

* Corresponding author
Email address: qiuzhlin@szu.edu.cn(Q.Z. Lin), duzh@szu.edu.cn (Z.H. Du)
Phone: +86-75586933530, Fax: +86-75526534078 (Z.H. Du)

1

Adaptive Composite Operator Selection and Parameter Control for

Multiobjective Evolutionary Algorithm

Qiuzhen Lin1, Zhiwang Liu1, Qiao Yan1, Zhihua Du1*, Carlos A. Coello Coello2, Zhengping Liang1, Wenjun Wang1, Jianyong Chen1
1 College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, P.R. China

2 CINVESTAV-IPN, Department of Computer Science, Mexico, D.F., 07360, Mexico

Abstract:

The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has shown a superior

performance in tackling some complicated multiobjective optimization problems (MOPs). However,

the use of different evolutionary operators and their various parameter settings has a significant impact

on its performance. To enhance its algorithmic robustness and effectiveness, this paper proposes an

adaptive composite operator selection (ACOS) strategy for MOEA/D. Four evolutionary operator pools

are used in ACOS and their advantages are combined to provide stronger exploratory capabilities.

Regarding each selected operator pool, an online self-adaptation for the parameters tuning is further

employed for performance enhancement. When compared with other adaptive and improved strategies

designed for MOEA/D, our proposed algorithm is found to be effective and competitive in solving

several complicated MOPs.

Keywords: Adaptive composite operator selection; adaptive parameters tuning; differential evolution;

decomposition

1. Introduction

Multiobjective optimization problems (MOPs) widely exist in many scientific and engineering

applications, which are aimed at optimizing several (often conflicting) objectives simultaneously [10,

13, 40]. No single solution can find the optimum for all the objectives simultaneously due to the fact

that the enhancement of one objective may result in the deterioration of another one. Therefore, the

target of MOPs is to find a set of equally-optimal solutions, called Pareto-optimal set (PS), which can

be provided to the decision maker as the alternative solutions for various application cases.

Nature-inspired heuristic algorithms, such as evolutionary algorithms (EAs) [11, 48, 59], artificial

immune algorithms [5, 33-34, 43] and particle swarm optimization algorithms [8, 51], have shown the

promising performance in tackling MOPs. Due to their population-based nature, they are suitable for

solving MOPs because, if properly manipulated, they can generate multiple Pareto-optimal solutions in

a single run. Particularly, during the last decades, numbers of multiobjective evolutionary algorithms

(MOEAs) have been proposed [2, 6, 14, 26, 35, 58]. Most MOEAs are designed based on the use of the

Pareto dominance relationship or a decomposition approach [16]. As the Pareto dominance relationship

is very simple and straightforward to apply, Pareto-based MOEAs were the most popular in the

specialized literature during many years [50]. The most popular MOEAs, e.g., NSGA-II [11] and

SPEA2 [60], were all designed based on the Pareto dominance relationship. Until now, there are still

2

many improved Pareto-based MOEAs reported in the literature [12, 21, 27, 31-32, 46]. However, as

pointed out in [36, 53], Pareto-based MOEAs have some difficulties to approach the true

Pareto-optimal front (PF) when tackling some complicated MOPs. Thus, a novel MOEA based on

decomposition (MOEA/D) was proposed in [36, 53]. It decomposes MOPs into a set of single-objective

optimization subproblems (SOPs) and then optimizes all the SOPs cooperatively. The objective of each

subproblem is a (linear or nonlinear) weighted aggregation of all the objectives in a MOP.

Neighborhood relationships among these subproblems are defined based on the Euclidean distances of

their aggregation weight vectors and they can be exploited to enhance the performance of MOEA/D.

Due to the superior performance provided by MOEA/D in solving some complicated MOPs, many

enhanced strategies such as dynamical resource allocation [39, 55], enhanced evolutionary operators

[36-37, 45], adaptive control methods [29, 47, 57], and matching strategies [28, 30], have been

designed based on the framework of MOEA/D. On the dynamical resource allocation, MOEA/D-DRA

[55] was proposed based on the fact that different subproblems may have different computational

difficulties. This approach designs a dynamic computational resource allocation strategy to assign more

computational resources to the non-convergent subproblems. Another dynamic resource allocation

scheme for MOEA/D was investigated in [39] to reward the better crossover operator. In this approach,

the better one between the simplex crossover operator and the center of mass crossover operator can

gain more computational resources. About the enhanced evolutionary operators, differential evolution

(DE) was used in [36, 45] to replace simulated binary crossover for effectively producing the new trial

vectors, while an opposition-based learning strategy was employed in [37] to accelerate the

convergence speed during the evolutionary process. Regarding the adaptive control methods designed

in MOEA/D variants, a new version of MOEA/D with an ensemble of different neighborhood sizes

(ENS-MOEA/D) was proposed in [57] to decrease the impact of neighborhood size on the performance

of MOEA/D. This approach dynamically determines the selection of different neighborhood sizes using

their previous search experience, and consequently, this online self-adaptation strategy significantly

improves the performance of MOEA/D. In [47], an adaptive DE for MOPs (ADEMO/D) was reported.

This approach adopts probability matching and adaptive pursuit as two adaptive strategy selection

principles. A DE mutation strategy is picked up from a candidate’s DE pool according to a probability

that depends on the successful rate to produce better solutions. To adaptively select the preferred

recombination operator, a novel bandit-based adaptive operator selection was presented for MOEA/D

(MOEA/D-FRRMAB) in [29]. In this approach, the application rates of different DE operators are

decided dynamically by their recent performance. A sliding window is used to track the dynamics of

the search process by recording the recent fitness improvement rates of different operators, and a decay

mechanism is employed to raise the selection probability of the best operator. At last, considering the

matching strategies designed for solutions and subproblems, a stable matching model has been

proposed for MOEA/D (MOEA/D-STM) in [28]. This approach assigns each promising solution to a

subproblem according to the respective preferences. It maintains the good convergence speed and

population diversity, and outperforms other enhanced MOEA/D algorithms, such as ENS-MOEA/D

and MOEA/D-FRRMAB. Similarly, an improved inter-relationship model [30] was built to match the

solutions and subproblems based on their mutual-preferences. Different from the stable matching

3

model that aims to produce a trade-off between convergence and population diversity, it is essentially a

diversity first and convergence second strategy, which enables superior solutions to explore the entire

PF.

Moreover, some weight generation strategies [17, 23, 41] were also designed to achieve a better

approximation for complex Pareto-optimal fronts (PFs). Unlike traditional MOEA/D algorithms that

decompose MOPs into a set of subproblems, a new MOEA/D algorithm [4, 7] was proposed to

decompose the objective space into different sub-objective spaces using numbers of distinct direction

vectors. Each sub-objective space at least owns a solution in order to maintain properly the population

diversity. This idea of decomposition using direction vectors was also studied in [22] to combine with a

co-evolutionary algorithm, giving rise to the so-called DVCMOA. To extend MOEA/D for

high-dimensional MOPs, a generalized decomposition approach was designed in [15], while a

systematic sampling approach was presented in [1] to generate uniformly distributed reference points

coupled with two independent distance measures and a simple preemptive distance comparison

scheme.

It is noted that most of the above MOEA/D variants adopt DE coupled with polynomial mutation

as their evolutionary operators. However, several research studies on DE operators have revealed that

the use of hybridized DE operators provides an enhanced optimization performance and algorithmic

robustness for solving different types of SOPs, because the use of single DE operator may present

several limitations in tackling some difficult problems characterized by certain complex features [20,

49]. Since a decomposition approach transforms a MOP into a number of SOPs, it is possible that the

competitive approaches designed for solving SOPs are also suitable for MOEA/D. Although an

adaptive operator selection for MOEA/D was recently investigated in MOEA/D-FRRMAB to enhance

its exploratory capability, four basic DE mutation operators (i.e., “DE/rand/1”, “DE/rand/2”,

“DE/current-to-rand/2” and “DE/current-to-rand/1”) were selected in MOEA/D-FRRMAB to compose

the operator pool. This combination of DE mutation strategies may not lead to optimal performance, as

the composite DE operator pools studied in [49] seem to be more competitive. Working on the research

direction suggested by MOEA/D-FRRMAB, this paper proposes an adaptive composite operator

selection and parameter control strategy for MOEA/D (called MOEA/D-CDE). The core idea is to

design an adaptive MOEA/D algorithm with superior performance. Four composite DE operator pools

are adaptively employed (such operators were selected based on their previously reported performance),

and their recent fitness improvement rates are stored using a sliding window. An adaptive control

strategy is also designed to adjust the parameters in each composite DE pool. Our experimental results

validate that MOEA/D-CDE is able to find a good approximated subset of PS when solving several

complicated MOPs, e.g., the Unconstrained Functions (UF) adopted at the competition held at the 2009

IEEE Congress on Evolutionary Computation (CEC’2009) [56] and the Walking Fish Group (WFG)

problems [18]. When compared with other enhanced variants of MOEA/D, e.g., MOEA/D-DE [36],

MOEA/D-DRA [55], ENS-MOEA/D [57], MOEA/D-FRRMAB [29] and MOEA/D-STM [28],

MOEA/D-CDE performs best on most of the UF and WFG test problems. The advantages of our

proposed adaptive composite operator selection and parameter control strategy are also experimentally

analyzed.

4

The rest of this paper is organized as follows. In Section 2, the related background of our work is

presented, such as the mathematical description of MOPs, a brief introduction of a decomposition

approach and MOEA/D-DRA. Section 3 gives the details of MOEA/D-CDE, including the adopted

composite DE mutation strategies, the adaptive composite operator selection, and the adaptive

parameter control strategy. The experimental results of MOEA/D-CDE and the corresponding analysis

are provided in Section 4. At last, the conclusions and future work are summarized in Section 5.

2. Related Background

2.1 Multiobjective Optimization Problems

Unconstrained multiobjective optimization problems (MOPs) can be stated as follows [40].

 1 2Min () ((), (),..., ())T
m

x
F x f x f x f x

 (1)

where is the decision (variable) space, 1 2(, ,...,)nx x x x
r

 is a candidate solution with n

variables, : mF R defines m real-valued objective functions and mR is called the objective

space. In many real-world applications, no point in can minimize all the objectives simultaneously.

The best trade-offs among the objectives can be attained by using the definition of Pareto optimality

[10, 13, 14].

Definition 1 (Pareto-dominance): A decision variable vector x
r

 is said to dominate another decision

variable vector y
r

 (noted as x y
r r

f) if and only if
 ({1,2,..., }: () ()) ({1, 2,..., }: () ())i i j ji m f x f y j m f x f y

r r r r
 (2)

Definition 2 (Pareto-optimal): A solution x
r

 is said to be Pareto-optimal if and only if
 :y y x

r r r
f (3)

Definition 3 (Pareto-optimal set): The set PS includes all the Pareto-optimal solutions, as defined by
 { | : }PS x y y x

r r r r
f (4)

Definition 4 (Pareto-optimal front): The set PF includes the values of all the objective functions

corresponding to the Pareto-optimal solutions in PS .
 1 2{ () ((), (),..., ()) | }T

mPF F x f x f x f x x PS
r r r r r

 (5)

2.2 Decomposition Approach

There are several approaches that can be used to decompose MOPs into a number of SOPs, such

as the weighted sum approach, the Tchebycheff approach and the boundary intersection method [40,

53-54]. In this paper, the Tchebycheff approach is adopted as it is mostly used in many variants of

MOEA/D [28-30, 36, 45, 53, 55, 57]. This approach is formulated as follows.

 * *

1
minimize | , max | |tch

i i i
i m

g x w z w f x z

 (6)

 subject to x

where is the decision (variable) space, * * * *
1 2(, ,...,)mz z z z

 is a vector of reference point, i.e.,
* min{ () | }i iz f x x

 for each 1, 2,...,i m . It is noted that when iw is set to 0, it will be replaced

by 610iw in Eq. (6). For each Pareto optimal point x

, there exists a weight vector w

 to make

sure that x

 is also the optimal solution of Eq. (6). Actually, each optimal solution of Eq. (6) is also a

Pareto optimal solution of Eq. (1). Therefore, all the Pareto optimal solutions can be obtained by using

5

a set of uniformly distinct weight vectors.

2.3 Basic Differential Evolution Operators

Differential evolution is very suitable for dealing with continuous optimization problems [3, 20,

25, 32, 38, 44]. It generally works through a simple cycle by using mutation, crossover and selection

operators, which are respectively introduced as follows.

(1) Mutation: differential evolution employs a mutation strategy to generate a mutant vector ,i gv

with respect to each individual ,i gx

 (called a target vector) at generation g. The most widely used DE

mutation strategies include “DE/rand/1”, “DE/rand/2”, “DE/best/1”, “DE/current-to-rand/1”,

“DE/current-to-best /2” and “DE/rand-to-best/1” [42]. For example, the basic strategy “DE/rand/1” can

be defined as follows.

1 2 3, , , ,()i g r g r g r gv x F x x

 (7)

where F is called the mutation scaling factor,
1 ,r gx

,
2 ,r gx

 and
3 ,r gx

 are three distinct individuals

that are randomly selected from the evolved population at the current generation.

(2) Crossover: after the mutant vector is produced, the crossover operator is further applied. The

most widely used recombination operator in DE is binomial crossover, which can be outlined as

follows.

, ,

, ,
, ,

if()

otherwise

i j g rand
i j g

i j g

v r CR or j j
u

x

,

,
 (8)

where [0,1]CR is called the crossover rate, r is a uniformly distributed random number in [0,1] ,

randj is a random index selected from 1, 2,..., n (n is the number of decision variables) to make sure

that at least one variable , ,i j gu ([1,])j n of ,i gu

 is inherited from ,i gv

. It is noted that , ,i j gu will be

reinitialized within the feasible range when it is outside its allowable bounds. For example, , ,i j gu is

reset to ()j jr b a when , ,i j g ju b or , ,i j g ju a , where r is a uniformly distributed random

number in [0,1] , ja and jb are respectively the lower and upper bounds of the j-th decision

variable.

(3) Selection: the selection operation is conducted by comparing the target vector ,i gx

 with the

trial vector ,i gu

. The better one is usually selected to survive in the next generation. Generally, it can be

defined as follows.

, , ,

, 1
,

, if(() ())

otherwise

i g i g i g
i g

i g

u f u f x
x

x

 ,

 (9)

It has been experimentally found that “DE/rand/1” and “DE/rand/2” have a slow convergence

speed but strong exploratory capabilities to avoid premature convergence. Thus, they are suitable for

solving multimodal problems. On the other hand, “DE/best/1”, “DE/best/2”, “DE/rand-to-best/1” and

“DE/current-to-best/1” present a fast convergence speed as they employ the best solution found so far

to do further exploration. Consequently, they are good at tackling unimodal problems [42].

“DE/current-to-rand/1” is a rotation-invariant strategy, which makes it more suitable to solve rotated

problems when compared to other DE strategies [20]. That is to say, different DE mutation strategies

have certain particular features, which may behave differently in solving different types of SOPs [49].

Therefore, in this paper, we use multiple DE mutation strategies to integrate the composite operator

6

pools, with the aim of combining their advantages by using an adaptive operator selection strategy. In

this way, our proposed algorithm can solve, in a better way, different types of subproblems that are

decomposed from different types of MOPs.

2.4 Review of the baseline algorithm MOEA/D-DRA

In this paper, MOEA/D-DRA [55] which won the CEC2009 multiobjective algorithm contest is

the baseline algorithm on which MOEA/D-CDE is based. By embedding the proposed adaptive

composite operator selection and parameter control strategy into MOEA/D-DRA, we introduce here

MOEA/D-CDE. Let’s assume that N uniformly distributed weight vectors 1 2{ , ,..., }Nw w w w

 are

available, where each ,1 ,2 ,{ , ,..., }j j j j mw w w w

 (1, 2,...,j N) satisfies ,1 1m
j kk w and , 0j kw

([1,]k m). Then, the approximation of PF in Eq. (1) can be decomposed into N scalar

optimization subproblems using the Tchebycheff approach (defined in Eq. (6)) with N weight vectors

w

. For each weight vector, its T-neighborhoods are composed by the set of T closest weight vectors

based on their Euclidean distances. During the evolutionary search, MOEA/D-DRA maintains a

population of N individuals 1, 2, ,{ , ,..., }g g N gP x x x

, where ,i gx

 (1, 2,...,i N) respectively represent

the potential solutions for the i-th subproblem at generation g. The best value (i.e., the lowest value for

minimization problems) found for each objective in Eq. (1) is stored using *
iz (1, 2,...,)i m , i.e.,

*
1, ,min{ (),..., ()}i g N gi iz x xf f

. As different subproblems may have different computation difficulties, a

dynamic computational resource assignment was designed in MOEA/D-DRA to automatically allocate

the computational effort for different subproblems. At first, the utility i for subproblem i
(1, 2,...,i N) is computed as follows.

1 if >0.001

(0.95 0.05 / 0.001) otherwise
i

i
i i

 (10)

where i is the relative decrease of the aggregated value in subproblem i , which is defined by

* *

*

(| ,) (| ,)

(| ,)

tch tch
old i new i

tch
o

i
ld i

g x w z g x w z

g x w z

 (11)

As the utility i for subproblem i is periodically updated, oldx

 is the old best solution found in the

last period, while newx

 is the new best solution produced in the current period. If i is smaller than

0.001, it indicates that the evolutionary search is stagnated in this period. Thus, the value of i will be

reduced in order to save computational resources.

The pseudo-code of MOEA/D-DRA can be found in Algorithm 1, where is a pre-defined

probability to select the set of parents, rn is the maximum number of parents that are replaced by the

offspring. In the initialization procedure, as shown in lines 1-2 of Algorithm 1, the current generation

number g is set to 0 at the beginning, and the set A includes all the indexes of individuals, i.e.,

{1,2,..., }A N (N is the population size). The utility i for each subproblem i ([1,]i N) is initially

set to 1. N weight vectors 1 2{ , ,..., }Nw w w w

 are uniformly initialized and the population P with N

solutions is randomly generated. Each weight vector iw

 ([1,]i N) finds its T neighbors based on

their Euclidean distances and the set ()B i includes all the T neighbors of weight vector iw

. The ideal

point *z

 is obtained by * min{ () | }j jz f x x P

(1,2,...,)j m . After that, MOEA/D-DRA enters into

the loop of the evolutionary process as illustrated in lines 4-32.

7

Algorithm 1: The Pseudo-code of MOEA/D-DRA
1 Set 0g , {1,2,..., }A N , and 1i for each 1,2,...,i N ;
2 Initialize 1 2{ , ,..., }Nw w w w

, 1, 2, ,{ , ,..., }g g N gP x x x

, 1 2() { , ,..., }TB i i i i , * * * *

1 2(, ,...,)mz z z z

;
3 while stopping criterion is not satisfied

4
Select m indexes of the subproblems whose objectives are respectively m objectives ()if x

 in Eq. (1) to

form set I; Other / 5N m subproblems are chosen by using 10-tournament selection based on i ,
which is then added into I;

5 for j =1 to | |I
6 i =I(j);
7 if rand<
8 ();E B i
9 else

10 ;E A
11 end
12 Set 1r i and then select two different indexes 2r , 3r randomly from E;
13 Perform DE operator (Eqs. (7)-(8)) to generate a new solution ,i gu

 from 1 ,r gx

, 2 ,r gx

, 3 ,r gx

;
14 Execute mutation operator (Eq. (12)) on ,i gu

 to produce a new solution iy

;

15 for k =1 to m
16 if * ()k k iz f y

17 * ()k k iz f y

;
18 end
19 end
20 0c ;
21 while rc n && E is not null
22 Randomly pick an index k from E;
23 if * *

,(| ,) (| ,)tch tch
i k k g kg y w z g x w z

24 Replace ,k gx

 with iy

, and set c=c+1;

25 end
26 Delete k from E;
27 end
28 end
29 1g g ;
30 if mod(,50) 0g
31 update the utility of each subproblem using Eq. (10);
32 end
33 end
34 return P;

During the evolutionary process, the dynamic resource assignment is firstly conducted to select

the subproblems for evolution as introduced in line 4, where the chosen subproblems are preserved in

the set I. Then, for each subproblem i in I, a uniformly distributed random number rand is used to

determine the parent set E that is selected from the entire population or the T neighbors of subproblem i

(shown in lines 7-11). Each individual in I is evolved using the DE and mutation operators as

respectively stated in lines 13-14. Assuming that the mutant solution generated with the DE operator

using Eqs. (7)-(8) is ,i gu

, polynomial mutation is further performed on ,i gu

 to produce a new solution

iy

. Each variable ,i ky (1,2,...,k n) of iy

 is obtained by

, ,

,
, ,

() if

 otherwise

i k g k k k m
i k

i k g

u b a r p
y

u

 (12)

where ka and kb are respectively the lower and upper bounds of the k-th variable, r is a uniformly

random real number in [0,1], mp is the mutation probability and k is calculated as follows.

8

1/(1)

1/(1)

(2) 1 if 0.5

1 2 (1) otherwise
k

r r

r

 (13)

where r is a uniformly random real number in [0,1] and is the distribution index that controls the

mutation scale. It is noted that each variable ,i ky (1,2,...,k n) will be reset to a random value inside

its allowable bounds when it falls outside them.

For each newly generated offspring iy

, its objectives are evaluated and then used to update the

values of the ideal point *
kz (1,2,...,k m) as described in lines 15-19. In lines 21-27, if the

aggregation function value of iy

 is better than the parents from E, it will substitute at most rn

parents to speed up convergence. At last, the utility i of each subproblem i ([1,])i N is updated

for each 50 generations using Eq. (10), as illustrated in lines 30-32. The above evolutionary phase will

be repeated until the stopping criterion is satisfied. It is noted that the stopping condition can be

generally set as the maximum number of generations or function evaluations. At the end of algorithm,

all the solutions in population P are reported as the final approximated PF.

3. The Proposed Algorithm

3.1 Composite DE Mutation Strategies

As introduced in Section 2.3, it has been experimentally found that different DE mutation

strategies have their own advantages in solving different types of SOPs [49]. For example, “DE/rand/1”

and “DE/rand/2” are good at solving multimodal problems; “DE/best/1”, “DE/best/2”,

“DE/rand-to-best/1” and “DE/current-to-best/1” are suitable for handling unimodal problems [42];

“DE/current-to-rand/1” is more suitable for tackling rotated problems [20]. The use of only one trial

vector generation strategy may have natural limitations in solving certain types of SOPs. Therefore,

multiple DE mutation strategies are used to form the composite DE operator pools in this paper. In this

way, their advantages can be combined to enhance the exploratory capabilities and algorithmic

robustness when tackling a set of subproblems decomposed from different types of MOPs.

In this paper, an adaptive operator selection is employed to dynamically select a mutation operator

pool. The mutation operator pools are composed by the four DE mutation strategies, i.e., “DE/rand/1”,

“DE/rand/2”, “DE/current-to-rand/1” and “DE/current-to-rand/2” [42]. The definition of “DE/rand/1”

has been given in Eq. (7), while “DE/rand/2”, “DE/current-to-rand/1” and “DE/current-to-rand/2” are

respectively defined in Eqs. (14-16).

1 2 3 4 5, , , , , ,() ()i g r g r g r g r g r gv x F x x F x x

 (14)

1 2 3, , , , , ,() ()i g i g i g r g r g r gv x F x x F x x

 (15)

1 2 3 4 5, , , , , , , ,() () ()i g i g i g r g r g r g r g r gv x K x x F x x F x x

 (16)

where ,i gx

 is called the target vector and ,i gv

 is the mutated vector, the individuals
1 ,r gx

,
2 ,r gx

,
3 ,r gx

,

4 ,r gx

 and
5 ,r gx

 are five distinct solutions randomly selected from the evolved population, which are

also different from ,i gx

. The scaling factors F and K are positive control parameters for weighting

the difference vectors.

Due to the fact that the composite DE operator pools have been well studied and are suitable for

9

solving different types of SOPs [49], this paper extends the idea of composite DE operator pools to

tackle MOPs. During the evolution, an operator pool applied for each subproblem will be chosen from

the four operator pools, by using the proposed adaptive operator selection strategy introduced in

Section 3.2. These four operator pools iop (1,2,3,4)i are given by

(1) 1op : “DE/rand/1” and “DE/rand/2”;

(2) 2op : “DE/current-to-rand/1” and “DE/rand/2”;

(3) 3op : “DE/current-to-rand/1”;

(4) 4op : “DE/current-to-rand/2”.

Algorithm 2: Composite_Operator(op , F , E , ,i gx

)

1 switch (op)
2 case 1op :
3 Randomly select three distinct indexes 1 2 3, ,r r r from E ;
4 Use Eqs. (7) and (8) with F to produce a candidate solution 1y

;

5 Randomly select five distinct indexes 1 2 3 4 5, , , ,r r r r r from E ;
6 If the aggregation value (Eq.(6)) of

2 ,r gx

 is larger than
3 ,r gx

, exchange the values of 2r and 3r ;
7 If the aggregation value (Eq.(6)) of

4 ,r gx

 is larger than
5 ,r gx

, exchange the values of 4r and 5r ;
8 Use Eqs. (14) and (8) to produce a candidate solution 2y

;

9 return 1y

, 2y

;
10 case 2op :
11 Randomly select three indexes 1 2 3, ,r r r (1 2 3r r r i) from E ;
12 If the aggregation value (Eq.(6)) of

2 ,r gx

 is larger than
3 ,r gx

, exchange the values of 2r and 3r ;
13 Use Eqs. (15) and (8) to produce a candidate solution 1y

;

14 Randomly select five distinct indexes 1 2 3 4 5, , , ,r r r r r from E ;
15 Use Eqs. (14) and (8) with F to produce a candidate solution 2y

;

16 return 1y

, 2y

;
17 case 3op :
18 Randomly select three indexes 1 2 3, ,r r r (1 2 3r r r i) from E ;
19 Use Eqs. (15) and (8) with F to produce a candidate solution 1y

;

20 return 1y

;
21 case 4op :
22 Randomly select five distinct indexes 1 2 3 4 5, , , ,r r r r r from E ;
23 Use Eqs. (16) and (8) with F to produce a candidate solution 1y

;

24 return 1y

;
25 end

The “DE/rand/1” strategy is the most commonly used strategy in many DE variants [3, 19-20, 25,

36, 38, 42, 44-45], where all difference vectors are randomly selected from the evolved population.

Consequently, it has no bias to any special search direction, and thus chooses a new search direction at

random each time. In the “DE/rand/2” and “DE/current-to-rand/2” strategies, two difference vectors are

employed, which may lead to larger perturbation than “DE/rand/1” and “DE/current-to-rand/1” that are

coupled with only one difference vector. Thus, they can produce the trial vectors with more significant

difference than “DE/rand/1” and “DE/current-to-rand/1”. It is noted that in operator pool 1op , the

difference vectors
2 ,r gx

 and
4 ,r gx

in “DE/rand/2” are always better than

3 ,r gx

 and
5 ,r gx

by

switching their positions. In this way, the base vector will be mutated following the better evolutionary

direction to speed up convergence. In the same way, “DE/current-to-rand/1” in operator pool 2op also

employs the above difference vector selection strategy to speed up convergence. To clearly illustrate

the implementation of the composite operator pools, the corresponding pseudo-code is given in

10

Algorithm 2, the input of which is op (the selected operator pool), F (the adaptive scaling factor

introduced in Section 3.3), E (the index set of parents), and ,i gx

 (the target vector at the current

generation). The output of Algorithm 2 are two offspring (1y

, 2y

) for 1op and 2op , and one offspring

(1y

) for 3op and 4op .

3.2 Adaptive Composite Operator Selection

It has been experimentally found that different DE mutation strategies coupled with different

control parameter settings have shown several advantages in solving different types of SOPs [9, 20, 25,

29, 38, 42]. Thus, they can be effectively combined to enhance overall performance. In this paper, four

operator pools introduced in Section 3.1 are used to produce new solutions. In order to select a better

operator pool, a bandit-based operator pools selection scheme is employed. In this approach, it can

adaptively determine the preferred operator pool according to the historical search experience [29]. At

first, a two-dimensional performance array (2)()Array W is used to record the impact caused by the

application of an operator pool during the evolutionary process. (1)()Array j (1,2,...,j W) will

mark the indexes (1,2,3,4)i for the used operator pools iop , and (2)()Array j (1,2,...,j W)

will memorize the fitness improvement rates (FIR) that are obtained with the used operator pools iop
(1,2,3,4)i , as defined in Eq. (17).

 i i
i

i

pf cf
FIR

pf

 (17)

where ipf is the fitness value of the parent, and icf is the fitness value of the offspring. This array

follows the first-in, first-out (FIFO) mechanism. That is to say, the recently used operator pool and its

FIR value are added at the tail of this array, while the first one in the array is removed. Based on this

array, the iReward (1,2,3,4)i is calculated by summarizing all FIR values obtained by each

operator pool iop , and then the credit value iFRR assigned to the operator pool iop is obtained as

follows.

 4

1

i
i

jj

Reward
FRR

Reward

 (18)

Then, the iFRR values and the times of operator pool (stored in in for ([1,4])iop i) selected in

the recent W applications are employed to pick out a better operator pool using Eq. (19).

4

1

{1,2,3,4}

2 ln
arg max

jj
i i

i i

n
op FRR C

n

 (19)

where C is a scaling factor to control the trade-off between the fitness improvement rates and the

number of used operator pools. Based on our experiments, too small values or too large values of C

will have a negative impact on the optimization performance when solving certain types of MOPs.

Thus, it is suggested to select a value of C within the range [4, 7]. In this study, C is set to 5.0 as

referred from [29]. Therefore, the operator pool ([1, 4])iop i that can give the maximum value of Eq.

(19) will be selected to produce the offspring. It is noted that once the offspring are generated using the

selected operator pool, this FIR array will be updated and used to calculate a new maximum value of

11

Eq. (19). By this way, the best operator pool can be adaptively adjusted. The pseudo-code for this

operator pool selection mechanism is provided in Algorithm 3 and its input is the performance array

(2)()Array W . Based on the performance of the W most recent applications, Algorithm 3 will

adaptively return a selected operator pool.

Algorithm 3: Operator_Selection((2)()Array W)
1 Initialize 0iReward for all iop (1,2,3, 4)i ;
2 Set 0in (1, 2,3,4)i ;
3 for 1 to j W
4 (1)()i Array j ;
5 (2)()i iReward Reward Array j ;
6 in ;
7 end
8

4
1 iiRewardSum Reward ;

9 for 1 to 4i
10 i iFRR Reward RewardSum ;
11 end
12 Select an operator pool iop ([1, 4])i using Eq. (19);
13 return iop ;

3.3 Adaptive Parameter Control Strategy

The parameter adaptation schemes in DE have been experimentally found to be very competitive

in solving different types of SOPs [20, 42]. In this paper, the adaptive parameter strategy in JADE [52]

is modified to tackle MOPs. At each generation, the scaling factor F used in the operator pools is

independently generated by
 (,0.1)F Cauchy F (20)

where (, 0.1)Cauchy F is a random real number sampled from a Cauchy distribution with location

parameter F and scale parameter 0.1. The value of F

will be regenerated if 0F or 1F . This

location parameter F of the Cauchy distribution is initialized to 0.5 and is then updated at the end of

each generation, as follows.
 = (1) ()F F POW successw w mF ea FF n (21)

where Fw

is a pre-defined weight factor, and the set successF

collects all the successful scaling factors

that can generate better trial vectors at each generation. The ()POWmean function stands for the power

mean [20], as given by

1/

() (/ | |)
success

kk
POW success success

x F

mean F x F

 (22)

where successF denotes the cardinality of the set successF , and k is set to 1.5 as it gives the best results

on a wide variety of optimization problems [20]. As revealed by our parameter tuning experiments, a

small random perturbation added to the weight term Fw can enhance the performance of

MOEA/D-CDE. Thus,
 Fw

is randomly generated from [0.8, 1] in this paper.

It is noted that the adaptive parameter control strategy is only employed for the scaling factor F.

All the parameter settings of the DE operator pools are given as follows.

(1) In 1op , the parameter F uses the above adaptive parameter control strategy, while CR is set to

12

1 for “DE/rand/1”. The parameters F and CR are respectively set to 0.2 and 0.8, and K is a uniformly

distributed random value generated in [0, 1] for “DE/rand/2”.

(2) In 2op , the parameter F uses the above adaptive parameter control strategy, while CR is set to

1 for “DE/rand/2”. The parameters F and CR are all set to 1 for “DE/current-to-rand/1”.

(3) In 3op , the parameter F uses the above adaptive parameter control strategy, while CR is set to

1 and K is set to a uniformly distributed random value in [0, 1]

for “DE/current-to-rand/2”.

(4) In 4op , the parameter F uses the above adaptive parameter control strategy, while CR is set to

1 for “DE/current-to-rand/1”.

3.4 The Complete Algorithm MOEA/D-CDE

In the above subsections, the four composite DE operator pools used in this paper were introduced

in Section 3.1, and then an adaptive composite operator selection described in Section 3.2 was

employed to pick out a better operator pool for each individual. Besides that, an adaptive parameter

approach (introduced in Section 3.3) was exploited to adjust the scaling factor F in each DE operator

pool. These proposed approaches are the main contributions of this paper, which greatly enhance the

optimization performance and algorithmic robustness. By embedding the proposed approaches into the

pseudo-code of MOEA/D-DRA, we gave rise to our proposed MOEA/D-CDE. To clearly introduce the

implementation of MOEA/D-CDE, its pseudo-code is given in Algorithm 4.

In the initialization phase, similar to MOEA/D-DRA, some relevant parameters (i.e., g , A , i ,

w

, P , ()B i and *z

) are initialized in lines 1-2 of Algorithm 4. Besides that, a two-dimensional

performance array (2)()Array W used to store the fitness improvement rates and the corresponding

index point _Array index are also initially set in line 3.

During the evolutionary process, the subproblems to be solved are selected into set I using a

dynamic resource assignment mechanism, as shown in line 5. For each subproblem i in set I, an

operator pool op is selected in lines 8-12, where each operator pool is forced to be used once in the first

four selections. Then, the parent set E is chosen in lines 13-17 and the scaling factor F used in operator

pool op is sampled by Eq. (20) (line 18). With these parameters (i.e., op, E, F, ,i gx), the offspring are

generated using the composite operator pools as introduced in Algorithm 2 (line 19), and further

mutated using polynomial mutation in line 22. The new offspring (1y

, 2y

 generated by 1op or 2op ,

and 1y

 produced by 3op or 3op) are used to update the reference point *z

 in lines 23-27, and

renew at most rn individuals from the parents set E as shown in lines 28-37, where indexof()op

returns the index of operator pool op . The fitness improvement rates caused by op will be stored in

(2)()Array W (lines 39-40). Once all the individuals in set I are evolved, the successful values of F are

used to update the F value using Eqs. (21)-(22), as shown in line 43. At last, the utility i of each

subproblem i ([1,])i N is updated at each 50 generations using Eq. (10), as illustrated in lines 45-47.

The above evolutionary phase will be repeated until reaching the stopping criterion (e.g., a maximum

number of generations or function evaluations). At the end of algorithm, all the solutions in population

P are reported as the final approximation of the PF.

13

Algorithm 4: The Pseudo-code of MOEA/D-CDE
1 Set 0g , {1,2,..., }A N , and 1i for each 1,2,...,i N ;
2 Initialize 1 2{ , ,..., }Nw w w w

, 1, 2, ,{ , , ..., }g g N gP x x x

, 1 2() { , ,..., }TB i i i i and * * * *

1 2(, ,...,)mz z z z

;
3 Set ()() 0Array i j for each 1,2i and 1,2,...,j W , _ 1Array index ;
4 while stopping criterion is not satisfied

5
Select m indexes of the subproblems whose objectives are respectively m objectives ()if x

 in Eq. (1) to

form the set I; Other / 5N m subproblems are chosen by using 10-tournament selection based on i ,
which is then added into I;

6 for 1j to I

7 ()i I j ;
8 if 4j && 0g
9 jop op ;

10 else
11 op = Operator_Selection((2)()Array W) (Algorithm 3);
12 end
13 if rand
14 ();E B i
15 else
16 ;E A
17 end
18 The scaling factor F used in operator pool op is generated by Eq. (20);
19 { 1y

, 2y

}=Composite_Operator(op , F , E , ,i gx

)(Algorithm 2);// 2y

 is null when op is 3op or 4op
20 for 1l to 2
21 if (ly

 is not null)

22 Apply mutation operator (Eq. (12)) on ly

 to produce a new solution ly

;
23 for 1k to m
24 if * ()k k lz f y

25 * ()k k lz f y

26 end
27 end
28 0c , lE E ;
29 while rc n && lE is not null
30 Randomly pick an index k from lE ;
31 * * *

, ,(| ,) (| ,) (| ,)tch tch tch
i k g k l k k g kg x w z g y w z g x w z

32 if 0i
33 Replace ,k gx

 with ly

, and set c=c+1;

34 indexof() indexof()op o ipFIR FIR ;
35 end
36 Delete k from lE ;
37 end
38 end
39 [0][_] indexof()Array Array index op and indexof()[1][_] opArray Array index FIR ;
40 _ _ mod ;Array index Array index W
41 end
42 end
43 Update F using Eqs. (21)-(22);
44 1g g ;
45 if mod(,50) 0g
46 update the utility of each subproblem using Eq. (10);
47 end
48 end
49 return P;

4 Experimental Studies

In this section, several experimental studies are conducted in order to analyze the advantages of

14

MOEA/D-CDE. First, some background of our experiments is presented. 19 test instances are then

introduced in Section 4.1, and two performance measures are described in Section 4.2 for examining

both convergence and population diversity. Section 4.3 provides the parameters settings for all the

compared algorithms. Second, MOEA/D-CDE is compared to five competitive MOEA/D variants, i.e.,

MOEA/D-DE [36], MOEA/D-DRA [55], ENS-MOEA/D [57], MOEA/D-FRRMAB [29] and

MOEA/D-STM [28], and the relevant discussions on their performance comparison are given in

Section 4.4. Third, the effectiveness of the composite DE operator pools and the proposed adaptive

parameter control strategy are respectively analyzed in Sections 4.4 and 4.5. Finally, the time

complexity analysis of our algorithm is provided in Section 4.6.

4.1 Test Instances

In order to evaluate the performance of MOEA/D-CDE, 19 unconstrained test instances are

employed here as our benchmark problems for conducting the empirical study. They can be classified

into two test problem series, i.e., the UF and the WFG problem series. More specifically, UF1-UF10

are the benchmark functions adopted in the CEC2009 competition [56], and they are characterized with

very complicated PS in decision space; WFG1-WFG9 are designed to have a wide range of complex

characteristics [18], including non-separable, deceptive, degenerate problems, mixed PF shapes and

variable dependencies. UF and WFG test problems are difficult to be optimized, and have already been

used in many MOEAs [28-30, 36, 45] to investigate their optimization performance. The number of

decision variables for UF1-UF10 is set to 30, while the numbers of position-related and

distance-related decision variables for WFG1-WFG9 are respectively set to 8 and 2. Moreover,

UF1-UF7 and WFG1-WFG9 are bi-objective test problems, while UF8-UF10 are three-objective test

problems. More detailed information about the UF and the WFG test problems can be respectively

found in [56, 18].

4.2 Performance Measures and Experimental Settings

4.2.1 Performance Metrics

After the approximation sets are obtained by the compared algorithms, two performance measures

are used to assess their performance [59], i.e., inverted generational distance (IGD) and Hypervolume

(HV). These performance measures can assess both convergence and diversity for the approximation

sets and they are defined next.

IGD: Let *P be a set of Pareto-optimal points uniformly sampled along the true PF, and P be

an approximation set obtained by MOEA. The IGD value of P is computed as follows [31].

 **
*

,
,

| |
x P

dist x P
IGD P P

P

 (23)

where ,dist x P

 is the Euclidean distance between the point x

 and its nearest neighbor in P , and
*| |P is the cardinality of *P . The true PF of each test problem has to be known in advance when

calculating IGD. In our empirical studies, 1000 and 10000 uniformly distributed points are respectively

sampled along the PF for the bi-objective and the three-objective test instances. Generally, a lower IGD

value indicates the better convergence and diversity of P .

15

HV: Let * * * *
1 2(, ,...,)T

mz z z z

 be a reference point in the objective space that is dominated by all

the Pareto-optimal points. HV measures the size of the objective space dominated by the solutions in

P and bounded by *z

, and is defined as follows [58].

 * *
1 1, ... ,m m

x P
HV P VOL f x z f x z

 (24)

where the function VOL(∙) means the Lebesgue measure. In our experiments, the normalized objective

function values are used to compute HV and the reference points are set to (2.0, 2.0) and (2.0, 2.0, 2.0)

respectively for bi-objective and three-objective test problems. A larger HV value is always preferred as

it indicates a better quality of P for approximating the entire PF.

4.2.2 Experimental Settings for the Compared Algorithms

In this study, our algorithm MOEA/D-CDE is compared with respect to five competitive

MOEA/D variants, i.e., MOEA/D-DE [36], MOEA/D-DRA [55], ENS-MOEA/D [57],

MOEA/D-FRRMAB [29] and MOEA/D-STM [28] on all the UF and WFG test problems. It is noted

that the Tchebycheff approach defined in Eq. (6) is used as the decomposition method for all the

compared algorithms. The parameters settings of MOEA/D-DE [36], MOEA/D-DRA [55],

ENS-MOEA/D [57], MOEA/D-FRRMAB [29] and MOEA/D-STM [28] are respectively listed in

Table 1. All these parameters settings used in this paper are suggested by their authors.

Table 1
The parameters settings of the compared algorithms

MOEA/D-DE 0.5F , 1.0CR , 2rn .

MOEA/D-DRA 0.5F , 1.0CR , 0.1T N , 0.01rn N .

ENS-MOEA/D 0.5F , 1.0CR , 50LP .

MOEA/D-FRRMAB 0.5F , 1.0CR , 0.5K , 5.0C , 0.5W N , 1.0D , 2rn .

MOEA/D-STM 0.5F , 1.0CR , 2rn .

MOEA/D-CDE 2rn , 0.5W N , 5.0C .

In Table 1, F and CR are respectively the scaling factor and crossover rate used in DE. T denotes

the neighborhood size and rn indicates the maximum number of parents replaced by each new

offspring. For ENS-MOEA/D, LP defines the number of generations to update the selection probability

for each neighborhood size. The possible neighborhood sizes for bi-objective and three-objective

problems in ENS-MOEA/D are respectively set to {30, 60, 90, 120} and {60, 80, 100, 120, 140}. K is

also a scaling factor used in MOEA/D-FRRMAB. C, W and D are the three control parameters used in

the bandit-based adaptive operator selection of MOEA/D-FRRMAB. For all the compared algorithms,

the population size N is set to 600 for UF1-UF7 and 1000 for UF8-UF10, while N is set to 100 for

WFG1-WFG9; the maximum number of function evaluations is set to 600000 for the UF test problems

and to 25000 for the WFG test problems. All the compared algorithms are implemented in JAVA,

except for ENS-MOEA/D which was implemented in MATLAB. The parameters settings of our

proposed MOEA/D-CDE algorithm are further clarified as follows. The probability for polynomial

mutation is set as 1/mp n , and its distribution index is set to 20, i.e., 20 . The settings of the

control parameters CR, F and K in the four operator pools adopted are explained in Section 3.3. The

neighborhood size T is set to 20 and rn is set to 2. The probability that controls the selection of

16

parent vectors from the entire population or the neighborhood is set to 0.9. As the size of the

performance array W used in the adaptive composite operator selection strategy will lower the

optimization performance when it is set to a very small value, it is suggested to set W not smaller than

0.5 N (we set W as 0.5 N in our experiments). Each compared algorithm is run by 30

independent times for each test problem. Experimental results are collected in the corresponding

comparison tables, and the best mean results of IGD and HV are highlighted in boldface. Moreover, in

order to have a statistically sound conclusion, a popular nonparametric test (i.e., Wilcoxon’s rank sum

test) was further conducted to assess the statistical significance of the difference between the results

obtained by MOEA/D-CDE and those obtained by the other algorithms with a significance level

 =0.05.

4.3 Comparison of MOEA/D-CDE with Five MOEA/D Variants

4.3.1 Performance Comparison on UF instances

In this subsection, MOEA/D-CDE is compared with respect to five MOEA/D variants, namely,

MOEA/D-DE, MOEA/D-DRA, ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM, on all the

UF test problems.
Table 2

Comparative results of all the algorithms adopted on the UF test problems regarding IGD

Algorithms
Problems

MOEA/D-
DE

MOEA/D-
DRA

ENS-MOE
A/D

MOEA/D-FR
RMAB

MOEA/D-
STM

MOEA/D-
CDE

UF1
Mean 7.759E-04 + 1.006E-03 - 8.734E-04 - 8.094E-04 ≈ 8.721E-04 - 8.072E-04
Std 5.33E-05 5.51E-05 5.32E-05 5.88E-05 6.23E-05 2.83E-05

UF2
Mean 1.946E-03 - 1.698E-03 - 2.241E-03 - 1.171E-03 - 1.473E-03 - 9.283E-04
Std 6.49E-04 1.63E-04 5.13E-04 3.40E-04 8.66E-04 1.31E-04

UF3
Mean 3.134E-03 - 9.659E-04 + 1.437E-03 ≈ 1.098E-03 + 2.509E-03 - 1.443E-03
Std 2.59E-03 8.30E-05 2.15E-03 2.95E-04 2.55E-03 8.10E-04

UF4
Mean 5.151E-02 - 5.540E-02 - 4.831E-02 - 4.893E-02 - 4.775E-02 - 3.190E-02
Std 2.92E-03 3.80E-03 2.81E-03 2.91E-03 3.16E-03 6.77E-04

UF5
Mean 1.943E-01 - 1.963E-01 - 2.680E-01 - 1.918E-01 - 1.937E-01 - 9.101E-02
Std 5.25E-02 7.05E-02 5.15E-03 5.98E-02 5.97E-02 2.73E-02

UF6
Mean 7.186E-02 - 1.676E-01 - 6.133E-02 - 9.073E-02 - 7.030E-02 - 5.903E-02
Std 3.09E-02 1.89E-01 4.31E-02 1.31E-01 3.52E-02 6.39E-03

UF7
Mean 8.940E-04 - 1.687E-03 - 8.714E-04 - 8.906E-04 - 8.855E-04 - 8.006E-04
Std 7.80E-05 2.50E-03 4.24E-04 9.71E-05 4.43E-05 1.66E-04

UF8
Mean 4.002E-02 - 3.260E-02 - 3.205E-02 - 3.022E-02 ≈ 1.816E-02 + 2.908E-02
Std 5.45E-03 2.81E-03 2.63E-03 2.29E-03 4.67E-04 2.53E-03

UF9
Mean 3.027E-02 - 1.092E-01 - 5.676E-02 - 3.201E-02 - 1.617E-02 + 2.154E-02
Std 3.03E-02 4.93E-02 3.15E-02 3.56E-02 4.66E-04 5.66E-02

UF10
Mean 3.713E-01 - 3.143E-01 - 3.138E-01 - 3.432E-01 - 3.221E-01 - 2.168E-01
Std 5.23E-02 7.77E-02 4.32E-02 4.93E-02 4.00E-02 4.31E-02

-/+/≈ 9/1/0 9/1/0 9/0/1 7/1/2 8/2/0

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to
that of MOEA/D-CDE, according to the Wilcoxon’s rank sum test at a 0.05 significance level

Table 2 provides the comparative results of all the algorithms adopted, in which the mean IGD

values and the standard deviation (Std) from 30 independent runs are listed. These simulation results

17

show that MOEA/D-CDE performs best on UF2, UF4-UF7 and UF10 when compared to the other

algorithms. Particularly, MOEA/D-CDE performs better than MOEA/D-DE, MOEA/D-DRA,

ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM on 9, 9, 9, 7 and 8 out of 10 UF test

problems, while MOEA/D-CDE is only worse than MOEA/D-DE on UF1, worse than MOEA/D-DRA

on UF3, worse than MOEA/D-FRRMAB on UF3, and worse than MOEA/D-STM on UF8 and UF9.

Moreover, the Wilcoxon’s rank sum test reveals that MOEA/D-CDE performs similarly to

ENS-MOEA/D on UF3 and to MOEA/D-FRRMAB on UF1 and UF8. Based on the summary in the

last row of Table 2, it is reasonable to conclude that MOEA/D-CDE is better than MOEA/D-DE,

MOEA/D-DRA, ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM when considering all the

UF test problems with respect to IGD. This clearly indicates that our proposed approach enhances the

optimization performance of MOEA/D-CDE.
Table 3

Comparative results of all the algorithms adopted on the UF test problems regarding HV

Algorithms
Problems

MOEA/D-
DE

MOEA/D-
DRA

ENS-MOE
A/D

MOEA/D-FR
RMAB

MOEA/D-
STM

MOEA/D-
CDE

UF1
Mean 3.6597 - 3.6613 - 3.6529 - 3.6624 ≈ 3.6635 ≈ 3.6645
Std 1.59E-03 1.08E-03 1.01E-03 1.57E-03 6.59E-04 8.54E-04

UF2
Mean 3.6552 - 3.6558 - 3.6502 - 3.6565 - 3.6580 ≈ 3.6643
Std 4.74E-03 8.15E-03 5.18E-03 7.71E-03 2.35E-03 5.42E-03

UF3
Mean 3.6401 - 3.6653 + 3.6598 ≈ 3.6234 - 3.6404 - 3.6636
Std 2.40E-02 1.53E-02 1.56E-03 7.63E-02 2.59E-02 4.57E-03

UF4
Mean 3.1930 - 3.1560 - 3.1692 - 3.1717 - 3.2018 - 3.2438
Std 1.20E-02 2.33E-02 1.90E-02 1.58E-02 7.98E-03 2.14E-02

UF5
Mean 3.1658 - 2.7735 - 2.6537 - 2.7587 - 3.2919 + 3.2631
Std 3.27E-01 3.81E-01 3.04E-01 3.06E-01 3.55E-01 3.28E-01

UF6
Mean 3.0686 - 2.9021 - 3.1105 - 2.9839 - 3.1339 - 3.2465
Std 1.04E-01 3.22E-01 2.15E-01 3.25E-01 1.05E-01 1.38E-01

UF7
Mean 3.4889 - 3.4807 - 3.4817 - 3.4898 - 3.4945 ≈ 3.4968
Std 4.35E-03 4.15E-02 2.08E-01 6.16E-03 1.40E-03 3.25E-03

UF8
Mean 7.3543 - 7.3627 - 7.3792 - 7.3828 ≈ 7.4325 + 7.3927
Std 1.53E-02 2.12E-02 1.03E-02 1.15E-02 3.12E-02 2.02E-02

UF9
Mean 7.5523 - 7.3836 - 7.5623 - 7.6482 ≈ 7.6852 ≈ 7.6828
Std 1.52E-01 2.03E-01 1.32E-01 1.63E-01 2.28E-01 1.41E-01

UF10
Mean 3.5327 - 3.7621 - 3.8123 ≈ 3.6212 - 2.8217 - 3.8237
Std 2.98E-01 2.51E-01 5.82E-01 3.38E-01 5.12E-01 2.51E-01

-/+/≈ 10/0/0 9/1/0 8/0/2 7/0/3 4/2/4

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to
that of MOEA/D-CDE, according to the Wilcoxon’s rank sum test at a 0.05 significance level

Table 3 provides the comparative results of all the algorithms adopted on the UF test problems

using HV. It is noted that these HV results in Table 3 shows a slight difference with the IGD results in

Table 2. This is possible as pointed out in [24] that the performance metrics of IGD and HV show high

consistencies on convex PFs and certain contradictions on concave PFs. As observed from Table 3,

MOEA/D-CDE performs best on 6 (i.e., UF1-UF2, UF4, UF6-UF7 and UF10) out of 10 UF test

problems. In more detail, MOEA/D-CDE performs better than MOEA/D-DE, MOEA/D-DRA,

ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM on 10, 9, 8, 7 and 4 out of 10 UF test

problems. Nevertheless, MOEA/D-CDE is beaten by MOEA/D-DRA on UF3 and MOEA/D-STM on

18

UF5 and UF8. The Wilcoxon’s rank sum test indicates that MOEA/D-CDE obtains statistically similar

results to ENS-MOEA/D on UF3 and UF10, to MOEA/D- FRRMAB on UF1, UF8 and UF9, and to

MOEA/D-STM on UF1-UF2, UF7 and UF9. As summarized in the last row of Table 3, MOEA/D-CDE

is better than or similar to MOEA/D-DE, ENS-MOEA/D and MOEA/D-FRRMAB on all the UF test

problems. Regarding the comparison with MOEA/D-DRA and MOEA/D-STM, MOEA/D-CDE

performs better or similarly on more than half of the UF test problems. Therefore, the advantages of

MOEA/D-CDE are further confirmed by using HV.

0 10 20 30 40 50

10
-3

10
-2

10
-1

10
0

Number of Function Evaluation(x12000)

IG
D

 M
et

ric
 V

al
ue

s

UF 1

30 40 50
6

8

10

12
x 10

-4

0 10 20 30 40 50

10
-3

10
-2

10
-1

10
0

Number of Function Evaluation(x12000)

IG
D

 M
et

ric
 V

al
ue

s

UF 2

30 40 50
0

2

4

6

8
x 10

-3

0 10 20 30 40 50

10
-3

10
-2

10
-1

10
0

Number of Function Evaluation(x12000)

IG
D

 M
et

ric
 V

al
ue

s

UF 3

30 40 50
0

1

2

3

4
x 10

-3

 (a) (b) (c)

0 10 20 30 40 50

10
-1

10
0

Number of Function Evaluation(x12000)

IG
D

 M
et

ric
 V

al
ue

s

UF 4

30 40 50
0.02

0.04

0.06

0.08

0 10 20 30 40 50

10
-1

10
0

Number of Function Evaluation(x12000)

IG
D

 M
et

ric
 V

al
ue

s

UF 5

30 40 50
0

0.1

0.2

0.3

0.4

0 10 20 30 40 50

10
-2

10
-1

10
0

Number of Function Evaluation(x12000)

IG
D

 M
et

ric
 V

al
ue

s

UF 6

30 40 50
0.05

0.06

0.07

0.08

(d) (e) (f)

0 10 20 30 40 50

10
-3

10
-2

10
-1

10
0

Number of Function Evaluation(x12000)

IG
D

 M
et

ric
 V

al
ue

s

UF 7

30 40 50
0

1

2

3
x 10

-3

0 10 20 30 40 50

10
-1

10
0

Number of Function Evaluation(x12000)

IG
D

 M
et

ric
 V

al
ue

s

UF 8

30 40 50
0.01

0.02

0.03

0.04

0.05

0 10 20 30 40 50

10
-2

10
-1

10
0

Number of Function Evaluation(x12000)

IG
D

 M
et

ric
 V

al
ue

s

UF 9

30 40 50
0.015

0.02

0.025

0.03

(h) (i) (j)

0 10 20 30 40 50

10
0

Number of Function Evaluation(x12000)

IG
D

 M
et

ric
 V

al
ue

s

UF 10

MOEA/D-DE
MOEA/D-DRA
ENS-MOEA/D
MOEA/D-FRRMAB
MOEA/D-STM
MOEA/D-CDE

30 40 50
0

0.2

0.4

0.6

0.8

(k)

Fig. 1. Evolutionary curves of the median IGD values versus the number of function evaluations on the UF test problems.

19

In order to provide an overview of the evolutionary progress for all the compared algorithms,

Figure 1 plots the evolutionary curves of the median IGD values versus the number of function

evaluations on each UF test problem. The plots in Fig. 1 illustrate that MOEA/D-CDE gradually

reduces the median IGD values and gets closer to the true PF as we approach the maximum number of

generations. One important phenomenon observed from Fig. 1 is that MOEA/D-CDE may perform

worse at early stages of the evolutionary process, but can outperform the other algorithms at later

stages. This could be due to the fact that MOEA/D-CDE uses an adaptive operator selection

mechanism to pick up a better set of operators from our four composite operator pools. In this way, the

exploratory capability of MOEA/D-CDE is sufficiently enhanced to avoid the intrinsic limitation of

using a single DE operator, which may produce stagnation at later stages of the evolutionary process.

From Fig. 1, it is clear that MOEA/D-CDE is significantly better than the other algorithms on UF2,

UF4, UF5 and UF10. Even for UF1, UF3, UF6, and UF7, MOEA/D-CDE also shows a competitive

performance among all the compared algorithms. Only for UF8 and UF9, MOEA/D-CDE performs

significantly worse than MOEA/D- STM.

4.3.2 Performance Comparison on WFG instances

Table 4 shows the performance comparison of all the compared algorithms on the WFG test

problems, regarding IGD. Experimental results in Table 4 indicate that MOEA/D-CDE is also

competitive in solving the WFG test problems. MOEA/D-CDE obtains the best IGD values on WFG1,

WFG3, WFG4, WFG6 and WFG7, while MOEA/D-FRRMAB and MOEA/D-DRA are respectively

best on WFG2 and WFG8. MOEA/D-STM performs best on WFG5 and WFG9.
Table 4

Comparative results of all the compared algorithms on the WFG test problems regarding IGD

Algorithms
Problems

MOEA/D-D
E

MOEA/D-D
RA

ENS-MOE
A/D

MOEA/D-F
RRMAB

MOEA/D-S
TM

MOEA/D-C
DE

WFG1
Mean 1.056E-01 - 1.263E-01 - 5.678E-01 - 2.559E-01 - 3.633E-02 - 2.482E-02
Std 1.06E-01 1.25E-01 2.07E-01 2.22E-01 5.09E-02 6.11E-03

WFG2
Mean 1.210E-01 - 7.528E-02 ≈ 1.764E-01 - 6.882E-02 + 9.908E-02 - 7.596E-02
Std 6.93E-02 1.88E-02 8.13E-02 2.32E-02 6.09E-02 5.11E-02

WFG3
Mean 1.316E-02 ≈ 1.314E-02 ≈ 1.341E-02 - 1.316E-02 ≈ 1.316E-02 ≈ 1.314E-02
Std 3.77E-05 2.82E-05 3.01E-04 3.56E-05 3.25E-05 2.25E-05

WFG4
Mean 1.776E-02 - 1.694E-02 - 1.644E-02 - 1.763E-02 - 1.651E-02 - 1.574E-02
Std 2.41E-03 1.74E-03 1.49E-03 1.46E-03 8.87E-04 4.87E-04

WFG5
Mean 6.723E-02 - 6.725E-02 ≈ 6.761E-02 - 6.721E-02 ≈ 6.710E-02 + 6.714E-02
Std 1.25E-04 1.18E-04 5.20E-04 1.59E-04 7.67E-05 9.54E-05

WFG6
Mean 2.661E-02 - 2.598E-02 - 2.902E-02 - 2.514E-02 - 2.133E-02 - 1.551E-02
Std 1.50E-02 6.99E-03 1.31E-02 1.25E-02 1.11E-02 4.20E-03

WFG7
Mean 2.134E-02 - 1.704E-02 - 2.023E-02 - 1.929E-02 - 1.657E-02 - 1.635E-02
Std 1.16E-02 1.39E-03 1.14E-02 9.47E-03 3.21E-04 2.36E-04

WFG8
Mean 3.887E-02 + 2.868E-02 + 3.558E-02 + 3.788E-02 + 4.755E-02 - 3.994E-02
Std 5.07E-03 3.71E-03 5.52E-02 4.84E-03 1.22E-02 4.67E-02

WFG9
Mean 1.513E-02 - 1.570E-02 - 1.638E-02 - 1.600E-02 - 1.474E-02 ≈ 1.480E-02
Std 3.27E-04 6.21E-04 1.08E-03 1.02E-03 2.54E-04 2.38E-04

-/+/≈ 7/1/1 5/1/3 8/1/0 5/2/2 6/1/2

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level

20

Table 5
Comparative results of all the compared algorithms on the WFG test problems regarding HV

Algorithms
Problems

MOEA/D-
DE

MOEA/D-
DRA

ENS-MOE
A/D

MOEA/D-
FRRMAB

MOEA/D-
STM

MOEA/D-C
DE

WFG1
Mean 5.5112 - 6.8664 - 5.9698 - 4.6059 - 7.0776 - 8.5524
Std 1.47E-01 1.61E-01 1.78E-01 1.52E-01 1.51E-01 8.12E-02

WFG2
Mean 8.0716 - 8.3403 - 5.8943 - 8.3308 - 8.1708 - 8.3756
Std 3.54E-01 6.58E-02 5.81E-02 1.07E-01 2.55E-01 2.99E-02

WFG3
Mean 7.9531 ≈ 7.9526 ≈ 7.7063 - 7.9516 ≈ 7.9517 ≈ 7.9520
Std 3.68E-03 2.09E-03 4.23E-04 7.17E-04 2.57E-03 6.73E-04

WFG4
Mean 5.2590 - 5.3676 - 5.2636 - 5.2300 - 5.2687 - 5.4940
Std 1.48E-01 1.03E-01 8.17E-02 1.23E-01 1.39E-01 6.27E-02

WFG5
Mean 5.1658 ≈ 5.1660 ≈ 4.1341 - 5.1642 - 5.1671 ≈ 5.1691
Std 6.66E-04 7.50E-04 3.15E-02 1.34E-03 6.80E-04 1.45E-02

WFG6
Mean 5.1764 - 4.9812 - 5.1296 - 5.2245 - 5.4106 - 5.5996
Std 5.14E-01 2.93E-01 6.69E-01 5.67E-01 4.95E-01 2.33E-01

WFG7
Mean 5.7808 ≈ 5.8893 + 5.6743 - 5.8225 ≈ 5.7796 ≈ 5.7693
Std 3.17E-01 1.88E-01 1.63E-01 1.33E-01 2.30E-01 1.35E-01

WFG8
Mean 4.8798 - 5.1071 + 4.6298 - 4.8987 - 4.7161 - 4.9429
Std 2.52E-01 9.03E-02 1.39E-01 2.05E-01 3.16E-01 1.23E-01

WFG9
Mean 5.6016 - 5.6023 - 5.6012 - 5.5993 - 5.6033 - 5.6044
Std 5.58E-03 1.12E-02 1.49E-02 4.27E-03 1.22E-02 2.93E-03

-/+/≈ 6/0/3 5/2/2 9/0/0 7/0/2 6/0/3

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level

As observed from Table 4, MOEA/D-CDE and MOEA/D-STM perform significantly better than

MOEA/D-DE, MOEA/D-DRA, ENS-MOEA/D and MOEA/D-FRRMAB on WFG1. Regarding WFG2,

MOEA/D-DE and ENS-MOEA/D cannot solve it very well. For WFG3-WFG9, all the compared

algorithms can properly approximate the true PFs, as their IGD results are all under the accuracy level

of 10-2. The Wilcoxon rank sum test shows that MOEA/D-CDE is similar to MOEA/D-DE on WFG3,

to MOEA/D-DRA on WFG2, WFG3 and WFG5, to MOEA/D-FRRMAB on WFG3 and WFG5, and to

MOEA/D-STM on WFG3 and WFG9. To conclude, MOEA/D-CDE performs better than or similarly

to MOEA/D-DE, MOEA/D-DRA, ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM on at

least 7 out of 9 WFG test problems, which further confirms the advantages of our algorithm. It is worth

noting that MOEA/D-CDE and MOEA/D-FRRMAB have shown a comparable performance on most

of the WFG test problems. This is mainly because both of them are designed based on the adaptive

selection of DE operators. However, our experimental results validate that our proposed algorithm with

composite DE operator pools has a superior overall performance.

Table 5 provides comparative results of all the compared algorithms on the WFG test problems

regarding HV. It is observed that MOEA/D-CDE performs best on 6 (i.e., WFG1, WFG2,

WFG4-WFG6, and WFG9) out of 9 WFG test problems. In more detail, MOEA/D-CDE performs

better than or similarly to MOEA/D-DE, ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM on

all the WFG test problems. Regarding the comparison with MOEA/D-DRA, MOEA/D-CDE performs

better or similarly on 7 out of 9 WFG test problems. These experimental results with respect to HV also

confirm the advantages of MOEA/D-CDE, when compared to the other algorithms in solving all the

WFG test problems.

21

Table 6
Comparative results of all the MOEA/D-CDE variants on the UF test problems regarding IGD

Algorithms
Problems

CDE-op.1 CDE-op.2 CDE-op.3 CDE-op.4 CDE-op.5
MOEA/
D-CDE

UF1
Mean 8.702E-04 - 9.019E-04 - 8.201E-04 ≈ 8.266E-04 - 7.976E-04 + 8.072E-04
Std 3.15E-05 4.08E-05 4.59E-05 8.84E-05 1.59E-05 2.83E-05

UF2
Mean 1.185E-03 - 1.271E-03 - 1.097E-03 - 5.872E-03 - 1.182E-03 - 9.283E-04
Std 4.55E-04 3.03E-04 2.83E-04 1.52E-02 6.83E-04 1.31E-04

UF3
Mean 1.285E-03 + 2.407E-03 - 2.669E-03 - 9.876E-03 - 2.086E-03 - 1.443E-03
Std 7.70E-04 1.84E-03 1.66E-03 1.29E-02 1.90E-03 8.10E-04

UF4
Mean 2.899E-02 + 4.408E-02 - 5.206E-02 - 5.366E-02 - 3.289E-02 ≈ 3.190E-02
Std 4.65E-04 1.46E-03 2.70E-03 3.56E-03 5.94E-04 6.77E-04

UF5
Mean 9.201E-02 ≈ 1.988E-01 - 1.671E-01 - 2.519E-01 - 8.413E-02 + 9.101E-02
Std 6.43E-02 5.69E-02 6.33E-02 1.08E-01 1.01E-02 2.73E-02

UF6
Mean 5.527E-02 ≈ 1.035E-01 - 7.106E-02 - 3.034E-01 - 6.994E-02 - 5.903E-02
Std 4.73E-03 1.34E-01 6.57E-02 1.75E-01 4.76E-02 6.39E-03

UF7
Mean 8.611E-04 - 9.281E-04 - 9.743E-04 - 3.052E-03 - 8.091E-04 ≈ 8.006E-04
Std 2.36E-05 3.45E-05 2.30E-04 3.98E-03 1.48E-04 1.66E-04

UF8
Mean 3.887E-02 - 3.081E-02 ≈ 6.032E-02 - 2.076E-02 + 5.088E-02 - 2.908E-02
Std 4.82E-03 1.38E-02 1.43E-02 2.09E-03 8.75E-03 2.53E-03

UF9
Mean 3.033E-02 - 5.005E-02 - 4.035E-02 - 4.428E-02 - 4.481E-02 - 2.154E-02
Std 2.90E-02 4.95E-02 4.08E-02 4.84E-02 4.86E-02 5.66E-02

UF10
Mean 2.239E-01 ≈ 3.997E-01 - 2.112E-01 ≈ 3.779E-01 - 2.434E-01 ≈ 2.168E-01
Std 5.46E-02 5.25E-02 3.98E-02 6.01E-02 5.93E-02 4.31E-02

-/+/≈ 5/2/3 9/0/1 8/0/2 9/1/0 5/2/3
 “-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar
to that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level

Table 7
Comparative results of all the compared algorithms on the UF test problems regarding HV
Algorithms

Problems CDE-op.1 CDE-op.2 CDE-op.3 CDE-op.4 CDE-op.5
MOEA/
D-CDE

UF1
Mean 3.6644 ≈ 3.6638 ≈ 3.6614 - 3.6619 - 3.6644 ≈ 3.6645
Std 1.55E-04 4.66E-04 1.59E-03 1.56E-03 2.42E-04 8.54E-04

UF2
Mean 3.6595 - 3.6581 - 3.6602 - 3.6301 - 3.6611 ≈ 3.6643
Std 8.27E-03 7.68E-03 5.49E-03 6.20E-02 6.25E-03 5.42E-03

UF3
Mean 3.6643 + 3.6625 ≈ 3.6607 - 3.6153 - 3.6630 ≈ 3.6636
Std 1.14E-03 2.59E-03 8.18E-03 8.92E-02 3.20E-03 4.57E-03

UF4
Mean 3.2348 - 3.2094 - 3.1829 - 3.1694 - 3.2268 - 3.2438
Std 1.70E-02 7.36E-03 1.11E-02 1.86E-02 2.26E-02 2.14E-02

UF5
Mean 3.3198 + 3.2794 ≈ 3.1351 - 2.6826 - 3.3203 + 3.2631
Std 2.31E-02 7.26E-01 1.47E-01 2.60E-01 2.04E-02 3.28E-01

UF6
Mean 3.2255 - 3.1165 - 3.1822 - 2.6161 - 3.2013 - 3.2465
Std 6.05E-02 3.11E-01 2.24E-01 3.12E-01 9.46E-02 1.38E-01

UF7
Mean 3.4977 ≈ 3.4957 ≈ 3.4943 - 3.4606 - 3.4975 ≈ 3.4968
Std 1.05E-03 2.35E-03 4.36E-03 5.07E-02 8.98E-04 3.25E-03

UF8
Mean 7.3866 - 7.3644 - 7.3653 - 7.4042 + 7.3835 - 7.3927
Std 1.52E-02 2.59E-02 1.74E-02 3.44E-03 1.62E-02 2.02E-02

UF9
Mean 7.6969 + 7.6112 - 7.6421 - 7.6329 - 7.6361 - 7.6828
Std 1.63E-01 2.26E-01 1.49E-01 2.12E-01 2.13E-01 1.41E-01

UF10
Mean 4.0851 + 3.7792 - 3.8265 ≈ 3.8686 + 3.7591 - 3.8237
Std 5.00E-01 3.01E-01 3.47E-01 3.15E-01 5.38E-01 2.51E-01

-/+/≈ 4/4/2 6/0/4 9/0/1 8/2/0 5/1/4
“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level

22

4.4 The Effectiveness of the Composite DE Operator Pools

In order to verify the effectiveness of our proposed composite DE operator pools, MOEA/D-CDE

is further compared with five MOEA/D-CDE variants, i.e., CDE-op.1, CDE-op.2, CDE-op.3,

CDE-op.4, and CDE-op.5. It is noted that CDE-op.i (i=1, 2, 3, 4) adopts the operator pool iop defined

in Section 3.1, while CDE-op.5 employs all the four DE mutation strategies used in this paper, i.e.,

“DE/rand/1”, “DE/rand/2”, “DE/current-to-rand/1” and “DE/rand/2”. In order to allow a fair

comparison, all the parameters settings for all the MOEA/D-CDE variants are set the same with those

of MOEA/D-CDE, as introduced in Section 4.3.

Table 6 provides comparative results of MOEA/D-CDE with respect to all the other MOEA/D-

CDE variants adopted here, on the UF test problems, regarding IGD. The experimental results show

that MOEA/D-CDE performs best on UF2, UF7, UF9 and UF10, CDE-op.1 is best on UF3, UF4 and

UF6, CDE-op.4 gets the best performance on UF8, and CDE-op.5 obtains the best results on UF1 and

UF5. The Wilcoxon’s rank sum test shows that MOEA/D-CDE performs similarly to CDE-op. 1 on

UF5, UF6 and UF10, to CDE-op.2 on UF8, to CDE-op.3 on UF1 and UF10, to CDE-op.5 on UF4, UF7

and UF10. These experimental results reveal that certain DE operator pools can perform best for some

UF test problems. However, the overall performance of MOEA/D-CDE is better when considering all

the UF test problems, as MOEA/D-CDE is respectively better than CDE-op.1, CDE-op.2, CDE-op.3,

CDE-op.4 and CDE-op.5 on 5, 9, 8, 9 and 5 out of 10 UF test problems. On the other hand, CDE-op.1,

CDE-op.4 and CDE-op.5 only outperform MOEA/D-CDE on 2, 1 and 2 test problems, respectively.

CDE-op.2 and CDE-op.3 are unable to outperform MOEA/D-CDE on any of the UF test problems.

Table 7 further gives comparative results of MOEA/D-CDE on the UF test problems using HV,

when compared to the other MOEA/D-CDE variants. As observed from Table 7, MOEA/D-CDE

performs best on 4 (i.e., UF1-UF2, UF4, UF6) out of 10 UF test problems. One difference with the

above IGD results is that MOEA/D-CDE can’t outperform CDE-op.1 when considering this HV metric,

but only obtains comparable results with CDE-op.1 as MOEA/D-CDE performs better than, similar to,

and worse than CDE-op.1 on 4, 2 and 4 UF test problems. For the remaining MOEA/D-CDE variants,

similar conclusions with that of the above IGD results can be made that MOEA/D-CDE performs

significantly better as it performs better than or similar to CDE-op.2, CDE-op.3, CDE-op.4 and

CDE-op.5 on 10, 10, 8 and 9 out of 10 UF test problems, respectively.

Table 8 provides comparative results of MOEA/D-CDE with respect to all the MOEA/D-CDE

variants on the WFG test problems, showing that MOEA/D-CDE is best on WFG8 and WFG9.

Furthermore, CDE-op.1 performs best on WFG1, WFG4 and WFG5, CDE-op.3 is best on WFG3,

CDE-op.4 obtains the best results on WFG7, and CDE-op.5 gets the best results on WFG2 and WFG6.

Regarding the comparison with CDE-op.2, CDE-op.3, and CDE-op.4, MOEA/D-CDE performs

significantly better as it is better or similar on 8 out of 9 WFG test problems. For CDE-op.1 and

CDE-op5, the Wilcoxon’s rank sum test shows that they obtain statistically similar results with

MOEA/D-CDE on 6 out of 9 WFG test problems. Besides that, MOEA/D-CDE performs better than

CDE-op.1 on WFG6, and CDE-op5 on WFG4 and WFG7. Therefore, MOEA/D-CDE performs slightly

better than CDE-op5, but worse than CDE-op.1.

23

Table 8
Comparative results of all the MOEA/D-CDE variants on the WFG test problems regarding IGD

Algorithms
Problems

CDE-op.1 CDE-op.2 CDE-op.3 CDE-op.4 CDE-op.5
MOEA/
D-CDE

WFG1
Mean 2.301E-02 + 9.733E-02 - 2.153E-01 - 1.632E-01 - 2. 451E-02 ≈ 2.482E-02
Std 2.20E-03 9.10E-02 1.82E-01 2.34E-01 6.02E-03 6.11E-03

WFG2
Mean 7.609E-02 ≈ 7.612E-02 ≈ 9.052E-02 - 1.517E-01 - 7.575E-02 ≈ 7.596E-02
Std 1.19E-02 3.91E-02 3.47E-02 8.33E-02 2.35E-02 5.11E-02

WFG3
Mean 1.313E-02 ≈ 1.320E-02 ≈ 1.280E-02 + 1.297E-02 + 1.315E-02 ≈ 1.314E-02
Std 2.13E-05 7.70E-05 2.16E-04 1.92E-04 2.35E-05 2.25E-05

WFG4
Mean 1.563E-02 + 1.843E-02 - 1.732E-02 - 1.710E-02 - 1.701E-02 - 1.574E-02
Std 6.44E-04 3.32E-03 1.57E-03 1.61E-03 2.28E-03 4.87E-04

WFG5
Mean 6.710E-02 ≈ 6.742E-02 - 6.754E-02 - 6.734E-02 - 6.712E-02 ≈ 6.714E-02
Std 5.42E-03 5.17E-03 1.41E-04 1.04E-04 5.52E-03 9.54E-05

WFG6
Mean 1.817E-02 - 1.557E-02 ≈ 2.677E-02 - 3.381E-02 - 1.399E-02 + 1.551E-02
Std 1.45E-02 1.38E-02 1.14E-02 5.30E-03 4.86E-05 4.20E-03

WFG7
Mean 1.636E-02 ≈ 1.678E-02 - 1.641E-02 ≈ 1.630E-02 ≈ 1.692E-02 - 1.635E-02
Std 1.87E-04 2.11E-04 9.76E-03 6.88E-03 1.96E-04 2.36E-04

WFG8
Mean 4.016E-02 ≈ 6.085E-02 - 5.382E-02 - 1.071E-01 - 4.102E-02 ≈ 3.994E-02
Std 4.51E-02 7.60E-02 4.64E-02 1.14E-01 4.54E-02 4.67E-02

WFG9
Mean 1.482E-02 ≈ 1.535E-02 - 1.594E-02 - 1.612E-02 - 1.504E-02 ≈ 1.480E-02
Std 1.56E-04 3.41E-04 1.38E-03 1.04E-03 3.57E-04 2.38E-04

-/+/≈ 1/2/6 6/0/3 7/1/1 7/1/1 2/1/6

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level

Table 9
Comparative results of all the MOEA/D-CDE variants on the WFG test problems regarding HV

Algorithms
Problems

CDE-op.1 CDE-op.2 CDE-op.3 CDE-op.4 CDE-op.5
MOEA/
D-CDE

WFG1
Mean 8.8999 + 7.5038 - 6.6769 - 6.9624 - 8.4248 ≈ 8.5524
Std 5.92E-01 1.62E-01 1.83E-01 1.57E-01 9.54E-01 8.12E-02

WFG2
Mean 8.3602 ≈ 8.2947 - 8.2158 - 8.0046 - 8.3735 ≈ 8.3756
Std 1.818E-02 1.76E-01 1.44E-01 3.34E-01 2.81E-02 2.99E-02

WFG3
Mean 7.9518 ≈ 7.9511 ≈ 7.9547 + 7.9546 + 7.9519 ≈ 7.9520
Std 9.437E-04 2.85E-03 5.94E-03 5.86E-03 7.80E-04 6.73E-04

WFG4
Mean 5.5599 + 5.2197 - 5.2581 - 5.2328 - 5.4023 - 5.4940
Std 4.511E-02 1.45E-01 1.60E-01 1.30E-01 6.86E-02 6.27E-02

WFG5
Mean 5.1690 ≈ 5.1673 - 5.1647 - 5.1648 - 5.1681 ≈ 5.1691
Std 1.325E-02 1.34E-02 1.61E-03 1.30E-03 1.23E-02 1.45E-02

WFG6
Mean 5.5160 - 5.6063 ≈ 5.0673 - 4.6939 - 5.6751 + 5.5996
Std 4.562E-01 3.74E-01 5.04E-01 1.38E-01 2.62E-04 2.33E-01

WFG7
Mean 5.8581 + 5.7036 - 5.9019 + 5.9199 + 5.6676 - 5.7693
Std 2.700E-01 8.94E-02 1.05E-01 7.28E-02 2.23E-01 1.35E-01

WFG8
Mean 4.9775 + 4.9306 - 4.6732 - 4.6732 - 4.9745 + 4.9429
Std 1.919E-01 2.07E-01 2.31E-01 3.12E-01 1.32E-01 1.23E-01

WFG9
Mean 5.6040 ≈ 5.5998 - 5.6020 ≈ 5.5780 - 5.6022 ≈ 5.6044
Std 1.185E-03 2.46E-03 2.51E-02 2.61E-01 1.85E-03 2.93E-03

-/+/≈ 1/4/4 7/0/2 6/2/1 7/2/0 2/2/5

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level

Table 9 further gives comparative results of MOEA/D-CDE on the WFG test problems using HV,

24

when compared to the other MOEA/D-CDE variants. As observed from Table 9, MOEA/D-CDE

performs best on WFG2, WFG5 and WFG 9. One difference with the above IGD results is that

MOEA/D-CDE only obtains comparable results with CDE-op.5 as MOEA/D-CDE performs better than,

similar to, and worse than CDE-op.5 on 2, 5 and 2 WFG test problems, respectively. For the remaining

MOEA/D-CDE variants, similar conclusions with that of the above IGD results can be observed.

MOEA/D-CDE performs significantly better than CDE-op.2, CDE-op.3, and CDE-op.4, but worse than

CDE-op.1.

Based on the comparison summary in the last rows of Tables 6-9, the effectiveness of the

composite DE operator pools used in MOEA/D-CDE is experimentally validated (i.e., it is shown that

the use of composite DE operator pools enhances the overall performance of our proposed approach

when considering all the UF and WFG test problems).

4.5 The Effectiveness of Adaptive Parameter Control Strategy

To investigate the effectiveness of the adaptive parameter control strategy adopted in the composite

DE operator pools, our algorithm is further compared to the MOEA/D-CDE variants with fixed

parameters settings and other adaptive parameters settings. In MOEA/D-CDE, only the value of CR is

fixed while the value of F is adaptively determined as introduced in Section 3.3. The compared

MOEA/D-CDE variants follow the same procedures as MOEA/D-CDE except that the composite DE

operator pools use different control parameters settings, which are described as follows.

(1) CDE-1: the parameters settings for the DE operator pools are set to F = 0.1 and CR = 0.1;

(2) CDE-2: the parameters settings for the DE operator pools are set to F = 1.0 and CR = 0.9;

(3) CDE-3: the parameters settings for the DE operator pools are set to F = 0.8 and CR = 0.2;

(4) CDE-4: the parameter CR for the DE operator pools is adaptively determined as introduced in

[20], and F is set to the fixed value of 1.0;

(5) CDE-5: the settings of F and CR for the DE operator pools are all adaptively determined as

introduced in Section 3.3.

Tables 10-13 respectively give the experimental results of all the compared algorithms on the UF

and the WFG test problems using IGD and HV. As observed from Table 10, our algorithm performs

best on 6 out of 10 UF test problems, i.e., UF1-UF3 and UF6-UF9. Moreover, our algorithm

respectively outperforms CDE-1, CDE-2, CDE-3, CDE-4 and CDE-5 on 8, 10, 8, 8 and 7 out of 10 UF

test problems. Nevertheless, MOEA/D-CDE is only beaten by CDE-1 on UF4 and UF10, by CDE-3 on

UF10, by CDE-op.4 on UF10, and by CDE-5 on UF4-UF5 and UF10. The Wilcoxon’s rank sum test

also indicates that our algorithm performs similarly to CDE-3 on UF4 and to CDE-4 on UF4. Therefore,

when considering all the UF test problems on IGD, our algorithm is better than all the MOEA-D/CDE

variants with other parameters settings. Moreover, the HV results of all the compared algorithms in

Table 11 further confirm the effectiveness of our adaptive parameter control strategy in solving the UF

test problems, as our algorithm performs better than or similar to CDE-1, CDE-2, CDE-3, CDE-4 and

CDE-5 on 9, 9, 8, 9 and 8 out of 10 UF test problems.

25

Table 10
Comparative results of the MOEA/D-CDE variants using different parameters settings on the UF test problems

regarding IGD
Algorithms

Problems
CDE-1 CDE-2 CDE-3 CDE-4 CDE-5

MOEA/
D-CDE

UF1
Mean 1.511E-03 - 1.917E-03 - 2.600E-03 - 4.474E-03 - 1.816E-03 - 8.072E-04
Std 1.21E-02 1.21E-04 6.26E-04 2.20E-04 4.48E-04 2.83E-05

UF2
Mean 3.678E-03 - 2.472E-03 - 2.300E-03 - 2.819E-03 - 2.337E-03 - 9.283E-04
Std 1.74E-03 3.29E-04 1.06E-03 1.03E-03 2.50E-03 1.31E-04

UF3
Mean 1.732E-02 - 7.549E-03 - 5.380E-02 - 6.073E-02 - 1.722E-03 - 1.443E-03
Std 3.78E-02 4.81E-03 1.96E-02 8.90E-03 1.64E-02 8.10E-04

UF4
Mean 2.631E-02 + 3.557E-02 - 3.210E-02 ≈ 2.921E-02 ≈ 2.743E-02 + 3.190E-02
Std 1.46E-03 2.61E-04 5.17E-04 5.27E-04 9.93E-04 6.77E-04

UF5
Mean 2.037E-01 - 1.008E-01 - 1.331E-01 - 1.370E-01 - 8.021E-02 + 9.101E-02
Std 7.77E-02 1.96E-02 1.54E-02 2.22E-02 4.11E-03 2.73E-02

UF6
Mean 2.395E-01 - 6.334E-02 - 6.980E-02 - 6.537E-02 - 6.077E-02 - 5.903E-02
Std 1.67E-01 6.66E-03 3.18E-02 1.98E-03 4.09E-03 6.39E-03

UF7
Mean 6.881E-02 - 2.062E-03 - 2.700E-03 - 4.125E-03 - 2.596E-03 - 8.006E-04
Std 1.21E-01 1.44E-04 3.99E-04 6.05E-04 2.69E-04 1.66E-04

UF8
Mean 4.713E-02 - 3.498E-02 - 3.590E-02 - 3.898E-02 - 4.156E-02 - 2.908E-02
Std 2.13E-02 4.62E-03 5.62E-03 2.82E-03 8.66E-03 2.53E-03

UF9
Mean 6.311E-02 - 4.303E-02 - 4.000E-02 - 4.923E-02 - 4.475E-02 - 2.154E-02
Std 4.39E-02 1.96E-02 5.28E-03 2.81E-03 3.47E-02 5.66E-02

UF10
Mean 1.795E-01 + 3.852E-01 - 1.769E-01 + 1.650E-01 + 1.853E-01 + 2.168E-01
Std 3.48E-02 8.17E-02 2.14E-02 3.23E-02 2.58E-02 4.31E-02

-/+/≈ 8/2/0 10/0/0 8/1/1 8/1/1 7/3/0
“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level

Table 11
Comparative results of the MOEA/D-CDE variants using different parameters settings on the UF test problems

regarding HV
Algorithms

Problems
CDE-1 CDE-2 CDE-3 CDE-4 CDE-5

MOEA/
D-CDE

UF1
Mean 3.6005 - 3.6606 - 3.6616 - 3.6585 - 3.6631 ≈ 3.6645
Std 7.64E-02 6.07E-04 1.26E-03 7.43E-04 1.41E-03 8.54E-04

UF2
Mean 3.6466 - 3.6558 - 3.6521 - 3.6576 - 3.6512 - 3.6643
Std 1.74E-02 6.76E-03 1.56E-02 1.12E-02 2.17E-02 5.42E-03

UF3
Mean 2.8714 - 3.6532 - 3.4821 - 3.4907 - 3.6241 ≈ 3.6636
Std 1.39E-01 1.03E-02 9.70E-02 5.98E-02 5.82E-02 4.57E-03

UF4
Mean 3.2495 ≈ 3.2302 - 3.2163 - 3.2206 - 3.2338 - 3.2438
Std 2.51E-02 1.01E-02 2.89E-02 2.66E-02 2.77E-02 2.14E-02

UF5
Mean 2.7593 - 3.2684 ≈ 3.0032 - 3.1719 - 3.3122 + 3.2631
Std 3.11E-01 7.25E-02 1.22E-01 1.51E-01 3.53E-02 3.28E-01

UF6
Mean 2.7693 - 3.2166 ≈ 3.0877 - 3.1462 - 3.1947 - 3.2465
Std 3.35E-01 2.11E-02 1.19E-01 1.03E-01 7.92E-02 1.38E-01

UF7
Mean 3.2831 - 3.4938 ≈ 3.4946 ≈ 3.4921 - 3.4943 - 3.4968
Std 3.70E-01 1.20E-03 1.25E-03 1.20E-03 1.07E-03 3.25E-03

UF8
Mean 7.3082 - 7.2947 - 7.3214 - 7.3123 - 7.3536 - 7.3927
Std 1.70E-01 7.03E-03 1.40E-02 7.13E-03 1.82E-02 2.02E-02

UF9
Mean 7.5286 - 7.6461 - 7.6982 + 7.6741 - 7.6521 - 7.6828
Std 2.16E-01 9.18E-02 2.51E-02 2.28E-02 1.73E-01 1.41E-01

UF10
Mean 6.2047 + 4.7846 + 6.3321 + 6.4348 + 6.2039 + 3.8237
Std 5.50E-01 4.89E-01 1.61E-01 3.75E-01 4.07E-01 2.51E-01

-/+/≈ 8/1/1 6/1/3 7/2/1 9/1/0 6/2/2
“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level

26

Table 12

Comparative results of the MOEA/D-CDE variants using different parameters settings on the WFG test problems
regarding IGD

Algorithms
Problems

CDE-1 CDE-2 CDE-3 CDE-4 CDE-5
MOEA/
D-CDE

WFG1
Mean 2.486E-02 ≈ 5.215E-02 - 2.543E-02 ≈ 6.847E-02 - 2.264E-02 + 2.482E-02
Std 1.06E-01 9.29E-02 9.11E-02 1.41E-01 2.31E-04 6.11E-03

WFG2
Mean 2.448E-01 - 3.878E-02 + 1.038E-01 - 7.718E-02 ≈ 8.375E-02 - 7.596E-02
Std 8.58E-04 8.61E-03 5.71E-02 2.33E-02 1.41E-04 5.11E-02

WFG3
Mean 1.321E-02 ≈ 1.329E-02 - 1.316E-02 ≈ 1.315E-02 ≈ 1.319E-02 ≈ 1.314E-02
Std 1.52E-04 6.72E-05 4.89E-05 4.69E-05 7.42E-05 2.25E-05

WFG4
Mean 1.551E-02 + 2.227E-02 - 1.609E-02 - 1.569E-02 + 1.587E-02 ≈ 1.574E-02
Std 4.80E-04 3.98E-03 5.11E-04 6.87E-04 4.62E-04 4.87E-04

WFG5
Mean 6.698E-02 ≈ 6.687E-02 ≈ 6.612E-02 + 6.718E-02 ≈ 6.700E-02 ≈ 6.714E-02
Std 5.56E-03 5.92E-03 7.55E-03 3.21E-03 5.45E-03 9.54E-05

WFG6
Mean 2.726E-02 - 1.412E-02 + 2.618E-02 - 1.906E-02 - 1.536E-02 ≈ 1.551E-02
Std 8.53E-03 8.59E-05 1.59E-02 1.93E-02 5.70E-03 4.20E-03

WFG7
Mean 1.631E-02 ≈ 1.683E-02 - 1.633E-02 ≈ 1.680E-02 - 1.671E-02 - 1.635E-02
Std 8.57E-04 2.29E-05 4.06E-03 3.14E-03 1.38E-04 2.36E-04

WFG8
Mean 6.964E-02 - 4.559E-02 - 4.784E-02 - 4.772E-02 - 5.452E-02 - 3.994E-02
Std 4.05E-02 5.36E-03 4.32E-03 4.82E-03 4.36E-02 4.67E-02

WFG9
Mean 1.486E-02 ≈ 1.702E-02 - 1.488E-02 ≈ 1.481E-02 ≈ 1.483E-02 ≈ 1.480E-02
Std 8.94E-04 1.20E-03 7.33E-04 1.26E-04 1.51E-04 2.38E-04

-/+/≈ 3/1/5 6/2/1 4/1/4 4/1/4 3/1/5

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level

Table 13

Comparative results of the MOEA/D-CDE variants using different parameters settings on the WFG test problems
regarding HV

Algorithms
Problems

CDE-1 CDE-2 CDE-3 CDE-4 CDE-5
MOEA/
D-CDE

WFG1
Mean 8.7402 + 8.2016 - 9.0058 + 8.4113 - 9.0455 + 8.5524
Std 7.35E-01 1.01E+00 2.93E-01 4.57E-01 6.55E-02 8.12E-02

WFG2
Mean 7.8163 - 8.3885 + 8.2961 - 8.3649 ≈ 8.3528 - 8.3756
Std 3.59E-02 5.69E-02 1.86E-01 1.40E-02 1.48E-02 2.99E-02

WFG3
Mean 7.9512 ≈ 7.9501 - 7.9518 ≈ 7.9518 ≈ 7.9520 ≈ 7.9520
Std 8.57E-04 1.48E-03 4.17E-04 4.32E-04 4.69E-04 6.73E-04

WFG4
Mean 5.6239 + 5.0949 - 5.4484 - 5.5873 + 5.6096 + 5.4941
Std 2.09E-02 1.45E-01 4.64E-02 3.19E-02 2.61E-02 6.27E-02

WFG5
Mean 5.1696 ≈ 5.1653 ≈ 5.1706 ≈ 5.1687 ≈ 5.1707 ≈ 5.1691
Std 1.22E-02 1.31E-02 1.67E-02 9.30E-03 1.28E-02 1.45E-02

WFG6
Mean 4.8897 - 5.6731 + 5.0745 - 5.5389 - 5.6081 ≈ 5.5996
Std 2.75E-01 6.43E-04 5.35E-01 5.20E-01 2.64E-01 2.33E-01

WFG7
Mean 5.9101 + 5.6736 - 5.8005 + 5.6743 - 5.6703 - 5.7693
Std 2.52E-01 3.39E-04 2.66E-01 7.85E-03 4.44E-01 1.35E-01

WFG8
Mean 4.7221 - 4.9414 ≈ 4.9132 - 4.9397 - 4.8268 - 4.9429
Std 2.39E-01 2.22E-01 1.42E-01 1.37E-01 1.44E-01 1.23E-01

WFG9
Mean 5.5915 ≈ 5.5897 - 5.6042 ≈ 5.6041 ≈ 5.6042 ≈ 5.6044
Std 9.78E-02 6.13E-03 1.87E-03 1.35E-03 1.05E-03 2.93E-03

-/+/≈ 3/3/3 5/2/2 4/2/3 4/1/4 3/2/4

“-”, “+” and “≈” respectively denote the performance of the corresponding algorithm is worse than, better than, and similar to
that of MOEA/D-CDE, according to Wilcoxon’s rank sum test at a 0.05 significance level

27

From Table 12, it is observed that our algorithm obtains the best results on WFG3, WFG8 and

WFG9. The Wilcoxon’s rank sum test shows that our algorithm performs similarly to CDE-1, CDE-2,

CDE-3, CDE-4 and CDE-5 on 5, 1, 4, 4, 5 out of 9 WFG test problems, which indicates that the

performance of our algorithm is insensitive to the parameters settings of F and CR when solving most

of the WFG test problems. The final results in the last row of Table 12 show that our algorithm

outperforms CDE-1, CDE-2, CDE-3, CDE-4 and CDE-5 on 3, 6, 4, 4 and 3 WFG test problems, but

only underperforms CDE-1, CDE-2, CDE-3, CDE-4 and CDE-5 on 1, 2, 1, 1 and 1 WFG test problems,

respectively. Therefore, our algorithm still performs better when considering all the WFG test problems.

Table 13 further provides comparative results of MOEA/D-CDE on the WFG test problems using HV

when compared to all the MOEA/D-CDE variants. As observed from Table 13, our algorithm also

achieves the best results on WFG3, WFG8 and WFG9. one difference with the above IGD results is

that MOEA/D-CDE only obtains comparable results with CDE-1 as MOEA/D-CDE performs better

than, similar to, and worse than CDE-1 on 3, 3 and 3 WFG test problems, respectively. For the

remaining MOEA/D-CDE variants (i.e., CDE-2, CDE-3, CDE-4 and CDE-5), similar conclusions with

that of the above IGD results can be found that MOEA/D-CDE performs better than CDE-2, CDE-3,

CDE-4, and CDE-5. Therefore, these experimental results on WFG test problems further confirm the

effectiveness of the adaptive parameter control strategy adopted in MOEA-D/CDE.

4.6 Time Complexity Analysis

In this subsection, the worst time complexity analysis of MOEA/D-CDE is provided and compared

to that of other algorithms. Based on the pseudo-code of MOEA/D-CDE in Algorithm 4, the worst

time complexity of MOEA/D-CDE is mainly determined by the evolutionary loop in lines 5-47 of

Algorithm 4. It is noted that when calculating the worst time complexity, the number of decision

variables n and the number of objectives m are ignored as they are much smaller than the population

size N. In line 5, the worst time complexity to perform 10-tournament selection is ()O N . For the

evolutionary loop in lines 6-42, it will take the worst time complexity which is ()O W N to select an

operator pool in lines 8-12, and is ()O N to choose a parent set in lines 13-17; the new offspring are

generated using the new scaling factor F in lines 18-19 with the worst time complexity ()O N . Then,

the reference point is updated in lines 23-27 with the worst time complexity ()O m N , and at most

rn parents in set E are replaced in lines 28-37 with the worst time complexity 2()O N as the size of E

may be N with a probability (1). In lines 39-40, the worst time complexity to update the

performance array (2)()Array W is ()O N . At last, the F , g and the utility values i (i=1, 2,..., N)

are renewed in lines 43-47 with the worst time complexity ()O N . In summary, the worst time

complexity of MOEA/D-CDE can be simplified to 2()O N , which has a worst time complexity

comparable with that of MOEA/D-DE [36], MOEA/D-DRA [55], and MOEA/D-FRRMAB [29], while

the worst time complexity of MOEA/D-STM is higher due to the use of a stable matching model [28].

To further study the extra computational burden induced by the adaptive composite operator

selection and parameter control strategy, we have collected the actual CPU time cost of MOEA/D-CDE,

MOEA/D-DE, MOEA/D-DRA, MOEA/D-STM and MOEA/D-FRRMAB on UF1-UF10. Their

average CPU times from 30 independent runs are listed in Table 14. It is noted that the lowest CPU

28

time is highlighted in boldface. The CPU time required by ENS-MOEA/D is not reported because it is

implemented in MATLAB, which makes it very slow [29]. From Table 14, it is observed that

MOEA/D-DE was the fastest in solving all the UF problems, while MOEA/D-DRA ranked second in

terms of running speed as the dynamic resource assignment strategy designed in MOEA/D-DRA

requires some extra computational cost. As MOEA/D-CDE and MOEA/D-FRRMAB are all designed

by embedding the adaptive operator selection mechanism into the framework of MOEA/D-DRA, it is

certain that they will have a higher computational cost than MOEA/D-DRA, as justified by our

experimental results in Table 14. It is also observed that MOEA/D-CDE performed faster than

MOEA/D-FRRMAB on all the UF test problems. For MOEA/D-CDE, it is worth consuming an

additional 27% of CPU time with respect to MOEA/D-DRA on average for obtaining the performance

improvement caused by the adaptive composite operator selection and parameter control strategy, as

listed in Table 2. Moreover, it is worth noting that the CPU time of MOEA/D-STM is much longer than

that of other MOEA/D variants. That is mainly due to the fact that the stable matching model is

time-consuming in the selection process and the source code may not be fully optimized by the authors.

Table 14
Average CPU time (in seconds) cost by all the compared algorithms on the UF test problems

 Algorithms
Problems

MOEA/D-
DE

MOEA/D-
DRA

MOEA/D-
STM

MOEA/D-
FRRMAB

MOEA/D-
CDE

UF1 4.432 5.942 233 8.489 7.987
UF2 4.764 6.544 224 8.520 8.072
UF3 5.314 6.401 234 8.673 8.358
UF4 4.656 6.057 224 8.413 7.583
UF5 4.713 5.867 229 8.454 7.746
UF6 4.927 6.095 228 8.522 7.856
UF7 3.972 5.683 234 7.855 7.217
UF8 6.476 9.419 419 12.588 11.268
UF9 5.754 8.488 421 12.469 11.545

UF10 6.397 9.351 456 13.193 11.453
Average 4.764 6.441 263.909 8.925 8.190

5. Conclusions

In this paper, an adaptive composite operator selection and parameter control strategy for

MOEA/D namely MOEA/D-CDE, was proposed. Four DE mutation strategies were used to build the

composite operator pools, which can address the limitations of using a single DE mutation strategy

when solving different types of MOPs. To adaptively determine the preferred DE operator pool during

the evolutionary search, an adaptive composite operator selection mechanism was designed based on

the previous search experience. Moreover, some parameters used in the composite operator pools were

also automatically determined by using an adaptive parameter control scheme, which was shown to

further enhance optimization performance. When embedding the proposed approach into the baseline

algorithm MOEA/D-DRA, the optimization performance was substantially improved. Our

experimental results validated that MOEA/D-CDE is able to outperform MOEA/D-DE, ENS-MOEA/D,

MOEA/D-FRRMAB and MOEA/D-STM on most of the test problems adopted. The effectiveness of

29

the proposed adaptive composite operator selection and parameter control strategy was also

experimentally studied.

As part of our future work, we intend to extend our study to other nature-inspired algorithms for

tackling more difficult optimization problems modeled from real-life engineering applications. It is

interesting to study how to combine different evolutionary operators from EAs, DE, particle swarm

optimization and ant colony optimization into our composite operator pools, so that each composite

operator pool can be more effective and can overcome the natural shortcomings of each other.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants

61402291 and 61170283, National High-Technology Research and Development Program (“863”

Program) of China under Grant 2013AA01A212, Ministry of Education in the New Century Excellent

Talents Support Program under Grant NCET-12-0649, Foundation for Distinguished Young Talents in

Higher Education of Guangdong under Grant 2014KQNCX129, Shenzhen Technology Plan under

Grant JCYJ20140418095735608, and Natural Science Foundation of SZU under Grant 201531. It was

also supported by CONACyT grant no. 221551. The authors are grateful to both the editor and

anonymous reviewers for their constructive comments, which greatly improved the quality of this

paper.

Reference:

[1] M. Asafuddoula, T. Ray, R. Sarker, A decomposition based evolutionary algorithm for many
objective optimization, IEEE Trans. Evol. Comput. 19 (3) (2014) 445-460.

[2] P.A.N. Bosman, D. Thierens, The balance between proximity and diversity in multiobjective
evolutionary algorithms, IEEE Trans. Evol. Comput. 7(2) (2003) 174-188.

[3] S. Biswas, S. Kundu, S. Das, Inducing niching behavior in differential evolution through local
information sharing, IEEE Trans. Evol. Comput. 19 (2) (2014) 246-263.

[4] C. Chen, L. Y. Tseng, An improved version of the multiple trajectory search for real value
multi-objective optimization problems, Engineering Optimization 46 (10) (2014) 1430-1445.

[5] J.Y. Chen, Q.Z. Lin, Z. Ji, Chaos-based multiobjective immune algorithm with a fine-grained
selection mechanism, Soft Comput. 15 (2011) 1273-1288.

[6] C. A. Coello Coello, G. B. Lamont, D. A. Van Veldhuizen, Evolutionary algorithms for solving
multi-objective problems, Genetic and Evol. Comput. Springer, 2007.

[7] C. Dai, Y. Wang, A new multiobjective evolutionary algorithm based on decomposition of the
objective space for multiobjective optimization, Journal of Applied Mathematics, vol. 2014, 2014,
Article ID 906147, 9 pages.

[8] C. Dai, Y.P. Wang, M. Ye, A new multi-objective particle swarm optimization algorithm based on
decomposition, Inf. Sci. 325 (2015) 541-557.

[9] K. Deb, M. Goyal, A combined genetic adaptive search (GeneAS) for engineering design, Comput.
Inf. Sci. 26 (1996) 30-45.

[10] K. Deb, Multi-objective optimization using evolutionary algorithms, John Wiley & Sons Ltd., New
York, 2001.

30

[11] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm:
NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182-197.

[12] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, Part I: solving problems with box
constraints, IEEE Trans. Evol. Comput. 19 (4) (2014) 577-601.

[13] M. Ehrgott, Multicriteria optimization, Springer-Verlag, Berlin, Heidelberg, 2006.
[14] S. Ghosh, D. Saurav, S. Roy, A differential covariance matrix adaptation evolutionary algorithm

for real parameter optimization, Inf. Sci. 182 (1) (2012) 199-219.
[15] I. Giagkiozis, R. C. Purshouse, P. J. Fleming, Generalized decomposition and cross entropy

methods for many-objective optimization, Inf. Sci. 282 (2014) 363-387.
[16] I. Giagkiozis, P. J. Fleming, Methods for multi-objective optimization: An analysis, Inf. Sci. 293

(2015) 338-350.

[17] F. Gu, H. Liu, A novel weight design in multi-objective evolutionary algorithm. In International

Conference on Computational Intelligence and Security, 2010, pp. 137-141,.

[18] S. Huband, P. Hingston, L. Barone, L. While, A review of multiobjective test problems and a
scalable test problem toolkit, IEEE Trans. Evol. Comput. 10 (5) (2006) 477-506.

[19] A. W. Iorio, X. Li, Solving rotated multi-objective optimization problems using differential
evolution, AI 2004 Advances in Artificial Intelligence, vol. 3339 of the series Lecture Notes in
Computer Science, 2005, pp. 861-872.

[20] S. M. Islam, S. Das, S. Ghosh, S. Roy, P. N. Suganthan, An adaptive differential evolution
algorithm with novel mutation and crossover strategies for global numerical optimization, IEEE
Trans. Systems, Man, and Cyber. Part B: Cyber. 42 (2) (2012) 482-500.

[21] H. Jain, K. Deb, An evolutionary many-objective optimization algorithm using reference-point
based nondominated sorting approach, Part II: handling constraints and extending to an adaptive
approach, IEEE Trans. Evol. Comput. 18 (4) (2014) 602-622.

[22] L. Jiao, H. Wang, R. Shang, F. Liu, A co-evolutionary multi-objective optimization algorithm
based on direction vectors, Inf. Sci. 228 (2013) 90-112.

[23] S.W. Jiang, Z.H. Cai, J. Zhang, Y.-S. Ong, Multiobjective optimization by decomposition with
Pareto-adaptive weight vectors Pareto-adaptive weight vectors, In International Conference on
Natural Computation, 2011, pp. 1260-1264.

[24] S.W. Jiang, Y.-S. Ong, J. Zhang, L. Feng, Consistencies and Contradictions of Performance
Metrics in Multiobjective Optimization, IEEE Trans. Cyber. 44(12) (2014) 2391-2404.

[25] D. Kovačević, N. Mladenović, B. Petrović, P. Milošević, DE-VNS: Self-adaptive differential
evolution with crossover neighborhood search for continuous global optimization, Comput. &
Opera. Research 52 (2014) 157-169.

[26] H. Li, D. Landa-Silva, An adaptive evolutionary multi-objective approach based on simulated

annealing, IEEE Trans. Evol. Comput. 19(4) (2011) 561-595.

[27] K. Li, S. Kwong, J. Cao, M.Q. Li, J. Zheng, R. Shen, Achieving balance between proximity and
diversity in multi-objective evolutionary algorithm, Inf. Sci. 182 (1) (2012) 220-242.

[28] K. Li, Q.F. Zhang, S. Kwong, M. Li, R. Wang, Stable matching based selection in evolutionary
multiobjective optimization, IEEE Trans. Evol. Comput. 18 (6) (2013) 909-923.

[29] K. Li, A. Fialho, S. Kwong, Q.F. Zhang, Adaptive operator selection with bandits for a

31

multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput. 18 (2)
(2014) 114-130.

[30] K. Li, S. Kwong, Q.F. Zhang, K. Deb, Inter-relationship based selection for decomposition
multiobjective optimization, IEEE Trans. Cyber. 45 (10) (2015) 2076-2088.

[31] M.Q. Li, S. Yang, K. Li, X. Liu, Evolutionary algorithms with segment-based search for
multiobjective optimization problems, IEEE Trans. Cyber. 44 (8) (2014) 1295-1313.

[32] Z.P. Liang, R.Z. Song, Q.Z. Lin, Z.H. Du, J.Y. Chen, Z. Ming, J.P. Yu, A double-module immune
algorithm for multi-objective optimization problems, Appl. Soft Comput. 35 (2015) 161-174.

[33] Q.Z. Lin, J.Y. Chen, A novel micro-population immune multiobjective optimization algorithm,
Comput. & Opera. Research 40 (2013) 1590-1601.

[34] Q.Z. Lin, Q.L. Zhu, P.Z. Huang, J.Y. Chen, Z. Ming, J.P. Yu, A novel hybrid multi-objective
immune algorithm with adaptive differential evolution, Comput. & Opera. Research 62 (2015)
95-111.

[35] H. Liu, F. Gu, Y. Cheung, T-MOEA/D: MOEA/D with objective trans-form in multi-objective

problems. In International Conference of Information Science and Management Engineering, 2010,

pp. 282-285.

[36] H. Liu, Q.F. Zhang, Multiobjective optimization problems with complicated Pareto sets, MOEA/D
and NSGA-II, IEEE Trans. Evol. Comput. 13 (2) (2009) 284-302.

[37] X. Ma, F. Liu, Y. Qi, M. Gong, M. Yin, L. Li, L. Jiao, J. Wu, MOEA/D with opposition-based
learning for multiobjective optimization problem, Neurocomputing 146 (2014) 48-64.

[38] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, M. F. Tasgetiren, Differential evolution algorithm with
ensemble of parameters and mutation strategies, Appl. Soft Comput. 11 (2) (2011) 1679-1696.

[39] W. K. Mashwani, A. Salhi, A decomposition-based hybrid multiobjective evolutionary algorithm
with dynamic resource allocation, Appl. Soft Comput. 12 (9) (2012) 2765-2780.

[40] K. Miettinen, Nonlinear multiobjective optimization, Kluwer Academic Publishers, Boston, 1999.

[41] T. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, J. Wu, MOEA/D with adaptive weight adjustment, IEEE Trans.

Evol. Comput. 22(2) (2014) 231-264.

[42] A. K. Qin, V. L. Huang, P. N. Suganthan, Differential evolution algorithm with strategy adaptation
for global numerical optimization, IEEE Trans. Evol. Comput. 13 (2) (2009) 398-417.

[43] R. Shang, L. Jiao, F. Liu, W. Ma, A Novel Immune Clonal Algorithm for MO Problems, IEEE
Trans. Evol. Comput. 16 (1) (2010) 35-50.

[44] R. Storn, K. Price, Differential evolution-a simple and efficient adaptive scheme for global
optimization over continuous spaces, Technical Report TR-95-012, Berkeley, ICSI, 1995,
Available online: http://www1.icsi.berkeley.edu/~storn/litera.html.

[45] Y. Y. Tan, Y. C. Jiao, H. Li, X. Wang, A modification to MOEA/D-DE for multiobjective
optimization problems with complicated Pareto sets, Inf. Sci. 213 (2012) 14-38.

[46] L. Tang, X. Wang, A hybrid multiobjective evolutionary algorithm for multiobjective optimization
problems, IEEE Trans. Evol. Comput. 17 (1) (2013) 20-45.

[47] S. M. Venske, R. A. Gonçalves, M. R. Delgado, ADEMO/D: Multiobjective optimization by an
adaptive differential evolution algorithm, Neurocomputing, 127 (2) (2014) 65-77.

[48] H. Wang, L. Jiao, R. Shang, S. He, F. Liu, A Memetic Optimization Strategy Based on Dimension
Reduction in Decision Space, IEEE Trans. Evol. Comput. 23(1) (2015) 69-100.

32

[49] Y. Wang, Z.X. Cai, Q.F. Zhang, Differential evolution with composite trial vector generation
strategies and control parameters, IEEE Trans. Evol. Comput. 15 (2) (2011) 55-66.

[50] G. G. Yen, H. Lu, Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and
density estimation, IEEE Trans. Evol. Comput. 7 (3) (2003) 253-274.

[51] Z.H. Zhan, J.J. Li, J.N. Cao, J. Zhang, H.S.H. Chung, Y.H. Shi, Multiple populations for multiple
objectives: A coevolutionary technique for solving multiobjective optimization problems, IEEE
Trans. Cyber. 43 (2013) 445-463.

[52] J. Zhang, A. C. Sanderson, JADE: adaptive differential evolution with optional external archive,
IEEE Trans. Evol. comput. 13 (5) (2009) 945-958.

[53] Q.F. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition,
IEEE Trans. Evol. Comput. 11 (6) (2007) 712-731.

[54] Q.F. Zhang, H. Li, D. Maringer, E. Tsang, MOEA/D with NBI-style Tchebycheff approach for
portfolio management, In IEEE Congress on Evolutionary Computation, 2010, pp. 1-8.

[55] Q.F. Zhang, W. Liu, H. Li, The performance of a new version of MOEA/D on CEC09
unconstrained MOP test instances, in Proceedings of the 2009 IEEE Congress on Evolutionary
Computation, 2009, pp. 203-208.

[56] Q.F. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, S. Tiwari, Multiobjective optimization
test instances for the CEC 2009 special session and competition, University of Essex, Colchester,
UK and Nanyang technological University, Singapore, special session on performance assessment
of multi-objective optimization algorithms, Technical report, 2008, pp. 1-30.

[57] S. Zhao, P. N. Suganthan, Q.F. Zhang, Decomposition-based multiobjective evolutionary
algorithm with an ensemble of neighborhood sizes, IEEE Trans. Evol. Comput. 16 (3) (2012)
442-446.

[58] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the
strength Pareto approach, IEEE Trans. Evol. Comput. 3 (4) (1999) 257-271.

[59] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, V. G. Da Fonseca, Performance assessment of
multiobjective optimizers: an analysis and review, IEEE Trans. Evol. Comput. 7 (2) (2003)
117-132.

[60] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm,
Zurich, Switzerland: Computer Engineering and Networks Laboratory (TIK), Swiss Federal
Institute of Technology (ETH), Technical report 103, 2001.

