,1], n0 = 2, δ =
1

5×H

JADE c = 0.1

SaDE LP = 50, MemCR = 50

D. SaDE

SaDE was presented by Qin and Suganthan [32], [29]
as a self-adaptive scheme with strategy adaptation. A set of
mutation strategies is stored in a pool, and after a learning
period (LP generations), each strategy k is used in the creation
of a new individual with a probability pk. The value pk is
proportional to the probability of performing a replacement
with such strategy in previous generations. The pool does not
include the value of CR and/or F . Instead, the F values are
randomly generated from a normal distribution with mean 0.5
and standard deviation 0.3. The CR values are generated from
a normal distribution with mean CRm and standard deviation
0.1. If the generated value is lower than 0 or higher than 1,
it is regenerated. Initially, CRm is set to 0.5. Successful CR
values, i.e., those that produce a trial vector entering the next
generation, are stored in a queue (QCR) with a maximum size
MemCR. After the learning period, CRm is updated to the
median of QCR in each generation.

IV. EXPERIMENTAL STUDY

This section shows the experimental study developed to
analyze the benefits and drawbacks of the aforementioned CR

control strategies. The tested CR control strategies have been
the ones defined in jDE, cDE, JADE and SaDE. They have
been incorporated in a DE/rand/1/bin strategy. Following the
recommendations given in [23], NP was set to 50, and F was
generated following a Cauchy distribution with location factor
0.5 and scale parameter 0.1. Table IV shows the parameteri-
zation of each control strategy. They have been set following
the recommendations given in [26].

The analyses were performed using the benchmark prob-
lems described in [33], which are a set of 19 scalable continu-
ous optimization problems to be minimized. The parameter D
allows setting the number of variables in the problems. In our
study, it was set to 50. In every experiment, each execution
was repeated 1,000 times.

Since stochastic algorithms were considered, comparisons
were carried out by applying the following statistical analysis,
assuming a significance level of 5%. First, a Shapiro-Wilk
test was performed to check whether or not the values of the
results followed a Gaussian distribution. If so, the Levene test
was used to check the homogeneity of the variances. If the
samples had equal variance, an ANOVA test was done; if not,
a Welch test was performed. For non-Gaussian distributions,
the non-parametric Kruskal-Wallis test was used. In this work,
the sentence “algorithm A is better than algorithm B” means
that the differences between them are statistically significant,
and that the mean and median obtained by A are lower—one
of the metrics might be equal—than the mean and median
achieved by B.

A. Correlation between quality and replacement probability

The tested CR control strategies grant more resources
to those CR values that have been successfully applied in
previous generations, i.e., those that have created trial vectors
which have survived to the following generations. This is a
greedy approach based on the principle that performing many
replacements will result in a better quality. However, there is
no a mathematical proof of such a relation. For instance, some
CR values might perform a lower number of replacements, but
in each replacement the improvement might be larger, resulting
in better final solutions. This first experiment studies the
correlation between final quality and replacement probability
with some of the most widely used benchmark problems. A
DE/rand/1/bin strategy was executed considering several fixed
CR values. Specifically, 51 CR values uniformly distributed in
the range [0, 1] were considered. The stopping criterion was
set to 250,000 function evaluations.

Figure 1 shows, for nine of the problems, the mean of the
error obtained at the end of the executions, as well as the mean
number of replacements performed for each CR value. The
problems are the ones where larger final errors were obtained.
We can appreciate that, in the general case, there is no a
clear correlation between the number of replacements and the
quality. For instance, in F2, the number of replacements does
not seem to depend on CR, while the quality highly depends on
CR. In addition, in most cases, the largest CR values produce
a very large number of replacements. However, this large
number of replacements does not result in a better quality.
The reason is that when very large CR values are used, the
crossover rejects most of the values of the target vector. This
might result in a quick convergence, so intensification might
be promoted. However, in such cases, diversity is quickly lost,
so the improvements obtained in each replacement might be
negligible.

The nonexistence of a clear correlation means that the
reasons of the relative success of adaptation of CR are more
complex than expected. Note that in all the tested algorithms,
the randomness introduced by the control strategy is very
large. For instance, jDE selects several CR values uniformly,
regardless of the feedback obtained in the optimization pro-
cess, while in JADE, instead of adjusting the value of CR, a
random distribution to generate CR values is adjusted. Thus,
it seems that part of the success is due to the increase of
randomness attained with the control strategies. In fact, a
more traditional self-adaptive scheme that does not introduce
so much randomness has not been as successful as the ones
analyzed in this paper [34]. Another evidence that the inclusion
of randomness might help is the study presented in [35]. In
such a study it was shown that DE might be deceived into
converging on the wrong peak due to the lower amount of
diversity introduced by DE with respect to other metaheuristics.
Anyway, the performed experiments show that most of the
adaptive schemes are assuming a relation that generally does
not hold, and as we will experimentally demonstrate, this
might provoke incorrect decisions that might result in large
performance deterioration.

B. Performance of CR control strategies

The aim of this experiment has been to analyze the per-
formance of the different CR control strategies, by comparing

0.01

0.1

1

10

100

1000

10000

 0 0.2 0.4 0.6 0.8 1
0

20000

40000

60000

80000

100000

120000

F
it
n

e
s
s
 (

m
e

a
n

)

R
e

p
la

c
e

m
e

n
ts

Crossover Rate (CR)

F2

Mean Error
Replacements

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

 0 0.2 0.4 0.6 0.8 1
0

20000

40000

60000

80000

100000

120000

F
it
n

e
s
s
 (

m
e

a
n

)

R
e

p
la

c
e

m
e

n
ts

Crossover Rate (CR)

F3

Mean Error
Replacements

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

 0 0.2 0.4 0.6 0.8 1
0

20000

40000

60000

80000

100000

120000

F
it
n

e
s
s
 (

m
e

a
n

)

R
e

p
la

c
e

m
e

n
ts

Crossover Rate (CR)

F4

Mean Error
Replacements

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

 0 0.2 0.4 0.6 0.8 1
0

20000

40000

60000

80000

100000

120000

F
it
n

e
s
s
 (

m
e

a
n

)

R
e

p
la

c
e

m
e

n
ts

Crossover Rate (CR)

F6

Mean Error
Replacements

0.01

0.1

1

10

100

1000

10000

100000

1e+06

 0 0.2 0.4 0.6 0.8 1
0

20000

40000

60000

80000

100000

120000

F
it
n

e
s
s
 (

m
e

a
n

)

R
e

p
la

c
e

m
e

n
ts

Crossover Rate (CR)

F8

Mean Error
Replacements

1

100

10000

1e+06

1e+08

1e+10

1e+12

 0 0.2 0.4 0.6 0.8 1
0

20000

40000

60000

80000

100000

120000

F
it
n

e
s
s
 (

m
e

a
n

)

R
e

p
la

c
e

m
e

n
ts

Crossover Rate (CR)

F13

Mean Error
Replacements

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

 0 0.2 0.4 0.6 0.8 1
0

20000

40000

60000

80000

100000

120000

F
it
n

e
s
s
 (

m
e

a
n

)

R
e

p
la

c
e

m
e

n
ts

Crossover Rate (CR)

F14

Mean Error
Replacements

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

 0 0.2 0.4 0.6 0.8 1
0

20000

40000

60000

80000

100000

120000

F
it
n

e
s
s
 (

m
e

a
n

)

R
e

p
la

c
e

m
e

n
ts

Crossover Rate (CR)

F17

Mean Error
Replacements

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10000

 0 0.2 0.4 0.6 0.8 1
0

20000

40000

60000

80000

100000

120000

F
it
n

e
s
s
 (

m
e

a
n

)

R
e

p
la

c
e

m
e

n
ts

Crossover Rate (CR)

F18

Mean Error
Replacements

Fig. 1. Relation between the quality and the number of replacement performed in DE

the results obtained by them with the ones obtained with fixed
CR values. Besides the aforementioned CR control strategy, a
random uniform scheme was also considered. In such case,
the CR values are generated randomly in the range [0, 1].
The same stopping criterion as in the previous experiment
was considered. Each CR strategy was statistically compared
against the 51 cases with fixed CR.

Table II shows, for each tested problem, the percentage
of cases where DE with a given CR control strategy was
superior (↑) or inferior (↓) than DE with a fixed CR value.
It also shows the mean across all tested problems. We can
appreciate that, in general, the adaptive strategies perform
adequately being only worse than a small percentage of fixed
configurations. In addition, when comparing the number of
cases where the adaptive schemes has been worse than the
fixed schemes, the inferiority of the uniform scheme is clear,
meaning that the feedback is providing a good orientation
towards the achievement of high-quality solutions.

Considering the overall results, the jDE scheme achieved
the best performance. However, in every strategy, there are
several problems with a high percentage of fixed configurations
that are better than the adaptive scheme. For instance, in every
strategy there is at least one problem where the number of
fixed configurations that are better than it is larger than 50%.
This means that the CR control strategies are not as robust as

expected. A deeper analysis of the reasons why this happens
is developed in the following section.

C. Analysis of the Long-term Behavior

In the previous analysis we showed that there are several
problems where the adaptive strategies fail to reach solutions
as good as those achieved by DE with the best fixed CR values.
However, finding such proper CR values is a time-consuming
task, so it is interesting to show whether the adaptive schemes
are able to reach such solutions in the long-term. Specifically,
the same adaptive schemes as in the previous experiment were
executed but the stopping criterion was now set to 2,500,000
function evaluations. Each model was compared against DE

with fixed CR values, but considering 250,000 function evalu-
ations. Table III shows the results of the statistical comparison.
We can appreciate that even if very long executions are run,
adaptive schemes are not able to attain the quality obtained
by the best fixed CR values in some problems. Moreover,
considering the overall results, the adaptation of JADE seems
to be the most robust, so the most adequate adaptation depends
on the considered stopping criterion.

In order to have a better insight on the reasons of the per-
formance deterioration, the problems F2 and F8 were selected.
F2 was selected because jDE and cDE fail to optimize it, while
F8 was selected because of the improper performance of JADE

TABLE II. STATISTICAL COMPARISON BETWEEN ADAPTIVE AND FIXED SCHEMES (250,000 EVALUATIONS)

jDE cDE JADE SaDE Uniform

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

F1 7.84 0 7.84 0 7.84 0 7.84 0 7.84 0

F2 47.05 52.94 39.21 60.78 72.54 15.68 66.66 19.60 43.13 54.90

F3 72.54 1.96 37.25 37.25 19.60 78.43 27.45 60.78 54.90 19.60

F4 86.27 13.72 88.23 5.88 92.15 3.92 86.27 7.84 76.47 21.56

F5 37.25 1.96 37.25 1.96 47.05 0 47.05 0 37.25 43.13

F6 54.90 0 54.90 0 54.90 0 54.90 0 54.90 0

F7 37.25 0 37.25 0 37.25 0 37.25 0 35.29 0

F8 90.19 9.80 90.19 7.84 54.90 41.17 64.70 33.33 82.35 17.64

F9 50.98 0 31.37 41.17 50.98 0 50.98 0 43.13 49.01

F10 43.13 45.09 52.94 0 54.90 0 54.90 0 41.17 52.94

F11 58.82 0 31.37 45.09 58.82 0 58.82 0 45.09 43.13

F12 78.43 0 19.60 54.90 19.60 52.94 25.49 39.21 68.62 0

F13 96.07 3.92 76.47 3.92 23.52 56.86 25.49 56.86 84.31 3.92

F14 82.35 0 86.27 5.88 96.07 0 88.23 0 70.58 19.60

F15 33.33 0 33.33 0 33.33 0 33.33 0 33.33 0

F16 68.62 21.56 21.56 49.01 23.52 47.05 60.78 29.41 39.21 43.13

F17 82.35 13.72 58.82 35.29 86.27 9.80 94.11 0 70.58 15.68

F18 74.50 17.64 50.98 17.64 70.58 9.80 76.47 11.76 56.86 39.21

F19 41.17 0 49.01 0 49.01 0 49.01 0 39.21 49.01

Mean 60.15 9.58 47.56 19.29 50.13 16.60 53.13 13.62 51.80 24.87

TABLE III. STATISTICAL COMPARISON BETWEEN ADAPTIVE (2,500,000 EVALUATIONS) AND FIXED SCHEMES (250,000 EVALUATIONS)

jDE cDE JADE SaDE Uniform

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

F1 7.84 0 7.84 0 7.84 0 7.84 0 7.84 0

F2 47.05 52.94 39.21 60.78 76.47 0 72.54 0 43.13 54.90

F3 100 0 100 0 98.03 1.96 47.05 29.41 100 0

F4 86.27 13.72 88.23 5.88 92.15 3.92 86.27 7.84 76.47 21.56

F5 37.25 1.96 37.25 1.96 47.05 0 47.05 0 37.25 43.13

F6 100 0 54.90 0 100 0 100 0 100 0

F7 37.25 0 37.25 0 37.25 0 37.25 0 35.29 0

F8 100 0 100 0 72.54 27.45 74.50 23.52 100 0

F9 50.98 0 50.98 0 50.98 0 50.98 0 43.13 49.01

F10 43.13 45.09 52.94 0 54.90 0 54.90 0 41.17 52.94

F11 58.82 0 47.05 43.13 58.82 0 58.82 0 45.09 43.13

F12 100 0 100 0 100 0 100 0 100 0

F13 100 0 100 0 96.07 3.92 96.07 3.92 100 0

F14 82.35 0 90.19 0 96.07 0 88.23 0 70.58 0

F15 33.33 0 33.33 0 33.33 0 33.33 0 33.33 0

F16 100 0 49.01 0 100 0 100 0 100 0

F17 100 0 100 0 100 0 100 0 100 0

F18 78.43 0 82.35 0 100 0 78.43 0 56.86 0

F19 41.17 0 49.01 0 49.01 0 49.01 0 39.21 49.01

Mean 68.62 5.98 64.18 5.88 72.13 1.96 67.48 3.40 64.70 16.50

jDE cDE JADE SaDE

−
4

5
0

−
4

3
0

−
4

1
0

−
3

9
0

F2

E
rr

o
r

jDE cDE JADE SaDE

0
5

0
0

1
0

0
0

2
0

0
0

3
0

0
0

F8

E
rr

o
r

Fig. 2. Box-plots of the results obtained in 2,500,000 function evaluations

and SaDE. Figure 2 shows the boxplots of the obtained results.
In F2, we can appreciate that jDE and cDE fail to reach the
optimal value (-450) in every execution, so they consistently

reach non-optimal values. In F8 the behavior of JADE and SaDE

is different. We can appreciate that in several cases, they are
able to reach the optimal values. However, in most cases the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
(C

R
 <

 x
)

x

Crossover Rate CDFs (F2)

jDE-best
jDE-worst
cDE-best

cDE-worst

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
(C

R
 <

 x
)

x

Crossover Rate CDFs (F8)

JADE-best
JADE-worst
SaDE-best

SaDE-worst

Fig. 3. Cumulative Distribution Functions of the CR generated by different adaptive schemes

optimization fails.

In order to better understand the differences among the
schemes, the best and worst executions were identified. Fig-
ure 3 shows the cumulative distribution function (CDF) of the
used CR values. In the case of F2, the CDFs are similar even
when comparing the best with the worst executions. In fact,
we can appreciate that both jDE and cDE tend to distribute
the generated values along the whole valid range. For this
reason, differences among executions are not so large. The
main drawback is that large CR values might provoke a large
drop in diversity. Therefore, for problems such as F2, where
maintaining diversity is important, jDE and cDE fail to reach
high-quality solutions. The CDFs for F8 shows that JADE and
SaDE are more focused on specific CR regions. However,
they are not always selecting the same region. By inspecting
Figure 1, we know that high-quality results are obtained
with large CR values. However, the number of replacements
performed by different CR values is constant for medium CR

values. Since, JADE and SaDE search for correct CR values
by performing small changes to the mean of the Gaussian
distribution, they might not reach the proper CR region.

V. CONCLUSIONS AND FUTURE WORK

DE is one of the most popular population-based meta-
heuristics for continuous optimization. In recent years, DE

has attracted a lot of attention because of its simplicity and
efficiency. Particularly, several adaptive DE variants that take
into account the feedback obtained in the optimization process
itself in order to set the DE parameters in a dynamic way,
have been devised. Most up-to-date DE variants adapt several
parameters and/or components simultaneously and incorporate
other algorithmic modifications, hampering the analysis of
the benefits provided by each single adaptation. Particularly,
several adaptive variants set the CR values dynamically, but
in order to fully understand their inner working mechanisms,
further studies are required. This paper provides a deep anal-
ysis of some of the most popular strategies used to adapt
the CR values. The strategies tested in this study are based
on the principle that the CR values that provoke a larger
number of replacements in DE provide solutions with a higher
quality. However, the analysis reported in this paper shows that
there are several cases where this relation does not hold. This
fact might provoke some improper decisions in such schemes
which might result in large performance deterioration. The
schemes tested in this research have been jDE, cDE, JADE and
SaDE. Computational results show that these adaptive variants
usually obtain competitive results, but at the same time, they

show that no one is robust enough to successfully face the
complete set of benchmark problems adopted here. Addition-
ally, the computational study reveals that while jDE and cDE

tends to use CR values distributed in the whole valid range,
JADE and SaDE tends to focus on specific regions of the valid
range. Thus, the variability of the results obtained by JADE and
SaDE is usually larger. Another interesting conclusion is that
the most effective adaptive variant depends on the stopping
criterion established. This is due to the fact that the different
variants provoke a different relationship between exploration
and exploitation. For instance, while jDE and cDE can use large
CR values since the beginning of the optimization process,
JADE and SaDE start with medium CR values that are gradually
modified during the execution. In some way, while jDE and cDE

perform a global search over the CR values, JADE and SaDE

perform a local search.

Since the study presented here has revealed that the corre-
lation between quality and number of replacements does not
generally hold, new adaptive variants might be proposed. In
our opinion, it is very promising to test alternative schemes
that are not exclusively based on granting more resources to
those CR values that provide a larger number of replacements.
For instance, the relationship between diversity and CR studied
in [36] might be used to define new control strategies. Since
the most adequate strategy has depended on the stopping
criterion established, another interesting research line would be
to include the stopping criterion as an input of the parameter
control strategy.

ACKNOWLEDGEMENT

This work was partially supported by the EC (FEDER)
and the Spanish Ministry of Science and Innovation as part of
the ‘Plan Nacional de I+D+i’, with contract number TIN2011-
25448. The second author is also affiliated to the UMI
LAFMIA 3175 CNRS at CINVESTAV-IPN. The work of
Eduardo Segredo was funded by grant FPU-AP2009-0457.

REFERENCES

[1] R. Storn and K. Price, “Differential Evolution - A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces,” J. of Global
Optimization, vol. 11, no. 4, pp. 341–359, Dec. 1997.

[2] F. Neri and V. Tirronen, “Recent advances in differential evolution:
a survey and experimental analysis,” Artificial Intelligence Review,
vol. 33, no. 1-2, pp. 61–106, 2010.

[3] R. Storn and K. Price, “Minimizing the real functions of the icec’96
contest by differential evolution,” in IEEE International Conference on

Evolutionary Computation, 1996 (ICEC’96), 1996, pp. 842–844.

[4] A. K. Qin and P. Suganthan, “Self-adaptive differential evolution
algorithm for numerical optimization,” in The 2005 IEEE Congress on

Evolutionary Computation (CEC’05), vol. 2, 2005, pp. 1785–1791 Vol.
2.

[5] A. LaTorre, S. Muelas, and J.-M. Pea, “A mos-based dynamic memetic
differential evolution algorithm for continuous optimization: a scalabil-
ity test,” Soft Computing, vol. 15, no. 11, pp. 2187–2199, 2011.

[6] Z. Yang, K. Tang, and X. Yao, “Scalability of generalized adaptive
differential evolution for large-scale continuous optimization,” Soft

Computing, vol. 15, no. 11, pp. 2141–2155, 2011.

[7] P. Menon, J. Kim, D. Bates, and I. Postlethwaite, “Clearance of
nonlinear flight control laws using hybrid evolutionary optimization,”
IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 689–699, 2006.

[8] H. R. Cai, C. Chung, and K. Wong, “Application of differential
evolution algorithm for transient stability constrained optimal power
flow,” Power Systems, IEEE Transactions on, vol. 23, no. 2, pp. 719–
728, 2008.

[9] S. Das and P. Suganthan, “Differential evolution: A survey of the state-
of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31, 2011.

[10] S. Kukkonen and J. Lampinen, “Gde3: the third evolution step of
generalized differential evolution,” in The 2005 IEEE Congress on
Evolutionary Computation, vol. 1, 2005, pp. 443–450.

[11] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello,
“Promising infeasibility and multiple offspring incorporated to differen-
tial evolution for constrained optimization,” in Proceedings of the 2005

Conference on Genetic and Evolutionary Computation, ser. GECCO
’05. New York, NY, USA: ACM, 2005, pp. 225–232.

[12] Z. Yang, K. Tang, and X. Yao, “Differential evolution for high-
dimensional function optimization,” in 2007 IEEE Congress on Evo-

lutionary Computation, 2007, pp. 3523–3530.

[13] R. Gämperle, S. Müller, and P. Koumoutsakos, “A Parameter Study
for Differential Evolution,” in Advances in Intelligent Systems, Fuzzy

Systems, Evolutionary Computation, A. Grmela and N. Mastorakis, Eds.
WSEAS Press, 2002, pp. 293–298.

[14] K. Zielinski, P. Weitkemper, R. Laur, and K. D. Kammeyer, “Parameter
study for differential evolution using a power allocation problem
including interference cancellation,” in IEEE Congress on Evolutionary

Computation 2006 (CEC 2006), 2006, pp. 1857–1864.

[15] K. Price, R. Storn, and J. Lampinen, Differential Evolution: A Practical

Approach to Global Optimization, ser. Natural Computing Series. U.S.
Government Printing Office, 2005.

[16] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and ana-
lyzing evolutionary algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 19 – 31, 2011.

[17] M. Srinivas and L. Patnaik, “Adaptive probabilities of crossover and
mutation in genetic algorithms,” IEEE Transactions on Systems, Man

and Cybernetics, vol. 24, no. 4, pp. 656 –667, apr 1994.

[18] T. Bäck, “The interaction of mutation rate, selection, and self-adaptation
within a genetic algorithm,” in Proceedings of the 2nd Conference on
Parallel Problem Solving from Nature. North-Holland, Amsterdam,
1992.

[19] S. Das, A. Konar, and U. K. Chakraborty, “Two improved differential
evolution schemes for faster global search,” in The 2005 conference on

Genetic and evolutionary computation (GECCO’05). ACM, 2005, pp.
991–998.

[20] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with composite
trial vector generation strategies and control parameters,” IEEE Trans.

Evol. Comput., vol. 15, no. 1, pp. 55–66, 2011.

[21] R. Mallipeddi, P. Suganthan, Q. Pan, and M. Tasgetiren, “Differential
evolution algorithm with ensemble of parameters and mutation strate-
gies,” Applied Soft Computing, vol. 11, no. 2, pp. 1679 – 1696, 2011.

[22] J. Zhang and A. Sanderson, “JADE: Adaptive Differential Evolution
With Optional External Archive,” IEEE Trans. Evol. Comput., vol. 13,
no. 5, pp. 945–958, 2009.

[23] C. Segura, C. A. Coello Coello, E. Segredo, and C. León, “On
the adaptation of the mutation scale factor in differential evolution,”
Optimization Letters, no. In press, 2014.

[24] J. Teo, “Exploring dynamic self-adaptive populations in differential
evolution,” Soft Computing, vol. 10, no. 8, pp. 673–686, 2006.

[25] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Trans. Evol. Comput.,
vol. 10, no. 6, pp. 646–657, 2006.

[26] J. Tvrdı́k, R. Poláková, J. Veselský, and P. Bujok, “Adaptive variants
of differential evolution: Towards control-parameter-free optimizers,” in
Handbook of Optimization, ser. Intelligent Systems Reference Library,
I. Zelinka, V. Snášel, and A. Abraham, Eds. Springer Berlin Heidel-
berg, 2013, vol. 38, pp. 423–449.

[27] K. Zielinski, X. Wang, and R. Laur, “Comparison of adaptive ap-
proaches for differential evolution,” in Parallel Problem Solving from

Nature PPSN X, ser. Lecture Notes in Computer Science, G. Rudolph,
T. Jansen, S. Lucas, C. Poloni, and N. Beume, Eds. Springer Berlin
Heidelberg, 2008, vol. 5199, pp. 641–650.

[28] J. Tvrdı́k, “Competitive differential evolution,” in MENDEL 2006:
12th International Conference on Soft Computing, R. Matoušek and
P. Ošmera, Eds., University of Technology, Brno, 2006, pp. 7–12.

[29] A. K. Qin, V. L. Huang, and P. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, 2009.

[30] F. Peng, K. Tang, G. Chen, and X. Yao, “Multi-start JADE with
knowledge transfer for numerical optimization,” in 2009 IEEE Congress

on Evolutionary Computation, 2009, pp. 1889–1895.

[31] D. Zaharie, “Control of Population Diversity and Adaptation in Differ-
ential Evolution Algorithms,” in Proc. of Mendel 2003, 9th International

Conference on Soft Computing, R. Matousek and P. Osmera, Eds., Brno,
Czech Republic, Jun. 2003, pp. 41–46.

[32] A. K. Qin and P. Suganthan, “Self-adaptive differential evolution
algorithm for numerical optimization,” in The 2005 IEEE Congress onE
volutionary Computation, vol. 2, 2005, pp. 1785–1791 Vol. 2.

[33] M. Lozano, D. Molina, and F. Herrera, “Editorial Scalability of Evolu-
tionary Algorithms and Other Metaheuristics for Large-scale Continu-
ous Optimization Problems,” Soft Computing - A Fusion of Foundations,

Methodologies and Applications, pp. 1–3, 2010.

[34] J. Brest, A. Zamuda, B. Bokovi, S. Greiner, and V. umer, “An analysis
of the control parameters adaptation in de,” in Advances in Differential

Evolution, ser. Studies in Computational Intelligence, U. Chakraborty,
Ed. Springer Berlin Heidelberg, 2008, vol. 143, pp. 89–110.

[35] W. Langdon and R. Poli, “Evolving problems to learn about particle
swarm optimizers and other search algorithms,” IEEE Trans. Evol.

Comput., vol. 11, no. 5, pp. 561–578, 2007.

[36] D. Zaharie, “Critical values for the control parameters of differential
evolution algorithm,” in Proceedings 8th International Mendel Confer-

ence on Soft Computing, R. Matouek and P. Omera, Eds., Brno, Czech
Republic, June 2002.

