
Particle Swarm Optimization Based on Linear
Assignment Problem Transformations

Luis Miguel Antonio
CINVESTAV-IPN,

Departamento de Computación
Av. IPN 2508. San Pedro Zacatenco

México D.F. 07300, MÉXICO
lmiguel@computacion.cs.cinvestav.mx

Carlos A. Coello Coello
CINVESTAV-IPN,

Departamento de Computación
Av. IPN 2508. San Pedro Zacatenco

México D.F. 07300, MÉXICO
ccoello@cs.cinvestav.mx

ABSTRACT
Particle swarm optimization (PSO) algorithms have been
widely used to solve a variety of optimization problems.
Their success has motivated researchers to extend the use
of these techniques to the multi-objective optimization field.
However, most of these extensions have been used to solve
multi-objective optimization problems (MOPs) with no more
than three objective functions. Here, we propose a novel
multi-objective PSO (MOPSO) algorithm characterized by
the use of a recent approach that transforms a MOP into a
linear assignment problem (LAP), with the aim of being able
to solve many-objective optimization problems. Our pro-
posed approach, called LAP based PSO (LAPSO), adopts
the Munkres assignment algorithm to solve the generated
LAPs and has no need of an external archive. LAPSO is
compared with respect to three MOPSOs which are repre-
sentative of the state-of-the-art in the area: the Optimized
Multi-Objective Particle Swarm Optimizer (OMOPSO) the
Speed-constrained Multiobjective Particle Swarm Optimizer
(SMPSO) and a variant of the latter that uses the hypervol-
ume indicator for its leader selection scheme (SMPSOhv).
Our results indicate that LAPSO is able to outperform the
MOPSOs with respect to which it was compared in most of
the test problems adopted, specially when solving instances
with more than three objectives.

1. INTRODUCTION
Particle swarm optimization (PSO) is a metaheuristic in-

spired on the social behavior of birds within a flock [14]. Due
to its simplicity and good performance, PSO has become a
very popular approach to solve optimization problems and
many different extentions to Multi-Objective Optimization
have been reported in the specialized literature [28]. Most
Multi-Objective Particle Swarm Optimizers (MOPSOs) a-
dopt a selection process of the local and global best solu-
tions based on Pareto dominance and the use of a crowding
factor. However, it is now well-known that Pareto-based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’15, July 11-15, 2015, Madrid, Spain.
Copyright 2015 ACM TBA ...$15.00.

multi-objective evolutionary algorithms (MOEAs) do not
perform properly when dealing with problems having more
than three objectives (the so-called many-objective optimiza-
tion problems) [11]. In such problems, the number of non-
dominated solutions significantly increases, making it diffi-
cult to generate new particles that dominate the previous
ones, giving rise to the so-called dominance resistance [15,
26]. In this paper, we propose a novel MOPSO designed
to solve many-objective optimization problems. We adopt
an approach that transforms the original MOP into a lin-
ear assignment problem (LAP), recently presented in [19],
in order to avoid the scalability problems of Pareto-based
approaches. Our preliminary results indicate that our pro-
posed approach is a very good alternative for solving many-
objective optimization problems.

The remainder of this paper is organized as follows. Sec-
tion 2 states the problem of our interest. The previous re-
lated work is discussed in Section 3. Section 4 describes our
proposed approach and the experiments carried out to vali-
date it. Finally, our conclusions and some possible paths for
future work are drawn in Section 5.

2. THE MULTI-OBJECTIVE OPTIMIZATION
PROBLEM

Formally, a multi-objective optimization problem (MOP)
is defined as follows:

minimize~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (1)

subject to:

gi(~x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(~x) = 0 i = 1, 2, . . . , p (3)

where k is the number of objective functions fi : Rn → R,
gi, hj : Rn → R, i = 1, ...,m, j = 1, ..., p are the constraint
functions of the problem and ~x = [x1, x2, . . . , xn]T the vector
of decision variables. We thus wish to determine from the
set Ω (where Ω is the feasible region) of all the vectors that
satisfy (2) and (3) to the vector ~x∗ = [x∗1, x

∗
2, . . . , x

∗
n]T of so-

lutions that are Pareto optimal (those solutions in which one
objective cannot be improved without worsening another).

3. PARTICLE SWARM OPTIMIZATION
In PSO, a group of candidate solutions is represented as

a set of particles in a swarm [32]. Each particle has to ad-
just its flight trajectory into the search space according to

a certain direction and keeping a certain velocity, given by
its own previous flight experience and those of their neigh-
boring particles in the swarm. PSO starts with a random
initialization of each particle’s position and velocity (par-
ticle’s displacement) in decision variable space. Then, the
velocity v and the position x of the each particle are updated
at each step t according to the following equations:

~vi(t) = w~vi(t− 1) + C1r1(~xpi − ~xi) + C2r2(~xgi − ~xi) (4)

~xi(t) = ~xi(t− 1) + ~vi(t) (5)

where xpi is the best solution that xi has viewed so far, xgi
is the best particle (also known as the leader) that the en-
tire swarm or a certain pre-defined neighborhood has experi-
enced, W is the inertia weight of the particle, which controls
the impact of the previous velocity vi(t − 1) on the move-
ment of the particle, aimed to prevent swarm explosion (i.e.,
an uncontrolled increase of a particle’s velocity), r1 and r2

are two uniformly distributed random numbers in the range
[0, 1] and C1 and C2 are the learning factors which control
the effect of the personal and social influence. Particles in
the swarm interact by defining a common set of links, which
controls the exchange of information between particles, and
is known as swarm topology. The set of particles inform-
ing the ith particle is defined as the particle’s neighborhood,
which in most cases includes the particle itself as a member.
Traditional topologies for PSO include the gbest (star), lbest
(circle), and von Neumann [13] topologies. Also, an adap-
tive random topology has been proposed. Here, each particle
randomly informs K neighbors and itself (the same particle
may be chosen several times), with K usually set to 3. In
this topology, the connections between particles randomly
change when the social optimum shows no improvement [3].

3.1 Multi-objective PSO algorithms
The successful application of PSO in a wide variety of

single-objective optimization problems has made it very pop-
ular in recent years. However, in order to handle multi-
ple objectives, PSO must be obviously modified. In most
Multiple-Objective Particle Swarm Optimizers (MOPSOs),
the major modifications to the basic PSO algorithm are the
selection process of pbest and gbest. Among them, the dif-
ferences lie on the number of selected global leaders and
in the way in which they are selected [5]. Most of these
approaches share the use of an external archive where the
nondominated solutions found during the search are stored
[27, 23, 28, 22]. The most commonly employed strategy is
to use only one global leader randomly selected from the
archive. Other works consider the use of a density estimator
for selecting leaders from the archive, aiming to favor the
spread of the computed approximation to the Pareto front.
Next, we briefly describe some MOPSOs representative of
the state-of-the-art in the area.

The first implementation of a MOPSO was proposed by
Moore et al. [20]. Here, they used Pareto dominance for
leader and personal best selection. Reddy et al. [12] pro-
posed a MOPSO where the leader was randomly selected
from an external archive where the best solutions found dur-
ing the process were stored. The main target of this work
was the use on an elitist-mutation-mechanism in combina-
tion with PSO. In [29] Santana et al. proposed a MOPSO
which incorporates a turbulence (mutation) operator in ad-

dition to the crowding distance mechanism and a roulette
wheel to select the social leader and to prevent an excessive
number of nondominated solutions in the external archive.
Another approach is the Optimized Multi-Objective Parti-
cle Swarm Optimizer (OMOPSO) [27]. This MOPSO se-
lects a leader by means of a binary tournament based on
the crowding value of the leaders. The maximum size of
the set of leaders is fixed equal to the size of the swarm.
After each generation, the set of leaders is updated, and so
are the corresponding crowding values. If the size of the
set of leaders is greater than the maximum allowable size,
only the best leaders are retained based on their crowding
value. The rest of the leaders are eliminated. OMOPSO
adopts two mutation operators: uniform mutation and non-
uniform mutation. The swarm is subdivided in three parts
(of equal size). Each sub-part of the swarm adopts a dif-
ferent mutation scheme: the first sub-part uses no mutation
at all, the second sub-part uses uniform mutation and the
third sub-part adopts non-uniform mutation. With the use
of these different operators, OMOPSO has the ability to
explore and exploit the search space. It also adopts the con-
cept of ε-dominance in order to fix the size of the external
archive that contains the (nondominated) solutions that will
be reported by the algorithm, so the size of the final external
archive depends on the ε-value, which needs to be obtained
from a pre-sampling process.

In [23] the Speed-constrained Multi-objective PSO (SM-
PSO) is presented. The authors of this approach adopt a
control mechanism for particle’s velocity that, instead of us-
ing upper and lower parameter values to limit the step size of
the velocity, adopts a constriction coefficient obtained from
a constriction factor χ, originally developed by Clerc and
Kennedy in [4]. The following equations are adopted for
this sake:

χ =
2

2− ϕ−
√
ϕ2 − 4ϕ

(6)

where

ϕ =

{
C1 + C2 if C1 + C2 > 4

0 if C1 + C2 ≤ 4
(7)

SMPSO also introduces a mechanism where the accu-
mulated velocity of each variable (in each particle) is fur-
ther bounded by means of the following velocity constriction
equation:

vi(t) =

δi if vi(t) > δi

−δi if vi(t) ≤ −δi
vi(t) otherwise

(8)

where

δi =
upper limiti − lower limiti

2
(9)

So, the velocity of the particles is calculated according
to eq. (4). The resulting velocity is then multiplied by the
constriction factor and the resulting value is constrained us-
ing eq. (8). SMPSO uses a limited size external archive to
store the non-dominated solutions found during the search.
When the archive becomes full, the solutions with the small-
est crowding distance are discarded. It also uses a turbulence

operator by means of polynomial mutation, but it applies it
to only 15% of the whole swarm. Later, a variant of SMPSO
that uses the hypervolume indicator [36] to guide leader se-
lection was presented in [22]. In this variant, called SMP-
SOhv, when the velocity of a particle has to be updated,
two solutions are randomly selected from the archive, and
the one contributing the most to the archive’s hypervolume
is selected as the leader. To apply this scheme, the external
archive of non-dominated solutions is changed for an archive
managed by the contribution of each solution to the value
of this indicator.

There are some MOPSOs that consider the use of more
than one particle from the archive as global leaders at the
same time. An example is the approach described in [18],
called Multi Leaders Multi Objective Optimization algo-
rithm, which is an initial implementation of multiple leaders
in guiding the particles’ flight to search for optimum solu-
tions. The multiple leaders’ method is implemented by sum-
ming up all the distances between a particle and all of its
leaders during the velocity update. Many other MOPSOs
exist [24], but most of them are Pareto-based approaches
and solve MOPs with no more than 3 objectives. Here, we
propose a novel MOPSO which adopts the transformation
of a MOP into a linear assignment problem (LAP), with the
specific aim of solving many-objective optimization prob-
lems.

4. OUR PROPOSED APPROACH
As mentioned before, studies have shown that Pareto-

based multi-objective evolutionary algorithms (MOEAs) do
not perform properly when dealing with problems having
more than three objectives (the so-called many-objective op-
timization problems) [11] and most MOPSOs’ leader selec-
tion strategies are based on this same idea. Here, we propose
to use an alternative selection mechanism which is not based
on Pareto dominance or on any performance indicator. The
algorithm presented here transforms the selection process
into a linear assignment problem (LAP), which is solved us-
ing the Munkres assignment algorithm [17]. As evidenced in
[19], the solution of this LAP allows convergence towards the
true Pareto front and, at the same time, a good distribution
of solutions along the Pareto front.

4.1 Linear assignment problem transformation
The matching or assignment problem is a fundamental

class of combinatorial optimization problems [9, 21]. In its
most general form, an assignment problem is the problem of
choosing an optimal assignment of n to m of tasks, assuming
that numerical ratings are incurred for each agent perform-
ing each task [17]. An optimal assigment is one which makes
the sum of the agents’ ratings for their tasks a maximum or
minimum, according to the context of the problem. The
Linear Assignment Problem (LAP) is the simplest of the as-
signment problems. In the canonical LAP, there are as many
agents as tasks, and any agent can be assigned to perform
any task. Formally, the LAP can be formulated as follows:

Let A = {a1, ..., an} and T = {t1, ..., tn} be a set of agents
and tasks with the same cardinality, given a cost function
C : A × T → R and having Φ : A → T as the set of all
possible bijections between A and T , then a LAP can be
expressed as follows :

minimize
φ∈Φ

∑
a∈A

C(a, φ(a)) (10)

Usually, the cost function is also viewed as a squared real-
valued matrix C with elements Cij = C(ai, tj), and the set
Φ of all possible bijections between A and T as a set of
assignment matrices X . So, the LAP can be expressed as
an integer linear program as follows:

minimize
x∈X

n∑
i,j=1

Cijxij

subject to:

n∑
i=1

xij = 1, ∀j ∈ {1, .., n},

n∑
j=1

xij ≤ 1, ∀i ∈ {1, ..., n},

xij ∈ {0, 1}, ∀i, j ∈ {1, ..., n}

(11)

In 1955, Harold W. Kuhn [17] proposed an algorithm for
constructing a maximum weight perfect matching in a bi-
partite graph. This combinatorial optimization algorithm
solves the assignment problem in polynomial time. Later on,
James Munkres [21] reviewed Kuhn’s work and made sev-
eral important contributions to the theoretical aspects of the
algorithm. He showed that Kuhn’s algorithm is (strongly)
polynomial and proposed an improved version of O(n3). The
contribution of Munkres to the development of the Hun-
garian algorithm has led to the algorithm which is referred
to as the Kuhn-Munkres or Munkres assignment algorithm.
In [2], Bourgeois and Lassalle developed an extension for
rectangular matrices which allows the algorithm to operate
in assignment problems where the numbers of agents and
tasks are unequal. Such extension can be formulated as fol-
lows: Given a n×m matrix (cij) of real numbers, find a set
of k independent elements [k = min(n,m)] so that the sum
of these elements is minimum.

A linear assignment problem can be created from a MOP
using the k-dimensional objective vectors from the individ-
uals (solutions) in a MOEA. Since uniformly spread weight
vectors in objective function space can be created, one can
reformulate the MOP as follows: having n individuals and
m vectors well-distributed in a (k−1)-dimensional unit sim-
plex of the objective space, a cost can be incurred for each
individual representing some vector in the Pareto Front ap-
proximation. So, the goal is to describe all regions covered
by the n vectors using only m individuals in such a way that
the total cost of the assignment is minimized. A cost matrix
is then created such that it minimizes the total cost involved
in retaining the solutions which are a good approximation
of the Pareto Front. This procedure is described next.

First, the n vectors of objective values are normalized to
reduce the current objective space to a unit hypercube. This
is done in order to deal with non-commensurable objective
functions. The maximum ~zmax and minimal ~zmin vectors
are calculated for this purpose.

~zmax = [zmax1 , ..., zmaxk]T , zmaxi = max
j=1,...,2n

fi(~xj), i = 1, ..., k,

~zmin = [zmin1 , ..., zmink]T , zmini = min
j=1,...,2n

fi(~xj), i = 1, ..., k,

(12)
where fi(~xj) is the ith objective value of the jth solution in

Qg, and its normalized value fi(~xj) is calculated as:

f̃i(~xj) =
fi(~xj)− zmini

zmaxi − zmini

, j = 1, ..., n, i = 1, ..., k. (13)

Let W be a set of m weight vectors uniformly scattered
in objective space.

W ⊂W = {~w | ~w ∈ [0, 1]k,

k∑
i=1

wi = 1}, |W | = m, (14)

The cost Crj of assigning the individual ~xj to the weight
vector ~wr is given by:

Crj = max
i=1,...,k

wri × f̃i(~xj), r = 1, ..., n, j = 1, ..., n. (15)

The matrix C indicates how each solution is suitable to
represent each region of the Pareto Front approximation.
The solution to our assignment problem is found by identi-
fying the combination of values in C resulting in the smallest
sum, subject to the following conditions:

• Exactly one value must be chosen in each row; this en-
sures that only one solution is assigned to each position
on the Pareto Front.

• At most one value can be selected in each column; this
ensures that no solution is assigned to more than one
position.

The matrix C and the above conditions are formally repre-
sented by (11) as a linear programming problem. The solu-
tion to this problem is then obtained by the aforementioned
Kuhn-Munkres algorithm for rectangular matrices [2]. The
matrix that solves (11) represents the solutions assigned to
each weight vector such that it minimizes the total cost of
the assignment, allowing to retain the best solutions to ap-
proximate the Pareto Front.

4.2 Generation of weight vectors by Uniform
Design

There exist several MOEAs [35, 25] that require the com-
putation of a set of weight vectors uniformly scattered on
a (k − 1)-unit simplex to obtain solutions along the en-
tire Pareto Front in a k-objective optimization problem.
A variety of methods to obtain an evenly distributed sub-
set of weights in a simplex are available in the specialized
literature [8]. The simplex-lattice design method [30] is
the approach that has been the most commonly adopted
in MOEAs. However, at least three problems can be iden-
tified in this method [8]. First, the weight vectors are not
uniformly distributed. Also, there are too many vectors at
the boundary of the domain. Finally, the number of vectors
generated increases nonlinearly with the number of objec-
tives. Thus, if H divisions are considered along each objec-
tive, the total number of weight vectors (hence the popu-
lation size) in a k-objective problem is given by:

(
H+k−1
k−1

)
.

Some MOEAs have resorted to other methods to generate
an arbitrary number of scattered weight vectors. In [25]
a hypervolume-based weight vector generation is proposed.
This method produces well-distributed vectors maximizing
the hypervolume covered by them in objective space. An-
other approach was presented in [31], where the uniform
design (UD) [8] and good lattice point (glp) [16] methods
were combined to set the weight vectors. However, both the

hypervolume and the glp method have a high computational
cost when the number of objectives grows, which prevents
their use in problems with many objectives.

Uniform design is a space filling design method that seeks
experimental points to be uniformly scattered in the do-
main [8]. In uniform design, a set of points is considered
uniformly spread throughout the entire domain if it has a
small discrepancy, where discrepancy is a numerical mea-
sure of scattering. Fang and Wang [8] presented different
methods for generating points that can be applied to the
generation of a set of space-filling design points. Among
them, the good lattice point (glp) method and Hammers-
ley’s method [10] excel. In [19] the authors propose to gen-
erate weight vectors using uniform design combined with
Hammersley’s method because this algorithm allows a more
uniform distribution of the weight vectors over the space
than the simplex-lattice method, and the population size of
the MOEAs neither increases nonlinearly with the number
of objectives nor considers a formulaic setting. Additionally,
Hammersley’s method provides a set of design points with
low discrepancy similar to the glp method, but at a much
lower computational cost [8].

Algorithm 1: Generation of weight vectors

Input : number of objectives (k), number of weights (n)
Output: Set of weight vectors W

1 p← array with the first k − 2 prime numbers;
2 U ← ∅;
3 for i = 1 to n do
4 ui1 ← (2i− 1)/2n;
5 for j = 2 to k − 1 do
6 uij ← 0;
7 f ← 1/pj−1;
8 d← i;
9 while d > 0 do

10 uij ← uij + f × (d mod pj−1);
11 d← bd/pj−1c;
12 f ← f/pj−1;

13 end

14 end
15 U ← U ∪ {u};
16 end
17 W ← Apply transformation (19) to U ;

Hammersley’s method is based on the p-adic representa-
tion of natural numbers: Any positive integer m can be
uniquely expressed using a prime base p ≥ 2 as

m =

r∑
i=0

bi × pi, 0 ≤ bi ≤ p− 1, i = 0, . . . , r, (16)

where pr ≤ m < pr+1. Then, for any integer m ≥ 1 with
representation (16), let

yp(m) =

r∑
i=0

bi × p−(i+1), (17)

where yp(m) ∈ (0, 1) and is known as the radical inverse of
m base p. Let k ≥ 2 and p1, . . . , pk−1 be k−1 distinct prime
numbers; then, the Hammersley set consisting of n points
uniformly scattered on [0, 1]k is given by

~xi =

[
2i− 1

2n
, yp1(i), . . . , ypk−1(i)

]T
, i = 1, . . . , n. (18)

In [33], it was proposed the use of uniform design for ex-
periments with mixture (UDEM). This method seeks points

to be uniformly scattered in the domain W defined by (14).
The authors employed the transformation method for the
construction of such uniform design. This method requires
a set of vectors U = {~ui = [ui1, ..., ui(k−1)]

T , i = 1, ..., n} ⊂
[0, 1]k−1 with small discrepancy. In our proposal, Hammers-
ley’s method is used to obtain U and then to apply the next
transformation:

wti = (1− u
1

k−i

ti)

i−1∏
j=1

u
1

k−j

tj , i = 1, ..., k − 1,

wtk =

k−1∏
j=1

u
1

k−j

tj , t = 1, ..., n.

(19)

Then {~wt = [wti, ..., wtk]T , t = 1, ..., n} is a uniform design
on W. The pseudocode of the algorithm used to generate
weight vectors is presented in Algorithm 1.

4.3 Description of the proposed approach
Making use of the LAP transformation, we propose a

MOPSO that adopts an evolutionary model to select so-
lutions based on the LAP transformation as described next.
LAPSO starts with an initial swarm S(0) of n particles
and performs a random initialization of each particle’s po-
sition and velocity (particle displacement) within decision
variables space. The velocity v of each particle is updated
at each step t according to eq. (4), where xpi is the best
solution that xi has viewed so far (in terms of the LAP
transformation already described), and xgi is the best par-
ticle within a defined neighborhood in terms of Pareto dom-
inance. For this purpose, we adopted an adaptive random
topology originally proposed in [3], which has been found
to produce good results in the area of global optimization
[34, 1]. Here, each particle randomly informs K neighbors
and itself (the same particle may be chosen several times).
In this topology, the connections among particles randomly
change when the social optimum shows no improvement (we
set K = 3). As there is evidence of the problems that an
uncontrolled increase of velocity may cause [7], we adopt
the velocity constriction mechanism of SMPSO described in
Section 3.1. So, the inertia weight W , the two uniformly
distributed random numbers r1 and r2 and the learning fac-
tors C1 and C2 (for the personal and social influence) were
adopted, same as in SMPSO [23]. After the initialization,
at each step t, we create a new swarm S2(t) of n particles
from the actual swarm S(t). Each particle will be created
by means of eq. (5), where vi(t) is the velocity, computed
as we just described. After that, a turbulence operation
(mutation) will be applied to this new swarm and then each
particle is evaluated according to the given MOP. Having
both swarms, we form a set CSt = S(t)∪S2(t) of 2n posible
solutions to the MOP. Then, a linear assignment problem is
created using the k-dimensional objective vectors from CSt
(as explained in Section 4.1) and n weight vectors uniformly
spread in objective function space are created as described in
Algorithm 1. Then, a selection procedure based on the LAP
transformation will be performed in order to select n parti-
cles from CS(t) which are closer to the weight vectors and
to solve the created LAP. These particles will form the next
swarm S(t + 1). With this, there is no need of an external
archive since the actual swarm always keeps the best solu-
tions to the LAP and the members of the neighborhood for
each particle are also in the swarm. This process is repeated

until a stopping criterion is fulfilled. The whole procedure
is summarized in Algorithm 2.

Algorithm 2: Linear assignment problem based PSO
(LAPSO)

Input : MOP, swarm size n, maximum number of iterations
tmax

Output: Solution set S
1 Generate initial swarm population S(0) and their velocity values

randomly;
2 Assign k = 3 neighbors to each particle in S;
3 Evaluate each particle in S;
4 W ← Generate n weight vectors using Algorithm 1;
5 for t = 1 to tmax do
6 S2(t)← Generate new particles from St using (5) ;
7 Apply turbulence operator to each individual in S2(t);
8 Evaluate each individual from S2(t);
9 if social optimum shows no improvement then

10 recompute neighbors;
11 end
12 CSt ← S(t) ∪ S2(g);

13 Compute ~z max and ~z min by (12) Normalize objectives of
each solution in CSt by (13);

14 Generate the cost matrix C by (15) using CSt and W ;
15 I ← Obtain the best assignment in C using the Hungarian

Method;
16 S(t + 1)← {~xi | i ∈ I , ~xi ∈ CSt};
17 update velocity values using (4);

18 end

4.4 Experimental Results
We validated LAPSO comparing its performance with re-

spect to the three aforementioned MOPSOs representative
of the state-of-the-art in the area: OMOPSO [27], SMPSO
[23] and SMPSOhv [22]. For the purposes of this study,
we adopted the Deb-Thiele-Laumanns-Zitzler (DTLZ) test
suite [6] with instances from three to ten objectives. In order
to assess the performance of each MOPSO, we selected the
hypervolume indicator [36], since this measure can differ-
entiate between degrees of complete outperformance of two
sets. The hypervolume is defined as the n-dimensional space
that is contained by an n-dimensional set of points. When
applied to multi-objective optimization, the n-dimensional
objective values for solutions are treated as points for the
computation of such space. That is, the hypervolume is
obtained by computing the volume (in objective function
space) of the nondominated set of solutions Q that mini-
mize a MOP. For every solution i ∈ Q, a hypercube vi is
generated with a reference point W and the solution i as its
diagonal corner of the hypercube:

S = V ol

 |Q|⋃
i=1

vi

 (20)

The aim of this study is to identify which of the MOP-
SOs being compared is able to get closer to the true Pareto
front using the same number of objective function evalua-
tions and how they behave as the dimensionality of the MOP
increases.

4.5 Parameterization
The parameters of each MOPSO used in our study were

chosen in such a way that we could do a fair comparison.
Thus, the same number of iterations and swarm size were
adopted. For all MOPSOs, the mutation probability was
set to pm = 1/l, where l is the number of decision variables;

the distribution indexes for the polynomial mutation used
by SMPSO, SMPSOhv and LAPSO were set as: ηc = 20
and ηm = 20. Different population sizes for each problem
instance were used. For problems with 3 and 4 objectives
the population size was set to 100. For problems having 5
objectives, the population size was set to 120. For problems
with 6, 7, 8 and 9 objectives, a swarm size of 200 was used.
Finally, for problems with 10 objectives, the swarm size was
set to 220. The maximum number of iterations adopted for
problems with 3 objectives was 100. In all other problems we
used 300 iterations, regardless of their dimensionality. All
other parameters, such as the learning factors and inertia
weight, were set as the authors suggest for their respective
approaches. The reference points ~yref = [y1, · · · , ym] were
yi = 1.5 for DTLZ1to DTLZ6 and yi = 6.5 for DTLZ7.

4.6 Discussion of Results
In our experiments, we obtained the hypervolume value

over the 30 independents runs performed. Table 1 shows
the average hypervolume of each of the MOPSOs being com-
pared for each test problem adopted, as well as the results of
the statistical analysis that we made to validate our experi-
ments, for which we used Wilcoxon’s rank sum. OMOPSO
presented a poor performance in all problem instances hav-
ing more than three objectives, since it couldn’t produce
solutions which dominate the reference points for the hy-
pervolume computation used in our experimentes. It was
only able to scale in DTLZ4 with at most five objetives
and we can reject the null hypothesis (medians are equal)
in all the cases. SMPSO produced competitive results for
DTLZ4, DTLZ5 and DTLZ6, although it could not outper-
form LAPSO except for one case (DTLZ5 with 3 objectives),
in which SMPSO presented a marginal improvement with
respect to LAPSO, we cannot reject the null hypothesis in
only two cases, DTLZ5 with 4 objectives and DTLZ7 with
3, which means that in these cases both algorithms have a
similar behavior. Due to its high computational cost, a time
limit of 12 hours for SMPSOhv’s runs was used. As a result,
SMPSOhv was no able to produce results for more than four
objetives. In the comparisons using problems with three and
four objectives, LAPSO was able to outperform SMPSOhv
in DTLZ1, DTLZ3 and DTLZ7. Regarding the other test
problems, LAPSO was able to produce very competitive re-
sults but at a significantly lower computational cost and has
similar behavior, which means the null hypothesis cannot be
rejected, in only three cases (DTLZ1, DTLZ3 and DTLZ7
with dimensions of 3, 4 and 3 respectively).

5. CONCLUSIONS AND FUTURE WORK
Here, we developed a novel MOPSO called LAPSO, which

adopts a recent selection scheme originally proposed for
MOEAs. LAPSO uses a selection based on the transfor-
mation of a MOP into an assignment problem. The implicit
elitism associated with this scheme makes unnecessary the
use of an external archive. Using a set of well-distributed
points on a unit simplex, the obtained assignment problem is
solved with the Munkres assignment algorithm. Our experi-
mental results indicate that LAPSO outperforms OMOPSO
and SMPSO in MOPs having from four up to ten objective
functions and showed very competitive results with respect
to SMPSOhv but at a significantly lower computational cost.
LAPSO was able to deal with all the difficulties presented in
the DTLZ test suite, even in high dimensionality. As part

of our future work, we intend to study other algorithms for
solving the LAP transformation. We are also interested in
studying the possible use of other topologies for LAPSO.

Acknowledgments
The first author acknowledges support from CONACyT and
CINVESTAV-IPN to pursue graduate studies in Computer
Science. The second author gratefully acknowledges support
from CONACyT project no. 221551.

6. REFERENCES
[1] M. R. Bonyadi and Z. Michalewicz. Spso 2011:

Analysis of stability; local convergence; and rotation
sensitivity. In Proceedings of the 2014 Conference on
Genetic and Evolutionary Computation, GECCO ’14,
pages 9–16, New York, NY, USA, 2014. ACM.

[2] F. Bourgeois and J.-C. Lassalle. An Extension of the
Munkres Algorithm for the Assignment Problem to
Rectangular Matrices. Commun. ACM,
14(12):802–804, December 1971.

[3] M. Clerc. Particle Swarm Optimization. ISTE
(International Scientific and Technical Encyclopedia),
USA, 2006.

[4] M. Clerc and J. Kennedy. The particle swarm -
explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions
on Evolutionary Computation, 6(1):58–73, Feb 2002.

[5] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B.
Lamont. Evolutionary Algorithms for Solving
Multi-Objective Problems. Kluwer Academic
Publishers, New York, May 2002. ISBN 0-3064-6762-3.

[6] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler.
Scalable Test Problems for Evolutionary
Multiobjective Optimization. In A. Abraham, L. Jain,
and R. Goldberg, editors, Evolutionary Multiobjective
Optimization. Theoretical Advances and Applications,
pages 105–145. Springer Berlin Heidelberg, USA, 2005.

[7] J. Durillo, A. Nebro, C. Coello Coello, J. Garcia-Nieto,
F. Luna, and E. Alba. A Study of Multiobjective
Metaheuristics When Solving Parameter Scalable
Problems. IEEE Transactions on Evolutionary
Computation, 14(4):618–635, August 2010.

[8] K. T. Fang and Y. Wang. Number-Theoretic Methods
in Statistics. Chapman & Hall/CRC Monographs on
Statistics & Applied Probability. Taylor & Francis,
1994.

[9] D. Gale and L. S. Shapley. College Admissions and the
Stability of Marriage. The American Mathematical
Monthly, 69(1):9–15, 1962.

[10] J. M. Hammersley. Monte-Carlo methods for solving
multivariable problems. Annals of the New York
Academy of Sciences, 86(3):844–874, 1960.

[11] H. Ishibuchi, N. Tsukamoto, and Y. Nojima.
Evolutionary many-objective optimization: A short
review. In 2008 Congress on Evolutionary
Computation (CEC’2008), pages 2424–2431, Hong
Kong, June 2008. IEEE Service Center.

[12] M. Janga Reddy and D. Nagesh Kumar. An efficient
multi-objective optimization algorithm based on
swarm intelligence for engineering design. Engineering
Optimization, 39(1):49–68, 2007.

LAPSO OMOPSO LAPSO-OMOPSO SMPSO LAPSO-SMPSO SMPSOhv LAPSO-SMPSOhv

Function No. Obj HV HV P(H) HV P(H) HV P(H)

DTLZ1 3 3.347 0.000 0.000000 (1) 3.339 0.000000 (1) 3.335 0.386525 (0)

4 5.053 0.000 0.000000 (1) 5.028 0.002348 (1) 5.037 0.000067 (1)

5 7.540 0.000 0.000000 (1) 5.563 0.000000 (1)

6 11.357 0.000 0.000000 (1) 7.625 0.000000 (1)

7 17.054 0.000 0.000000 (1) 7.392 0.000000 (1)

8 25.548 0.000 0.000000 (1) 11.892 0.000000 (1)

9 38.429 0.000 0.000000 (1) 25.100 0.000000 (1)

10 57.652 0.000 0.000000 (1) 48.215 0.000000 (1)

DTLZ2 3 2.750 1.684 0.000000 (1) 2.697 0.000000 (1) 2.791 0.000000 (1)

4 4.559 0.000 0.000000 (1) 4.058 0.000000 (1) 4.631 0.000000 (1)

5 7.127 0.000 0.000000 (1) 5.251 0.000000 (1)

6 11.025 0.000 0.000000 (1) 7.925 0.000000 (1)

7 16.721 0.000 0.000000 (1) 11.383 0.000000 (1)

8 25.056 0.000 0.000000 (1) 16.646 0.000000 (1)

9 37.704 0.000 0.000000 (1) 26.432 0.000000 (1)

10 57.070 0.000 0.000000 (1) 19.386 0.000000 (1)

DTLZ3 3 2.768 0.000 0.000000 (1) 1.061 0.000000 (1) 2.740 0.000171 (1)

4 4.266 0.000 0.000000 (1) 3.761 0.000000 (1) 4.067 0.579073 (0)

5 5.928 0.000 0.000000 (1) 1.111 0.000000 (1)

6 9.175 0.000 0.000000 (1) 0.606 0.000000 (1)

7 11.201 0.000 0.000000 (1) 0.099 0.000000 (1)

8 18.886 0.000 0.000000 (1) 0.124 0.000000 (1)

9 30.319 0.000 0.000000 (1) 0.000 0.000000 (1)

10 51.368 0.000 0.000000 (1) 1.333 0.000000 (1)

DTLZ4 3 2.715 2.570 0.000000 (1) 2.694 0.013268 (1) 2.733 0.010280 (1)

4 4.540 4.435 0.000000 (1) 4.441 0.000000 (1) 4.577 0.000000 (1)

5 7.135 5.861 0.000000 (1) 6.815 0.000000 (1)

6 11.062 0.000 0.000000 (1) 10.626 0.000000 (1)

7 16.755 0.000 0.000000 (1) 15.995 0.000000 (1)

8 25.211 0.000 0.000000 (1) 23.776 0.000000 (1)

9 37.860 0.000 0.000000 (1) 36.303 0.000000 (1)

10 57.114 0.000 0.000000 (1) 55.753 0.000000 (1)

DTLZ5 3 2.027 2.012 0.000000 (1) 2.034 0.000000 (1) 2.036 0.000000 (1)

4 2.837 0.000 0.000000 (1) 2.824 0.077272 (0) 2.833 0.000000 (1)

5 4.146 0.000 0.000000 (1) 3.973 0.000000 (1)

6 6.131 0.000 0.000000 (1) 5.862 0.000000 (1)

7 9.118 0.000 0.000000 (1) 8.565 0.000000 (1)

8 13.496 0.000 0.000000 (1) 12.718 0.000000 (1)

9 20.033 0.000 0.000000 (1) 19.089 0.000000 (1)

10 30.307 0.000 0.000000 (1) 29.167 0.000000 (1)

DTLZ6 3 2.019 0.893 0.000000 (1) 1.490 0.007810 (1) 1.898 0.000060 (1)

4 2.855 0.000 0.000000 (1) 2.835 0.000000 (1) 2.889 0.000076 (1)

5 4.154 0.000 0.000000 (1) 3.811 0.000000 (1)

6 6.214 0.000 0.000000 (1) 5.631 0.000000 (1)

7 9.175 0.000 0.000000 (1) 8.210 0.000000 (1)

8 13.677 0.000 0.000000 (1) 12.258 0.000000 (1)

9 20.187 0.000 0.000000 (1) 18.553 0.000000 (1)

10 30.286 0.000 0.000000 (1) 27.517 0.000000 (1)

DTLZ7 3 148.430 66.120 0.000000 (1) 148.217 0.050009 (0) 148.257 0.128758 (0)

4 789.868 0.000 0.000000 (1) 765.637 0.000003 (1) 788.868 0.000000 (1)

5 4014.694 0.000 0.000000 (1) 3686.969 0.000000 (1)

6 95892.612 0.000 0.000000 (1) 68725.215 0.000000 (1)

7 96965.307 0.000 0.000000 (1) 65720.831 0.000000 (1)

8 404852.438 0.000 0.000000 (1) 259361.361 0.000000 (1)

9 1207098.816 0.000 0.000000 (1) 728523.513 0.026075 (1)

10 6956918.762 0.000 0.000000 (1) 1203500.273 0.000000 (1)

Table 1: Average of the hypervolume indicator values of the results obtained for the DTLZ test problems. We show

average values over 30 independent runs. The cells containing the best hypervolume value for each problem have a grey colored

background. The P(H) columns show the results of the statistical analysis applied to our experiments using Wilcoxon’s rank

sum. P is the probability of observing the given result (the null hypothesis is true). Small values of P cast doubt on the validity

of the null hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1

indicates that the null hypothesis can be rejected at the 5% level.

[13] J. Kennedy. Small worlds and mega-minds: effects of
neighborhood topology on particle swarm
performance. In Proceedings of the 1999 IEEE
Congress on Evolutionary Computation, volume 3,
1999.

[14] J. Kennedy and R. Eberhart. Particle swarm
optimization. In IEEE International Conference on
Neural Networks, volume 4, pages 1942–1948, Nov
1995.

[15] I. Kokolo, K. Hajime, and K. Shigenobu. Failure of
Pareto-based MOEAs: Does Non-dominated Really
Mean Near to Optimal? In Proceedings of the
Congress on Evolutionary Computation 2001
(CEC’2001), volume 2, pages 957–962, Piscataway,
New Jersey, May 2001. IEEE Service Center.

[16] N. Korobov. The approximate computation of
multiple integrals. Doklady Akademii Nauk SSSR,
124:1207–1210, 1959.

[17] H. W. Kuhn. The Hungarian Method for the
Assignment Problem. Naval Research Logistics
Quarterly, 2(1–2):83–97, Mar. 1955.

[18] K. S. Lim, S. Buyamin, A. Ahmad, and Z. Ibrahim.
An improved leader guidance in multi objective
particle swarm optimization. In Modelling Symposium
(AMS), 2012 Sixth Asia, pages 34–39, May 2012.

[19] J. A. Molinet Berenguer and Carlos A. Coello Coello.
Evolutionary Many-Objective Optimization Based on
Kuhn-Munkres’ Algorithm. In A. Gaspar-Cunha,
C. H. Antunes, and C. Coello Coello, editors,
Evolutionary Multi-Criterion Optimization, 8th
International Conference, EMO 2015, pages 3–17.
Springer. Lecture Notes in Computer Science Vol.
9019, Guimarães, Portugal, March 29 - April 1 2015.

[20] J. Moore, R. Chapman, and G. Dozier. Multiobjective
particle swarm optimization. In Proceedings of the 38th
Annual on Southeast Regional Conference, ACM-SE
38, pages 56–57, New York, NY, USA, 2000. ACM.

[21] J. Munkres. Algorithms for the Assignment and
Transportation Problems. Journal of the Society for
Industrial and Applied Mathematics, 5(1):32–38, Mar.
1957.

[22] A. J. Nebro, J. J. Durillo, and C. A. Coello Coello.
Analysis of Leader Selection Strategies in a
Multi-Objective Particle Swarm Optimizer. In 2013
IEEE Congress on Evolutionary Computation
(CEC’2013), pages 3153–3160, Cancún, México, 20-23
June 2013. IEEE Press. ISBN 978-1-4799-0454-9.

[23] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A.
Coello Coello, F. Luna, and E. Alba. SMPSO: A New
PSO-based Metaheuristic for Multi-objective
Optimization. In 2009 IEEE Symposium on
Computational Intelligence in Multi-Criteria
Decision-Making (MCDM’2009), pages 66–73,
Nashville, TN, USA, March 30 - April 2 2009. IEEE
Press. ISBN 978-1-4244-2764-2.

[24] N. Padhye, J. Branke, and S. Mostaghim. Empirical
Comparison of MOPSO Methods - Guide Selection
and Diversity Preservation -. In 2009 IEEE Congress
on Evolutionary Computation (CEC’2009), pages
2516–2523, Trondheim, Norway, May 2009. IEEE
Press.

[25] D. H. Phan and J. Suzuki. R2-IBEA: R2 Indicator

Based Evolutionary Algorithm for Multiobjective
Optimization. In IEEE Congress on Evolutionary
Computation (CEC’2013), pages 1836–1845, 2013.

[26] R. C. Purshouse and P. J. Fleming. On the
Evolutionary Optimization of Many Conflicting
Objectives. IEEE Transactions on Evolutionary
Algorithms, 11(6):770–784, December 2007.

[27] M. Reyes Sierra and C. A. Coello Coello. Improving
PSO-Based Multi-objective Optimization Using
Crowding, Mutation and ε-Dominance. In C. A.
Coello Coello, A. Hernández Aguirre, and E. Zitzler,
editors, Evolutionary Multi-Criterion Optimization.
Third International Conference, EMO 2005, pages
505–519, Guanajuato, México, March 2005. Springer.
Lecture Notes in Computer Science Vol. 3410.

[28] M. Reyes-Sierra and C. A. Coello Coello.
Multi-Objective Particle Swarm Optimizers: A Survey
of the State-of-the-Art. International Journal of
Computational Intelligence Research, 2(3):287–308,
2006.

[29] R. Santana, M. Pontes, and C. Bastos-Filho. A
multiple objective particle swarm optimization
approach using crowding distance and roulette wheel.
In Intelligent Systems Design and Applications, 2009.
ISDA ’09. Ninth International Conference on, pages
237–242, Nov 2009.

[30] H. Scheffé. Experiments with mixtures. Journal of the
Royal Statistical Society. Series B (Methodological),
20(2):344–360, 1958.

[31] Y.-Y. Tan, Y.-C. Jiao, H. Li, and X.-K. Wang.
MOEA/D + uniform design: A new version of
MOEA/D for optimization problems with many
objectives. Computers & Operations Research,
40(6):1648–1660, June 2013.

[32] P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal. An
Adaptive Multi-Objective Particle Swarm
Optimization algorithm with Constraint Handling. In
B. K. Panigrahi, Y. Shi, and M.-H. Lim, editors,
Handbook of Swarm Intelligence. Concepts, Principles
and Applications, pages 221–239. Springer-Verlag,
Berlin, Germany, 2011.

[33] Y. Wang and K. T. Fang. Number-Theoretic Method
in Applied statistics (II). Chinese Annals of
Mathematics. Serie B, 11:859–914, 1990.

[34] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas.
Standard particle swarm optimisation 2011 at
cec-2013: A baseline for future pso improvements. In
Evolutionary Computation (CEC), 2013 IEEE
Congress on, pages 2337–2344, June 2013.

[35] Q. Zhang and H. Li. MOEA/D: A Multiobjective
Evolutionary Algorithm Based on Decomposition.
IEEE Transactions on Evolutionary Computation,
11(6):712–731, December 2007.

[36] E. Zitzler, D. Brockhoff, and L. Thiele. The
Hypervolume Indicator Revisited: On the Design of
Pareto-compliant Indicator Via Weighted Integration.
In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and
T. Murata, editors, Evolutionary Multi-Criterion
Optimization, 4th International Conference, EMO
2007, pages 862–876, Matshushima, Japan, March
2007. Springer. Lecture Notes in Computer Science
Vol. 4403.

