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Abstract—The aim of any data mining technique is to build
an efficient predictive or descriptive model of a large amount of
data. Applications of evolutionary algorithms have been found to
be particularly useful for automatic processing of large quantities
of raw noisy data for optimal parameter setting and to discover
significant and meaningful information. Many real-life data
mining problems involve multiple conflicting measures of perfor-
mance, or objectives, which need to be optimized simultaneously.
Under this context, multi-objective evolutionary algorithms are
gradually finding more and more applications in the domain of
data mining since the beginning of the last decade. In this two-
part article, we have made a comprehensive survey on the recent
developments of multi-objective evolutionary algorithmsfor data
mining problems. In this Part-I, some basic concepts related
to multi-objective optimization and data mining are provided.
Subsequently, various multi-objective evolutionary approaches
for two major data mining tasks, namely feature selection and
classification are surveyed. In Part-II of the article [1], we have
surveyed different multi-objective evolutionary algorithms for
clustering, association rule mining and several other datamining
tasks, and provided a general discussion on the scopes for future
research in this domain.

Index Terms—Multi-objective evolutionary algorithms, Pareto
optimality, feature selection, classification.

I. I NTRODUCTION

Data mining involves discovering novel, interesting, and
potentially useful patterns from large data sets. The objective
of any data mining process is to build an efficient predictiveor
descriptive model of a large amount of data that not only best
fits or explains it, but is also able to generalize to new data.It is
very important to optimize the model parameters for successful
application of any data mining approach. Often such problems,
due to their complex nature, cannot be solved using standard
mathematical techniques. Moreover, due to the large size of
the input data, the problems sometimes become intractable.
Therefore, designing efficient deterministic algorithms is often
not feasible. Applications of evolutionary algorithms, with
their inherent parallel architecture, have been found to be
potentially useful for automatic processing of large amounts
of raw noisy data for optimal parameter setting and to discover
significant and meaningful information [2], [3].
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Traditionally, evolutionary algorithms (EAs) [4] were used
to solve single objective problems. However, many real-life
problems have multiple conflicting performance measures or
objectives, which must be optimized simultaneously to achieve
a trade-off. Optimum performance in one objective often
results in unacceptably low performance in one or more of
the other objectives, creating the necessity for a compromise
to be reached [2]. This facet of multi-objective optimization is
highly applicable in the data mining domain. For example, in
association rule mining, a rule may be evaluated in terms of
both its support and confidence, while a clustering solution
may be evaluated in terms of several conflicting measures
of cluster validity. Such problems thus have a natural multi-
objective characteristic, the goal being to simultaneously opti-
mize all the conflicting objectives. A number of EAs have
been proposed in the literature for solving multi-objective
optimization (MOO) problems [5], [6]. Unlike single objective
EAs, where a single optimum solution is generated in the final
generation, the definition of optimality is not straightforward
for the multi-objective case due to the presence of multiple
objective functions. In MOO, the final generation yields a set
of non-dominated solutions none of which can be improved on
any one objective without degrading it in at least one other [5],
[6]. Multi-objective evolutionary algorithms (MOEAs) [5],
[6] have become increasingly popular in the domain of data
mining over the last few years. Typical data mining tasks
include feature selection, classification, clustering/biclustering,
association rule mining, deviation detection, etc. A variety of
MOEAs for solving such data mining tasks can be found in
the literature. However, no previous effort has been made for
reviewing such methods in a systematic way.

Motivated by this, in this two-part paper, we attempt to make
a comprehensive survey of the important recent developments
of MOEAs for solving data mining problems. This survey
focuses on the primary data mining tasks, namely feature
selection, classification, clustering and association rule mining,
since most of the multi-objective algorithms that are applied
to data mining have dealt with these tasks. In this Part-I,
we discuss the basic concepts of multi-objective optimization
and MOEAs, followed by fundamentals of data mining tasks
and motivation for applying MOEAs for solving these data
mining tasks. Subsequently we review different MOEAs used
for feature selection and classification tasks of data mining.
In Part-II of the paper [1], different MOEAs used for cluster-
ing, association rule mining and other data mining tasks are
surveyed followed by a discussion on future scope of research.
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II. M ULTI -OBJECTIVEOPTIMIZATION

In this section, some basic concepts of MOO are first intro-
duced. Then, an overview of available MOEAs is provided.

A. Concepts of Multi-objective Optimization

In many real-world situations, there may be several objec-
tives that must be optimized simultaneously in order to solve a
certain problem. This is in contrast to the problems tackledby
conventional EAs, which involve optimization of just a single
criterion. The main difficulty in considering multi-objective
optimization is that there is no accepted definition of optimum
in this case, and therefore it is difficult to compare one
solution with another one. In general, these problems admit
multiple solutions, each of which is considered acceptableand
equivalent when the relative importance of the objectives is
unknown. The best solution is subjective and depends on the
need of the designer or decision maker [2], [5], [6].

We are interested in the multi-objective optimization prob-
lem (MOP), which can be stated as follows1 [5], [6]:

minimize ~F (~x) := [f1(~x), f2(~x), . . . , fk(~x)] (1)

subject to:
gi(~x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(~x) = 0 i = 1, 2, . . . , p (3)

where ~x = [x1, x2, . . . , xn]
T is the vector of decision

variables,fi : IRn → IR, i = 1, ..., k are the objective
functions andgi, hj : IRn → IR, i = 1, ...,m, j = 1, ..., p are
the constraint functions of the problem.

To describe the concept of optimality in which we are
interested, we will introduce next a few definitions.

Definition 1. A vector ~u = (u1, . . . , uk) is said todominate
(in a Pareto sense) another vector~v = (v1, . . . , vk) (denoted
by ~u � ~v) if and only if ~u is partially less than~v, i.e., ∀i ∈
{1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.
Definition 2. A solution ~x ∈ F (where F is the feasible
region, in which the constraints are satisfied) is said to be
Pareto Optimal with respect toF if and only if (iff) there
is no ~x′ ∈ F for which ~v = ~F (~x′) = (f1(~x′), . . . , fk(~x′))
dominates~u = ~F (~x) = (f1(~x), . . . , fk(~x)).
Definition 3. For a given MOP,F (~x), the Pareto Optimal
Set, P∗, is defined as:

P∗ := {~x ∈ F | ¬∃ ~x′ ∈ F ~F (~x′) � ~F (~x)}. (4)

Definition 4. For a given MOP,~F (~x), and Pareto Optimal Set,
P∗, the Pareto Front PF∗ is defined as:

PF∗ := {~u = ~F (~x) | ~x ∈ P∗}. (5)

We thus wish to determine the Pareto optimal set from the set
F of all the decision variable vectors that satisfy (2) and (3).
Note however that in practice, not all the Pareto optimal set
is normally desirable (e.g., it may not be desirable to have
different solutions that map to the same values in objective
function space) or achievable.

1Without loss of generality, we will assume only minimization problems.

B. Multi-objective Evolutionary Algorithms

Traditional search and optimization methods such as
gradient-based methods are difficult to extend to the multi-
objective case because their basic design precludes the con-
sideration of multiple solutions. In contrast, population-based
methods such as Evolutionary Algorithms are well-suited for
handling such situations. There are different approaches for
solving multi-objective optimization problems [5], [6].

MOEAs have evolved over several years, starting from
traditional aggregating approaches to the elitist Pareto-based
approaches and, more recently, to the indicator-based al-
gorithms. In the aggregating approaches, multiple objective
functions are combined into a single scalar value using weights
and the resulting single-objective function is then optimized
using conventional evolutionary algorithms. In population-
based non-Pareto approaches such as the Vector Evaluated
Genetic Algorithm (VEGA) [7], a special selection operator
is used and a number of subpopulations are generated by
applying proportional selection based on each objective func-
tion in turn. Among the Pareto-based approaches, Multiple
Objective GA (MOGA) [8], Niched Pareto GA (NPGA) [9],
and Non-dominated Sorting GA (NSGA) [10] are the most
representative non-elitist MOEAs. Although these techniques
take into account the concept of Pareto-optimality in their
selection mechanism, they do not incorporate elitism and,
therefore, they cannot guarantee that the nondominated so-
lutions obtained during the search are preserved. In the late
1990s, a number of elitist models of Pareto-based multi-
objective evolutionary algorithms were proposed. The most
representative elitist MOEAs include Strength Pareto Evo-
lutionary Algorithm (SPEA) [11] and SPEA2 [12], Pareto
Archived Evolutionary Strategy (PAES) [13], Pareto Envelope-
Based Selection Algorithm (PESA) [14] and PESA-II [15],
and Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
[16]. Most of the recent applications of MOEAs for data
mining problems have used one of these Pareto-based elitist
approaches as their underlying optimization strategy. A more
recent trend regarding the design of MOEAs is to adopt a
selection mechanism based on some performance measure. For
example, the Indicator-Based Evolutionary Algorithm (IBEA)
[17] is intended to be adapted to the user’s preferences by
formalizing such preferences in terms of continuous general-
izations of the dominance relation. Since then, other indicator-
based approaches, such as the S Metric Selection Evolutionary
Multi-objective Optimization Algorithm (SMS-EMOA) [18]
(which is based on the hypervolume [19]) have also been pro-
posed. The main advantage of indicator-based MOEAs such as
SMS-EMOA is that they seem to scale better in the presence
of many objectives (four or more). However, approaches based
on the hypervolume are very computationally expensive. Since
we don’t review any application of an indicator-based MOEA
in data mining, these approaches are not discussed further
in this paper, and they are mentioned only for the sake of
completeness.

III. D ATA M INING FUNDAMENTALS

Data mining involves discoveringinteresting and poten-
tially useful patterns of different types such as associations,
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summaries, rules, changes, outliers and significant structures.
Commonly, data mining and knowledge discovery are treated
as synonymous, although some scientists consider data mining
to be an integral step in the knowledge discovery process.
In general, data mining techniques comprise of three com-
ponents [20]: a model, a preference criterion and a search
algorithm. Association rule mining, classification, clustering,
regression, sequence and link analysis and dependency mod-
eling are some of the most common functions in current data
mining techniques. Model representation determines both the
flexibility of the model for representing the underlying data
and the interpretability of the model in human terms.

Data mining tasks can broadly be classified into two cat-
egories, predictive or supervised and descriptive or unsu-
pervised [3], [21]. The predictive techniques learn from the
current data in order to make predictions about the behavior
of new datasets. On the other hand, the descriptive techniques
provide a summary of the data. The most commonly used
tasks in the domain of data mining include feature selection,
classification, regression, clustering, association rulemining,
deviation detection, etc. In this article we have mainly fo-
cused on the four tasks, i.e., feature selection, classification,
clustering and association rule mining. This is because most
of the multi-objective algorithms applied to data mining have
dealt with these tasks. MOEAs have thoroughly been applied
in these four primary fields of data mining. These are briefly
described in the Part-I (feature selection and classification)
and Part-II [1] (clustering and association rule mining) of
the paper. However, for the sake of completeness, other data
mining tasks, where MOEAs have found applications are also
discussed in Part-II of the paper.

A. Feature Selection

Feature selection problem deals with selection of an opti-
mum relevant set of features or attributes that are necessary
for the recognition process (classification or clustering). It
helps reducing the dimensionality of the measurement space.
The goal of feature selection is mainly threefold. Firstly,it is
practically and computationally difficult to work with all the
features if the number of features is too large. Secondly, many
of the given features may be noisy, redundant and irrelevant
to the classification or clustering task at hand. Finally, itis a
problem when the number of features becomes much larger
than the number of input data points [2]. For such cases,
reduction in dimensionality is required to permit meaningful
data analysis [3]. Feature selection facilitates the use ofeasily
computable algorithms for efficient classification or clustering.

In general, the feature selection problem(Ω, P ) can for-
mally be defined as an optimization problem: determine the
feature setF ∗ for which

P (F ∗) = min
F∈Ω

P (F,X), (6)

whereΩ is the set of possible feature subsets,F refers to a
feature subset andP : Ω × ψ → (R) denotes a criterion to
measure the quality of a feature subset with respect to its utility
in classifying/clustering the set of pointsX ∈ ψ. The elements
of X , which are vectors ind-dimensional space are projected

into the subspace of dimensiondF = |F | ≤ d defined byF .
P is used to judge the quality of this subspace.

Feature selection can be either supervised or unsupervised.
For the supervised case, the actual class labels of the data
points are known. In filter approaches for supervised feature
selection, features are selected based on their discriminatory
power with regard to the target classes. In wrapper approaches
for supervised feature selection, the utility ofF is usually mea-
sured in terms of the performance of a classifier by comparing
the class labels predicted by the classifier for feature space F
with the actual class labels. For the unsupervised case, actual
class labels are not available. Hence, in filter approaches,
features are selected based on the distribution of their values
across the set of point vectors available. In wrapper-based
unsupervised feature selection, the utility of a feature subset
F is generally computed in terms of the performance of a
clustering algorithm when applied to the input dataset in the
feature spaceF .

B. Classification

The problem of classification is basically one of partitioning
the feature space into regions, one region for each categoryof
inputs [22]. Thus, it attempts to assign every data point in the
entire feature space to one of the possible (say,K) classes.
Classifiers are usually, but not always, designed with labeled
data, in which case these problems are sometimes referred
to as supervised classification (where the parameters of a
classifier function are learned). Supervised classifiers assume
that a set of training data is available. The training dataset
consists of a set of instances that are properly labeled with
the correct class labels. A learning algorithm then generates
a model that attempts to minimize the prediction error on the
training instances as much as possible, and also generalizeas
far as possible to new data.

The problem of supervised classification can formally be
stated as follows: Given an unknown functiong : X → Y
(the ground truth) which maps input instancesx ∈ X to
output class labelsy ∈ Y, and a training datasetD =
{(x1, y1), . . . , (xn, yn)} which is assumed to represent ac-
curate examples of the mappingg, produce a functionh :
X → Y that approximates the correct mappingg as closely
as possible. The learning algorithms help in identifying the
class boundaries in the training set as correctly as possible by
minimizing the training error.

Various classification algorithms are available in the lit-
erature. Some common examples of the supervised pattern
classification techniques are the nearest neighbor (NN) rule,
the Bayes maximum likelihood classifier, Support Vector Ma-
chines (SVM), and neural networks [3], [22], [23]. A number
of applications of evolutionary algorithms for classification
purposes can also be found in the literature [22].

C. Clustering

Clustering [24] is an important unsupervised classification
technique where a set of patterns, usually vectors in a mul-
tidimensional space, are grouped into clusters in such a way
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that patterns in the same cluster are similar in some sense and
patterns in different clusters are dissimilar in the same sense.

Clustering in ad-dimensional Euclidean spaceRd is the
process of partitioning a given set ofn points into a number,
say K, of groups (or clusters){C1, C2, . . . , CK} based on
some similarity/dissimilarity metric. The value ofK may
or may not be known a priori. The main objective of any
clustering technique is to produce aK × n partition matrix
U(X) of the given datasetX consisting ofn patterns,X =
{x1, x2, . . . , xn}. The partition matrix may be represented as
U = [ukj ], k = 1, . . . ,K and j = 1, . . . , n, whereukj is the
membership of patternxj to clusterCk. In the case of hard
or crisp partitioning,

ukj =

{

1 if xj ∈ Ck,

0 if xj /∈ Ck.
(7)

On the other hand, for probabilistic fuzzy partitioning of the
data, the following conditions hold onU (representing non-
degenerate clustering):

∀k ∈ {1, 2, . . . ,K}, 0 <

n
∑

j=1

ukj < n, (8)

∀j ∈ {1, 2, . . . , n},
K

∑

k=1

ukj = 1, (9)

and
K

∑

k=1

n
∑

j=1

ukj = n. (10)

Several clustering methods are available in the literature.
These can be broadly categorized into hierarchical (agglom-
erative and divisional), partitional (K-means, fuzzy C-means
etc.) and density-based (Density-Based Spatial Clustering of
Applications with Noise (DBSCAN), Clustering for Large
Applications (CLARA), etc.) clustering [2], [3]. Evolutionary
algorithms have also widely been used for clustering [25].

D. Association Rule Mining

The principle of association rule mining (ARM) [26] lies
in the market basket or transaction data analysis. Association
analysis is the discovery of rules showing attribute–valueasso-
ciations that occur frequently. LetI = {i1, i2, . . . , in} be a set
of n items andX be an itemset whereX ⊂ I. A k-itemset is
a set ofk items. LetT = {(t1, X1), (t2, X2), . . . , (tm, Xm)}
be a set ofm transactions, whereti andXi, i = 1, 2, . . . ,m,
are the transaction identifier and the associated itemset respec-
tively. The coverof an itemsetX in T is defined as follows:

cover(X,T ) = {ti|(ti, Xi) ∈ T,X ⊂ Xi}. (11)

The supportof an itemsetX in T is

support(X,T ) = |cover(X,T )| (12)

and thefrequencyof an itemset is

frequency(X,T ) =
support(X,T )

|T |
. (13)

Thus, support of an itemsetX is the number of transactions
where all the items inX appear in each transaction. The
frequency of an itemset is the probability of its occurrencein a
transaction inT . An itemset is called frequent if its support in
T is greater than some thresholdmin sup. The collection of
frequent itemsets with respect to a minimum supportmin sup
in T , denoted byF(T,min sup) is defined as

F(T,min sup) = {X ⊂ I, support(X,T ) > min sup}.
(14)

The objective of ARM is to find all rules of the form
X ⇒ Y , X

⋂

Y = ∅ with probability c%, indicating that
if itemsetX occurs in a transaction, the itemsetY also occurs
with probability c%. X andY are called theantecedentand
consequentof the rule, respectively. Support of a rule denotes
the percentage of transactions inT that contains bothX
and Y . This is taken to be the probabilityP (X

⋃

Y ). An
association rule (AR) is calledfrequentif its support exceeds
a minimum valuemin sup.

The confidence of a ruleX ⇒ Y in T denotes the percent-
age of the transactions inT containingX that also contains
Y . It is taken to be the conditional probabilityP (X |Y ). In
other words,

confidence(X ⇒ Y, T ) =
support(X

⋃

Y, T )

support(X,T )
. (15)

A rule is calledconfidentif its confidence value exceeds a
thresholdmin conf . Formally, the ARM problem can be
defined as follows: Find the set of all rulesR of the form
X ⇒ Y such that

R = {X ⇒ Y |X,Y ⊂ I,X
⋂

Y = ∅,

X
⋃

Y ⊆ F(T,min sup),

confidence(X ⇒ Y, T ) > min conf}. (16)

Generally, the ARM process consists of the following two
steps [26]:

1) Find all frequent itemsets.
2) Generate strong ARs from the frequent itemsets.

The number of itemsets grows exponentially with the num-
ber of items|I|. A commonly used algorithm for generating
frequent itemsets is theApriori algorithm [26], [27]. This is
based on the concept of downward closure property which
states that if even one subset of an itemsetX is not frequent,
thenX cannot be frequent. It starts from all itemsets of size
one, and proceeds in a recursive fashion. If any itemsetX is
not frequent, then that branch of the tree is pruned, since any
possible superset ofX can never be frequent.

E. Why to use Multi-Objective Data Mining?

The most important question in data mining problems
is how to evaluate a candidate model, and, obviously, this
question depends on the type of data mining task in hand. For
example, a feature selection model may be evaluated based on
its performance in correctly classifying the dataset, whereas
a clustering model can be evaluated based on some cluster
validity index. Thus, most of the data mining problems can be
thought as optimization problems, where the aim is to evolve
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a candidate model that optimizes certain performance criteria.
However, the majority of data mining problems have multiple
criteria to be optimized. For example, a feature selection
problem may try to maximize the classification accuracy while
minimizing the size of the feature subset. Similarly, a rule
mining problem may optimize several rule interestingness
measures such as support, confidence, comprehensibility, lift
[28], etc. at the same time. Similar cases may arise for a
clustering problem also where one tries to optimize several
cluster validity indices simultaneously to obtain robust and
improved clustering, because no single validity index performs
well for all types of datasets [2]. Hence, most of the data
mining problems are multi-objective in nature. Therefore,it
is natural to pose the data mining problems as multi-objective
ones. For this reason, over the past decade, several researchers
have applied MOEAs for different data mining problems.

A MOEA provides a set of non-dominated solutions, which
the user can compare (it’s important to keep in mind that the
set of non-dominated solutions represents the best possible
trade-offs among the objectives). Then, a single solution from
this set can be chosen, based on the user’s preferences. There
are several possible schemes for selecting a single solution.
For example, one can generate a consensus solution that shares
the knowledges contained in all the non-dominated solutions.
This method has been successfully used in clustering [29]
and classifier ensemble [30] problems. Some other approaches
for choosing the final solution from the non-dominated front
are discussed in this survey in subsequent sections. It is
worth noting, however, that for some problems, all the non-
dominated solutions are considered as final solutions without
having to choose a single solution from the set. For example,
in the problem of association rule mining [31] or biclustering
[32], all the non-dominated solutions, representing rulesand
biclusters, respectively are considered as the final solution set.

Due to the above reasons, MOEAs have been popularly used
for data mining problems. In this two-part article, we have sur-
veyed a number of different MOEAs techniques applied to data
mining problems mainly focusing on encoding techniques,
objective functions, evolutionary operators and final solution
selection strategies. In this part of the article, we have reviewed
different MOEAs used for feature selection and classification
problems. In Fig. 1, we have outlined the different MOEA-
based feature selection and classification approaches reviewed
in this part along with their corresponding references. In the
subsequent sections, these approaches are reviewed in detail.

IV. MOEA S FORFEATURE SELECTION

The feature selection problem can be easily posed as an
optimization problem where the goal is to select a subset
of features for which some feature-subset evaluation crite-
rion is optimized. Therefore, genetic and other evolutionary
algorithms have been widely used for the feature selection
problem [61], [62]. Evolutionary algorithms for feature se-
lection techniques mostly take a wrapper approach where
a subset of features are encoded in a chromosome and a
feature evaluation criterion is used as the fitness function. The
feature subsets are evaluated based on how well the selected

features classify (for the supervised case) or cluster (forthe
unsupervised case) the dataset. However, evaluation of selected
features by a single criterion does not work equally well for
all datasets. Therefore, the need of simultaneously optimizing
multiple such criteria arose. Multi-objective feature selection
helps improve the robustness of the feature selection methods.
In the recent past, a number of MOEAs, both in supervised and
unsupervised domains, have been proposed. Next, we review
these methods.

A. Underlying MOEAs

Several MOEAs have been used as the underlying optimiza-
tion tool for a number of different feature selection algorithms.
In [33], [34] NPGA has been adopted. An elitist version of
NPGA, called ENPGA has been employed in [36]. NSGA
has been adopted in [39], [44], [63], [64]. In [40], [42],
[46], NSGA-II has been used as the MOO tool. In [35], a
Reduced Pareto Set Genetic Algorithm (elitist) (RPSGAe) [65]
has been employed as the optimization method. In RPSGAe,
a clustering algorithm is applied to reduce the size of the
Pareto optimal set. In [66], an Evolutionary Local Search
Algorithm (ELSA) has been used. ELSA works on each
objective separately [67]. In [45], PESA-II has been used for
multi-objective feature selection.

B. Chromosome Representation

The first and foremost step for solving a feature selection
problem using MOEAs is to encode a possible feature subset
in the form of a chromosome. Almost all the MOEA-based
feature selection algorithms have used a binary chromosome
to encode a feature subset. The length of each chromosome
is taken asd, whered is the total number of features. Each
position of the chromosome can take either a ‘1’ or a ‘0’ value.
If position i has value ‘1’, then the featurei is considered to be
a part of the selected feature subset. If positioni has a value of
‘0’, then the corresponding feature is ignored. For example, if
d = 10, then the chromosome0010110101 encodes the feature
subset{3, 5, 6, 8, 10}. This approach has been used in both
supervised [33], [35], [38], [39], [40] and unsupervised [43],
[44], [45] feature selection techniques using MOEAs. In case
of unsupervised methods, the goodness of the candidate feature
subset encoded in a chromosome is measured in terms of the
performance of some clustering algorithm on the projected
subspace of the input dataset. As the number of clusters
has significant impact on the performance of a clustering
algorithm, hence it is also encoded in the chromosome in some
works [44], [45].

One possible criticism of binary encoding could be that
the chromosome lengths for binary encoding may be very
large if the dimension of the input dataset is large. The use
of binary encoding may lead to longer decoding times and
slower convergence, but has the advantage of being a universal
encoding, that can be used to represent any sort of decision
variables. The use of alternative encodings, such as integers
would lead to a reduced chromosome length, but requires
special operators for recombination and mutation, and may
also require additional mechanisms (for example, remotionof
duplicate individuals).
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Supervised− [33], [34], [35], [36], [37], [38], [39], [40], [41], [42]
Feature

MOEAs for selection
feature selection Unsupervised− [43], [44], [45], [46]
& classification

Classification rules− [47], [48], [49], [50], [51], [52], [53], [54]

Classification Class boundaries− [55]

Model building− [56], [30], [57], [58], [59], [60]

Fig. 1. MOEAs for feature selection and classification taskssurveyed in this part of the article (with references)

C. Objective Functions

Most of the multi-objective evolutionary feature selection
approaches in current use have addressed the supervised
problem, i.e., when the class label of the training objects are
known. However, there are a few unsupervised approaches as
well. Here, we briefly discuss the different objective functions
that have been simultaneously optimized by different multi-
objective feature selection algorithms for both the supervised
and the unsupervised cases.

1) Supervised Case:Supervised approaches assume the
existence of a training set of objects for which actual class
labels are known. Therefore, in these cases, usually some
classification algorithms are used to measure the goodness
of the selected feature subset based on how well they can
classify the training examples using a certain classifier. The
performance of the feature subset is evaluated using some
classification performance metrics. One of the pioneering
works in this regard was done by Emmanouilidis et al. [33]
where the two objective functions correspond to the mis-
classification rate and the number of features. Both objective
functions are minimized with the expectation of reducing the
misclassification rate as much as possible, with a minimum
set of features. Two classifiers, namely probabilistic neural
network (PNN) and multilayer perceptron (MLP) are used to
compute the misclassification rate. The misclassification rate
for a subset of features is computed by randomly breaking the
input training set into three subsets. The three subsets areused
for training, validation and testing, respectively. Several such
cycles are performed and the average misclassification rateis
computed. In a similar approach, the authors have computed
the same objective values based on the Generalized Regression
Neural Network (GRNN) classifier [34]. The authors have also
used a 1-NN classifier in [36] for optimizing three objective
functions, viz., number of features, sensitivity and specificity
of the classification result. In [35], a support vector machine
(SVM) classifier with Radial Basis Function (RBF) kernel has
been used for evaluating the encoded feature subset. Several
objective functions regarding classification performance, such
as accuracy, false positive rate (FPR), false negative rate
(FNR), precision, recall, F-measure and number of featuresare
considered and different combinations are tested. The metrics
are computed based on 10-fold cross-validation on the training
set. In [38], three objective functions have been optimized.

First, is the minimization of misclassification rate, second is
the minimization of imbalance in class sizes, and the third is
the minimization of number of features. 70% of the training
patterns are used to train a feature correlation-based classifier
(GS-classifier) [68], [69] and the above measures are computed
on the remaining 30%. In [37], the two objective functions to
be minimized are the misclassification error and the size of the
tree using a C4.5 decision tree classifier built using the selected
feature subset. Two objectives, the number of features and the
misclassification rate (using a neural network classifier) have
also been minimized in [39], [63]. In [41], these two criteria
are optimized but they have used a logistic regression (LR)
and SVM classifier. To find out the most relevant and non-
redundant feature subset, in [40], the two objective functions
adopted were the minimization of correlation among the
selected features and the maximization of correlation among
the selected features and class labels of training patterns.
In [42], different combinations of feature evaluation criteria,
such as the number of inconsistent pattern pairs, feature vs.
class correlation, Laplacian score, representation entropy, and
intra- and inter-class distances have been used as the objective
functions. They have used a filtering approach for computing
these criteria independent of a classifier.

Although various approaches have been proposed in the
literature, it is worth noting that feature selection results
heavily depend on the chosen classification algorithm that
is used as the wrapper. Moreover, the number of objective
functions and their choice play an important role on the
selection of the final feature subset. It would be therefore a
nice idea to perform a comparative study of the performance
of the proposed techniques based on some benchmark datasets.
To the authors’ best knowledge no comparative study of this
sort has been reported so far in the specialized literature.

2) Unsupervised Case:There have been a few works
related to the development of evolutionary algorithms for
multi-objective unsupervised feature selection as well. For the
unsupervised case, the algorithms do not assume the existence
of true class labels, and, therefore, there is no training set. For
this case, usually a clustering algorithm is used to evaluate
a feature subset on the basis of how well these features are
able to identify the clustering structure of the dataset. Inthis
regard, some cluster validity index [70] is used to evaluatethe
goodness of the clustering solution generated by the feature
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subset. One of the first studies in this direction was done by
Kim et al. in [43]. K-means and Expectation Maximization
(EM) clustering are used to evaluate a feature subset encoded
in a chromosome. Different clustering objectives, all of which
are a function of the number of clusters, the number of fea-
tures, the intra-class similarity and the inter-class dissimilarity
are simultaneously optimized. The MOEA adopted in this
case is the Evolutionary Local Search Algorithm (ELSA).
In a similar work, Morita et al. [44] also used K-means as
the wrapper clustering algorithm, but they minimized two
objective functions, viz., the number of features and the
cluster validity indexDB [71]. In [45], Handl and Knowles
examined different combinations of objective functions inthe
context of multi-objective evolutionary feature selection. One
objective was taken as the number of selected features, which
is optimized along with one of theDB, normalizedDB
or silhouette indices (wrapper approach), or with an entropy
measure (filter approach). The K-means algorithm is used as
the wrapper clustering algorithm. In [46], again, the number
of features and theDB index / normalizedDB index are
simultaneously optimized.

For the unsupervised case, the output of the algorithms
heavily depends (as in the supervised case) on the choice of
the objective functions. Moreover, the choice of the clustering
algorithm as a wrapper evaluator of the candidate feature sub-
set also plays a major role in deciding the final feature subset.
In [45], a preliminary effort has been made to compare the
performance of different combinations of objective functions
for multi-objective unsupervised feature selection. However,
a more detailed effort considering different combinationsof
clustering algorithms and objective functions could be more
beneficial to researchers.

D. Evolutionary Operators

The evolutionary operators, crossover and mutation, are
used to produce the population of the following generation in
a MOEA. Since the MOEAs reviewed in this paper use binary
encoding, this explains that single-point and uniform crossover
had been the most popular choices in such references. Single-
point crossover has been adopted in [37], [39], [40], [42],
[44], [64], [63], whereas uniform crossover has been employed
in [45], [46]. A few exceptions are also noticed. In [34],
a two-point crossover operator is employed. In [33], [36],
[43], a commonality-based crossover operation is used. This
operator takes two agents, a parenta and a random mate, and
then it scans each bit of both agents. Whenever the bits are
different, one of the two bits is randomly chosen to obtain the
corresponding offspring bit. Thus, the mate contributes only to
obtain the bit string of the offspring, in which all the common
features of the parents are inherited. In all the above works, a
standard bit-flip mutation operator has been adopted.

It is to be noted that most of the MOEAs reported in the
papers reviewed depend on standard crossover and mutation
operators, without having to rely on more sophisticated oper-
ators. In the only references in which a non-standard operator
is adopted (i.e., the commonality-based crossover previously
indicated, which is adopted in [33], [36], [43]), no comparisons

are provided with respect to standard crossover operators and,
therefore, it is not possible to judge the actual improvements
achieved by its use.

E. Obtaining a Final Solution

As stated before, MOEAs produce a set of non-dominated
solutions in the final generation. Each of these solutions
encodes a possible feature subset. None of the non-dominated
solutions can be said to be better than the others. However, for
practical reasons, it is necessary to select a single solution from
the final non-dominated set. In many of the multi-objective
feature selection approaches that were reviewed for this survey,
this issue has been properly addressed.

1) Supervised Case:For the supervised case, identification
of the final solution is a relatively easy task, since a labeled
training set, which can guide this selection, is available.
In [37], an internal cross-validation approach is adopted to
select the final feature subset. Each non-dominated solution is
evaluated byk-fold cross-validation and the solutions, which
stay non-dominated at each fold, are returned as the selected
promising solutions. However, this internal cross-validation
is computationally expensive. Therefore, they have used this
only in the final generation, instead of employing it at every
generation. Moreover, it is to be noted that this method results
in multiple final solutions, from which the user must choose
one, subjectively. In [38], a simple aggregation of the objective
function values is used as the criterion for selecting the final
solution from the non-dominated front. This is one of the
simplest methods, and is computationally inexpensive. How-
ever, the final selection depends on the aggregation function
used. The authors have not clearly explained the aggregation
function used to find theraw fitness of the individuals.
However, aggregation of the fitness values to decide the final
solution may raise question on the requirement of generating
the complete Pareto front, because one can optimize the ag-
gregated fitness function directly. In [39], a validation dataset
is used for measuring the performance of each non-dominated
solution on independent data. The solution that provides the
best performance on the validation set is chosen as the final
solution. This is done with the expectation of selecting the
solution with the best generalization power to an unknown
validation dataset. In [40], a combination of the objective
functions, feature correlation and feature vs. class correlation,
called relative overall correlation is used to select the final
feature subset from the non-dominated front. However, the
authors have not explained well why this relative overall
correlation is not directly used for optimization. In [42],a
compromise programming-based approach is used to select
the final solution from the non-dominated front. As the authors
have not explained the method in detail, it is difficult to discuss
its merits or possible drawbacks any further.

2) Unsupervised Case:For the unsupervised case, the
selection of the final solution is more difficult, since no
labeled data is available. In [44], the authors computed the
classification accuracy using the feature subset encoded in
each non-dominated solution, and then selected the solution
providing maximum classification accuracy. Therefore, it is
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evident that here the authors used a supervised technique for
choosing the final solution. This approach is not obviously
acceptable when class labels of the samples are unknown. In
[45], a knee-based approach is adopted. Here, a MOEA is
applied first on the original dataset in order to obtain a non-
dominated front. Thereafter, the same algorithm is applied
on a random dataset that is created with the same bound
of the original dataset. The resulting non-dominated front
is called thecontrol front. Finally, the authors compare the
solutions of the actual front with those of the control fronts
for each feature, and the solution which is most distant from
its corresponding control solution is identified as the finalknee
solution. This approach is able to identify the best trade-off
solution from the non-dominated front. However, applying the
feature selection algorithm on random datasets to generate
the control fronts is time consuming. Hence, this method is
computationally expensive. In another knee-based approach
[46], the authors first sort the non-dominated solutions on
the basis of one of the objectives, and then they find the
slope of each solution by computing the ratio of differences
of the first objective function to the difference of the second
objective function in two consecutive solutions. Next, they
select the solution for which the change of slope is maximum.
This approach is very straightforward in comparison with the
control front generation, and this is also more computationally
efficient. However, it may not be easy to extend this method
if the number of objective functions is more than two.

Although a number of different approaches have been pro-
posed for selecting the final solution from the non-dominated
front, surprisingly, none of them utilized the information
contained in the complete front effectively. Due to the nature
of multi-objective optimization problems, all the solutions
of the final front share some information of the underlying
dataset. But none of the solution selection methods have
tried to combine this information from all the non-dominated
solutions through some kind of ensemble. This approach might
be, indeed, effective to exploit knowledge from the solutions
obtained. Additionally, to the authors’ best knowledge, a
systematic comparison of methods used for selecting the final
solution from the Pareto front is also missing in the literature.

F. Relative Comparison and Applications

For the purposes of getting an overview of all the MOEA-
based methods that we have reviewed for feature selection, we
provide in Table I a comparative description of them in terms
of the underlying MOO tool, type of approach (supervised /
unsupervised), encoding strategy, objective functions, evolu-
tionary operators and method for obtaining the final solution.
We have arranged the approaches in ascending order of the
publication year, and for better understanding, we distinguish
between the supervised and the unsupervised cases. The names
of the algorithms are mentioned if they are found in the
corresponding publications. It is evident from the table that a
variety of MOEAs have been used to design feature selection
techniques. It is also worth noting that a systematic compar-
ison of all the MOEA-based feature selection algorithms is
missing. However, in different publications, the authors have

compared their proposed approaches with different existing
non-evolutionary algorithms, or with different modifications
of the proposed approaches. Some of the possible reasons for
not comparing different approaches may be unavailability of
code/software and limited information for reproducing existing
results.

Interestingly, in different works, the authors have used their
proposed MOEA-based feature selection technique in various
real-life applications. For example, in [35], the authors have
applied their method in cardiac Single Proton Emission Com-
puted Tomography (SPECT) diagnosis. In [36], the proposed
evolutionary multi-objective feature selection (EMOFS) tech-
nique has been used for industrial machinery fault diagnosis.
Multi-objective feature selection has been applied in bioinfor-
matics, too. For example, in [38], the authors have applied
their method in selecting informative genes from microarray
gene expression data. In [39], multi-objective feature selection
has been employed for handwritten digit string recognition.
Another interesting application, viz., bankruptcy prediction,
has been addressed in [41] using multi-objective evolutionary
feature selection. This discussion shows that MOEA-based
feature selection approaches have potential to be used for a
wide variety of real-life problems.

V. MOEAS FORCLASSIFICATION

MOEAs have been widely used for classification. There
are mainly three different approaches. The most commonly
studied approach is the use of MOEAs for evolving a good
set of classification rules. The second approach is to employ
MOEAs to define the class boundaries (hyperplanes) in the
training data. The final approach is to use MOEAs for training
and model the construction of well-known classifiers such as
neural networks and decision tree classifiers. Here, we review
some representative algorithms adopted in these three types of
approaches.

A. Evolving Classification Rules

A classification rule can be represented as an If-Then rule
of the formIf <condition> Then<class>. The<condition>
represents the antecedent of the rule which usually denotesa
set of attribute-value pairs combined with anandoperator. For
example, a classification rule may be as follows:If height>
6 feet and weight> 70 kg Then class=Big. It is to be noted
that these attribute-value pairs are generated on categorical
values. Therefore, if some attribute consists of continuous
values, that must be first discretized to make it categorical
before using the attribute in a classification rule. The objective
of any rule-based classification system is to identify a goodset
of classification rules that can properly represent the training
dataset, i.e., that provides a good classification performance
on the training data.

1) Underlying MOO Algorithms:In the majority of the
MOEA-based classification approaches, NSGA-II has been
adopted as the underlying MOO algorithm for optimization.
For example, NSGA-II has been used in a series of works
by Ishibuchi et al. for fuzzy classification rule mining [47],
[48], [49], [72], [73]. NSGA-II has also been employed in
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TABLE I
COMPARISON OF DIFFERENTMOEAS FOR FEATURE SELECTION

Algorithm Underlying Type Encoding Wrapper/ Objective fun ctions Evolutionary operators Final solution from
MOO tool filter non-dominated front

Emmanouilidis et. al. [33], NPGA Supervised Binary PNN, MLP Misclassification rate, Commonality crossover, None
2000 (Features) claasifiers number of selected features bit-flipmutation
Emmanouilidis et. al. [34], NPGA Supervised Binary GRNN RMSE, Two-point crossover, None
2001 (Features) classifier number of selected features bit-flip mutation
Gaspar-Cunha [35], RPSGAe Supervised Binary SVM Differentcombinations of Not mentioned None
2001 (Features) classifier Classification accuracy, FPR,

FNR, F-measure,
number of selected features

Emmanouilidis [36], ENPGA Supervised Binary 1-NN Sensitivity, specificity Commonality crossover, None
2002 (EMOFS) (Features) classifier number of selected features bit-flip mutation
Pappa et. al. [37], Non-standard Supervised Binary C 4.5 Misclassification rate, Bit-swapping crossover, Internal
2002 (MOFSS) (Features) classifier size of C4.5 classification tree bit-flip mutation cross-validation
Liu and Iba [38], NPGA variant Supervised Binary GS Misclassification rate, Not mentioned Aggregated objective
2002 (Features) classifier class imbalance values (raw fitness)

number of selected features
Oliveira and Sabourin [39], NSGA Supervised Binary MLP Misclassification rate, One-point crossover, Validation database
2003 (Features) classifier number of selected features bit-flip mutation
Wang and Huang [40], NSGA-II Supervised Binary Filter approach Correlation among features, One-point crossover, Based on
2009 (Features) (no classifier) feature vs. class correlation bit-flip mutation relative overall correlation
Mendes et. al. [41], RPSGA Supervised Binary LR and SVM Classification accuracy, Not mentioned None
2010 (Features) classifiers number of features
Venkatadri and Rao [42], NSGA-II Supervised Binary Filter approach Different combinations of One-point crossover, Compromise
2010 (Features) (no classifier) number of inconsistent pattern pairs, bit-flip mutation programming

feature vs. class correlation,
Laplacian score, representation
entropy, intra- and inter-class distance

Kim et. al. [43], ELSA Unsupervised Binary K-means & EM Function of number of features, Commonality crossover, None
2002 (Features) clustering function of number of clusters, bit-flip mutation
(ELSA/KM, ELSA/EM) intra- and inter-cluster similarities
Morita et. al. [44], NSGA Unsupervised Binary (features K-means DB index, One-point crossover, Classification
2003 + no. of clusters) clustering number of selected features bit-flip mutation accuracy (supervised)
Handl and Knowles [45], PESA-II Unsupervised Binary (features K-means Combinations of number of selected Uniform crossover, Select knee solution
2006 + no. of clusters), clustering and features, and one of DB, normalized bit-flip mutation using control front

(only features Filter approach DB, silhouette and entropy index
in filter approach)

Mierswa and Wurst [46], NSGA-II Unsupervised Binary K-means Number of selected features and Uniform crossover, Selectknee solution
2006 (Features) clustering DB / normalized DB bit-flip mutation based on slope

fuzzy classification rule discovery in [51], [52], [53]. In [50],
a non-fuzzy categorical classification rule mining algorithm
is proposed using an elitist multi-objective genetic algorithm
(EMOGA). Another multi-objective fuzzy classification rule
mining approach has been presented in [54], where PAES has
been utilized for optimizing the evolved rules.

2) Chromosome Representation:For evolving classification
rules using MOEAs, one has to first encode the classification
rules in the chromosomes. There are mainly two approaches
in this regard. The first one is the Pittsburgh approach, in
which a set of rules is encoded in a single chromosome. The
second one is the Michigan approach, where each chromosome
encodes one rule. From the classification point of view, the
Pittsburgh approach is more useful since here each chromo-
some represents a complete classifier system. The number
of rules encoded in a chromosome can either be fixed or
variable. Therefore, from the final non-dominated solutions,
one particular solution must be picked up to represent a
complete classification system. Most of the MOEAs available
for building rule-based classifiers use this approach [74].On
the other hand, the Michigan approach is usually much easier
and less complex, because each chromosome encodes only one
rule. Thus, in this approach, the final solution is composed of
the full non-dominated set of classification rules [74].

Most of the multi-objective evolutionary classification rule-
based systems are focused on evolving fuzzy classification
rules. Let’s assume that the training set containsm patterns
of the form xp = {xp1, xp2, . . . , xpn}, p = 1, . . . ,m, i.e.,
each pattern isn-dimensional. There areM classes. A fuzzy

If-Then classification rule takes the form [47]

Rq = If x1 is Aq1 and . . . and xn is Aqn

Then Class = Cq with CFq,

whereRq is the qth fuzzy rule,x = (x1, . . . , xn) is an n-
dimensional pattern vector,Aqi is the antecedent fuzzy set of
the ith attribute,Cq denotes the consequent class andCFq is
the weight (certainty grade) of the rule [47]. The antecedent
fuzzy setsAqi can either represent a linguistic value of the
corresponding attribute, or adon’t care condition. When the
antecedent part of the fuzzy rule is provided, the consequent
class and the rule weight are obtained in a heuristic manner
from compatible training patterns.

The Pittsburgh encoding strategy for classification rule
generation can be broadly divided into two categories. One is
rule selection and the other is rule learning. In the first strategy,
the aim is to select a subset of predefined rules and, in the
second, the objective is to learn the rules through evolutionary
algorithms. While the first strategy has been adopted in [47],
[48], [49], the second strategy is employed in [51], [52], [53].
In [54], a combination of these approaches is proposed.

Ishibuchi et al. have studied the use of MOEAs for fuzzy
classification rule extraction in a series of works [47], [48],
[49]. In all these works, the authors used the Pittsburgh
approach. Here, the authors first generate a set of rules thatis
constructed using some heuristic rule generator. Thereafter, a
MOEA is used to select a suitable set of rules for classification.
The length of a chromosome is equal to the number of rules
in the rule-based system. A chromosome encodes a subset
of rules represented by ‘1’ bits of the chromosome. The



10

rules corresponding to the ‘0’ bits are ignored (i.e., a binary
encoding is adopted). Hence, in this approach, chromosomes
can encode a variable number of predefined rules. One possible
disadvantage of this approach is that as the set of rules is
predefined, the job of the MOEA is only to select a subset
of rules, but it cannot manipulate the individual rules by
changing the fuzzy membership parameters. Moreover, if the
set of rules is very large, the length of the chromosome and
thus the search space becomes very large, too. However, the
advantage is that due to the use of binary encoding and a
fixed chromosome length, standard crossover and mutation
operators can be adopted.

Another alternative approach for the Pittsburgh representa-
tion is to directly encode the rules (i.e., attributes and fuzzy
sets) into the chromosomes. This approach is adopted in [51],
where each chromosome directly encodes rules by encoding
the attributes and the corresponding fuzzy set parameters for
each rule. Real-valued encoding is used here for this purpose.
There are three parts in each chromosome. The first part
encodes the relevant attributes of the rules’ antecedents and
their fuzzy sets. The second part encodes the parameters of
the fuzzy sets. Finally, the third part encodes the consequent
classes. as the number of attributes can vary in different
rules, and also the number of rules may vary in different
chromosomes, hence the chromosome lengths are variable. To
start with a good initial population, the initial population is
partially filled up by fuzzy classification rules obtained through
a decision tree built using the C4.5 algorithm. The remaining
population is filled up by randomly replacing some parameters
of the fuzzy classifier. This encoding method is very flexible
but crossover and mutation operators need to handle variable-
length chromosomes.

Another Pittsburgh encoding strategy encodes a set of rules
and the fuzzy partitions (granularity levels) corresponding to
each attribute of the rules in the chromosomes. Here, the
granularity levels are predefined and are represented by a set
of integers. This strategy has been adopted in [52] and [53].
In these strategies, although the rule-base is not predefined,
the granularity levels of the fuzzy partitions for each attribute
are predefined. Therefore, this approach is less flexible than
the strategy adopted in [51].

In [54], an effort has been made to combine the benefits of
the rule selection and the rule learning strategies. As the rule
selection strategy deals with a simple encoding and a smaller
search space but has less flexibility, and the rule learning
strategy deals with higher flexibility but has a larger search
space, here the authors proposed an encoding strategy that
combines both approaches. In this technique, called rule and
condition selection (RCS), the authors used a mixed (integer +
real-value) encoding. The integer values represent the selected
rules and granularity levels, whereas the real-values encode the
parameters of the fuzzy sets corresponding to the granularity
levels. Thus, this approach provides a good trade-off between
flexibility and search space size.

In [50], a rule-based classifier is proposed based on
EMOGA, where the authors employed a Michigan encoding
approach, i.e., one rule in one chromosome. In this approach,
the authors generated non-fuzzy categorical rules and useda

discrete integer encoding to represent the rule attributesand
their corresponding categorical values. However, the Michigan
approach of encoding for classification is less appropriatefor
classification problems since they usually produce a ‘set of
good rules’ which may not be a ‘good set of rules’.

3) Objective Functions:In different works, different sets of
objective functions have been considered to be optimized. The
general notion is to achieve a trade-off between accuracy and
complexity of the candidate rule set. In [47], [48], [49], the
authors used three objective functions to be simultaneously
optimized. These are the classification accuracy, number of
fuzzy rules, and number of antecedent conditions. The first
one is maximized whereas the last two are simultaneously
minimized. Hence, the objective is to obtain the minimum
number of short rules that maximize the prediction accuracy.
A similar set of objectives has also been optimized in [51],
where classification accuracy is just replaced by misclassifi-
cation error to transform this into a minimization problem.In
[50], where a Michigan approach is employed, the objective
functions chosen are predictive accuracy, comprehensibility
and interestingness. Comprehensibility is a function of the
number of attributes in the rule that is to be minimized,
whereas interestingness in defined using information gained
to quantify how interesting is the rule. Predictive accuracy
is computed using the objects covered by that rule. In [52],
the authors addressed the imbalanced class problem (binary
classification) and thus maximized sensitivity and specificity
while minimizing rule length. In [53], an imbalanced class
problem is also considered and the two objectives are to
maximize the area under the ROC curve and minimize the
sum of granularity levels of all the selected attributes. Thus,
as per the second objective function, a rule withn attributes
of granularitym is treated the same way as a rule withp
attributes of granularityq, providedm × n = p × q. In [54],
the two objectives are the accuracy and the total number of
attributes (conditions). Hence, it is evident from this discussion
that the authors have posed the problem as the optimization
of accuracy and complexity using various objective functions.

4) Evolutionary Operators:In [47], [48], where the authors
used a binary encoding of fixed length chromosomes, standard
uniform crossover and bit-flip mutation have been employed.
In [49], the authors introduced a new operator to remove
overlapping rules. Using this, they ensured that the solutions
in the initial and subsequent populations are different in
the objective space. The parents for uniform crossover are
chosen to be similar as this has been shown to provide better
performance [75]. Moreover, the authors also proposed to use
the extreme solutions as one of the parents, whereas the other
parent is chosen using binary tournament. Additionally, bit-flip
mutation with a biased mutation probability is proposed where
a larger probability is assigned to the mutation from 1 to 0
than that from 0 to 1. This is done to introduce a bias to search
for a lower number of rules. The authors have shown that the
modified operators lead to improved solutions in comparison
with the standard operators used in [47], [48].

In [50], a hybrid crossover operator combining one-point
and uniform crossover is proposed. Here, the idea is to
combine the positional and distributional biases of one-point
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and uniform crossover. However the authors did not perform
any sort of comparison with respect to the use of any of
these crossover operators in an independent way. For mutation,
as the chromosome encodes categorical values, the authors
perform random replacement of categorical values and random
insertion/deletion of attributes.

For real-valued chromosomes in [51], simulated binary
crossover (SBX) [76] and standard polynomial mutation op-
erators are employed. SBX has been shown to be effec-
tive in [76] for real-valued chromosomes. In [52], one-
point crossover is employed and for mutation, random ad-
dition/deletion/modification of rules is performed. In [53], a
mixed encoding (binary + integer) is used. Here, they adopted
standard one-point crossover. In the binary part, standardbit-
flip mutation is employed, whereas a random increase/decrease
of integer values (representing granularity levels) is performed.
In [54], the authors employed a mixed encoding (integer +
real-value) also. For the integer part (rules and conditions),
one-point crossover is employed. On the other hand, in the
real-valued part (fuzzy set parameters), BLX-α (α = 0.5)
crossover [77] is used. For mutation, both random replacement
and complement mutation are used.

5) Obtaining a Final Solution:As stated earlier, an ap-
proach based on Pittsburgh encoding needs to choose a par-
ticular solution, i.e., a rule set from the set of non-dominated
solutions provided by the MOEA. In different works, authors
have proposed to use different metrics to choose the final
solution from the non-dominated front. In [47], [48], [49],
the authors have used classification accuracy as the metric to
choose the final solution. Note that classification accuracyhas
also been used as one of the objective functions in these works.
The authors used classification accuracy over the complexity
criteria (number of rules and rule length) as the final decision
objective. In [53] and [54] the area under curve (AUC), which
has been used as one of the objective functions, is adopted
to select the final solution. Moreover, here the authors also
reported the solutions with minimum value of AUC, and
intermediate value of AUC.

In [51], the authors proposed a method to reduce the number
of non-dominated solutions from which the final solution is
to be picked up. They only kept those solutions that were
present in at least 50% of all generations during the execution
of the MOEA. Thus, this method does not necessarily provide
a single solution, but usually a smaller set of solutions than
the complete non-dominated set.

Intuitively, it is more practical to use an independent metric,
which is not adopted for optimization, to select the final
solution from the non-dominated set. In [52], such an ap-
proach is presented, where the authors first generated a three
dimensional non-dominated front (sensitivity, specificity, rule-
length) using a MOEA. Then, each point in the non-dominated
front is projected to the ROC plane (true positive rate vs.
false positive rate) and the area under the ROC convex hull
(AUCH) is computed. The solution providing the best value
for AUCH is then chosen. This is an interesting approach but
maybe time consuming, because of the computation of AUCH.
However, this method is effective when dealing with two-class
imbalanced class problems. However, the technique may not

be extended in a straightforward way for multi-class problems.

B. Evolving Class Boundaries

Another promising approach for using MOEAs for clas-
sification problems is to evolve appropriate class boundaries
which can successfully distinguish the various classes [55].
Usually, the boundaries between different classes are nonlin-
ear. Any nonlinear surface can be approximated by using a
number of hyperplanes. Therefore, the classification problem
can be viewed as that of searching for a number of linear
surfaces that can appropriately model the class boundaries
while providing a minimum number of misclassified data
points. In [55], this problem has been posed as a multi-
objective optimization problem, where the three objectives
are: to minimize the number of misclassified patterns and
the number of hyperplanes and to maximize the classification
accuracy. This ensures that overfitting/overlearning is avoided,
while classes of smaller size are not ignored during training.
Binary chromosomes of variable length are used to encode the
parameters of a variable number of hyperplanes. A constrained
elitist version of NSGA-II (CEMOGA) has been used as the
underlying MOO tool in this case. The final solution is se-
lected based on an aggregation function defined by combining
the objective functions. The performance of the CEMOGA
classifier has been compared with that of NSGA-II and PAES-
based classifiers in a similar framework. A comparison was
done with other state-of-art classifiers as well. Although the
approach was a novel and promising one, this work was not
extended after the first attempt reported in [55].

C. Model Building of Standard Classifiers

There exist several approaches that use MOEAs for model
building or training of standard classifiers such as artificial
neural networks (ANNs), support vector machines (SVMs) and
decision trees. This section discusses some of these methods.

1) Underlying MOEAs:The underlying MOEAs used for
training and model building of standard classifiers are as
follows. NSGA-II is found to be the most commonly used ap-
proach. For example, NSGA-II is used for model building and
training for SVMs [56], [58], ANNs [57], [59] and decision
trees [60]. Besides this, SPEA2 has also been used in [57]
and [60] for optimizing ANNs and decision tree classifiers.
In [30], a single-front genetic algorithm (SFGA) was used
for designing the MG-Prop algorithm which is adopted for
optimizing the parameters of a multi-layer perceptron (MLP).

2) Chromosome Representation:Most papers dealing with
model building of standard classifiers adopt binary encoding.
In [56], the chromosomes encode a feature subset (binary
vector) and also the parameters of a SVM kernel. In this case,
a Gaussian kernel is used and the problem of feature selection
along with SVM parameter learning are considered. In [58],
the authors proposed a MOEA called evoSVM in which a
SVM’s parameters are encoded using a vector of real numbers.

In [30], a MOEA (MG-Prop) is adopted for optimizing
the topology and performance of a MLP. Here, the authors
encode the topology and weights of the candidate MLP using
real numbers. In [57], the authors encode the topology and
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weights of a dynamic recurrent neural network (RNN) (the
Elman RNN) classifier adopting a mixed encoding (binary +
integer + real-values). The integer part encodes the numberof
hidden neurons, a binary mask is used to represent the active
and inactive connections, and the real-valued part encodes
the connection weights. Thus, this encoding policy provides a
very flexible way of representing a RNN. In [59], the network
topology is considered to be fixed a priori. Hence, the real-
valued chromosomes only encode the network weights and
biases.

In [60], a MOEA has been proposed for optimizing
oblique decision trees. Here, each chromosome contains real-
parameter values that represent the coefficients of a hyperplane
that splits the dataset to form a node of the decision tree. The
decision tree is represented as a binary tree of chromosomes.

3) Objective Functions:The different objectives functions
that have been used in different studies usually represent vari-
ous classification performance metrics. In [56], three objective
functions are used to minimize the false positive rate, the false
negative rate and the number of support vectors. The number
of support vectors is minimized to reduce the complexity of
the model. In the study on SVM learning presented in [58], the
authors maximized the margin between the hyperplanes while
minimizing the training error. These two objective functions
help to control the overfitting of the SVM model.

For the optimization of a MLP, the authors of [30] mini-
mized both the number of false positives (Type-I error) and the
number of false negatives (Type-II error). Note that here the
authors did not include any complexity objective. However,
due to the use of these two objective functions instead of
using accuracy, the algorithm is capable of properly handling
the imbalanced class problem. In [57], the authors used both
accuracy and complexity as the objective functions. Here,
the authors minimized the output error while minimizing the
number of hidden units and the number of connections in
order to reduce the complexity of the RNN model. In [59],
the authors divided the training set into different subsetsand
the classification accuracies in different subsets all of which
were maximized.

In [60], the authors preferred to optimize the accuracy and
complexity of the candidate decision trees. The authors maxi-
mized in this case the classification accuracy while minimizing
the size of the decision tree. In general, it may be said that
considering only classification performance as the objective
function may provide a complex classifier. But if both the
classification performance and the complexity of the model
are taken into account, the algorithm may produce solutions
that provide a good trade-off between accuracy and complexity
of the models.

4) Evolutionary Operators:A variety of crossover and
mutation operators have been adopted in different studies.
In [56], the authors didn’t mention explicitly what type of
crossover and mutation operators were adopted. However,
as they used NSGA-II for optimizing, it is expected that
they adopted its standard operators for binary encoding. In
[30], the authors used multi-point crossover for real-valued
chromosomes. The mutation operators are of two types. The
first consists of random modifications of connection weights

and the second one consists of a random addition/deletion of
hidden layer neurons.

In [57], the authors used Wright’s heuristic crossover [78]
for real-valued chromosomes. In this encoding technique,
the parent networks may have different sets of connections.
Therefore, if a network weight is not contained in both
parent networks, it is extended directly to the largest child.
Wright’s heuristic crossover has been shown to perform better
than standard crossover operations in [78]. The mutation is
performed by random modifications of the weights (real-
values) and connections (binary values).

In [58], where the chromosomes encodeαi (Lagrange’s
multipliers) parameters of a SVM, the authors employed a
hybrid mutation approach. In this mutation, they check for
eachαi with probability 1/n (n=number ofαis) if the value
should be mutated at all. Ifαi > 0, then its new value is set to
0. If αi = 0, then it’s set to a random value between 0 andC
(the SVM generalization parameter). However, the authors did
not demonstrate the advantages of this mutation operator over
a standard mutation operation. The crossover operator usedin
this work is not explicitly mentioned.

In [59], a BLX-α crossover withα = 0.5 is employed.
Here, the authors used a non-uniform mutation operator for
real-valued chromosomes [5]. This means that the mutation
rate is decreased from one generation to the next one. In this
mutation, the probability that the amount of mutation will go
to 0 at the next generation is increased. This favors diversity
at the early stages of the evolutionary process and increases
the selection pressure towards the end. In [60], this mutation
scheme is also adopted. In this study, the authors adopted
standard arithmetic crossover.

5) Obtaining a Final Solution:As each chromosome of the
non-dominated set encodes a possible classifier model, it is
necessary to obtain one final solution from this set. However,
in [56], [57] and [60], the authors did not address this issue.
They reported results based only on the non-dominated set
produced. Among the other works, two main approaches have
been noticed. One is to use the non-dominated classifiers as
an ensemble classifier system, and another is to use some
metric to choose one particular solution from the set. In
[30] and [59] the first approach was taken, i.e., designing an
ensemble classifier system using the non-dominated solutions.
In [30], three different ensemble techniques were studied.
First one is a simple majority voting among the classifiers.
The second method predicts the class considering the largest
activation among all the outputs of the networks. The third
approach computes the average outputs for all the networks.
Notably, the third approach does not provide a particular
classification result, but only the average accuracy of all the
non-dominated classifiers. In [59], two different ensemble
methods are compared (majority voting and simple averaging).

In [58], instead of an ensemble among the non-dominated
solutions, the authors chose one of them as the final classifier
based on their performance on a hold-out validation set. A
hold-out validation set is kept aside from the training set and
is not used during the evolutionary process. Finally, the clas-
sification accuracy on this hold-out set is computed for each
non-dominated solution. The solution giving the maximum
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TABLE II
COMPARISON OF DIFFERENTMOEAS FORCLASSIFICATION

Algorithm Underlying Type Encoding Objective functions Evolutionary operators Final solution from
MOO tool non-dominated front

Ishibuchi and Nojima [47], [48], NSGA-II Fuzzy rule-based Binary Accuracy, number of Uniform crossover, Based on accuracy
2005 (Pittsburgh) fuzzy rules, number of bit-flip mutation

antecedent conditions
Ishibuchi and Nojima [49], NSGA-II Fuzzy rule-based Binary Accuracy, number of Overlapping rule removal, Based on accuracy
2005 (Piitsburgh) fuzzy rules, number of uniform crossover between

antecedent conditions parents, bit-flip mutation
(with biased probabilities)

Dehuri et. al. [50], EMOGA Non-fuzzy Discrete Predictive accuracy, Hybrid (one-point + uniform) None
2008 (EMOGA) rule-based (Michigan) comprehensibility, crossover, random value

interestingness replacement mutation,
insert/delete condition

Pulkkinen and Koivisto [51], NSGA-II Fuzzy rule-based Real-valued Misclassification eroor, Simulated binary crossover, Solutions that were
2008 (Pittsburgh) number of fuzzy rules, polynomial mutation present in more than 50%

total rule length of all generations
Ducange et. al. [52], NSGA-II Fuzzy rule-based Integer Sensitivity, specificity, One-point crossover, Based on Area Under
2010 (Pittsburgh) total rule length mutations by adding rules, Convex Hull (AUCH)

deleting rules, changing rule
conditions

Villar et. al. [53], NSGA-II Fuzzy rule-based Mixed (binary Area Under Curve (AUC), One-point crossover, Based on
2011 (MGA-FS-GL) + integer) sum of granularity levels bit-flip mutation (binary part), AUC, complexity,

(Pittsburgh) (complexity) increase/decrease (integer part) intermediate value
Antonelli et. al. [54], M-PAES Fuzzy rule-based Mixed (integer Accuracy, One-point and BLX-α Based on
2012 (PAES-RCS) + real-valued) number of conditions crossover, random replacement AUC, complexity,

(Pittsburgh) (complexity) and complement mutation intermediate value

Bandyopadhyay et. al. [55], CEMOGA Class boundary Binary Number of misclassified One-point crossover, Based on aggregation
2004 (CEMOGA-classifier) (variable length) points, number of hyperplane, bit-change mutation function defined by

(Hyperplane classification accuracy combinations of objectives
parameters)

Suttorp and Igel [56], NSGA-II Optimizing Binary False positive rate, Standard None
2006 standard classifier (SVM parameters) false negative rate, NSGA-II operators

(model building) number of support vectors
Castillo et. al. [30], SFGA Optimizing Real-valued number of false positives, Multi-point crossover, Ensemble of non-dominated
2006 (MG-Prop) standard classifier (Topology and number of false negatives weight modification mutation, classifiers

(model building) weights of MLP) addition/deletion hidden neurons
Cuéllar et. al. [57], NSGA-II, Optimizing Mixed (binary + Output error, Wright’s heuristic crossover, None
2007 SPEA2 standard classifier integer + real) number of hidden units, structure and weight modification

(model building) (Topology and number of connections mutation
weights of RNN)

Mierswa [58], NSGA-II Optimizing Real-valued Hyperplane margin, Crossover not mentioned, Based on error in
2007 standard classifier (SVM parameters) training error hybridmutation hold-out set

(model building)
Lahoz and Mateo [59], NSGA-II Optimizing Real-valued Classification errors in BLX-0.5 crossover, Ensemble of non-dominated
2008 standard classifier (weights of ANN) different subsets of non-uniform mutation classifiers

(model building) training patterns
Pangilinan et. al. [60], NSGA-II, Optimizing Real-valued Classification accuracy, Arithmetic crossover, None
2011 SPEA2 standard classifier (Coefficients of decision tree size non-uniform mutation

(model building) hyperplanes corres-
ponding to decision
tree nodes

accuracy value for this hold-out set is finally selected.
Due to the nature of multi-objective optimization problems,

each of the generated non-dominated solutions (classifiersin
this case) shares some information about the input training
set. Therefore, it is more intuitive to combine the information
contained in these classifiers by means of some ensemble.
However, it would be interesting to compare the performance
of individual non-dominated classifiers with the ensemble
results on some unknown test dataset to judge their robustness.
To the authors’ best knowledge, such a comparative study is
not available yet in the literature.

D. Relative Comparison and Applications

To facilitate the comparative study of the proposed MOEAs
for classification problems, we have summarized all the
methods discussed in this section in Table II. The methods
have been categorized as rule-based approaches, hyperplane
optimization approaches and model building of standard clas-
sifiers. Under each category, we have arranged the methods
in increasing order of publication times to illustrate how the
methods have evolved over time. As with the feature selection
case, here we have also characterized the algorithms with

respect to the underlying MOEA, the encoding policy, the ob-
jective functions, the evolutionary operators and the technique
for choosing the final solution from the non-dominated front.
The rule-based classification approaches are classified into
fuzzy and non-fuzzy and all of the methods in this category
address the fuzzy classification rule generation except forone.
These fuzzy rule-based classifiers use a Pittsburgh encoding
strategy and a variety of objective functions and evolutionary
operators. The methods for selecting the final solution from
the non-dominated front also vary in different algorithms as
discussed before. There is only one approach in the second
category, i.e., hyperplane optimization. This approach was
promising but did not mature after the first attempt. In the
third category, as can be seen from the table, MOEAs have
been used for model building of different standard classifiers
such as SVM, ANN and decision trees. In all the categories,
NSGA-II has been found to be the most commonly adopted
MOEA, but some authors have also reported the use of other
algorithms such as SPEA2, PAES, EMOGA, CEMOGA and
SFGA. Also, there are not comparative studies of MOEA-
based classification methods in a systematic way.

MOEA-based classifiers have been applied in various real-
life application domains. In [56], the authors used a MOEA-
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optimized SVM for pedestrian detection in infrared images
for driver assistance systems. This real-world task has strict
real-time constraints that requires highly optimized classifiers
and a reasonable trade-off between sensitivity and specificity.
The authors demonstrated the effectiveness of MOEAs in
optimizing SVMs for this purpose. In [30], the authors gen-
erated a MOEA-based classifier ensemble for breast cancer
classification and bankruptcy prediction problems. In other
works, the researchers have applied their proposed techniques
in classifying different real-life datasets available in the Uni-
versity of California at Irvine (UCI) machine learning reposi-
tory (http://archive.ics.uci.edu/ml/). There are,
however, several possible applications that are not available
in the literature yet. For example, the classifying samplesin
microarray gene expression data into different classes such as
benign and tumor, and classifying satellite and medical images.

VI. CONCLUSIONS

As most of the data mining tasks need the optimization of
model parameters along with multiple performance criteria,
multi-objective optimization is the natural choice for dealing
with such tasks. MOEAs have become very popular within
the data mining community over the years because of their
flexibility in representing a data mining problem with relative
ease. Therefore, over the past decade, a number of MOEAs
have been proposed to solve a variety of data mining problems.
In this Part-I of the two-part paper, we have introduced some
basic concepts related to multi-objective optimization aswell
as the fundamentals of data mining followed by a description
of the main motivations for multi-objective data mining. Then,
different MOEAs that have been used to solve two major
data mining tasks namely feature selection and classification
have been discussed with a special focus on issues such as
chromosome encoding, evolutionary operators, the type of
objective functions used for optimization and selection offinal
solution from the non-dominated set. In the next part (Part-II)
of the paper [1], MOEAs employed for other data mining tasks
such clustering, association rule mining, ensemble learning,
biclustering etc. are reviewed followed by a discussion on the
future scope of research in this field.
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