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 
Abstract— In recent years, multi-objective immune algorithms 

(MOIAs) have shown promising performance in solving multi-
objective optimization problems (MOPs). However, basic MOIAs 
only use a single hypermutation operation to evolve individuals, 
which may induce some difficulties in tackling complicated MOPs. 
In this paper, we propose a novel hybrid evolutionary framework 
for MOIAs, where the cloned individuals are divided into several 
subpopulations and then evolved using different evolutionary 
strategies. An example of this hybrid framework is implemented, 
where simulated binary crossover and differential evolution with 
polynomial mutation are adopted. A fine-grained selection 
mechanism and a novel elitism sharing strategy are also adopted 
for performance enhancement. Various comparative experiments 
are conducted on 28 test MOPs and our empirical results validate 
the effectiveness and competitiveness of our proposed algorithm 
in solving MOPs of different types. 
 

Index Terms—Artificial immune system, multiobjective opti-
mization problems, hybrid evolution, elitism strategy. 
 

I. INTRODUCTION 

ANY  scientific and engineering applications give rise to 
problems that require the simultaneous optimization of 
several (often conflicting) objectives. They are called 

multiobjective optimization problems (MOPs), and their solu-
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tion consists not of a single solution, but of a set of them, 
representing the trade-offs among the objectives. Such solu-
tions conform the so-called Pareto-optimal set (PS). The cor-
responding objective vectors of PS are called the Pare-
to-optimal front (PF) [1].  

During the last two decades, evolutionary algorithms (EAs) 
have been widely used to solve MOPs, because of their gener-
ality (they require little specific domain information) and 
because of their population-based search nature, which allows 
them to produce multiple Pareto-optimal solutions in a single 
run [2]. The best-known state-of-the-art multiobjective EAs 
(MOEAs) include NSGA-II [2], SPEA2 [3], and MOEA/D [4]. 
NSGA-II adopts a fast nondominated sorting approach com-
bined with a crowded-comparison operator and an elitist 
strategy. This nondominated sorting approach is recently im-
proved by using more efficient approaches [5]-[6]. SPEA2 uses 
a fine-grained fitness assignment strategy and a density esti-
mation technique based on clustering. MOEA/D decomposes 
MOPs into a set of single-objective optimization subproblems 
and then optimizes them simultaneously. In recent years, many 
new approaches have been proposed to speed up convergence 
and to improve diversity of MOEAs [7]-[17]. Regarding con-
vergence speed up, Tan et al. [7]-[8] proposed an adaptive 
mutation operator and an enhanced exploration strategy, Adra 
et al. [9] developed a convergence acceleration operator, and 
Yu et al. [10] presented a trade-off approach to switch between 
coarse local search and fine local search. Regarding the en-
hancement of population diversity, Ishibuchi et al. [11] pro-
posed a non-geometric binary crossover, Zhan et al. [12] pre-
sented a new optimization framework for MOPs based on the 
use of multiple populations, Li et al. [13] reported a stable 
matching model for the individuals and subproblems in 
MOEA/D, and Gee et al. [14] designed an online diversity 
metric to measure the diversity loss caused by any individual in 
the population. Additionally, other nature-inspired heuristic 
algorithms have also been modified to solve MOPs, including 
coevolutionary algorithms [18], [19], scatter search [20], par-
ticle swarm optimization (PSO) [21], [22] and artificial im-
mune systems [23]-[25]. 

Compared with MOEAs, multiobjective immune algorithms 
(MOIAs) have shown some advantages related to an improved 
convergence speed and maintaining a better population diver-
sity [23]. Specifically, MOIAs are characterized by the clonal 
selection principle, in which only a small proportion of indi-
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viduals with better convergence and diversity are proliferated 
to produce multiple clones [23]-[25]. Then, each clone is 
evolved by hypermutation to search for the better individuals. 
In this way, superior individuals have more opportunities for 
evolving, which helps to speed up convergence. However, most 
MOIAs only adopt a single hypermutation operator to evolve 
each clone [23]-[25], which may induce some difficulties in 
solving complicated MOPs (e.g., complicated unconstrained 
MOPs such as the Unconstrained Functions (UF) in [26]). This 
may be due to the fact that a single hypermutation operator will 
have difficulties to achieve a proper balance between proximity 
and diversity. This conforms to the no-free-lunch theorem 
which states that a single search strategy cannot have the best 
performance in terms of both proximity and diversity [27]. This 
motivated us to study whether multiple search strategies can be 
combined in MOIAs so that their search patterns can comple-
ment each other. Therefore, in this study, we propose a novel 
Hybrid Evolutionary framework for MOIAs (named HEIA), in 
which the cooperation of multiple evolutionary strategies 
allows us to combine their advantages and overcome the in-
herent limitations of adopting a single strategy. Our proposed 
approach is more capable of maintaining the trade-off between 
proximity and diversity, and, consequently, has a better per-
formance than other multiobjective optimization algorithms 
when dealing with different types of MOPs. To validate the 
effectiveness of our hybrid framework, an implementation 
example is proposed, which considers simulated binary cross-
over (SBX) [28] and differential evolution (DE) [29] followed 
by polynomial-based mutation as two evolutionary strategies. 
The main features of our proposed HEIA are the following: 

(1) The cloned population is randomly divided into several 
subpopulations, which will be subject to different evolutionary 
strategies, separately. This hybrid framework with multiple 
evolutionary strategies is different from the traditional MOIAs 
that only apply one hypermutation operator on the cloned 
population. The cooperation of multiple evolutionary strategies 
in our scheme can overcome the inherent limitations of using a 
single strategy, and enhances the exploratory capability and 
robustness of our proposed approach, thus allowing it to handle 
a wide variety of MOPs. 

(2) Two evolutionary strategies are included in HEIA. The 
first one adopts SBX followed by polynomial-based mutation. 
This strategy is found to perform well on simple MOPs with 
independent decision variables. The second strategy applies DE 
crossover and polynomial-based mutation, and is especially 
effective for complicated problems with variable linkages (i.e., 
parameter dependencies) [29]. These two evolutionary strate-
gies can complement each other by exploiting their advantages 
and it is experimentally shown that they perform better than the 
separate use of any of them. 

(3) A fine-grained selection mechanism and a novel elitist 
sharing strategy are adopted in HEIA. After the hybridized 
evolution from item (2) shown above is undertaken, the sub-
populations are combined with an elitist archive and a fi-
ne-grained selection mechanism proposed in our previous work 
[25], with the aim of preserving the nondominated individuals 
found in the elitist archive. An elitist sharing strategy is then 

operated by selecting some less-crowded individuals (measured 
by the crowding distance metric [2]) from the elitist archive. 
Such individuals are cloned and divided into different subpop-
ulations for independent evolution in the next generation. In 
this way, the search experience of one subpopulation can be 
shared by another subpopulation. 

The improvements of the proposed hybrid framework are 
also validated with an experimental study. To have a compre-
hensive evaluation of the performance of our proposed HEIA, 
four different test suites were adopted. Such problems are the 
Zitzler-Deb-Thiele (ZDT) test suite [30], the Walking Fish 
Group (WFG) test suite [31], the Deb-Thiele-Laumanns-Zitzler 
(DTLZ) test suite [32] and the UF test suite adopted at the 
competition held at the 2009 IEEE Congress on Evolutionary 
Computation (CEC’2009) [26]. When compared with various 
nature-inspired multiobjective algorithms, i.e., two state-of-the 
-art MOEAs (NSGA-II [2] and SPEA2 [3]), an Archive-based 
hYbrid Scatter Search algorithm (AbYSS) [20], MOEA/D [29], 
a novel PSO-based multiobjective algorithm (SMPSO) [33] 
and three MOIAs (NICA [23], NNIA [24], and MIMO [25]), 
HEIA has been found to be advantageous in terms of conver-
gence speed and population diversity. The effectiveness of the 
proposed hybrid evolutionary strategy and the influence of the 
parameters settings on its performance are also studied ex-
perimentally, which further confirm the improvements yielded 
by HEIA. 

The remainder of this paper is organized as follows. In Sec-
tion II, the related work of MOPs and MOIAs is provided. In 
Section III, the proposed hybrid framework and its implemen-
tation example are described in detail. Section IV presents the 
experimental results of HEIA, when compared to other multi-
objective metaheuristics. Our conclusions and some possible 
paths for future work are described in Section V. 

II. RELATED WORK 

A. Multiobjective Optimization Problems 

Multiobjective optimization problems naturally arise in 
many practical applications, which are aimed at optimizing 
multiple, possibly conflicting objectives, simultaneously. 
Without loss of generality, we formulate the general multi-
objective problem as follows. 

Min
x 1 2( ) ( ( ), ( ),..., ( ))T

mF f f fx x x x     (1) 

where 1 2( , ,..., )nx x xx  is an n-dimensional decision vector 
bounded in the decision space  , the mapping function F: 

mR   defines m objective functions and mR  is called the 
objective space. However, since the objectives may be in con-
flict with each other, the optimization of one objective can 
result in the deterioration of another objective. Normally, no 
single solution can optimize all the objectives simultaneously. 
The best trade-offs among the objectives can be properly at-
tained by using the definition of Pareto optimality [27]. 

Definition 1 (Pareto-dominance): A decision vector x  is 
said to dominate another decision vector y (noted as x≻	 y) if 
and only if 
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Definition 2 (Pareto-optimal): A solution x  is said to be 
Pareto-optimal if and only if 

: y  y ≻ x .        (3) 

Definition 3 (Pareto-optimal set): the set PS includes all 
Pareto-optimal solutions, defined by 

     { | :  x yPS  y ≻ x } .     (4) 

Definition 4 (Pareto-optimal front): The set PF includes the 
values of all the objective functions corresponding to the Pa-
reto-optimal solutions in PS. 

1 2{ ( ) ( ( ), ( ),..., ( )) | }.T
mF f f f  x x x x xPF PS   (5) 

 In this paper, the best solutions (possibly sub-optimal) pro-
duced by an algorithm can also be treated as a PF, when the 
true PF defined in (5) is unavailable in practical cases. To 
distinguish these two types of PF, truePF  is used to refer to the 
true (or optimal) PF as defined in (5), while knownPF  is em-
ployed to represent the best solutions produced by an algo-
rithm. 

B. Immunology Terms in MOIAs 

As MOIAs are designed based on the principles and pro-
cesses of biological immune systems [34]-[35], some immu-
nological terms used in MOIAs are introduced next in order to 
better understand them.  

Definition 5 (Antigen): An antigen refers to the problem and 
constraints to be solved, e.g., the minimization problem F(x) in 
(1). 

Definition 6 (Antibody): An antibody refers to a candidate 
solution of the target problem, e.g., the decision variable x in 
(1). 

 Definition 7 (Affinity): Affinity usually represents the ob-
jective function values or the fitness measurement of the 
problem related to a candidate solution. 

To mimic the clonal selection principle, MOIAs usually ap-
ply the cloning operator, which generates copies of the anti-
bodies that are selected due to their better affinities. After that, 
hypermutation (which refers to applying a mutation operator at 
a high rate), is applied on each clone to alter the decision var-
iables. This process is aimed at searching the antibodies with 
better affinities and achieving affinity maturation (i.e., indi-
viduals that represent better solutions). The set of antibodies is 
called an antibody population. Using the definition of Pare-
to-dominance, an antibody is called a nondominated antibody 
when it is not dominated by any other antibodies in the popu-
lation. 

C. Related Work on MOIAs 

The first MOIA was reported in [36], and incorporated the 
concept of antibody-antigen affinity into a standard genetic 

algorithm to modify its fitness assignment mechanism. After-
wards, many other MOIAs were designed, most of which have 
a superior performance. Based on the special features inspired 
by the immune system, MOIAs can be classified into three 
categories: clonal selection approaches, immune network 
approaches and hybrid approaches (i.e., combinations of an 
immune system with another heuristic). 

A multiobjective immune system algorithm (MISA) based 
on clonal selection was proposed in [37]. In this approach, only 
the antibodies with high affinities are proliferated to generate 
multiple clones, and an adaptive grid is used to maintain di-
versity. The performance of MISA was further improved in 
[38]-[40]. An immune dominance clonal multiobjective algo-
rithm (IDCMA) was introduced in [41]. This approach adopts 
the antibody-antibody affinity to reflect the similarity among 
antibodies. This guides the cloning operator to select an effec-
tive search region (i.e., the least-crowded region). This ap-
proach was further extended to solve dynamic MOPs [42] and it 
was improved in [24]. A novel MOIA using a multiple-affinity 
model was presented in [43]. This approach adopts six 
measures for affinity assignment, where cloning, hypermuta-
tion and immune suppression were applied according to such 
affinity measurements. In this case, immune suppression refers 
to removing similar antibodies in both variable and objective 
space.  

On the immune network approach, a vector artificial immune 
system (VAIS) [44], [45] was extended from the artificial 
immune network algorithm (opt-aiNet) [46] to solve MOPs. In 
this case, two evolutionary loops are performed. The inner loop 
is aimed at exploiting the search space while the outer one is 
aimed to avoid the redundancy produced by similar antibodies 
(suppression is used to avoid such redundancy). A novel 
weight-based MOIA was presented in [47]. This approach 
adopts a random-weighted sum method as its fitness assign-
ment scheme, combined with a new truncation algorithm that 
eliminates similar individuals. Its authors claimed that this 
approach has a low computational complexity and is able to 
obtain a well-distributed knownPF . 

Regarding hybrid approaches, one called immune-inspired 
Pareto archived evolution strategy was introduced in [48]. In 
this approach, two hypermutation operators are combined to 
solve a MOP extracted from ab initio protein structure predic-
tion problems. An evolutionary artificial immune algorithm 
designed for solving MOPs was reported in [49]. This approach 
combines the global search capabilities of EAs with the learn-
ing capabilities of artificial immune systems. A novel immun-
ity-based hybrid evolutionary algorithm was proposed in [50] 
to tackle both unconstrained and constrained MOPs. This 
approach uses a sorting scheme featuring uniform crossover, 
multi-point mutation, and crowding distance sorting, to effi-
ciently approximate truePF . 
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Fig. 1 The proposed framework of HEIA 

Algorithm 1: Initialization 

1 set g = 0;                  //generation number 
2 for i = 1 to N 
3     for j = 1 to n 
4         () ( )ij i i ix l rand u l    ;  //initialize each variable of ix  
5      end for 
6 evaluate the objective functions; 
7 end for 
8 add the nondominated antibodies to the elitist archive E; 
9 calculate the crowding distance for each antibody in E; 

In recent years, several new MOIAs with competitive per-
formance have been proposed. For example, a dynamic MOIA 
was introduced in [51] for constrained nonlinear MOPs and it 
was extended for its use in greenhouse control [52]. A hybrid 
immune multiobjective algorithm (HIMO) was proposed in 
[53]. This approach uses a hybrid operator combining Gaussian 
and polynomial-based mutation. It was further improved by 
using an adaptive mutation operator [25] and a novel adaptive 
DE operator [54] with a fine-grained selection mechanism. A 
novel immune clonal algorithm (NICA) [23] was reported to 
solve complex MOPs. This approach adopts a full cloning 
scheme and a novel antibody population updating operation 
after clonal selection. 

However, in the above-mentioned MOIAs, most of them 
only adopt a simple hypermutation operator to evolve the 
antibodies, e.g., [23], [47], [51], [52] only use a hypermutation 
operator while [24], [25], [43], [53] utilize a combination of one 
crossover operator with a mutation operator. The use of simple 
evolutionary operators in MOIAs may lead to a monotonous 
search pattern, which makes the existing MOIAs incapable of 
tackling complicated MOPs (e.g., the UF test problems [26]). 
Actually, hybrid mutation approaches have been investigated in 
immune algorithms [48], [53], [55], [56], with promising re-
sults. Working in this same direction, this paper presents a 
general hybrid evolutionary framework for MOIAs, which 
adopts different search strategies to complement each other, 
thus providing superior performance. The cooperation of hy-
brid evolutionary strategies can overcome the inherent limita-
tions of using a single strategy, and is expected to be better and 
more robust when solving different types of MOPs. To the best 
of our knowledge, this is the first attempt to construct a hybrid 
evolutionary framework for MOIAs. For MOEAs, some hybrid 
frameworks have been proposed, e.g., Sindhya et al. [57] 
introduced a hybrid framework for MOEAs, which uses a local 
search module to speed up convergence. Tang and Wang [58] 
proposed a novel hybrid MOEA, which incorporates the con-
cepts of personal best and global best in particle swarm opti-
mization and multiple crossover operators. The differences 
between HEIA and existing hybrid MOEAs are the following. 
One natural difference is that cloning is performed in HEIA, 
which generates multiple copies of the high-affinity antibodies 
to be evolved, while existing hybrid MOEAs generally evolve 

the entire population. The other one is that the proposed hybrid 
operators in HEIA are modified for MOIAs, e.g., SBX and DE 
crossover are applied by selecting parent antibodies only from 
the chosen high-affinity antibodies, while the evolutionary 
operators in existing hybrid MOEAs usually select parents 
from the entire population. To describe our proposed hybrid 
framework in a better way, an implementation example is also 
included in this study and some experiments are carried out to 
assess its performance.  

III. THE PROPOSED FRAMEWORK AND IMPLEMENTATION 

The framework of HEIA is shown in Fig. 1, where s is the 
number of subpopulations. HEIA starts by initializing the 
population and by setting some relevant parameters. After that, 
cloning is performed to get multiple copies of the selected 
individuals (those with high affinity values). The clones are 
then randomly divided into the equal-size subpopulations, 
which are independently evolved using different evolutionary 
strategies in order to increase their affinities. The multiple 
evolutionary strategies can search various directions in solution 
space and avoid the inherent limitation of using a single strat-
egy. Finally, an elitist archive is used to collect all the non-
dominated antibodies found by the subpopulations, which 
enables each subpopulation to share their search results in the 
next iteration. Any effective evolutionary operators designed 
for MOPs can be used in this hybrid framework. 

According to the framework of HEIA shown in Fig. 1, the 
antibodies will undergo four important procedures, i.e., cloning, 
evolution, elitist archive and selection, to approximate truePF . 
In order to validate the effectiveness of the proposed frame-
work, an implementation example is given here by using two 
groups of well-known evolutionary operators. One is SBX 
followed by polynomial-based mutation, which is adopted in 
some of MOEAs and MOIAs using the real-value variables [2], 
[3], [24], [25], [43]. The other one is DE crossover plus poly-
nomial-based mutation, which is especially effective for solv-
ing some complicated MOPs with variable linkages [29], [59], 
[60]. At first, the pseudo-code of initialization is given in 
Algorithm 1, where N is the population size, n is the number of 
decision variables in each solution, iu  and il  are respectively 
the lower and upper bounds of the i-th decision variable, 

()rand returns a uniformly distributed random number in [0, 1]. 
All the nondominated antibodies in the initial population are 
added to the elitist archive E and their crowding distances [2] 
are computed. The implementation details of the other main 
procedures are described below.  
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A. Cloning  

In biological immune systems, cloning refers to an asexual 
propagation mechanism, which generates a group of identical 
cells from a single common ancestor [24]. In MOIAs, cloning is 
simulated by cloning the high-affinity antibodies to perform 
hypermutation. In this study, it is noted that the affinity value of 
an antibody is assigned as the crowding-distance value [2], so 
that high-affinity antibodies are those located in less-crowded 
regions of the search space. Analogously to the cloning oper-
ators reported in [24], [25], [53], in this paper, only a small 
proportion of high-affinity antibodies from the elitist archive 
are cloned. This aims to promote the exploration of 
less-crowded regions of the search space in order to attain a 
better distribution of solutions along the current knownPF . Let us 
assume that the antibodies with higher affinities that have been 
selected for cloning are denoted by 1 2[ , ,..., ]NAA a a a , where 
NA is the number of selected individuals. The cloning operator 

CT  can be formulated as follows. 

1 2( ) [ ( ), ( ),..., ( )]C C C C NAT A T a T a T a     (6) 

where ( ) ( 1,2,..., )C i i iT a q a  i NA    is to reproduce iq  cop-
ies of ia . Here, the value of iq is set as follows. 

1

( )

( )
i

i NA

jj

fit a
q N

fit a


 
  
 
 

       (7) 

where ( )ifit a  is the affinity value of antibody ia  and N is the 
population size. The affinity value of antibody ia  can be ob-
tained as follows. 

1

( )
( )

max min

m
j i

i
j j j

fit a
fit a

f f


       (8) 

where maxjf  and minjf  are, respectively, the maximum and 
minimum values of the j-th objective obtained by the current 
population, and 

( ) 1 ( ) 1

, if ( ( ) min) ( ( ) max);
( )

( ) ( ), otherwise;

j i j j i j

j i

j I i j I i

f a f  or f a f
fit a

f a f a   

      
(9) 

where ( )( )j I if a   is to sort the antibodies according to the j-th 
objective in descending order and ( )I i  is the new index of ia  
after sorting. As the affinity values of boundary antibodies are 
set to   in (9), it is not applicable to get the clone number in 
(7). In this case, it is set as the double of the maximum affinity 
value except for the boundary antibodies [24], [25], [53]. 

B. Evolutionary Strategies 

In our proposed framework, the clones are randomly divided 
into multiple subpopulations following a uniformly random 
distribution. Then, multiple subpopulations are evolved sepa-
rately by using multiple evolutionary strategies. The use of 
multiple evolutionary strategies in the hybrid framework mit-
igates the risk of using a single strategy, which may be inap-
propriate or ineffective for a particular problem. This phe-
nomenon is validated in the experimental studies described in 
Section IV.F. This hybrid strategy enhances the global search 
capability of HEIA as well as its robustness when solving 
different types of complicated MOPs. Here, two groups of 

evolutionary operators are used to illustrate the behavior of our 
hybrid framework. 
1. Evolution 1  

In this phase, simulated binary crossover (SBX) followed by 
polynomial-based mutation are adopted. SBX is an important 
recombination operator adopted in several MOEAs and MOIAs 
using real-valued variables [2], [3], [24], [25], [43]. Let us 
assume that the antibody population after cloning is denoted by 

1 2[ , ,..., ]NC c c c , where N is the population size. For each 
individual 1 2( , ,..., )nx x xx  in C, the other parent 1 2( , ,y yy
..., )ny  is randomly selected from A  (these are the antibodies 
selected from the elitist archive for cloning). Let iw  and iv  (i = 
1, 2,…, n) be max( , )i ix y  and min( , )i ix y , respectively. The 
SBX operator was originally defined in [28]. Here, a few 
modifications were made for improving its performance [61]. It 
works as follows. 

            0
00.5[( ) ( )]i i i i iz w v w v         (10) 

1
10.5[( ) ( )]i i i i iz w v w v         (11) 

where 0
iz  and 1

iz  are two decision variables of the generated 
child antibodies, and ( 0,1)j j   are obtained as follows. 

1/ ( 1),

1/ ( 1),

1
,          if 

 
1

,    otherwise
2

j j j
j

j

j j

r a r
a

r a









   
  
 
    

    (12) 

where ( 0,1)jr j   are uniformly distributed random numbers 
in [0, 1];  is a crossover distribution index, a larger value of 
which will generate child solutions near to the parent solutions 
with a higher probability; ( 0,1)ja j   are defined as follows 
(assuming that i iw v ). 

( 1)

( 1)

2 1 2   0;

2 1 2   1;

i i

i i

j

i i

i i

v l
j

w v
a

u w
j

w v





 

 

             
           

   (13) 

where il  and iu  are the lower and upper bounds of the i-th 
decision variables, respectively. After applying SBX, a new 
antibody 1 2( , ,..., )nx x x   x  is reorganized by randomly as-
signing ix  with 0

iz  or 1
iz  (i = 1, 2,…, n). 

Then, the new antibody x  is further permuted by using 
polynomial-based mutation, defined as 

( ),   1, 2,...,i i i ix x u l i n         (14) 

where ix  and ix  are the i-th decision variables after and before 
mutation, respectively;  is a small variation, generated by 

 

1
1 1

1

1
1 1

2

2 (1 2 ) 1,            if  0.5

1 2(1 ) (2 1) ,    otherwise

r r r

r r

 

 






 

 


       
       

  (15) 

where r is a uniformly distributed random number in [0, 1] and 
  is a mutation distribution index. A larger value of   gen-
erates smaller variances on average. The values of 1  and 2  
are defined as 
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Algorithm 2: Selection(P1, P2 , E) 

1 collect P1, P2 into E; 
2 for i =1 to | |E  
3     for j = i+1 to | |E  
4         if ( jE ≻ iE )  //Pareto domination in (2) 
5              mark iE  as a dominated individual; 
6    else if ( iE ≻ jE ) 
7              mark jE  as a dominated individual; 
8         end if 
9      end for 
10 end for 
11 delete the dominated solutions from E; 
12 if ( | |E EN )   
13     calculate the crowding distance [2] for each individual in E; 
14     while( | |E EN ) 
15 delete one individual with smallest crowding distance; 
16           recalculate the crowding distance [2] for each individual in E;
17     end while 
18 end if 

Algorithm 3: The complete algorithm HEIA 

1 Initialization (Algorithm 1); 
2 while g<max_g 
3     sort the antibodies in E descendingly according to the affinities; 
4     select NA antibodies with high affinities; 

5 for i=1 to NA  
6         compute the clone number iq  for ia  using (7)-(9); 
7         for j=1 to iq     // subpopulation division 
8             if rand()<0.5   
9                 add ia  to P1;  
10     else 
11     add ia  to P2; 
12 end if 
13          end for 
14     end for 
15     evolve subpopulation P1 using evolution 1 (Section III.B.1); 
16     evolve subpopulation P2 using evolution 2 (Section III.B.2); 
17     Selection(P1, P2 , E) (Algorithm 2); 
18     g = g+1; 
19 end while 
20 output E; 

1
i i

i i

x l

u l


 



  and 2

i i

i i

u x

u l






     (16) 

At last, ix  is checked to see if it is still included in the 
boundary of the i-th decision variable. If not, ix  is set as the 
corresponding boundary value, as follows. 

   if  
  

  if  
i i i

i
i i i

l x l
x

u x u


    

      (17) 

2. Evolution 2 
Differential evolution is a very powerful recombination op-

erator, which is especially suitable for complicated problems 
with linkages in the decision variables [29], [59], [60]. It has 
been adopted to solve a wide variety of optimization problems, 
including multimodal optimization problems and MOPs. As-
suming that each individual in C is represented by 

1 2( , ,..., )nx x xx , a new antibody x  is generated as follows. 
1 2( )  if  

                           otherwise

r r
i i i

i

i

x F x x r CR
x

x

      


    (18) 

where F and CR are two control parameters; r is a uniformly 
distributed random number in [0, 1]; r1 and r2 are two uniformly 
distributed random integers for selecting two parents in the 
specified population P. In this study, two strategies for the 
selection of P are presented. The first one is to select two 
different parents from A , which encourages performing global 
search as the antibodies in A  are less-crowded in the elitist 
archive. The other one chooses two distinct parents from the 
neighbors of x , which is beneficial for searching the local area. 
Let us assume that the number of neighbors is T. In our scheme, 
the definition of neighbors consists in finding the T closest 
antibodies according to the value of one randomly chosen 
objective function. This set of neighbors is denoted by ( )N x . 
The selection of the parent population is controlled by a prob-
ability parameter  , defined by 

( )     if 

          otherwise

N r
P

A


 


x
      (19) 

After applying DE crossover, polynomial-based mutation 
defined in (14) is also adopted to permute the new antibody x . 

C. Elitist Archive and Selection 

After applying the two above evolutionary strategies, two 
subpopulations (P1 and P2) are collected into the elitist archive 
(E) and then Pareto-dominance [2] is applied to find the non-
dominated antibodies. With the evolution of multiple genera-
tions, the number of nondominated antibodies may be very 
large. Therefore, a proper selection mechanism is needed to 
limit the size of the elitist archive and for helping to guide the 
search direction towards truePF . In most of the current selection 
strategies, Pareto dominance is first employed to determine 
nondominated individuals and then the density estimation 
information is further adopted to maintain the population di-
versity [2], [3], [23]-[25]. In this study, a selection mechanism 
presented in our previous work [25] is adopted, which performs 
a fine-grained selection procedure for the nondominated anti-
bodies. Once the size of the elitist archive is larger than the 
predefined size EN , the most crowded individual is deleted and 
then the crowding-distance values of its neighbors are recal-
culated. The pseudo-code of this fine-grained selection mech-
anism is shown in Algorithm 2, where the inputs are the two 
resultant subpopulations P1 and P2 that have been respectively 
permutated by the two above evolutionary strategies, as well as 
the elitist archive E. This selection procedure will finally 
maintain EN  nondominated solutions in the elitist archive E.  

D. The Full Algorithm HEIA 

The above subsections have introduced the main components 
of HEIA, i.e., cloning, evolutionary strategies, elitist archive 
and selection. Other implementation details are described in the 
pseudo-code of HEIA, as illustrated in Algorithm 3, where g 
and max_g respectively denote the current generation and the 
maximum number of generations, and rand() returns a uni-
formly distributed random number in [0, 1]. 

After the initialization described in Algorithm 1, HEIA en-
ters the loop of the evolutionary process until the maximum 
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TABLE I 
PARAMETERS SETTINGS OF ALL THE ALGORITHMS COMPARED 

Algorithms Parameter settings

NSGA-II  N=100, cp =0.9, mp =1/n, c =20, m =20 
SPEA2  N=100, cp =0.9, mp =1/n, c =20, m =20 
AbYSS  N=100, RefSet1 10N  , RefSet2 10N  , cp =0.9, mp =1/n, c =20, m =20 

MOEA/D  N=100, CR=1.0, F=0.5, mp =1/n, m =20, T=20,  =0.9, rn =2 
SMPSO  1 [1.5, 2.5]C  , 2 [1.5, 2.5]C  , mp =1/n, m =20 
NICA  N=100, R = 4, mp =1/n 

NNIA  N=100, 20NA , cp =1.0, mp =1/n, c =20, m =20 
MIMO  N=100, 20NA , cp =1.0, mp =1/n, c =20, A=0.1, B=3.0 
HEIA  N=100, 20NA , cp =1.0, mp =1/n, c =20, m =20, CR=1.0, F=0.5, T=20,  =0.9 

 
number of generations, max_g, is achieved. At first, NA anti-
bodies with high affinities are picked out from the elitist ar-
chive E, by sorting the antibodies descendingly according to 
their affinities. Then, each selected antibody ia (i=1,2,…,NA) 
is reproduced by cloning iq  copies, and each clone is randomly 
assigned to two subpopulations P1 and P2 in lines 7-13. After 
that, two subpopulations P1 and P1 are respectively permutated 
using evolution 1 and evolution 2 as described in Sections 
III.B.1 and III.B.2. At last, the mutant subpopulations P1, P2 
and the original archive E are used as the input to run Algo-
rithm 2, which will keep EN  nondominated solutions in E. 
The above evolutionary phase will be repeated until the (pre-
defined) maximum number of generations, max_g, is reached. 
At the end of the algorithm, the nondominated solutions in E 
are reported as our final knownPF . 

IV. EXPERIMENTAL RESULTS 

A. Test Problems 

Several types of test problems are adopted to evaluate the 
performance of HEIA. First, the popular ZDT problems are 
used [30]. Due to their lack of features such as variable linkages 
and objective function multimodality, this test suite is not 
particularly challenging. Therefore, the bi-objective WFG and 
UF problems are also adopted as they are characterized by 
presenting convexity, concavity, discontinuity, non-uniformity 
and the existence of many local Pareto-optimal fronts [26], [31]. 
Moreover, the three-objective DTLZ test problems are used to 
further examine the performance of HEIA in handling MOPs 
with more than two objectives [32]. Thus, we used a total of 28 
test problems (ZDT1-ZDT4, ZDT6, WFG1-WFG9, UF1-UF7 
and DTLZ1- DTLZ7) in our experimental studies. This large 
set is comprehensive and sufficient to assess the performance of 
multiobjective algorithms. It is noted that for ZDT1-ZDT3 and 
all UF problems, the number of decision variables is 30, while 
the number of decision variables in ZDT4, ZDT6, all the WFG 
and the DTLZ problems is 10. In the WFG problems, their 10 
decision variables consist of 8 position parameters and 2 dis-
tance parameters. The details of the ZDT, WFG, UF and DTLZ 
test problems are available in [30], [31], [26] and [32], respec-
tively. 

B. Performance Measure 

The goal of MOPs is to find a uniformly distributed set that is 
as close to the truePF  as possible. As the inverted generational 
distance (IGD) metric [29] can examine convergence and 

diversity simultaneously, it is used to assess the performance of 
all the compared algorithms in our experimental studies. 

Let S be a set of solutions that are uniformly distributed 
along truePF  and let S   be the set of best solutions (i.e., 

knownPF ) that are found by an algorithm. The IGD value of S to
S  , i.e., ( , )IGD S S   is defined as 

| |

1
( , )

( , )
| |

S

ii
d S S

IGD S S
S




        (20) 

where | |S  returns the size of the set S  and ( , )id S S   denotes 
the minimum Euclidean distance in objective space between iS  
and the individuals in S  . IGD requires to know truePF  in 
advance. The subsets of truePF  adopted in our experiments can 
be found in http://jmetal.sourceforge.net/problems.html. In 
general, a lower value of ( , )IGD S S   is preferred as it indi-
cates that S   obtains a more even coverage of truePF  and is 
closer to truePF . 

C. Experimental Settings 

In our experiments, in order to assess the performance of 
HEIA, we compared it with respect to several types of na-
ture-inspired heuristic algorithms for solving MOPs, including 
NSGA-II [2], SPEA2 [3], AbYSS [20], MOEA/D [29], and 
SMPSO [33]. Moreover, we also compared HEIA with respect 
to three recently proposed MOIAs, i.e., NICA [23], NNIA [24] 
and MIMO [25]. All the algorithms have shown a competitive 
performance when solving MOPs. Thus, a comparison of our 
results with those produced by such algorithms should provide 
a comprehensive performance assessment for the proposed 
HEIA algorithm.  

The parameters settings of the compared algorithms were 
established as recommended in their original references  [2], [3], 
[20], [23]-[25], [29], [33], as summarized in Table I. It is worth 
noting that the parameters of the compared algorithms were 
properly tuned to solve most of the MOPs adopted in our 
experimental studies. To allow a fair comparison, the parame-
ters of HEIA were set according to those of the compared 
algorithms. In Table I, N is the population size; cp  is the 
crossover probability and mp  is the mutation probability; c  
and m  are the distribution indexes of SBX and polynomial 
mutation, respectively. For AbYSS, RefSet1N  and RefSet2N  are 
the sizes of RefSet1 and RefSet2, respectively. In MOEA/D, T 
defines the size of the neighborhood in the weight coefficients, 
  controls the probability that parent solutions are chosen 
from T neighbors and rn  is the maximum number of parent 



 
 

8

TABLE II 
COMPARISON OF RESULTS ON THE ZDT TEST PROBLEMS 

Algorithms 
Problems NSGA-II SPEA2 AbYSS MOEA/D SMPSO HEIA 

ZDT1 
Mean 4.95E-03 4.26E-03 3.90E-03 1.75E-02 3.68E-03 3.90E-03 
Std 1.89E-04 1.09E-04 1.16E-04 5.51E-03 2.61E-05 6.57E-05 

Rank 5－ 4－ 3≈ 6－ 1 + 2 

ZDT2 
Mean 5.06E-03 4.64E-03 4.24E-03 1.33E-02 3.81E-03 3.96E-03 
Std 2.17E-04 1.86E-03 2.15E-03 5.41E-03 3.24E-05 5.23E-05 

Rank 5－ 4－ 3－ 6－ 1 + 2 

ZDT3 
Mean 5.68E-03 5.93E-03 1.91E-02 6.04E-02 4.48E-03 4.43E-03 
Std 2.96E-03 5.11E-03 2.38E-02 2.27E-02 2.53E-04 5.41E-05 

Rank 3－ 4－ 5－ 6－ 2 ≈ 1 

ZDT4 
Mean 7.28E-03 1.98E-02 1.05E-02 3.12E-01 3.77E-03 3.87E-03 
Std 2.14E-03 2.51E-02 1.73E-02 2.34E-01 4.44E-05 2.00E-04 

Rank 3－ 5－ 4－ 6－ 1 + 2 

ZDT6 
Mean 8.29E-03 1.55E-02 3.04E-03 2.45E-03 3.03E-03 3.02E-03 
Std 8.47E-04 2.32E-03 1.13E-04 7.09E-04 1.93E-04 1.29E-04 

Rank 5－ 6－ 4 ≈ 1 + 3 ≈ 2 
Rank Sum 21 23 19 25 8 9 
Final Rank 4 5 3 6 1 2 

better/worse/similar 0/5/0 0/5/0 0/3/2 1/4/0 3/0/2 / 

 “+”, “－”, and ‘≈’ indicate that the results obtained by the algorithm are significantly better than, worse than, and 
similar to the ones obtained by HEIA using Wilcoxon’s rank sum test with a significant level =0.05, respectively.                      

(a) ZDT1-HEIA     (b) ZDT2-HEIA       (c) ZDT3-HEIA      (d) ZDT4-HEIA      (e) ZDT6-HEIA 

(f) ZDT1-MOEA/D       (g) ZDT2-MOEA/D    (h) ZDT3-MOEA/D    (i) ZDT4-MOEA/D    (j) ZDT6-MOEA/D 
 

Fig. 2 The nondominated solution sets found by HEIA and MOEA/D on the ZDT problems 
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solutions that are replaced by each child solution. 1C  and 2C  
are two control parameters randomly picked within the range 
[1.5, 2.5] in SMPSO. For NNIA, MIMO and HEIA, NA is the 
size of selected antibodies for cloning proliferation. A and B are 
the two control parameters used in the adaptive mutation op-
erator of MIMO and R is the clonal rate in the entire cloning of 
NICA. The external archive size EN  is usually set to the same 
value as N.  

It is noted that the settings of N and NA listed in Table I are 
only applied for the ZDT problems and that the maximum 
number of function evaluations was set to 25000. When han-
dling other MOPs, the population size and the maximum 
number of function evaluations were adjusted based on the 
difficulty and complexity of the MOP to be solved. For solving 
the more difficult WFG and three-objective DTLZ test prob-
lems, the population sizes were set to 200 and 500, respectively. 
In this case, the maximum number of function evaluations was 
set to 105. As the UF problems are extremely complicated, all 
the algorithms adopted a population size of 300 and the max-
imum number of function evaluations was set to 53 10 . The 

settings of RefSet1N , RefSet2N  and NA on these test problems 
were proportionally adjusted with the population size N. The 
rest of the parameters settings were the same as listed in Table I. 
All the experiments were run 100 times (using different random 
seeds), the mean IGD values and the corresponding standard 
deviations (std) of which were collected for comparison. The 
best results are identified in boldface in the comparison tables. 
Moreover, in order to have a statistically sound conclusion, the 
Wilcoxon’s rank sum test was further conducted to assess the 
statistical significance of the difference between the results 
obtained by HEIA and those obtained by the other algorithms 
with a significance level  =0.05.  

D. Comparisons of HEIA with NSGA-II, SPEA2, AbYSS, 
MOEA/D and SMPSO 

1) Comparisons on the ZDT Test Problems 

Table II provides the experimental results of all the algo-
rithms on the ZDT problems. The results show that NSGA-II, 
SMPSO and HEIA were able to find good approximations of 

truePF  for all the ZDT problems as the corresponding mean 
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TABLE III 
COMPARISON OF RESULTS ON THE WFG TEST PROBLEMS 

Algorithms 
Problems NSGA-II SPEA2 AbYSS MOEA/D SMPSO HEIA 

WFG1 
Mean 6.29E-01 1.22E+00 1.29E+00 1.60E-02 6.20E-02 6.15E-03 
Std 2.18E-01 2.07E-01 2.41E-01 7.81E-03 1.51E-01 1.76E-04 

Rank 4－ 5－ 6－ 2－ 3－ 1 

WFG2 
Mean 1.04E-01 9.33E-02 1.77E-01 4.44E-02 4.81E-03 7.82E-02 
Std 7.35E-02 6.53E-02 7.91E-02 2.61E-02 2.73E-04 7.54E-02 

Rank 5－ 4－ 6－ 2 ≈ 1 + 3 

WFG3 
Mean 7.40E-03 6.07E-03 6.08E-03 6.73E-03 5.52E-03 5.79E-03 
Std 3.39E-04 4.01E-04 9.31E-04 6.41E-06 6.52E-04 4.17E-04 

Rank 6－ 3－ 4 ≈ 5－ 1 + 2 

WFG4 
Mean 6.90E-03 6.26E-03 5.11E-03 8.07E-03 6.74E-03 5.46E-03 
Std 3.91E-04 1.76E-04 1.33E-04 1.33E-03 3.68E-04 1.64E-04 

Rank 5－ 3－ 1 + 6－ 4－ 2 

WFG5 
Mean 6.54E-02 6.49E-02 6.47E-02 6.54E-02 6.53E-02 6.50E-02 
Std 3.07E-03 3.19E-03 3.26E-03 1.68E-04 8.85E-04 3.19E-03 

Rank 6－ 2 + 1 + 5－ 4－ 3 

WFG6 
Mean 8.64E-03 1.27E-02 1.35E-02 7.59E-03 7.30E-03 7.07E-03 
Std 9.77E-04 6.86E-03 8.99E-03 4.01E-03 1.28E-03 1.17E-03 

Rank 4－ 5－ 6－ 3－ 2 ≈ 1 

WFG7 
Mean 8.72E-03 7.18E-03 7.71E-03 8.82E-03 5.78E-03 6.20E-03 
Std 4.79E-04 5.52E-04 2.65E-03 6.33E-04 8.73E-05 1.18E-04 

Rank 5－ 3－ 4－ 6－ 1 + 2 

WFG8 
Mean 2.26E-02 5.13E-02 6.79E-02 2.04E-02 2.70E-02 7.89E-03 
Std 3.28E-03 7.98E-03 7.25E-02 2.29E-03 3.65E-03 4.25E-04 

Rank 3－ 5－ 6－ 2－ 4－ 1 

WFG9 
Mean 7.96E-03 6.45E-03 7.15E-03 7.48E-03 7.86E-03 6.47E-03 
Std 3.89E-04 2.91E-04 2.31E-03 3.73E-04 7.83E-04 1.68E-04 

Rank 6－ 1≈ 3 ≈ 4－ 5－ 2 
Rank Sum 44 31 37 35 25 17 
Final Rank 6 3 5 4 2 1 

better/worse/similar 0/9/0 1/7/1 2/5/2 0/8/1 3/5/1 / 

 “+”, “－”, and ‘≈’ indicate that the results obtained by the algorithm are significantly better than, worse than, and 
similar to the ones obtained by HEIA using Wilcoxon’s rank sum test with a significant level =0.05, respectively. 

 
(a) WFG1-HEIA         (b) WFG1-MOEA/D      (c) WFG1-SMPSO 

   
(d) WFG1-NSGA-II        (e) WFG1-SPEA2           (f) WFG1-AbYSS 

Fig. 3 The nondominated solution sets found by all the algorithms on WFG1 
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values of IGD are under an accuracy level of 10-3. SPEA2 also 
obtained good approximations of truePF  on ZDT1, ZDT2 and 
ZDT3, while AbYSS performed well on ZDT1, ZDT2 and 
ZDT6. Although MOEA/D obtained the best performance on 
ZDT6, it gave the worst results on ZDT1-ZDT4. As ZDT3 has a 

truePF with multiple disconnections, AbYSS and MOEA/D 
failed to approach all the disconnected parts of truePF  in some 
runs. ZDT4 has many local Pareto-optimal fronts, which 
increases the difficulty in searching for truePF . SPEA2, AbYSS 
and MOEA/D could not effectively approach the truePF  of 

ZDT4. SPEA2 performed worse on ZDT6 as it has a 
non-uniform search space. Moreover, the Wilcoxon’s rank sum 
test indicates that HEIA performed similarly to AbYSS on 
ZDT1 and ZDT6, and to SMPSO on ZDT3 and ZDT6, respec-
tively. The last third row, labeled “Rank Sum” summarizes the 
ranks obtained by all the algorithms in solving all the ZDT 
problems, and the last second row labeled “Final Rank” shows 
the final ranks of all the algorithms according to “Rank Sum”. 
As observed from the “Final Rank” row, SMPSO and HEIA 
obtained the first and second ranks, respectively, while 
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TABLE IV 
COMPARISON OF RESULTS ON THE UF TEST PROBLEMS 

Algorithms 
Problems NSGA-II SPEA2 AbYSS MOEA/D SMPSO HEIA 

UF1 
Mean 7.30E-02 9.02E-02 9.37E-02 1.79E-03 6.39E-02 2.70E-03 
Std 1.14E-02 1.45E-02 2.86E-02 1.93E-04 9.38E-03 1.42E-04 

Rank 4－ 5－ 6－ 1 + 3－ 2 

UF2 
Mean 2.34E-02 2.55E-02 3.69E-02 6.53E-03 2.23E-02 5.81E-03 
Std 6.66E-03 6.15E-03 1.89E-02 1.74E-03 2.26E-03 4.98E-04 

Rank 4－ 5－ 6－ 2－ 3－ 1 

UF3 
Mean 1.17E-01 1.61E-01 2.31E-01 1.13E-02 1.18E-01 1.28E-02 
Std 2.93E-02 4.29E-02 7.98E-02 1.23E-02 3.81E-02 6.10E-03 

Rank 3－ 5－ 6－ 1 + 4－ 2 

UF4 
Mean 4.09E-02 4.12E-02 4.19E-02 6.09E-02 4.86E-02 3.77E-02 
Std 5.92E-04 6.70E-04 1.15E-03 4.96E-03 2.73E-03 7.49E-04 

Rank 2－ 3－ 4－ 6－ 5－ 1 

UF5 
Mean 2.23E-01 2.32E-01 2.80E-01 2.95E-01 1.17E+00 2.05E-01 
Std 4.22E-02 5.43E-02 5.69E-02 1.15E-01 4.91E-01 1.17E-01 

Rank 2－ 3－ 4－ 5－ 6－ 1 

UF6 
Mean 1.17E-01 1.37E-01 1.94E-01 1.95E-01 4.47E-01 1.52E-01 
Std 3.52E-02 6.37E-02 1.04E-01 1.73E-01 6.38E-02 8.47E-02 

Rank 1 ≈ 2+ 4－ 5 ≈ 6－ 3 

UF7 
Mean 6.51E-02 9.51E-02 2.28E-01 2.95E-03 2.15E-02 3.09E-03 
Std 8.31E-02 1.18E-01 1.49E-01 2.57E-03 2.54E-03 5.56E-04 

Rank 4－ 5－ 6－ 1 + 3－ 2 
Rank Sum 20 28 36 21 30 12 
Final Rank 2 4 6 3 5 1 

better/worse/similar 0/6/1 1/6/0 0/7/0 3/3/1 0/7/0 / 

“+”, “－”, and ‘≈’ indicate that the results obtained by the algorithm are significantly better than, worse than, and 
similar to the ones obtained by HEIA using Wilcoxon’s rank sum test with a significant level  =0.05, respectively.                      

  
     (a) UF1-HEIA        (b) UF1-SMPSO        (c) UF2-HEIA         (d) UF2-SMPSO 

Fig. 4 The nondominated solution sets found by HEIA and SMPSO on UF1 and UF2 
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MOEA/D obtained the last rank. The last row “bet-
ter/worse/similar” indicates the number of test problems in 
which the performance of the compared algorithm was better 
than, worse than or similar to that of HEIA. This row also 
indicates that HEIA performed worse than SMPSO, but it was 
better than any of the other algorithms. 

It is pointed out that when the IGD values are under an ac-
curacy level of 10-3, the found solution sets are uniform enough 
to closely approximate truePF . In Fig. 2, the knownPF  obtained 
by HEIA on all the ZDT problems are illustrated. As other 
compared algorithms also obtained mean IGD results under an 
accuracy level of 10-3 for some ZDT problems, their perfor-
mance was similar and, therefore, is relatively indistinguishable 
when graphed; however we plotted the results of MOEA/D in 
Fig. 2, which delivered the worst overall results, to give a sense 
of the range of solution qualities obtained. It is noted that only 
one final set that has the IGD value closest to the mean IGD 
value in 100 runs was plotted in Fig. 2. Except for SMPSO, 
which performed better than HEIA, all the other algorithms had 
a performance ranking located between HEIA and MOEA/D. 
As observed in Fig. 2, where the truePF  are identified with red 
color, the knownPF  found by HEIA have a uniform distribution 

along the truePF  on all the ZDT problems. For MOEA/D, it is 
found that the obtained sets of knownPF  are also distributed 
uniformly, but not so close to truePF , especially on ZDT4, 
which has many local Pareto-optimal fronts. These plots con-
firm that HEIA can consistently find an evenly distributed 

knownPF  to closely approach truePF  of all the ZDT problems, 
while MOEA/D fails to get a good approximation set for some 
ZDT problems. 

2) Comparisons on the WFG Test Problems 

In Table III, the comparisons on the WFG problems are il-
lustrated. As observed in Table III, HEIA performed best on 
WFG1, WFG6 and WFG8, while SMPSO obtained the best 
results on WFG2, WFG3 and WFG7. AbYSS provided the best 
performance on WFG4 and WFG5, while SPEA2 performed 
best on WFG9. The Wilcoxon’s rank sum test shows that HEIA 
achieved statistically similar results to SPEA2 on WFG9, to 
AbYSS on WFG3 and WFG9, to MOEA/D on WFG2, and to 
SMPSO on WFG6. As revealed by the “Final rank” row, HEIA 
performed best when considering all the WFG problems. 
SMPSO and SPEA2 obtained the second and third ranks, 
respectively. Moreover, MOEA/D, AbYSS and NSGA-II 
obtained the 4th, 5th, and 6th ranks, respectively. As the WFG 
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TABLE V 
COMPARISON OF RESULTS ON THE DTLZ TEST PROBLEMS 

Algorithms 
Problems NSGA-II SPEA2 AbYSS MOEA/D SMPSO HEIA 

DTLZ1 
Mean 2.18E-02 3.32E-02 2.53E-02 4.23E-02 1.28E-02 1.16E-02 
Std 1.98E-02 3.48E-02 5.12E-02 1.17E-01 3.82E-04 3.98E-04 

Rank 3－ 5－ 4－ 6 ≈ 2－ 1 

DTLZ2 
Mean 3.07E-02 2.38E-02 3.02E-02 2.82E-02 3.12E-02 3.08E-02 
Std 7.43E-04 2.76E-04 7.26E-04 1.76E-04 7.21E-04 7.57E-04 

Rank 4 ≈ 1 + 3 + 2 + 6－ 5 

DTLZ3 
Mean 5.04E-02 3.83E-01 3.67E-02 1.45E-01 3.10E-02 3.04E-02 
Std 1.95E-02 2.08E-01 1.63E-02 5.13E-01 5.73E-04 6.47E-04 

Rank 4－ 6－ 3－ 5 ≈ 2－ 1 

DTLZ4 
Mean 3.08E-02 2.09E-02 2.81E-02 1.87E-02 2.60E-02 3.24E-02 
Std 2.39E-03 1.52E-03 2.07E-03 6.04E-04 6.46E-03 2.33E-03 

Rank 5 + 2 + 4 + 1 + 3 + 6 

DTLZ5 
Mean 1.07E-03 8.73E-04 7.96E-04 1.85E-03 8.16E-04 8.44E-04 
Std 4.20E-05 3.41E-05 3.11E-05 2.06E-05 2.97E-05 3.29E-05 

Rank 5－ 4－ 1 + 6－ 2+ 3 

DTLZ6 
Mean 1.41E-01 2.75E-01 2.04E-02 1.72E-03 7.87E-04 7.96E-04 
Std 3.91E-02 2.09E-02 1.92E-02 7.27E-06 4.16E-05 4.17E-05 

Rank 5－ 6－ 4－ 3－ 1 ≈ 2 

DTLZ7 
Mean 3.05E-02 2.39E-02 1.20E-01 7.99E-02 3.35E-02 3.21E-02 
Std 8.03E-04 3.98E-04 1.37E-01 8.61E-02 1.53E-03 1.12E-03 

Rank 2 + 1 + 6 ≈ 5－ 4－ 3 
Rank Sum 28    25 25 28 20 21 
Final Rank 4    3 3 4 1 2 

better/worse/similar 2/4/1   3/4/0 3/3/1 2/3/2 2/4/1 / 

“+”, “－”, and ‘≈’ indicate that the results obtained by the algorithm are significantly better than, worse than, and 
similar to the ones obtained by HEIA using Wilcoxon’s rank sum test with a significant level  =0.05, respectively.                      

 
         (a) HEIA              (b) NSGA-II               (c) SPEA2 

Fig. 5 The nondominated solution sets found by HEIA, NSGA-II and SPEA2 on DTLZ3 
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problems are more difficult than the ZDT problems, the supe-
rior performance of HEIA on the WFG problems further con-
firms its advantages. 

In Fig. 3, we plotted the final nondominated sets obtained by 
all the algorithms on WFG1, as WFG1 seems to be the most 
difficult problem to solve, since some algorithms failed to reach 
a close knownPF  for it. One final set that has the IGD value 
closest to the mean IGD value obtained from 100 independent 
runs was plotted in Fig. 3. It is observed that the knownPF  of 
HEIA is distributed evenly along truePF . Although MOEA/D 
and SMPSO also produced the final sets of knownPF  close to 

truePF , such sets did not have a uniform distribution. NSGA-II 
and SPEA2 only approached half of truePF , while AbYSS 
failed to approximate truePF  in this case. 

3) Comparisons on the UF Series Problems 

Table IV lists our experimental results on the UF problems, 
which have very complicated Pareto-optimal sets and thus 
present more challenges to multiobjective algorithms. As 
observed in Table IV, HEIA performed best in three test 
problems, i.e., UF2, UF4, and UF5. MOEA/D obtained the best 
results on UF1, UF3 and UF7, while NSGA-II produced the 

best approximation on UF6. Moreover, the Wilcoxon’s rank 
sum test shows that HEIA obtained statistically similar results 
to NSGA-II and MOEA/D on UF6. Considering all the UF 
problems, HEIA performed best as it obtained the first rank in 
the “Final rank” row. Moreover, the last row in Table IV also 
indicates that HEIA performed better than NSGA-II, SPEA2, 
AbYSS, and SMPSO on most of the UF problems. Only 
MOEA/D obtained a similar performance to that of HEIA as it 
performed better in 3 out of 7 UF problems and had a similar 
performance in another one. The promising results on the UF 
problems also confirm the advantages of HEIA. 

In Fig. 4, we plotted the final nondominated sets obtained by 
some of the compared algorithms on UF1 and UF2. As the IGD 
values of NSGA-II, SPEA2, AbYSS and SMPSO on UF1 and 
UF2 are all under an accuracy level of 10-2, their final sets of 

knownPF  will look very similar in these plots. Thus, the knownPF  
obtained by SMPSO is plotted as the representation of 
NSGA-II, SPEA2, AbYSS and SMPSO. Also, the knownPF  
obtained by HEIA is plotted as the representation of HEIA and 
MOEA/D. The plots in Fig. 4 show that HEIA can closely 
approach the truePF  of UF1, while SMPSO only finds some 
disconnected parts that are not so near to truePF . For UF2, the
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TABLE VI 
FINAL RANK OF ALL THE ALGORITHMS ON THE ZDT, WFG, UF AND DTLZ PROBLEMS 

                          Algorithms
Problems NSGA-II SPEA2 AbYSS MOEAD SMPSO HEIA 

Rank Sum on ZDTs 21 23 19 25 8 9 
Rank Sum on WFGs 44 31 37 35 25 17 
Rank Sum on UFs 20 28 36 21 30 12 

Rank Sum on DTLZs 28 25 25 28 20 21 
Total Rank Sum on all the Problems 113 107 117 109 83 59 

Final Rank on all the Problems 5 3 6 4 2 1 

TABLE VII 
FINAL COMPARISONS OF ALL THE ALGORITHMS ON THE ZDT, WFG, UF AND DTLZ PROBLEMS 

                          Algorithms
Problems NSGA-II SPEA2 AbYSS MOEAD SMPSO 

ZDTs 0/5/0 0/5/0 0/3/2 1/4/0 3/0/2 
WFGs 0/9/0 1/7/1 2/5/2 0/8/1 3/5/1 
UFs 0/6/1 1/6/0 0/7/0 3/3/1 0/7/0 

DTLZs 2/4/1 3/4/0 3/3/1 2/3/2 2/4/1 
Total better/worse/similar 2/24/2 5/22/1 5/18/5 6/18/4 8/16/4 

Final result (HEIA vs other algorithms) better better better better better 

knownPF  of HEIA achieves a more even coverage of truePF  and 
is closer to truePF  than the approximation obtained by SMPSO. 

4) Comparisons on the DTLZ Test Problems 

In the above experiments, HEIA had a very promising per-
formance when solving all of the ZDT, WFG and UF test 
problems. However, these problems have only two objectives. 
In order to further assess the performance of HEIA on MOPs 
with more than two objectives, the DTLZ problems [32] were 
adopted. Table V shows the comparison of results when solving 
all the DTLZ test problems. As observed in Table V, HEIA 
provided the best results on DTLZ1 and DTLZ3. SPEA2 per-
formed best on DTLZ2 and DTLZ7. MOEA/D, AbYSS, and 
SMPSO achieved the best results on DTLZ4, DTLZ5, and 
DTLZ6, respectively. Moreover, the Wilcoxon’s rank sum test 
indicates that HEIA had a similar performance as MOEA/D on 
DTLZ1 and DTLZ3. However, the mean and std values of 
MOEA/D are larger than those of HEIA, which indicate that 
MOEA/D cannot consistently approach the truePF  of DTLZ1 
and DTLZ3. Also, HEIA obtained statistically similar results to 
NSGA-II on DTLZ2, to AbYSS on DTLZ7, and to SMPSO on 
DTLZ6. The “Final rank” row indicates that SMPSO and HEIA 
obtained the first rank and the second rank, respectively, while 
AbYSS and MOEA/D had a comparable performance with the 
3rd place in the ranking. SPEA2 and NSGA-II also performed 
similarly with 4th place in the ranking. Moreover, the last row 
in Table V also indicates that HEIA performed better than 
NSGA-II, SPEA2, and SMPSO as HEIA performed better in 4 
out of 7 DTLZ test problems. Also, HEIA outperformed 
MOEA/D as HEIA performed better, worse, and similarly on 3, 
2 and 2 out of 7 test problems, respectively. For AbYSS, HEIA 
had a comparable performance as they both performed better on 
3 DTLZ problems. 

In Fig. 5, some plots of the final sets on DTLZ3 are given as 
DTLZ3 has many local Pareto-optimal fronts and is difficult to 
solve. The plots of AbYSS, MOEA/D and SMPSO are not 
evidently different from those of HEIA. Therefore, the plot of 
HEIA is used as a representation of all of them. As observed 
from Fig. 5, both the final sets of HEIA and NSGA-II corre-

spond to good approximation sets, but the one of HEIA pro-
vides a more even coverage of truePF  and is closer to truePF . 
SPEA2 cannot approach truePF  and only finds the solutions 
near the boundaries of truePF . 

In Table VI, we collected the rank sums of HEIA, NSGA-II, 
SPEA2, AbYSS, MOEA/D and SMPSO on all the ZDT, WFG, 
UF and DTLZ test problems. When considering all of the test 
problems, the final rank indicates that HEIA performed better 
than NSGA-II, SPEA2, AbYSS, MOEA/D and SMPSO. 
Moreover, we also gathered the comparison results of HEIA 
with other algorithms in Table VII. The last second row illus-
trates the total comparison results of HEIA on all the test 
problems, and the last row provides the summary of the com-
parison performance of HEIA with respect to the other algo-
rithms. The final ranking shown in Table VII also confirms the 
advantages of HEIA as it performs better than the compared 
algorithms on most of the test problems adopted. Based on the 
above experimental results, it is reasonable to conclude that 
HEIA is able to tackle various kinds of test problems and its 
advantages are more evident when solving complicated test 
problems, such as those included in the WFG and UF test 
suites. 

E. Comparisons with Other MOIAs 

The above simulations have shown the advantages of HEIA 
when compared with other nature-inspired multiobjective 
algorithms. In this subsection, we further compare HEIA with 
three MOIAs (i.e., NICA [23], NNIA [24] and MIMO [25]), all 
of which were designed based on the clonal selection principle. 
As pointed out above, the use of a simple evolutionary operator 
in basic MOIAs is not so suitable for solving different types of 
MOPs due to its monotonic search patterns. This will cause 
some difficulties when handling complicated MOPs. Therefore, 
we provide a comparison of results with respect to NNIA, 
MIMO and HEIA on the ZDT problems and the UF test prob-
lems in Tables VIII and IX, respectively. 

For the ZDT problems in Table VIII, it is observed that all 
the IGD values are under an accuracy level of 10-3, which 
indicates that all of NNIA, MIMO and HEIA can closely ap-
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TABLE VIII 
COMPARISON OF RESULTS WITH RESPECT TO NNIA, MIMO AND HEIA  

ON THE ZDT TEST PROBLEMS 

Algorithms 
Problems NNIA MIMO HEIA 

ZDT1 
Mean 4.84E-03 3.98E-03 3.90E-03
Std 2.25E-04 8.47E-05 6.57E-05

Rank 3－ 2－ 1

ZDT2 
Mean 4.86E-03 4.06E-03 3.96E-03
Std 2.10E-04 7.21E-05 5.23E-05

Rank 3－ 2－ 1

ZDT3 
Mean 7.22E-03 5.98E-03 4.43E-03
Std 7.62E-03 6.54E-03 5.41E-05

Rank 3－ 2－ 1

ZDT4 
Mean 6.43E-03 6.44E-03 3.87E-03
Std 1.46E-03 1.94E-03 2.00E-04

Rank 2－ 3－ 1

ZDT6 
Mean 3.88E-03 3.16E-03 3.02E-03
Std 4.03E-04 1.35E-04 1.29E-04

Rank 3－ 2－ 1
Rank Sum 14 11 5
Final Rank 3 2 1

better/worse/similar 0/5/0 0/5/0 /
“+”, “－”, and ‘≈’ indicate the results obtained by the algorithm are signif-
icantly better than, worse than, and similar to the ones obtained by HEIA 
using Wilcoxon’s rank sum test with a significant level  =0.05.   

TABLE IX 
COMPARISON OF RESULTS WITH RESPECT TO NNIA, MIMO AND HEIA  

ON THE UF TEST PROBLEMS 

Algorithms
Problems NNIA MIMO HEIA 

UF1 
Mean 8.38E-02 9.70E-02 2.70E-03
Std 2.61E-02 4.48E-02 1.42E-04

Rank 2－ 3－ 1

UF2 
Mean 3.52E-02 3.47E-02 5.81E-03
Std 1.32E-02 1.55E-02 4.98E-04

Rank 3－ 2－ 1

UF3 
Mean 2.14E-01 2.07E-01 1.28E-02
Std 5.12E-02 5.66E-02 6.10E-03

Rank 3－ 2－ 1

UF4 
Mean 4.14E-02 4.08E-02 3.77E-02
Std 5.73E-04 7.15E-04 7.49E-04

Rank 3－ 2－ 1

UF5 
Mean 2.95E-01 2.94E-01 2.05E-01
Std 9.32E-02 9.47E-02 1.17E-01

Rank 3－ 2－ 1

UF6 
Mean 2.04E-01 2.34E-01 1.52E-01
Std 1.18E-01 1.45E-01 8.47E-02

Rank 2－ 3－ 1

UF7 
Mean 1.79E-01 1.61E-01 3.09E-03
Std 1.61E-01 1.90E-01 5.56E-04

Rank 3－ 2－ 1
Rank Sum 19 16 7
Final Rank 3 2 1

better/worse/similar 0/7/0 0/7/0 /
 “+”, “－”, and ‘≈’ indicate the results obtained by the algorithm are sig-
nificantly better than, worse than, and similar to the ones obtained by HEIA 
using Wilcoxon’s rank sum test with a significant level  =0.05.     

TABLE X 
COMPARISONS OF RESULTS WITH RESPECT TO NICA AND HEIA ON 

ZDT1-ZDT4 
               Problems

Algorithms ZDT1 ZDT2 ZDT3 ZDT4

NICA(GD) 
Mean 1.29e-4 1.25e-4 5.89e-4 1.05e-4
Std 2.14e-6 6.35e-5 1.14e-5 5.89e-4

HEIA(GD) 
Mean 9.66e-5 9.30e-5 1.12e-4 9.08e-5
Std 1.02e-5 7.93e-6 4.66e-6 5.41e-6

NICA(Diversity)
Mean 0.2595 0.2352 0.3525 0.2776
Std 0.0001 0.0013 0.0000 0.0000

HEIA(Diversity)
Mean 0.0934 0.0879 0.4178 0.0791
Std 0.0098 0.0089 0.0057 0.0089

proach truePF . The Wilcoxon’s rank sum test shows that HEIA 
is significantly better than MIMO and NNIA on all the ZDT 
problems. Furthermore, when solving the UF test problems, it 
is found that HEIA performs better than NNIA and MIMO on 
all of them as indicated by the results in Table IX. The Wil-
coxon’s rank sum test indicates that the IGD results of HEIA 
are all significantly better than those obtained by NNIA and 
MIMO. These experimental results validate that the simple 
evolutionary operator in NNIA and MIMO only performs well 
in solving simple test problems (i.e., the ZDT problems), but is 
unable to reach the truePF  of complicated MOPs (i.e., the UF 
test problems). However, HEIA can consistently achieve 
promising results on both of the ZDT and the UF test problems, 
which validates the effectiveness of our proposed hybrid 
framework for MOIAs. Moreover, referring to Tables II, IV, 
VIII and IX, one interesting phenomenon is observed: early 
reported MOIAs generally outperform classical MOEAs on 
most of the simple ZDT problems (i.e., NNIA performs better 
than NSGA-II, and MIMO performs better than NSGA-II and 
SPEA2). This is mainly due to the clonal selection principle 
adopted in NNIA and MIMO, which helps to accelerate the 
convergence rate on the simple ZDT problems. However, when 
tackling the complicated UF problems, it is found that NNIA 
and MIMO are outperformed by NSGA-II and SPEA2 as the 
evolutionary search based on simulated binary crossover and 
polynomial-based mutation is ineffective for searching the 
complicated PS of the UF problems and the cloning of a small 
proportion of the population will lower the population diversity 
of NNIA and MIMO. Different from NNIA and MIMO, a 
hybrid evolutionary framework, where different subpopula-
tions undergo different evolutionary strategies separately, is 
adopted in HEIA, which makes it capable of solving both of the 
ZDT and the UF test problems. 

Furthermore, a comparison of results between NICA and 
HEIA on ZDT1-ZDT4 is provided in Table X. These results 
were obtained by performing 50000 function evaluations. Two 

additional performance measures, i.e., generational distance 
(GD) and spacing [2], were adopted to assess convergence and 
diversity, respectively. It is noted that 500 uniformly distrib-
uted points of truePF  are used to obtain the GD values. Re-
garding the GD values, it is obvious that HEIA always found 
solution sets with better convergence than NICA. When con-
sidering the diversity metric, HEIA was better than NICA on 
ZDT1, ZDT2 and ZDT4. Only for ZDT3, which has a discon-
nected truePF , HEIA performed worse. However, as observed 
from Fig. 2(c), the population diversity of HEIA on ZDT3 is 
quite uniform. Therefore, we claim that HEIA is better than 
NICA in terms of both convergence and diversity when con-
sidering all the ZDT problems in Table X. 

F. Advantages of the Hybrid Evolutionary Strategies 

In this study, two evolutionary strategies were adopted to 
form HEIA as an implementation example of our proposed 
hybrid framework. In order to study the advantages of such a 
framework and to show how the two evolutionary strategies  
cooperate with each other, we also provide experimental results 
of HEIA using only one evolutionary strategy at a time, i.e., 
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TABLE XI 
COMPARISON OF RESULTS WITH RESPECT TO HEIA-1, HEIA-2 AND HEIA ON 

THE ZDT TEST PROBLEMS 

Algorithms 
Problems HEIA-I HEIA-II HEIA 

ZDT1 
Mean 3.99E-03 1.29E-02 3.90E-03
Std 1.15E-04 4.79E-03 6.57E-05

Rank 2－ 3－ 1

ZDT2 
Mean 4.05E-03 8.02E-03 3.96E-03
Std 8.77E-05 2.96E-03 5.23E-05

Rank 2－ 3－ 1

ZDT3 
Mean 6.24E-03 8.77E-03 4.43E-03
Std 7.13E-03 2.77E-03 5.41E-05

Rank 2－ 3－ 1

ZDT4 
Mean 6.57E-03 7.40E+00 3.87E-03
Std 2.03E-03 1.33E+01 2.00E-04

Rank 2－ 3－ 1

ZDT6 
Mean 3.10E-03 3.39E-03 3.02E-03
Std 1.27E-04 2.63E-04 1.29E-04

Rank 2 ≈ 3－ 1
Rank Sum 10 15 5
Final Rank 2 3 1

better/worse/similar 0/4/1 0/5/0 /
“+”, “－”, and ‘≈’ indicate the results obtained by the algorithm are signif-
icantly better than, worse than, and similar to the ones obtained by HEIA 
using Wilcoxon’s rank sum test with a significant level  =0.05.     

TABLE XII 
COMPARISON OF RESULTS WITH RESPECT TO HEIA-I, HEIA-II AND HEIA ON 

THE UF TEST PROBLEMS 

Algorithms
Problems HEIA-I HEIA-II HEIA 

UF1 
Mean 8.31E-02 4.15E-02 2.70E-03
Std 2.81E-02 1.50E-02 1.42E-04

Rank 3－ 2－ 1

UF2 
Mean 3.44E-02 1.74E-02 5.81E-03
Std 1.17E-02 5.82E-03 4.98E-04

Rank 3－ 2－ 1

UF3 
Mean 2.15E-01 8.41E-03 1.28E-02
Std 4.99E-02 5.34E-03 6.10E-03

Rank 3－ 1 + 2

UF4 
Mean 4.12E-02 6.13E-02 3.77E-02
Std 4.47E-04 5.41E-03 7.49E-04

Rank 2－ 3－ 1

UF5 
Mean 2.79E-01 6.27E-01 2.05E-01
Std 7.64E-02 1.39E-01 1.17E-01

Rank 2－ 3－ 1

UF6 
Mean 2.31E-01 3.21E-01 1.52E-01
Std 1.45E-01 8.29E-02 8.47E-02

Rank 2－ 3－ 1

UF7 
Mean 1.44E-01 2.78E-02 3.09E-03
Std 1.56E-01 1.01E-02 5.56E-04

Rank 3－ 2－ 1
Rank Sum 18 16 8
Final Rank 3 2 1

better/worse/similar 0/7/0 1/6/0 /
“+”, “－”, and ‘≈’ indicate the results obtained by the algorithm are sig-
nificantly better than, worse than, and similar to the ones obtained by 
HEIA using Wilcoxon’s rank sum test with a significant level  =0.05.

HEIA-I utilizes the first evolutionary strategy (SBX and pol-
ynomial-based mutation) and HEIA-II adopts the second one 
(DE crossover and polynomial-based mutation). In Tables XI 
and XII, a comparison of results among HEIA-I, HEIA-II and 
HEIA on the ZDT and the UF test problems is provided. It can 
be seen from Table XI that HEIA-I is better than HEIA-II in 
solving all the ZDT problems. Particularly, on the ZDT4 
problem, HEIA-I can obtain a uniform approximation set close 
to truePF ; however, HEIA-II is unable to reach truePF  as its 
IGD value on ZDT4 is larger than 7 (the ideal IGD value is 
zero). These experiments indicate that the first evolutionary 
strategy is more capable for tackling the ZDT problems. 
Moreover, the cooperation of the two evolutionary strategies 
consistently performs better on all the ZDT problems, which 
validates our hypothesis that each evolutionary strategy can 
enhance the search capabilities of the other one. In Table XII, 
HEIA performed best on 6 out of 7 of the UF test problems. 
Only for UF3, HEIA performed worse than HEIA-II. For the 
rest of the UF test problems, it is shown that the cooperation of 
the two evolutionary strategies in HEIA can significantly 
enhance the performance of HEIA-I and HEIA-II. For example, 
for the UF1, UF2 and UF7 test problems, HEIA obtained a 
significantly better performance and its corresponding IGD 
values were all under an accuracy level of 10-3, which indicates 
that HEIA was able to find good approximation sets for these 
problems. This further confirms the effectiveness of our hybrid 
framework and that the cooperation of the hybrid evolutionary 
strategies is beneficial for enhancing their search capabilities. 

G. Analysis of the Parameters Settings 

The parameters settings adopted in HEIA are listed in Table I. 
In order to study their effect on the performance of HEIA, we 
conducted an experimental study of one-at-a-time sensitivity 
analysis. As the parameters settings in the SBX and the poly-
nomial-based mutation operators have been substantially in-
vestigated in [28], their analysis is not repeated here. The effect 
of parameter N (population size) is quite evident: under the 

same number of generations, a larger value of N will produce a 
better performance. The neighbor size T is chosen depending 
on the value of N and the number of the objectives. For the rest 
of the parameters, such as NA, , CR and F, they are respec-
tively studied in the following subsections to investigate their 
influence on HEIA. Five representative values for NA (i.e., 20, 
40, 60, 80 and 100),  (i.e., 0.1, 0.3, 0.5, 0.7 and 0.9), CR (i.e., 
0.2, 0.4, 0.6, 0.8 and 1.0) and F (i.e., 0.1, 0.3, 0.5, 0.7 and 0.9) 
were adopted to solve three test problems with different types 
of difficulties, i.e., ZDT1, WFG1 and UF1. Thus, there is a total 
of 625 combinations of NA,  , CR and F values for each test 
problem and other parameters settings were the same as those 
listed in Table I except that the population sizes are all set to 
100 for ZDT1, WFG1 and UF1. All the simulations have been 
repeated 100 times for each combination and their corre-
sponding mean IGD results are illustrated using box plots [62], 
in which the central red line indicates the median value, the 
edges of the box are the 25th and 75th percentiles, and the red 
symbol “+” denotes outliers. Finally, the Kolmogo-
rov-Smirnov test with a 5% significance level was further 
used to detect the statistical differences between two samples in 
each plot. It is noted that a black star * above the box indicates 
that the corresponding sample has statistical differences with 
other samples. 

1) NA: The number of selected antibodies for cloning  

When performing the cloning operator in (6), only NA an-
tibodies with high affinities are selected from the external 
archive. Fig. 6 shows the distribution of IGD results on ZDT1, 
WFG1 and UF1, which were obtained by HEIA with different 
NA values from 625 combinations. For the ZDT1 problem, it is 
observed that the IGD results are significantly increased with 
respect to the NA values, so that a smaller value of NA is better 
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(a)                                                                               (b)                                                                               (c)  
 

Fig. 6 Box plots of the IGD results obtained by HEIA with different NA values on (a) ZDT1, (b) WFG1 and (c) UF1 
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Fig. 7 Box plots of the IGD results obtained by HEIA with different  values on (a) ZDT1, (b) WFG1 and (c) UF1 
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for ZDT1. This is mainly because more cones can be assigned 
to a small proportion of high-affinity antibodies under a fixed 
population size, which helps to accelerate the convergence 
speed. When solving more difficult problems such as WFG1 
and UF1, most of the IGD results are statistically similar, so 
that the impact of NA is less significant on the WFG1 and UF1 
problems. Therefore, if we consider all the test problems, a 
small value of NA (e.g., between 20 and 40) is suggested. 

2) : A control parameter for selecting the parent individu-
als in the DE operator 

As introduced in Section III.B, two parents are selected from 
population P in order to perform DE crossover. P can be spec-
ified as A (the selected antibody set for cloning) or the neigh-
bors of x , which is controlled by the probability parameter  . 
When P is set as A, DE crossover can perform global search as 
the antibodies in A are the least-crowded ones, which cover 
most of the currently-found approximated front. Otherwise, P 
is assigned by the neighbors of x , which can search in the local 
area around x .  

Fig. 7 presents the box plots of the IGD results obtained by 
HEIA with different   values on ZDT1, WFG1 and UF1. The 
Kolmogorov-Smirnov test shows that all the IGD results 
plotted in Figs. 7(a)-(c) do not have a significant difference in 
solving ZDT1, WFG1 and UF1. These experimental results 
indicate that the performance of HEIA is not so sensitive to   
on ZDT1, WFG1 and UF1.  

3) CR and F: two control parameters in the DE operator 

The crossover rate CR and the scaling factor F are two im-
portant control parameters when generating new antibodies in 
(18), where CR controls how many variables are inherited from 
the mutant vectors and F adjusts the mutation scale.  

The box plots of the IGD results obtained by HEIA with 
different values of CR and F are illustrated in Figs. 8-9. From 
Figs. 8(a)-(c) we can observe that a smaller value of CR can 
give significantly better performance for solving ZDT1, while a 
larger value of CR performs significantly better on WFG1 and 
UF1. This is reasonable as ZDT1 is a simple test problem, in 
which a smaller CR value can make offspring to inherit more 
information from the parents, thus speeding up convergence. 
However, the use of more inheritance from the parents will 
lower population’s diversity, which makes HEIA unsuitable for 
difficult problems such as WFG1 and UF1. Thus, the perfor-
mance of HEIA is sensitive to the selection of CR when tack-
ling different kinds of MOPs. On the other hand, the IGD 
results shown in Figs. 9(a)-(c) indicate that a larger value of F is 
preferred for ZDT1 and WFG1, while a smaller value of F is 
more suitable for UF1. This is also supported by the Kolmo-
gorov-Smirnov test, which indicates that HEIA performs 
significantly worse on ZDT1 and WFG1, but significantly 
better on UF1 when the F value is set to 0.1. Therefore, the 
performance of HEIA is also sensitive to the F values when 
solving various kinds of MOPs. That is to say, no fixed pa-
rameter settings of F and CR are guaranteed to always perform 
well. To have a good overall performance, intermediate values 


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(a)                                                                               (b)                                                                                (c)  

 
Fig. 8 Box plots of the IGD results obtained by HEIA with different CR values on (a) ZDT1, (b) WFG1 and (c) UF1 

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

x 10
-3

0.2 0.4 0.6 0.8 1.0

CR

IG
D

* * * * *

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.2 0.4 0.6 0.8 1.0

CR

IG
D

*

0.01

0.015

0.02

0.025

0.03

0.035

0.2 0.4 0.6 0.8 1.0

CR

IG
D

* * * * *

(a)                                                                                (b)                                                                                (c) 
 

Fig. 9 Box plots of the IGD results obtained by HEIA with different F values on (a) ZDT1, (b) WFG1 and (c) UF1 
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                           (a)                                            (b)                                             (c)                                            (d)                                                (e) 

Fig. 10 Mean computational times (s) obtained by NSGA-II, SPEA2 and HEIA on (a) ZDT1, (b) ZDT2, (c) ZDT3, (d) ZDT4, and (e) ZDT6 
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of CR and F are suggested when considering all the test prob-
lems adopted in this paper.  

H. Time Complexity Analysis 

In this subsection, the time complexity analysis and the 
practical implementation efficiency of HEIA are investigated. 
The aim is to show that the hybrid framework proposed in this 
paper will not have a significant negative effect on execution 
efficiency. Based on the pseudo-code of HEIA (Algorithm 3), 
the time complexity of HEIA is mainly determined by the 
evolutionary loop in lines 2-18. When calculating the time 
complexity, the impact of the decision variables and the objec-
tives are ignored as they are much smaller than the population 
size N. In lines 3-4, the time complexity is O(N logN+NA) for 
the sorting procedure and for picking out NA high-affinity 
antibodies; in lines  5-14, the selected high-affinity antibodies 
are cloned and randomly divided into two subpopulations, 

which take the time complexity O(N); in lines 15-16, two 
evolutionary strategies are respectively performed on the two 
subpopulations and the corresponding time complexity is 
O(2N); at last, the fine-grained selection mechanism is operated 
with time complexity O(N2). Therefore, the total time com-
plexity of HEIA is O(N2+N logN+NA +3N) ~ O(N2). Note that 
the time complexity of NSGA-II [2], SPEA2 [3], NNIA [24], 
NICA [23] and MIMO [25] are respectively O(N2), O(N3), 
O(N2), O(N2) and O(N2). Therefore, HEIA has a time com-
plexity which is comparable with that of two state-of-the-art 
MOEAs (NSGA-II and SPEA2) and three MOIAs (NNIA, 
NICA and MIMO). 

We further investigated the practical implementation effi-
ciency of HEIA with NSGA-II and SPEA2 as they all use 
Pareto-dominance-based comparisons and diversity mainte-
nance strategies on the combined population formed by the 
offspring and the elitist archive. Fig. 10 shows the box plots of 
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the computational times obtained by NSGA-II, SPEA2, and 
HEIA on all the ZDT problems with 25000 function evalua-
tions. All the algorithms were implemented on the Java envi-
ronment [61] and were run 100 times on the same computer 
with dual-core 3.2 GHz CPU, 2Gbytes of RAM and Windows 7 
operation system. The parameters settings were those listed in 
Table I. It is noted that the Kolmogorov-Smirnov test with a    
5% significance level was also used to detect the statistical 
differences between two samples in each plot and the sample 
owning the statistical differences with other samples was iden-
tified by a black star * above the box. 

From Fig. 10, we can observe that HEIA performed faster 
than NSGA-II on ZDT2, ZDT3 and ZDT4 with statistical 
differences. This is mainly because NSGA-II needs to find 
multiple ranks of nondominated solutions while HEIA only 
finds out the first rank of nondominated solutions using a 
fine-grained selection mechanism. Besides that, they all use the 
crowding-distance metric [2] to maintain the population diver-
sity. SPEA2 has a slower running speed than that of HEIA and 
NSGA-II, as it has to calculate the distance of the nearest 
neighbor to keep the population diversity. It is very 
time-consuming to find the nearest neighbor for each solution 
using Euclidean distances. For all the ZDT problems, HEIA 
only needs less than 0.6s to execute 25000 function evaluations. 
These experiments indicate that HEIA has a promising running 
speed. Moreover, as HEIA enables different subpopulations to 
evolve separately, it can be implemented in a distributed par-
allel computing architecture. Therefore, the running speed of 
HEIA can be enhanced greatly, which makes it more useful for 
practical applications. 

V. CONCLUSIONS 

In this paper, a hybrid evolutionary framework for MOIAs 
(HEIA) is introduced. In the proposed framework, multiple 
evolutionary strategies are applied after cloning. The coopera-
tion of multiple evolutionary strategies is able to enhance the 
capabilities and the robustness of the proposed approach, 
allowing it to handle different types of MOPs. An implemen-
tation example of this hybrid framework is provided using two 
different evolutionary strategies, which adopt either SBX or DE 
crossover followed by polynomial-based mutation, respectively. 
Simulation results showed that HEIA is capable of successfully 
handling different types of MOPs, i.e., the ZDT, WFG, UF and 
DTLZ test problems. When compared with three MOIAs (i.e., 
NICA, NNIA, and MIMO) and other nature-inspired multi-
objective algorithms (i.e., NSGA-II, SPEA2, AbYSS, 
MOEA/D, and SMPSO), HEIA was found to present ad-
vantages in terms of finding a solution set with better conver-
gence and diversity to approach truePF . Moreover, the effec-
tiveness of our hybrid framework has justified that two differ-
ent search strategies (SBX and DE in our case) can complement 
each other, thus performing better than the isolated use of any 
of them. The reason for this behavior may be that the search 
patterns of SBX and DE are indeed complementary, which 
would allow their search outputs to be successfully shared 
through the use of cloning. Finally, the influence that its pa-
rameters have on the performance of our proposed HEIA was 

also studied (experimentally) in the paper. 
Although promising results were obtained using HEIA, there 

are still several issues worth studying for further improvements. 
Our future research work will continue on the following direc-
tions: 1) study the possibility to integrate other evolutionary 
operators into our hybrid framework, such as simplex crossover, 
parent centric crossover, Gaussian mutation and Cauchy muta-
tion; 2) design an adaptive approach to dynamically assign 
different computational resources to different subpopulations, 
based on their historical performance; 3) extend HEIA to solve 
MOPs with more than 3 objectives [63]-[64] or in a noisy 
environments [65], and apply it to real-world applications [66]. 
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