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Abstract. In this paper, we propose a new selection mechanism for
Multi-Objective Evolutionary Algorithms (MOEAs), which is based on
the generational distance indicator and uses a technique that relies on
Euclidean distances to maintain diversity in the population (in objective
function space). Our proposed selecion mechanism is incorporated into a
MOEA which adopts the operators of NSGA-II (crossover and mutation)
to generate new individuals. The new MOEA is called “Generational
Distance - Multi-Objective Evolutionary Algorithm (GD-MOEA).” Our
GD-MOEA is validated using standard test problems taken from the spe-
cialized literature, having three to six objective functions. GD-MOEA is
compared with respect to MOEA/D using Penalty Boundary Intersec-
tion (PBI), which is based on decomposition, and to SMS-EMOA-HYPE
(a version of SMS-EMOA that uses a fitness assignment scheme based
on the use of an approximation of the hypervolume indicator). Our pre-
liminary results indicate that if we consider both quality in the solutions
and the running time required to generate them, our GD-MOEA is a
good alternative to solve multi-objective optimization problems having
both low dimensionality and high dimensionality in objective function
space.

1 Introduction

Many real-world applications involve the solution of problems that have multi-
ple (conflicting) objective functions which have to be simultaneously optimized.
These are the so-called “Multi-objective Optimization Problems (MOPs)”. Since
their objective functions are in conflict with each other, the notion of optimal-
ity refers to finding the best possible trade-offs among the objective functions.
Consequently, there is no single optimal solution but a set of solutions, which is
called Pareto optimal set, whose image is known as the Pareto front. Since the
use of mathematical programming techniques to solve MOPs has several limita-
tions, the use of evolutionary algorithms has become very popular in this area
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in recent years, giving rise to the so-called Multi-Objective Evolutionary Algo-
rithms (MOEAs) [6]. MOEAs have two main goals: (i) To find solutions that
are, as close as possible, to the true Pareto front, and, (ii) to produce solutions
that are spread along the Pareto front as uniformly as possible.

There are different indicators to assess the quality of the approximation of
the Pareto optimal set generated by a MOEA, e.g., error ratio, generational dis-
tance, inverted generational distance, spacing, hypervolume, R2-indicator, ∆p-
indicator, ε-indicator, two set coverage, etc. [6]. However, very few performance
indicators are “Pareto Compliant”.1 In recent years, MOEAs based on indica-
tors have become popular because the use of Pareto-based selection has several
limitations. Perhaps, the most remarkable is its poor scalability regarding the
number of objective functions of a MOP.2

MOEAs based on the hypervolume indicator (IH) have been relatively pop-
ular (see for example [16, 28, 2, 15, 17]) mainly because IH is the only unary
indicator which is known to be “Pareto compliant” [29]. However, IH has an
important disadvantage: its high computational cost (the problem of computing
IH is NP-hard [3]). Therefore, this type of MOEAs is impractical when we want
to solve MOPs having four or more objective functions. On the other hand, after
the study on the properties of the R2-indicator (IR2) presented by Brockhoff et
al. [4], a number of proposals of MOEAs based on IR2 have been introduced [21,
13, 22, 26]. Although IR2-based MOEAs can solve MOPs with many objective
functions at an affordable computational cost, this type of algorithms also has an
important disadvantage: They need to generate a set of well-distributed convex
weights and this task becomes more difficult as we increase the number of objec-
tive functions. The same applies to the well-known MOEA/D [27] which decom-
poses the MOP into N scalar optimization subproblems and solves them simul-
taneously using an evolutionary algorithm. Recently, the ∆p-indicator (I∆p

) was
introduced [20] and some MOEAs based on it have already been proposed [12,
19, 10]. The ∆p-indicator is composed of slight modifications of two well-known
indicators: generational distance (IGD) [23] and inverted generational distance
(IIGD) [5]. It is well-known that for computing IGD and IIGD, it is necesary
to know the true Pareto front. Therefore, the most important disadvantage of
MOEAs based on I∆p

is perhaps that they need a reference set which must
contain well-distributed solutions. Not being able to produce a good reference
set could produce a diversity loss in the population which might cause that the
algorithm cannot generate the complete Pareto front, or that it generates poorly
distributed solutions. In extreme cases, the lack of an appropriate reference set
could prevent convergence.

1 Let Ω be the set of all feasible solutions and A and B two approximations of the
Pareto optimal set, such that, A � B denotes that every point b ∈ B is weakly dom-
inated by at least one point a ∈ A. An indicator I : Ω → R is Pareto compliant
if for all A,B ∈ Ω : A � B ⇒ I(A) ≥ I(B), assuming that greater indicator values
correspond to higher quality.

2 The quick increase in the number of non-dominated solutions as we increase the
number of objective functions, rapidly dilutes the effect of the selection mechanism
of a MOEA [11].
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In this paper, we propose a new MOEA based on IGD and we use the tech-
nique proposed in [18], which is based on Euclidean distances, to maintain di-
versity in objective function space. The idea is to use the non-dominated set
produced at each generation as a reference set to calculate IGD, even if it is not
well-distributed, since at the beginning, the aim is to achieve convergence to the
true Pareto front. Then, when we have produced many non-dominated solutions,
the aim will be to improve their distribution. In this way, we can address the dis-
advantages of MOEAs based on IH , IR2 and I∆p

: Our new selection mechanism
has linear complexity with respect to the number of objective functions because
computing the IGD and maintaining diversity by means of computing Euclidean
distances have linear complexity with respect to the number of objective func-
tions. Further, it is not necessary to generate a set of well-distributed convex
weights, and also, it is not necessary to generate a well-distributed reference set.

The remainder of this paper is organized as follows. Section 2 describes the
generational distance indicator. The technique to maintain diversity in the pop-
ulation is described in Section 3. Our proposal is presented in Section 4. The
experimental validation and the results obtained are shown in Section 5. Finally,
we provide our conclusions and some possible paths for future work in Section 6.

2 Generational Distance Indicator

The generational distance indicator (IGD) reports how far, on average, A is from
PF [7, 24, 25], where PF is the true Pareto front and A is an approximation of
the true Pareto front. IGD is Pareto non-compliant and it is defined as:

IGD =
1

|A|

 |A|∑
i=1

dpi

 1
p

(1)

where |A| is the number of vectors in A, p = 2 and di is the Euclidean phenotypic
distance between each member, i, of A and the closest member in PF to that
member, i. If IGD = 0, A ⊆ PF . Figure 1 shows how this indicator is calculated.
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Fig. 1. The black points are the reference set. The approximation of the Pareto optimal set, A, is
composed by all point in gray. di is the Euclidean distance between xi and its closest neighbor in
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3 A distribution technique based on Euclidean distances

In [18], Menchaca and Coello proposed a technique based on Euclidean distances
to improve the diversity in objective function space. This technique works as
follows: Let’s suppose that we have already a set of non-dominated solutions
which we call “S”. If we want to improve its diversity using another set of non-
dominated solutions which is called “B”, then, the solutions in B compete with
the solutions in S, considering that the size of S is fixed, as follows: For each
solution x ∈ B, we obtain its nearest neighbor from S, xnear, and we choose
a random individual from S, xrandom such that xnear 6= xrandom, and then,
these three solutions compete to survive. First, x competes with xrandom, if
the Euclidean distance from x to its nearest neighbor in S is greater than the
Euclidean distance from xrandom to its nearest neighbor in S, x replaces xrandom.
If x loses the competition, x competes with its nearest neighbor to survive. If
the Euclidean distance from x to its nearest neighbor in S (without considering
xnear) is greater than the Euclidean distance from xnear to its nearest neighbor
in S, then x replaces xnear.

The authors mentioned that xnear is used with the idea of improving the
diversity locally. If we move xnear to x, do we increase the Euclidean distance
from xnear to its nearest neighbor in S? And, xrand is used to avoid that solutions
in unexplored regions are eliminated, e.g., if x and xnear are in an unexplored
region, it is not good to delete one of the two solutions. Figure 2 illustrates how
this technique works.

4 Our proposal

In this work, we propose a new selection mechanism for MOEAs. The idea is
to use IGD as a convergence strategy and to use the above distribution tech-
nique to maintain diversity in the population when many (even all) solutions
are non-dominated. Our selection mechanism works as follows: If we want to
select s individuals of a population P, such that s < ‖P‖, we have to obtain the
non-dominated individuals in P and put them in S. The remaining individuals
(dominated individuals) are placed in B. If s > ‖S‖, we select the remaining r
individuals (where r = s − ‖S‖) from B as follows: We calculate the Euclidean
distance, di, from each dominated individual in B to its nearest neighbor in S,
and also, it is necessary to save its neighboring non-dominated individual. Af-
ter that, we have to sort B regarding di and we must create another set called
“S ′ = ∅”. Finally, for each xi ∈ B, we have to check if its nearest neighbor in S
is equal to the nearest neighbor in S of some individual in S ′. If the answer is no
and ‖S ′‖ < r, then, we must put xi in S ′. If all individuals in B are considered
and ‖S ′‖ < r, we must repeat the last process but now we will allow that only
one individual in S ′ has the same neighbor that the individual that we want to
select. We have to iterate until we obtain r individuals. Figure 3 shows how this
procedure works.

If s < ‖S‖, we choose s individuals from S randomly. These individuals re-
main in S and we put the remaining non-dominated individuals in a new set
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Fig. 2. All points in black are in S and all points in gray are in B. In (a), we consider solution x1,
its nearest neighbor in S is s2 and we choose s5 as a random solution. First, x1 competes with s5

and s5 loses because the distance from x1 to s2 is greater than the distance from s5 to s6; therefore,
x1 replaces s5. In (b), we consider solution x2, its nearest neighbor in S is s6 and we choose s2 as a
random solution. First, x2 and s2 compete and x2 wins because the distance from x2 to s6 is greater
than the distance from s2 to s5; therefore, x2 replaces s2. Finally, in (c), we consider solution x3,
its nearest neighbor in S is s2 and we choose s5 as a random solution. First, x3 competes with s5

and s5 wins because the distance from x3 to s2 is less than the distance from s5 to s3; therefore,
x3 competes with s2 and x3 wins because the distance from x3 to x6 is greater than the distance
from s2 to s6. Thus, x3 replaces s2. In (d), we can see the new S.
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Fig. 3. Let’s assume that we want to select eight individuals from the population. In (a), the non-
dominated individuals are identified (black points) and then S = {s1, s2, s3, s4, s5}. After that, we
calculate di for each dominated individual (gray points), we store its nearest neighbor in S and we
sort them with respect to di, such that xi.di ≤ xi+1.di+1. In (b), we proceed to select the remaining
3 individuals. First, we select individual x1 (S′ = {x1}). After that, individual x2 is considered but
it is not selected because its nearest neighbor in S is the same that the nearest neighbor of x1. Then,
we consider individual x3 and we select it (S′ = {x1,x3}). Finally, individual x4 is considered and
it is not selected because its nearest neighbor is the same that the nearest neighbor of individual
x3. Then, we consider individual x5 and we select it (S′ = {x1,x3,x5}). Therefore, the selected
individuals are S ∪ S′ (black points).
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called “B”. After that, we use the above distribution technique but before each
solution xi ∈ B can compete for its survival, we must check if it is similar (in
objective function space) to any selected individual in S. We consider that one
individual x is similar to another individual y, if it is similar in any objec-
tive function: x.fi − y.fi < ε, where ε is a small value. In this way, we avoid
that weakly non-dominated individuals are selected. If we do not apply this
constraint, we can obtain many weakly Pareto optimal solutions, which could
prevent convergence. Figure 4 shows how this diversity technique works. The
complete selection process is shown in Algorithm 1.
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Fig. 4. Let’s assume that we want to select eight individuals from the population. In (a), we select
randomly eight non-dominated individuals and we put them in S (black points), and the remaining
non-dominated individuals are placed in B (gray points). After that, we apply the distribution
technique described in Section 3. (b) shows the final S and we can see that although x6 and x7

could replace individual s8, they were not selected because they are similar to s8.

4.1 Generational Distance - Multi-Objective Evolutionary
Algorithm (GD-MOEA)

In order to validate our selection mechanism, we designed a multi-objective evo-
lutionary algorithm which uses the operators of NSGA-II (crossover and muta-
tion) to create new individuals. This is because our main aim is to validate the
effect of our proposed selection mechanism comparing it with respect to other
two selection mechanisms: The first is based on decomposition and the second
one is based on the approximation of the hypervolume indicator. For this sake,
we used the following MOEAs: MOEA/D [27] (using PBI to decompose the
MOP) and SMS-EMOA-HYPE (a version of SMS-EMOA [2] that uses a fitness
assignment based on the approximation of the hypervolume indicator, proposed
in [1]). Since these MOEAs use the same operators as our proposed approach to
create new individuals, the comparison is fair.

Our proposed MOEA is called “Generational Distance - Multi-Objective
Evolutionary Algorithm (GD-MOEA)” and it works as follows. First, it
creates an initial population of size P . After that, it creates P new individuals
and it combines the population of parents and offspring to obtain a population
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Input : P (population), s (number of individuals to choose s < ‖P‖).
Output: S (selected individuals).
Put in S the non-dominated individuals of P;
if s > ‖S‖ then

Put in B the dominated individuals of P;
Calculate the Euclidean distance di from each individual xi ∈ B to its nearest neighbor
in S and we also save its closest non-dominated neighbor;
Sort B with respect to d (ascending order);

S′ ← ∅, r ← s− ‖S‖, contIndAux← 0, i← 1;

while ‖S′‖ < r do
contInd← 0;

foreach s ∈ S′ do
if s.neighbor = B.xi.neighbor then

contInd← contInd+ 1;
end

end
if contInd ≤ contIndAux then

Put B.xi in S′;
end
repeat

i← i+ 1;

until B.xi /∈ S′;
if i = ‖B‖ then

i← 0, contIndAux← contIndAux+ 1;
end

end

S ← S ∪ S′;

else
if s < ‖S‖ then

Choose randomly ‖S‖ − s individuals of S and put them in a new set called B;
foreach xi ∈ B do

if xi is not similar to any individual in S then
Obtain the nearest neighbor, xnear, of xi in S;
Choose a random individual, xrand, from S such that xnear 6= xrand;
dxi← Euclidean distance from xi to xnear;
dxr ← Euclidean distance from xrand to its nearest neighbor in S;
if dxi > dxr then

Replace xrand with xi;
else

dxi← Euclidean distance from xi to its nearest neighbor in S
without considering xnear;
dxn← Euclidean distance from xnear to its nearest neighbor in S;
if dxi > dxn then

Replace xnear with xi;
end

end

end

end

end

end
return S;

Algorithm 1: IGD-Selection
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of size 2P . Then, we use the proposed selection mechanism to choose the P in-
dividuals that will take part of the following generation. Finally, this process is
repeated for a (pre-defined) number of generations.

5 Experimental Results

As mentioned before, we compare our proposed GD-MOEA with respect to
MOEA/D and SMS-EMOA-HYPE. In the case of MOEA/D, we generated the
convex weights using the technique proposed in [8] and after that, we applied
clustering (k-means) to obtain a specific number of weights. In the case of SMS-
EMOA-HYPE, we used the source code of HyPE available in the public do-
main [1] adopting 104 as our number of samples to assign fitness in the original
SMS-EMOA.3

For our experiments, we used seven problems taken from the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [9]. We used k = 5 for DTLZ1, DTLZ3
and DTLZ6 and k = 10 for the remaining test problems. Also, we used seven
problems taken from the WFG toolkit [14], with k factor = 2 and l factor =
10. For each test problem, we performed 30 independent runs. For all three
algorithms, we adopted the parameters suggested by the authors of NSGA-II:
pc = 0.9 (crossover probability), pm = 1/n (mutation probability), where n is the
number of decision variables. We also used ηc = 15 and ηm = 20, respectively.
We performed a maximum of 50,000 fitness function evaluations (in this case, we
used a population size of 100 individuals and we iterated for 500 generations).

5.1 Performance Indicators

We adopted only the hypervolume indicator (IH) to validate our results because
it rewards both convergence towards the Pareto front as well as the maximum
spread of the solutions obtained. To calculate the hypervolume indicator, we nor-
malized the approximations of the Pareto optimal set, generated by the MOEAs,
and yref = [y1, · · · , yk] such that yi = 1.1 is used as our reference point. The
normalization was performed considering all approximations generated by the
different MOEAs (i.e., we put, in one set, all the non-dominated solutions found
and from this set we calculate the maximum and minimum for each objective
function).

5.2 Discussion of Results

Table 1 shows the results with respect to IH as well as the results of the sta-
tistical analysis that we made to validate our experiments, for which we used
Wilcoxon’s rank sum. In Table 1, we can see that our proposed GD-MOEA out-
performed MOEA/D in forty-three problems and in all cases we can reject the

3 The source code of the three algorithms (MOEA/D, SMS-EMOA-HYPE and GD-
MOEA) is avaialble the first author upon request. For MOEA/D, we used the source
code available in the MOEA/D webpage.
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null hypothesis (medians are equal). Only in thirteen problems our proposed ap-
proach was outperformed by MOEA/D. With respect to SMS-EMOA-HYPE, we
can see that our GD-MOEA was outperformed in forty-nine problems. Only in
six problems our GD-MOEA outperformed SMS-EMOA-HYPE and in one case
they had a similar behavior (we cannot reject the null hypothesis). However, it
is important to analyze the running time required by the three algorithms. In
Table 2, we can see that MOEA/D is better than our GD-MOEA because, in the
worst case, MOEA/D required 1.8199 seconds to find the approximation of the
Pareto optimal set while our GD-MOEA required 2.6672 seconds, i.e., MOEA/D
is 1.46 times faster than our GD-MOEA. In the case of SMS-EMOA-HYPE, we
can see that it required 445.7333 seconds in the worst case, i.e., our GD-MOEA
is 167.11 times faster than SMS-EMOA-HYPE. Therefore, we can say that our
GD-MOEA is a good choice to solve MOPs having both low dimensionality and
high dimensionality in objective function space, if we consider both quality in
the approximation of the Pareto set and running time.

Finally, we will present a brief study on the effect of the population size
on the performance of our approach. We know that if we increase the number
of objective functions, we should increase the population size as well. However,
algorithms such as SMS-EMOA cannot be used with large population sizes,
because its running time rapidly increases (in the worst case, it needs to calculate
P times the contribution to the hypervolume, where P is the population size,
in order to decide which individual will be removed). In the case of MOEA/D
and our GD-MOEA, it is indeed possible to increase the population size. In
order to study the behavior of these two MOEAs, we adopted a population
size of 300 individuals. Table 3 shows the results and we can see in (a) that
in seven problems both algorithms have a similar behavior because we cannot
reject the null hypothesis. In twelve cases, MOEA/D outperformed our proposed
GD-MOEA and in thirty-seven cases our proposed GD-MOEA outperformed
MOEA/D. With respect to the running time, we can see in (b) that in the
worst case, MOEA/D required 4.7445 seconds and our proposed GD-MOEA
required 11.4934 seconds, i.e., MOEA/D is 2.42 times faster than our proposed
GD-MOEA. Therefore, we can say that our proposed GD-MOEA has a better
performance than MOEA/D in most cases, while requiring a higher (but not
significantly long) running time.

An interesting thing is that our proposed GD-MOEA had serious difficulties
to solve DTLZ1, DTLZ6 and WFG1 with more than three objective functions
when we used a population size of 100 individuals. However, when we increased
the population size, our proposed GD-MOEA was able to obtain better results,
and kept a good behavior, in general, for all the problems considered in our
study.

6 Conclusions and Future Work

We have proposed a new selection mechanism based on the generational distance
indicator (IGD) and a technique based on Euclidean distances to improve the
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f moead
IH

gd-moea
IH

P (H)

DTLZ1(3) 1.0710(0.003) 1.0842(0.005) 0.00(1)
DTLZ2(3) 0.7102(0.000) 0.7150(0.006) 0.00(1)
DTLZ3(3) 1.3130(0.001) 1.3276(0.003) 0.00(1)
DTLZ4(3) 0.8191(0.000) 0.8344(0.008) 0.00(1)
DTLZ5(3) 0.2467(0.001) 0.2620(0.003) 0.00(1)
DTLZ6(3) 1.0002(0.011) 1.1060(0.012) 0.00(1)
DTLZ7(3) 0.4472(0.026) 0.5055(0.061) 0.00(1)
DTLZ1(4) 1.1858(0.005) 1.2077(0.199) 0.00(1)
DTLZ2(4) 0.8603(0.001) 0.9030(0.013) 0.00(1)
DTLZ3(4) 1.4556(0.001) 1.4605(0.006) 0.00(1)
DTLZ4(4) 0.8589(0.001) 0.9017(0.015) 0.00(1)
DTLZ5(4) 0.8553(0.022) 0.9122(0.031) 0.00(1)
DTLZ6(4) 1.0244(0.013) 0.7536(0.087) 0.00(1)
DTLZ7(4) 0.3389(0.008) 0.5288(0.036) 0.00(1)
DTLZ1(5) 1.2463(0.011) 0.4102(0.490) 0.00(1)
DTLZ2(5) 0.9483(0.003) 1.0500(0.027) 0.00(1)
DTLZ3(5) 1.5818(0.008) 1.5933(0.014) 0.00(1)
DTLZ4(5) 0.9299(0.003) 1.0280(0.017) 0.00(1)
DTLZ5(5) 1.0353(0.027) 1.1208(0.104) 0.00(1)
DTLZ6(5) 1.2919(0.021) 0.7747(0.104) 0.00(1)
DTLZ7(5) 0.0967(0.067) 0.4426(0.045) 0.00(1)
DTLZ1(6) 1.3056(0.013) 0.0149(0.048) 0.00(1)
DTLZ2(6) 0.9712(0.011) 1.1841(0.029) 0.00(1)
DTLZ3(6) 1.7610(0.004) 1.7133(0.052) 0.00(1)
DTLZ4(6) 0.9559(0.005) 1.1805(0.044) 0.00(1)
DTLZ5(6) 0.7277(0.014) 0.8356(0.037) 0.00(1)
DTLZ6(6) 1.3298(0.037) 0.5249(0.069) 0.00(1)
DTLZ7(6) 0.0194(0.004) 0.5360(0.066) 0.00(1)
WFG1(3) 0.9183(0.017) 0.8572(0.046) 0.00(1)
WFG2(3) 0.1539(0.202) 0.5245(0.128) 0.00(1)
WFG3(3) 0.4989(0.026) 0.5982(0.008) 0.00(1)
WFG4(3) 0.5943(0.013) 0.6473(0.008) 0.00(1)
WFG5(3) 0.4710(0.010) 0.5286(0.004) 0.00(1)
WFG6(3) 0.4548(0.007) 0.5245(0.008) 0.00(1)
WFG7(3) 0.4933(0.056) 0.6528(0.012) 0.00(1)
WFG1(4) 1.1040(0.058) 0.6312(0.110) 0.00(1)
WFG2(4) 0.0030(0.016) 0.1481(0.179) 0.00(1)
WFG3(4) 0.2872(0.034) 0.4502(0.025) 0.00(1)
WFG4(4) 0.6492(0.026) 0.7987(0.015) 0.00(1)
WFG5(4) 0.3672(0.015) 0.5232(0.006) 0.00(1)
WFG6(4) 0.2887(0.016) 0.3580(0.044) 0.00(1)
WFG7(4) 0.2887(0.036) 0.6944(0.017) 0.00(1)
WFG1(5) 1.2195(0.063) 0.4916(0.037) 0.00(1)
WFG2(5) 0.0105(0.033) 0.1194(0.122) 0.00(1)
WFG3(5) 0.1508(0.038) 0.2609(0.062) 0.00(1)
WFG4(5) 0.6399(0.024) 0.8698(0.029) 0.00(1)
WFG5(5) 0.2401(0.014) 0.4614(0.018) 0.00(1)
WFG6(5) 0.2408(0.016) 0.2149(0.054) 0.00(1)
WFG7(5) 0.2149(0.014) 0.6888(0.019) 0.00(1)
WFG1(6) 1.1466(0.022) 0.5648(0.041) 0.00(1)
WFG2(6) 0.0094(0.034) 0.1403(0.153) 0.00(1)
WFG3(6) 0.0993(0.044) 0.0962(0.044) 0.58(0)
WFG4(6) 0.5947(0.029) 0.9251(0.035) 0.00(1)
WFG5(6) 0.1613(0.017) 0.3368(0.044) 0.00(1)
WFG6(6) 0.2273(0.021) 0.1651(0.049) 0.00(1)
WFG7(6) 0.1842(0.014) 0.6745(0.031) 0.00(1)

sms-emoa-hype
IH

gd-moea
IH

P (H)

1.1011(0.006) 1.0842(0.005) 0.00(1)
0.7435(0.002) 0.7150(0.006) 0.00(1)
1.3299(0.000) 1.3276(0.003) 0.00(1)
0.8639(0.002) 0.8344(0.008) 0.00(1)
0.2654(0.000) 0.2620(0.003) 0.00(1)

1.1048(0.014) 1.1060(0.012) 0.92(0)
0.5389(0.034) 0.5055(0.061) 0.00(1)
1.2586(0.057) 1.2077(0.199) 0.43(0)
1.0086(0.003) 0.9030(0.013) 0.00(1)
1.4636(0.000) 1.4605(0.006) 0.00(1)
1.0143(0.004) 0.9017(0.015) 0.00(1)
0.9842(0.002) 0.9122(0.031) 0.00(1)
1.0561(0.018) 0.7536(0.087) 0.00(1)

0.5270(0.037) 0.5288(0.036) 0.95(1)
1.2371(0.348) 0.4102(0.490) 0.00(1)
1.2614(0.005) 1.0500(0.027) 0.00(1)
1.6089(0.000) 1.5933(0.014) 0.00(1)
1.2537(0.005) 1.0280(0.017) 0.00(1)
1.3005(0.003) 1.1208(0.104) 0.00(1)
1.4414(0.009) 0.7747(0.104) 0.00(1)
0.4964(0.049) 0.4426(0.045) 0.00(1)
1.5000(0.235) 0.0149(0.048) 0.00(1)
1.5413(0.005) 1.1841(0.029) 0.00(1)
1.7711(0.000) 1.7133(0.052) 0.00(1)
1.5446(0.005) 1.1805(0.044) 0.00(1)
1.0777(0.010) 0.8356(0.037) 0.00(1)
1.6348(0.010) 0.5249(0.069) 0.00(1)

0.4480(0.125) 0.5360(0.066) 0.00(1)
1.0174(0.068) 0.8572(0.046) 0.00(1)
0.6506(0.055) 0.5245(0.128) 0.00(1)
0.6061(0.007) 0.5982(0.008) 0.00(1)
0.7023(0.005) 0.6473(0.008) 0.00(1)
0.5370(0.003) 0.5286(0.004) 0.00(1)
0.5475(0.004) 0.5245(0.008) 0.00(1)

0.5617(0.029) 0.6528(0.012) 0.00(1)
1.1404(0.026) 0.6312(0.110) 0.00(1)
0.4888(0.227) 0.1481(0.179) 0.00(1)
0.5343(0.016) 0.4502(0.025) 0.00(1)
0.9308(0.008) 0.7987(0.015) 0.00(1)
0.5586(0.005) 0.5232(0.006) 0.00(1)
0.5654(0.010) 0.3580(0.044) 0.00(1)

0.4220(0.032) 0.6944(0.017) 0.00(1)
1.2517(0.027) 0.4916(0.037) 0.00(1)
0.4422(0.241) 0.1194(0.122) 0.00(1)
0.4852(0.027) 0.2609(0.062) 0.00(1)
1.1159(0.019) 0.8698(0.029) 0.00(1)
0.5798(0.010) 0.4614(0.018) 0.00(1)
0.5222(0.022) 0.2149(0.054) 0.00(1)

0.3138(0.022) 0.6888(0.019) 0.00(1)
1.3539(0.029) 0.5648(0.041) 0.00(1)
0.4834(0.239) 0.1403(0.153) 0.00(1)
0.4375(0.034) 0.0962(0.044) 0.00(1)
1.2866(0.025) 0.9251(0.035) 0.00(1)
0.5823(0.015) 0.3368(0.044) 0.00(1)
0.5142(0.033) 0.1651(0.049) 0.00(1)

0.2735(0.018) 0.6745(0.031) 0.00(1)

Table 1. Results obtained in the DTLZ and WFG test problems. We compare our proposed GD-
MOEA with respect to MOEA/D and SMS-EMOA-HYPE, using the hypervolume indicator (IH). We
show average values over 30 independent runs. The values in parentheses correspond to the standard
deviations. The third column of each table shows the results of the statistical analysis applied to
our experiments using Wilcoxon’s rank sum. P is the probability of observing the given result (the
null hypothesis is true). Small values of P cast doubt on the validity of the null hypothesis. H = 0
indicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5% level. H = 1
indicates that the null hypothesis can be rejected at the 5% level.

diversity of the population. Our idea is to use IGD as a convergence strategy and,
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f
moead
time

gd-moea
time

DTLZ1(3) 0.4993(0.016) 0.7695(0.010)
DTLZ2(3) 0.5783(0.010) 1.1593(0.014)
DTLZ3(3) 0.5195(0.012) 0.6366(0.026)
DTLZ4(3) 0.6037(0.008) 1.2361(0.082)
DTLZ5(3) 0.5922(0.007) 1.0845(0.015)
DTLZ6(3) 0.5007(0.018) 0.8883(0.035)
DTLZ7(3) 0.5397(0.008) 0.9039(0.038)
DTLZ1(4) 0.5230(0.008) 0.8578(0.033)
DTLZ2(4) 0.6147(0.012) 1.1623(0.014)
DTLZ3(4) 0.5533(0.020) 0.8227(0.047)
DTLZ4(4) 0.6440(0.011) 1.2127(0.021)
DTLZ5(4) 0.6128(0.009) 1.1188(0.023)
DTLZ6(4) 0.5351(0.010) 1.2979(0.019)
DTLZ7(4) 0.5860(0.008) 0.9282(0.016)
DTLZ1(5) 0.5532(0.005) 0.9387(0.033)
DTLZ2(5) 0.6453(0.010) 1.1378(0.030)
DTLZ3(5) 0.5785(0.012) 1.0330(0.072)
DTLZ4(5) 0.6949(0.004) 1.2085(0.022)
DTLZ5(5) 0.6455(0.004) 1.1452(0.030)
DTLZ6(5) 0.5784(0.008) 1.6253(0.033)
DTLZ7(5) 0.6289(0.004) 0.9783(0.068)
DTLZ1(6) 0.5816(0.011) 1.4877(0.288)
DTLZ2(6) 0.6750(0.003) 1.1846(0.122)
DTLZ3(6) 0.6162(0.017) 1.5827(0.185)
DTLZ4(6) 0.7485(0.003) 1.2092(0.024)
DTLZ5(6) 0.6683(0.011) 1.1497(0.024)
DTLZ6(6) 0.6308(0.006) 1.6625(0.024)
DTLZ7(6) 0.6589(0.012) 1.0392(0.026)
WFG1(3) 1.1427(0.019) 1.5656(0.027)
WFG2(3) 0.9272(0.024) 1.3674(0.018)
WFG3(3) 0.9738(0.018) 1.4281(0.017)
WFG4(3) 0.9919(0.007) 2.2732(0.061)
WFG5(3) 0.9594(0.007) 2.1035(0.031)
WFG6(3) 0.9478(0.010) 1.5356(0.007)
WFG7(3) 1.1988(0.026) 2.3854(0.020)
WFG1(4) 1.1697(0.017) 1.4167(0.017)
WFG2(4) 0.9473(0.021) 1.4471(0.016)
WFG3(4) 1.0207(0.011) 1.3199(0.034)
WFG4(4) 1.0258(0.009) 2.4373(0.017)
WFG5(4) 0.9848(0.009) 1.8332(0.080)
WFG6(4) 0.9774(0.007) 1.2582(0.010)
WFG7(4) 1.2529(0.014) 2.4961(0.021)
WFG1(5) 1.2474(0.015) 1.5476(0.027)
WFG2(5) 1.0083(0.020) 1.5561(0.015)
WFG3(5) 1.0908(0.010) 1.4337(0.018)
WFG4(5) 1.1067(0.005) 2.5754(0.015)
WFG5(5) 1.0683(0.006) 1.4752(0.033)
WFG6(5) 1.0342(0.024) 1.3588(0.013)
WFG7(5) 1.4166(0.021) 2.6519(0.051)
WFG1(6) 1.3214(0.012) 1.6343(0.022)
WFG2(6) 1.0430(0.021) 1.6106(0.019)
WFG3(6) 1.1115(0.011) 1.5232(0.037)
WFG4(6) 1.1695(0.009) 2.6444(0.049)
WFG5(6) 1.1185(0.009) 1.4109(0.027)
WFG6(6) 1.0602(0.024) 1.4250(0.013)
WFG7(6) 1.8199(0.145) 2.6672(0.072)

sms-emoa-hype
time

gd-moea
time

47.0000(2.620) 0.7695(0.010)
106.1333(4.105) 1.1593(0.014)
135.9667(21.629) 0.6366(0.026)
107.1667(3.822) 1.2361(0.082)
64.3333(5.430) 1.0845(0.015)
59.0667(9.747) 0.8883(0.035)
98.4333(9.106) 0.9039(0.038)
59.6667(3.280) 0.8578(0.033)
156.0333(6.555) 1.1623(0.014)
165.9333(18.995) 0.8227(0.047)
157.2667(9.602) 1.2127(0.021)
143.1667(4.796) 1.1188(0.023)
129.1000(7.648) 1.2979(0.019)
185.6667(16.067) 0.9282(0.016)
79.1333(5.632) 0.9387(0.033)
188.3333(8.231) 1.1378(0.030)
177.1000(24.347) 1.0330(0.072)
190.5000(6.845) 1.2085(0.022)
229.3333(14.328) 1.1452(0.030)
225.3667(11.056) 1.6253(0.033)
296.9333(23.678) 0.9783(0.068)
98.9333(6.904) 1.4877(0.288)
233.3667(11.182) 1.1846(0.122)
185.3000(22.371) 1.5827(0.185)
234.6333(10.581) 1.2092(0.024)
336.9000(18.293) 1.1497(0.024)
340.4333(16.669) 1.6625(0.024)
377.9000(42.232) 1.0392(0.026)
147.0000(3.670) 1.5656(0.027)
98.4333(6.786) 1.3674(0.018)
148.7333(3.941) 1.4281(0.017)
107.5000(4.233) 2.2732(0.061)
153.0667(8.246) 2.1035(0.031)
168.9333(8.330) 1.5356(0.007)
151.5667(6.530) 2.3854(0.020)
233.7333(8.434) 1.4167(0.017)
170.6333(11.232) 1.4471(0.016)
247.1000(7.939) 1.3199(0.034)
157.8333(6.455) 2.4373(0.017)
206.7667(19.689) 1.8332(0.080)
216.9667(17.647) 1.2582(0.010)
252.1333(8.429) 2.4961(0.021)
335.0667(7.607) 1.5476(0.027)
269.5667(20.717) 1.5561(0.015)
378.1667(6.362) 1.4337(0.018)
220.6667(13.553) 2.5754(0.015)
276.2000(31.841) 1.4752(0.033)
274.2667(47.308) 1.3588(0.013)
358.9667(10.005) 2.6519(0.051)
383.8000(42.576) 1.6343(0.022)
377.4333(29.319) 1.6106(0.019)
445.7333(46.018) 1.5232(0.037)
316.2000(12.098) 2.6444(0.049)
246.7000(6.435) 1.4109(0.027)
259.2333(5.024) 1.4250(0.013)
408.2667(40.609) 2.6672(0.072)

Table 2. Time required (in seconds) by MOEA/D, SMS-EMOA-HYPE and our proposed GD-
MOEA for the test problems adopted. All algorithms were compiled using the GNU C compiler and
they were executed on a computer with a 2.66GHz processor and 4GB in RAM.
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when having many non-dominated individuals, to switch to the use of a technique
to maintain diversity. However, it is important to be careful in both cases. When
using IGD only as a convergence strategy, if we choose the individuals with low
values of di without considering if we have already selected individuals close
to a particular non-dominated individual, then, we can have difficulties, e.g.,
in MOPs with disconnected Pareto fronts such as DTLZ7 (in this case, we will
only obtain some portions of the Pareto front). If we only use the distribution
technique based on Euclidean distances without considering if the individual
which will compete is similar to another individual in one objective function,
then, we can obtain many weakly Pareto points and this could prevent us from
converging to the true Pareto front.

Our preliminary results indicate that our proposed GD-MOEA is a good
option to solve MOPs having both low and high dimensionality in objective
function space, if we consider both quality in the solutions and running time
required to obtain them. Our proposed approach is able to obtain better results
than MOEA/D, in most cases, and MOEA/D is only 1.46 times faster than our
GD-MOEA when we use a population size of 100 individuals and, it is only 2.4224
times faster when we use a population size of 300 individuals. Although, SMS-
EMOA-HYPE is better, in most cases, than GD-MOEA in terms of the quality
of the solutions generated, it requires up to 167.11 times more computational
time than our proposed approach.

As part of our future work, we want to improve our proposed selection mech-
anism so that it can deal (in a better way) with problems in which many weakly
Pareto optimal solutions are generated such as DTLZ1 and DTLZ3. Also, we
want to use other indicators to conduct an in-depth study, e.g., we could use
the two set coverage indicator to measure convergence and the spacing indicator
to assess the quality of the distribution of solutions generated by our proposed
approach. This is because SMS-EMOA-HYPE maximizes the hypervolume in-
dicator, and therefore, it has advantages over other two MOEAs when we use
the hypervolume indicator to assess our results (evidently, it is expected that
SMS-EMOA-HYPE will have better hypervolume values than other MOEAs,
since this is precisely the value that it aims to maximize).
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f
moead
IH

gd-moea
IH

P (H)

DTLZ1 (3) 1.0395 (0.001) 1.0265 (0.008) 0.00 (1)
DTLZ2 (3) 0.8847 (0.000) 0.8834 (0.004) 0.34 (0)
DTLZ3 (3) 1.3307 (0.000) 1.3308 (0.001) 0.00 (1)
DTLZ4 (3) 0.7786 (0.000) 0.7717 (0.007) 0.00 (1)
DTLZ5 (3) 0.2612 (0.000) 0.2666 (0.002) 0.00 (1)
DTLZ6 (3) 1.0933 (0.005) 1.0813 (0.022) 0.00 (1)
DTLZ7 (3) 0.6397 (0.001) 0.5852 (0.080) 0.00 (1)
DTLZ1 (4) 1.3880 (0.003) 1.4575 (0.002) 0.00 (1)
DTLZ2 (4) 0.9845 (0.000) 0.9906 (0.046) 0.00 (1)
DTLZ3 (4) 1.4639 (0.000) 1.4641 (0.000) 0.00 (1)
DTLZ4 (4) 1.0157 (0.001) 1.0201 (0.013) 0.17 (0)
DTLZ5 (4) 1.0040 (0.002) 1.0405 (0.009) 0.00 (1)
DTLZ6 (4) 1.3351 (0.003) 1.2511 (0.025) 0.00 (1)
DTLZ7 (4) 0.4997 (0.002) 0.6487 (0.053) 0.00 (1)
DTLZ1 (5) 1.5813 (0.003) 1.6104 (0.000) 0.00 (1)
DTLZ2 (5) 1.1373 (0.002) 1.1504 (0.022) 0.00 (1)
DTLZ3 (5) 1.6102 (0.000) 1.6104 (0.000) 0.00 (1)
DTLZ4 (5) 1.1464 (0.002) 1.1500 (0.041) 0.25 (0)
DTLZ5 (5) 1.2309 (0.002) 1.2474 (0.015) 0.00 (1)
DTLZ6 (5) 1.4478 (0.005) 1.2493 (0.036) 0.00 (1)
DTLZ7 (5) 0.3545 (0.009) 0.6688 (0.026) 0.00 (1)
DTLZ1 (6) 1.7573 (0.001) 1.7716 (0.000) 0.00 (1)
DTLZ2 (6) 1.1549 (0.004) 1.2616 (0.040) 0.00 (1)
DTLZ3 (6) 1.7697 (0.000) 1.7694 (0.004) 0.00 (1)
DTLZ4 (6) 1.1329 (0.003) 1.3010 (0.054) 0.00 (1)
DTLZ5 (6) 1.2176 (0.007) 1.3123 (0.019) 0.00 (1)
DTLZ6 (6) 1.6242 (0.005) 1.3955 (0.049) 0.00 (1)
DTLZ7 (6) 0.0458 (0.009) 0.5867 (0.029) 0.00 (1)
WFG1 (3) 0.7547 (0.002) 0.6978 (0.016) 0.00 (1)
WFG2 (3) 0.7263 (0.079) 0.9019 (0.034) 0.00 (1)
WFG3 (3) 0.6044 (0.012) 0.6241 (0.004) 0.00 (1)
WFG4 (3) 0.7233 (0.006) 0.7528 (0.004) 0.00 (1)
WFG5 (3) 0.5484 (0.004) 0.5673 (0.003) 0.00 (1)
WFG6 (3) 0.5130 (0.004) 0.5444 (0.005) 0.00 (1)
WFG7 (3) 0.7685 (0.011) 0.7498 (0.009) 0.00 (1)
WFG1 (4) 0.2787 (0.018) 0.4129 (0.033) 0.00 (1)
WFG2 (4) 0.9008 (0.162) 0.9788 (0.078) 0.13 (0)
WFG3 (4) 0.4771 (0.017) 0.5514 (0.013) 0.00 (1)
WFG4 (4) 0.8773 (0.015) 0.9835 (0.010) 0.00 (1)
WFG5 (4) 0.5234 (0.008) 0.5960 (0.006) 0.00 (1)
WFG6 (4) 0.3364 (0.012) 0.4274 (0.032) 0.00 (1)
WFG7 (4) 0.7698 (0.036) 0.8675 (0.015) 0.00 (1)
WFG1 (5) 0.0533 (0.032) 0.4287 (0.020) 0.00 (1)
WFG2 (5) 0.9970 (0.134) 1.0072 (0.162) 0.55 (0)
WFG3 (5) 0.4882 (0.027) 0.5041 (0.043) 0.29 (0)
WFG4 (5) 0.9023 (0.035) 1.0894 (0.017) 0.00 (1)
WFG5 (5) 0.5085 (0.008) 0.6029 (0.020) 0.00 (1)
WFG6 (5) 0.2608 (0.012) 0.2939 (0.042) 0.00 (1)
WFG7 (5) 0.3798 (0.059) 0.8928 (0.020) 0.00 (1)
WFG1 (6) 0.0000 (0.000) 0.4658 (0.020) 0.00 (1)
WFG2 (6) 1.2803 (0.199) 1.1827 (0.224) 0.06 (0)
WFG3 (6) 0.5612 (0.059) 0.3782 (0.086) 0.00 (1)
WFG4 (6) 0.8909 (0.022) 1.1262 (0.038) 0.00 (1)
WFG5 (6) 0.5136 (0.011) 0.6429 (0.031) 0.00 (1)
WFG6 (6) 0.2565 (0.019) 0.2046 (0.034) 0.00 (1)
WFG7 (6) 0.2596 (0.009) 0.7964 (0.032) 0.00 (1)

moead
time

gd-moea
time

1.5296 (0.023) 4.4234 (0.095)
1.7870 (0.011) 5.5353 (0.143)
1.5982 (0.042) 3.2699 (0.176)

bf 1.7937 (0.015) 5.4645 (0.099)
1.7661 (0.039) 5.4361 (0.058)
1.4588 (0.028) 4.3155 (0.044)
1.5896 (0.021) 4.8026 (0.146)
1.6032 (0.024) 4.9574 (0.090)
1.8629 (0.008) 5.0777 (0.096)
1.7703 (0.041) 4.1087 (0.200)
1.9052 (0.018) 5.1225 (0.033)
1.8249 (0.038) 4.0589 (0.047)
1.5590 (0.029) 5.9208 (0.049)
1.7103 (0.024) 4.9728 (0.039)
1.6717 (0.019) 5.4628 (0.091)
1.9844 (0.016) 5.0243 (0.110)
1.8143 (0.042) 5.1946 (0.265)
2.0551 (0.015) 5.0612 (0.033)
2.0464 (0.115) 4.0763 (0.043)
1.6522 (0.043) 7.0208 (0.111)
1.8392 (0.014) 5.1262 (0.057)
1.7966 (0.040) 6.0618 (0.096)
2.0712 (0.019) 5.1637 (0.063)
1.9080 (0.023) 6.5666 (0.679)
2.2384 (0.016) 5.4694 (0.084)
2.0917 (0.108) 4.4795 (0.047)
1.7541 (0.032) 7.9697 (0.137)
1.9459 (0.024) 5.6369 (0.101)
3.3185 (0.042) 5.4840 (0.082)
2.8354 (0.129) 6.2730 (0.055)
2.8724 (0.052) 5.5970 (0.044)
2.9580 (0.041) 10.9987 (0.068)
2.8350 (0.028) 8.8325 (0.235)
2.8116 (0.022) 5.8362 (0.035)
3.4059 (0.025) 10.2300 (0.120)
3.4881 (0.038) 5.5105 (0.027)
2.8905 (0.109) 6.5906 (0.056)
3.1342 (0.059) 5.5723 (0.038)
3.0843 (0.018) 11.4934 (0.153)
3.0682 (0.033) 6.2124 (0.032)
2.9030 (0.013) 5.6417 (0.035)
3.8373 (0.054) 9.0491 (0.171)
3.7985 (0.056) 6.2184 (0.037)
3.0944 (0.083) 7.0006 (0.068)
3.2425 (0.060) 6.1288 (0.060)
3.3310 (0.017) 11.4864 (0.050)
3.1917 (0.021) 5.7056 (0.046)
3.0811 (0.011) 6.1855 (0.032)
4.4487 (0.087) 8.7778 (0.227)
4.0216 (0.077) 6.6320 (0.020)
3.1562 (0.066) 7.1867 (0.063)
3.3847 (0.074) 6.4182 (0.042)
3.4896 (0.063) 11.1641 (0.074)
3.3490 (0.015) 5.9626 (0.065)
3.1610 (0.019) 6.4419 (0.036)
4.7445 (0.088) 8.1669 (0.314)

(a) (b)

Table 3. In (a), we show the results obtained in the DTLZ and WFG test problems using a
population size of 300 individuals. We compare our GD-MOEA with respect to MOEA/D, using
the hypervolume indicator (IH). We show average values over 30 independent runs. The values in
parentheses correspond to the standard deviations. The third column of each table shows the results
of the statistical analysis applied to our experiments using Wilcoxon’s rank sum. P is the probability
of observing the given result (the null hypothesis is true). Small values of P cast doubt on the validity
of the null hypothesis. H = 0 indicates that the null hypothesis (“medians are equal”) cannot be
rejected at the 5% level. H = 1 indicates that the null hypothesis can be rejected at the 5% level.
In (b), we show the time required by MOEA/D and our proposed GD-MOEA for the test problems
adopted in seconds. All algorithms were compiled using the GNU C compiler and they were executed
on a computer with a 2.66GHz processor having 4GB in RAM.


