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Abstract This paper present a novel methodology for dealing with unconstrained
nonlinear multi-objective optimization problems (MOPs). The proposed algorithm
adopts a nonlinear simplex search scheme in order to obtain multiple elements of
the Pareto optimal set. The search is directed by a well-distributed set of weight
vectors, which define each, a scalarization problem, that is solved by deforming
a simplex according to the movements described by Nelder and Mead’s method.
Considering a MOP with n decision variables, the simplex is constructed using
n + 1 solutions which minimize different scalarization problems defined by n + 1
neighbor weight vectors. All solutions found in the search are used to update a set
of solutions considered to be the minima for each separate problem. In this way,
the proposed algorithm collectively obtains multiple trade-offs among the different
conflicting objectives, while maintaining a well-distributed set of solutions along
the Pareto front. In this paper, we show that a well-designed strategy using just
mathematical programming techniques can be competitive with respect to a state-
of-the-art multi-objective evolutionary algorithm against which we compare our
results.

Keywords Multi-objective optimization, Multi-objective nonlinear simplex
search, Multi-objective direct search methods

1 Introduction

In engineering and scientific applications, it is common to find problems having two
or more (often conflicting) objective functions. They are called Multi-objective Op-
timization Problems (MOPs) and, because of the conflict among their objectives,
it is normally the case that they have more than one solution. Pareto optimality is
the most commonly adopted concept to determine the solutions of an MOP. When
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applying this concept, a set of solutions called Pareto optimal set (PS) is produced.
The solutions contained in this set represent the best possible trade-offs among
the objectives of the MOP being solved (i.e., PS contains solutions in which no
objective can be improved without worsening another one).

Over the years, several mathematical programming techniques for dealing with
MOPs have been proposed. Most of these methods transform a MOP into a single-
objective scalarization function, in which the objective to be optimized consists
of the aggregation of all the (original) objective functions fi’s (these are the well-
known scalarization approaches). Once the aggregating function is formulated, a
mathematical programming method is employed for finding a Pareto optimal so-
lution. These mathematical methods have shown to be effective tools in many
domains, at a reasonably low computational cost. However, they have several lim-
itations, including the fact that they obtain a single Pareto optimal solution per
run, and that most of them cannot properly deal with nonconvex, multi-modal or
non-differentiable optimization problems. That has motivated the development of
stochastic methods, such as the so-called Multi-Objective Evolutionary Algorithms
(MOEAs) [6], which, because of their simplicity and ease of use, have become very
popular in a wide variety of domains [5].

The development of mathematical programming techniques for solving multi-
objective problems has been a very active area of research for many years, giv-
ing rise to a wide variety of approaches [10,23,24,34]. Recently, several power-
ful approaches that rely on gradient information, have been proposed. For ex-
ample, Fliege et. al [12] proposed an extension of Newton’s method for uncon-
strained multi-objective optimization. Fischer and Shukla [11] presented an algo-
rithm based on the Levenberg-Marquardt method to solve unconstrained MOPs.
Unfortunately, when the gradient information of the objectives is not available,
such methods become impractical and it is necessary to look for alternative ap-
proaches—for example, direct search methods.

The use of direct search methods has been scarce in the multi-objective context,
although some researchers have used them as local search operators coupled to
MOEAs—see for example [17,36,37]. Nevertheless, the existence of multi-objective
direct search methods to approximate multiple solutions to the Pareto optimal set
(maintaining a good distribution of solutions along the Pareto optimal front) using
direct search methods that are not based on metaheuristics, have been rare in
the specialized literature—see for example [1]. The main reason for the shortage
in such strategies, is that it is not efficient to approximate different solutions
along the Pareto optimal front using mathematical programming techniques. These
drawbacks have naturally motivated the idea of hybridizing either gradient or
non-gradient mathematical programming techniques with MOEAs. However, the
development of multi-objective mathematical programming approaches that take
ideas from MOEAs and show a similar or better performance than them has been
rare—see for example [16], and such is precisely the focus of the work reported
here.

In this paper, we present a new method for dealing with unconstrained MOPs
based on a direct search method. The proposed approach analyzes and exploits
the properties of Nelder and Mead’s method [26] (which was originally proposed
for single-objective optimization) in order to generate multiple solutions along the
Pareto front of a problem. The main goal of the proposed strategy is to speed up
the search by means of movements guided by mathematical programming tech-
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niques, while maintaining a reasonably good representation of the Pareto optimal
front. The study presented here indicates that the proposed approach is computa-
tionally efficient (in terms of the number of objective function evaluations that it
performs) and produces competitive results when dealing with MOPs of low and
moderate dimensionality. As will be seen later on, our proposed approach produces
competitive results with respect to those of a state-of-the-art MOEA.

2 Basic Concepts

2.1 Multi-objective Optimization

Assuming minimization, a continuous multi-objective optimization problem (MOP),
can be stated as:

min
x∈Ω

F(x) (1)

where Ω ⊂ R
n defines the decision space and F is defined as the vector of the

objective functions:

F : Ω → R
k
, F(x) = (f1(x), . . . , fk(x))T

where each fj : Ω → R, j = 1, . . . , k represents the function to be minimized. In
this paper we consider the box-constrained case, i.e., Ω =

Qn
i=1

[aj , bj ]. Therefore,
each variable vector x = (x1, . . . , xn)T ∈ Ω is such that ai < xi < bi, i = 1, . . . , n.

In multi-objective optimization, it is desirable to obtain a set of trade-off solu-
tions representing the best possible compromises among the objectives (i.e., solu-
tions such that no objective can be improved without worsening another). There-
fore, in order to describe the concept of optimality in which we are interested, the
following definitions are introduced [23].

Definition 1 Let x,y ∈ Ω, we say that x dominates y (denoted by x ≺ y) with
respect to eq. (1) if and only if:

1. fi(x) ≤ fi(y) for all i ∈ {1, . . . , k} and
2. fj(x) < fj(y) for at least one j ∈ {1, . . . , k}.

Definition 2 Let x⋆ ∈ Ω, we say that x⋆ is a Pareto optimal solution, if there is
no other solution y ∈ Ω such that y ≺ x⋆.

Definition 3 The Pareto optimal set PS is defined by:

PS = {x ∈ Ω|x is a Pareto optimal solution}

Definition 4 For a Pareto optimal set PS, the Pareto front PF is defined as:

PF = {F(x)|x ∈ PS})

As in most of multi-objective algorithms, we are interested in finding the max-
imum number of elements of the Pareto optimal set, while maintaining a well-
distributed set of solutions along the Pareto front.
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2.2 Decomposing a Multi-objective Optimization Problem

It is well-known that a Pareto optimal solution to the problem defined in eq. (1),
under certain conditions, could be an optimal solution of a scalar optimization
problem in which the objective is an aggregation of all the functions fi’s. Many
scalar approaches have been proposed to aggregate the objectives of a MOP.
Among them, the Tchebycheff approach is one of most widely used methods re-
ported in the specialized literature. In the following, we describe the Tchebycheff
problem which is adopted in this paper. Note however, that other scalarization
approaches could also be easily coupled to this work—see for example those pre-
sented in [10,23,34].

Tchebycheff approach: This approach transforms the vector of function values
F into a scalar optimization problem which is of the form:

Minimize g(x|w, z) = max
1≤j≤k

{wj |fj(x) − zj |} (2)

where x ∈ Ω, z = (z1, . . . , zk)T , such that: zj = min{fj(x)|x ∈ Ω} and w is a

weight vector, i.e., wj ≥ 0 for all j ∈ {1, . . . , k} and
Pk

j=1
wi

j = 1.
For each Pareto optimal point x⋆ there exists a weighting vector w such that

x⋆ is the optimum solution of eq. (2) and each optimal solution of eq. (2) is a
Pareto optimal solution of eq. (1). An appropriate representation of the Pareto
front could be reached by solving different scalarization problems. Such problems
can be defined by a set of well-distributed weight vectors, which define the search
direction in the optimization process. This strategy is employed in this work, and
its form of use will be described in Section 4.2.

3 The Nonlinear Simplex Search

Nelder and Mead’s method [26] also known as the Nonlinear Simplex Search (NSS)
or Downhill Simplex Search, is an algorithm based on the simplex algorithm of
Spendley et al. [29], which was introduced for minimizing continuous and multi-
dimensional unconstrained optimization problems. While Spendley et al.’s algo-
rithm uses regular simplexes, Nelder and Mead’s method generalizes the procedure
to change the shape and size of the simplex. The following definitions are of rele-
vance in this work [15].

Definition 5 Let ∆ = {∆1, . . . , ∆n+1} be the set of n + 1 points in R
n, such that

∆2 −∆1, . . . , ∆n+1 −∆1 are linearly independent. Then, the simplex or n-simplex
with vertices ∆ is defined by the convex hull of ∆, i.e., the set of points:

∆n =

(

t1∆1 + · · · + tn+1∆n+1 :
n+1
X

i=1

ti = 1 and ti ≥ 0 for all i ∈ {1, . . . , n + 1}

)

If the vertices of the simplex are all mutually equidistant, then the simplex is
said to be regular. Thus, in two dimensions, a regular simplex is an equilateral
triangle, while in three dimensions a regular simplex is a regular tetrahedron.
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Definition 6 A simplex is called nondegenerate, if and only if, the n vectors:
∆2 −∆1, . . . , ∆n+1 −∆1 are linearly independent. Otherwise, the simplex is called
degenerate, and then, the simplex will be defined in a lower dimension than n.

The convergence towards a minimum value at each iteration of Nelder and
Mead’s method is conducted by four main movements in a nondegenerate sim-
plex. The method is fully defined stating four scalar parameters to control the
movements performed in the simplex: reflection (ρ), expansion (χ), contrac-

tion (γ) and shrinkage (σ). According to Nelder and Mead, these parameters
should satisfy:

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1 and 0 < σ < 1 (3)

Actually, there is no method that can be used to establish this set of param-
eters. However, the nearly universal choices used in Nelder and Mead’s method
are [26]:

ρ = 1, χ = 2, γ =
1

2
and σ =

1

2
(4)

Let ∆ = {∆1,∆2, . . . ,∆n+1} be the set of vertices that define a nondegenerate
simplex, such that the vertices are sorted according to the function value, i.e.,
f(∆1) < · · · < f(∆n+1). Then, the transformations performed into the simplex by
the Nelder and Mead method, are defined as:

1. Reflection: xr = (1 + ρ)xc − ρ∆n+1, see Fig. 1.
2. Expansion: xe = (1 + ργ)xc − ρχ∆n+1, see Fig. 1.
3. Contraction:

(a) Outside: xoc = (1 + ργ)xc − ργ∆n+1, see Fig. 1.
(b) Inside: xic = (1 − γ)xc + γ∆n+1, see Fig. 1.

4. Shrinkage: Each vertex of the simplex is transformed by the geometric shrink-
age defined by: ∆i = ∆1 + σ(∆i − ∆1), i = 2, . . . , n + 1, and the new vertices
are evaluated, see Fig. 1.

where xc = 1

n

Pn
i=1

∆i is the centroid of the n best points (all vertices except for
∆n+1), ∆1 and ∆n+1 are the best and the worst solutions identified within the
simplex, respectively.

At each iteration, the simplex is modified by one of the above movements,
according to the following rules:

1. If f(∆1) ≤ f(xr) ≤ f(∆n), then ∆n+1 = xr.
2. If f(xe) < f(xr) < f(∆1), then ∆n+1 = xe,

otherwise ∆n+1 = xr.
3. If f(∆n) ≤ f(xr) < f(∆n+1) and f(xoc) ≤ f(xr),

then ∆n+1 = xoc; otherwise, perform a shrinkage.
4. If f(xr) ≥ f(∆n+1) and f(xic) < f(∆n+1),

then ∆n+1 = xic; otherwise, perform a shrinkage.

The stopping criterion employed by Nelder and Mead, and commonly adopted
in many optimization problems is defined by:

v

u

u

t

1

n + 1

n+1
X

i=1

`

f(∆i) − f
´2

≤ ε (5)

where f = 1

n+1

Pn+1

i=1
f(∆i) and ε is a predefined constant.
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Fig. 1 Illustration of the possible movements in the simplex performed by the NSS method.
The constructed simplex corresponds to an optimization problem with two decision variables,
where ∆1 and ∆3 are the best and the worst points, respectively.

4 The Nonlinear Simplex Search for Multi-Objective Optimization

4.1 About Nonlinear Simplex Search and Multi-objective Optimization Problems

Traditional mathematical programming techniques for solving optimization prob-
lems have shown to be an effective tool in many science and engineering fields. Most
of these strategies have been designed to deal with convex functions and usually
require the gradient of the function. Being a direct search method, Nelder and
Mead’s method has the advantage of not requiring gradient information. Instead,
the NSS algorithm aims at obtaining a better solution by deforming a simplex
shape along the search process. Nonetheless, Nelder and Mead’s method has an
important disadvantage: the convergence towards an optimal value can fail when
the simplexes elongate indefinitely and their shape goes to infinity in the space of
simplex shapes (as, for example, in McKinnon’s functions [22]). For this family of
functions and others having similar features, a more appropriate strategy needs to
be adopted (e.g., adjusting the control parameters, modifying the movements into
the simplex, etc.). In recent years, several attempts to improve the simplex search
algorithm have been reported in the specialized literature—see e.g. [2,3,27,30,31].
However, due to its inherent nature (based on heuristic movements), several of
these variants of the simplex search normally produce additional problems, and,
in some cases, they eventually fail.

In addition to any changes to the NSS algorithm itself, it is also possible to pro-
pose different strategies for constructing the simplex, and several researchers have
reported work in that direction—see e.g. [4,36]. The construction of the simplex
plays an important role in the performance of the NSS algorithm. For example, to
use a degenerated simplex (i.e., a simplex defined in lower dimensionality than the
number of decision variables) in the minimization process, is inappropriate. The
reason is that in such case, the search is restricted to find an optimal solution in
lower dimension, which avoids achieving this optimal solution if it is not located
in the same dimension of the optimization problem [30].

In most real-world MOPs, the features of the PS are unknown. However, un-
der some conditions, it can be induced from the Karush-Kuhn-Tucker conditions
that the PS of a continuous MOP with k objectives forms a (k − 1)-dimensional
piecewise continuous manifold in decision variable space [23,28]. This regularity
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property of continuous MOPs could be exploited in the search. In our case, the
search is directed by a well-distributed set of weight vectors, each of which defines
a scalarization problem by using the Tchebycheff approach. Since the problem
defined in eq. (2) is continuous of w, an optimal solution of the problem defined
by a weight vector wi should be close to the one defined by other weight vector
wj (i 6= j), if wi and wj are close to each other. Therefore, assuming that each
subproblem is solved throughout the search, any information of the solution that
minimizes contiguous problems could be useful in the search. Thus, the vertices
of the simplex could be constructed by using solutions that minimize contiguous
problems.

The stopping criterion employed by Nelder and Mead (eq. (5)), has the advan-
tage of linking the size of the simplex with an approximation of the local curvature
of the objective function. In fact, a local minimum is often obtained for a high
curvature of the objective function. Conversely, a minimum located in a flat val-
ley of the objective function carries less information. Therefore, it does not make
much sense to transform the simplex which would be almost flat. However, sat-
isfying the stopping criterion of eq. (5) could require several transformations of
the simplex, which in practice, could consume a considerable number of objective
function evaluations and the simplex could eventually collapse in a single direction,
i.e., in a unique region of the PS. Lagarias et al. [18] showed that the convergence
towards a better point in the Nelder and Mead method is achieved at most in
n + 1 iterations (at least in convex problems with low dimensionality). Therefore,
this property of convergence could be exploited in order to design an appropriate
strategy for approximating solutions to the PS.

In addition, the execution of the shrinkage step in the NSS algorithm could
become inefficient. This can be mainly caused by two facts:

1. Once the simplex is transformed by the shrinkage step, n vertices are generated
and all of them need to be evaluated. Thus, when the dimension of the MOP is
high, the number of objective function evaluations will significantly increase.

2. Since the shrinkage step reduces the simplex volume, the search is then re-
stricted to a small portion of the search space. Therefore, the risk of collapsing
the simplex in a specific region of the search space increases. Consequently,
the diversity of solutions along the Pareto front tends to reduce, which is a
disadvantage for the decision maker in multi-objective optimization.

The above observations are taken into account and they are used to design
an effective nonlinear simplex search approach for box-constrained multi-objective
optimization. The proposed methodology is described in the next section.

4.2 The Multi-Objective Nonlinear Simplex Search

Our proposed Multi-objective Nonlinear Simplex Search (MONSS) decomposes a
MOP into several single-objective scalarization subproblems. In the following de-
scription, we use the Tchebycheff approach, although any other scalarization ap-
proach can serve for the same purpose.

Let W = {w1, . . . ,wN} be a well-distributed set of weight vectors. The problem
to approximate solutions to the Pareto front of the problem defined by eq. (1),
can be treated by solving a set of N scalar optimization subproblems in which
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problem (1) is decomposed. Therefore, (assuming the Tchebycheff approach) the
ith optimization problem consists in minimizing:

g(x|wi
, z) = max

1≤j≤k
{wi

j |fj(x) − zj |} (6)

where wi = (wi
1, . . . , wi

k)T is a weight vector, i.e., wi
j ≥ 0 for all j ∈ {1, . . . , k} and

Pk
j=1

wi
j = 1. z = (z1, . . . , zk)T is the reference vector whose component zj is the

minimum value found so far for the objective fj for all j ∈ {1, . . . , k}.
At each iteration, MONSS minimizes simultaneously these N optimization sub-

problems. Therefore, MONSS generates a solution xi that minimizes g(xi|wi, z⋆)
Initially, a set of N solutions S = {x1, . . . , xN} having an uniform distribution is
randomly initialized. Each vector xi ∈ S represents a solution for the ith subprob-
lem defined by the ith weight vector wi ∈ W . In this way, different subproblems
are simultaneously solved by the MONSS algorithm and the set of solutions S will
constitute an approximation to the PS lengthwise of the search process.

In order to find different solutions along the Pareto front, the search is di-
rected towards different non-overlapped regions (or partitions) Ci’s from the set
of weight vectors W , such that, each Ci defines a neighborhood. That is, let
C = {C1, . . . , Cm} be a set of partitions from W , then, the claim is the follow-
ing:

m
\

i=1

Ci = ∅ and
m
[

i=1

Ci = W (7)

and all the weight vectors wc ∈ Ci are contiguous among themselves.
The simplex search is focused on minimizing a subproblem defined by a weight

vector ws which is randomly chosen from each partition Ci. The n-simplex (∆)
used in the search, is defined by the vertices:

∆ = {xs
,x1

, . . . ,xn} (8)

such that: xs is the solution in S with minimum value for the problem g(xs|ws, z).
The remaining vertices of the simplex xj (xs 6= xj , for all j ∈ {1, . . . , n}) are chosen
by selecting n different solutions from S, such that minimize the subproblems
defined by the closest n weight vectors to ws (in terms of the Euclidean distance),
where n represents the number of decision variables of the MOP, see Fig. 2.

The movements in the simplex are carried out according to Section 3. However,
considering the discussion in Section 4.1, MONSS omits the shrinkage step in the
search. In the NSS algorithm, it is common that after any movement the new
solution xnew = (xnew

1 , . . . , xnew
n )T leaves the allowed search space Ω. In order

to deal with this problem, (as in [36]) we deterministically bias the boundaries.
Therefore, the jth component of the new solution xnew is re-established as follows:

xnew
j =

(

xlb
j , if xnew

j < xlb
j

xub
j , if xnew

j > x
up
j

(9)

where xlb
j and xub

j denote the lower and upper bounds for the jth component of the
search space, for j = 1, . . . , n. In fact, for each movement performed by the NSS
algorithm, a new nondegenerate simplex is generated [18]. Therefore, the strategy
adopted to re-establish the new solution could degenerate the simplex. However,
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C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

Search Direction (ws)

The n+1 neighboring weight vectors

Fig. 2 Illustration of a well-distributed set of weight vectors for a MOP with three objectives,

five decision variables and 66 weight vectors, i.e., m =
|W |
n+1

= 11 partitions. The n-simplex is

constructed by six solutions that minimize the subproblems defined by six neighboring weight
vectors contained in four different partitions (C5, C8, C9 and C10). The search is focused on
the direction defined by the weight vector ws.

in practice, it could achieve optimal solutions (at least) in the dimension in which
the simplex is defined [30].

In order to speed up the approximation to the Pareto front, the search direction
ws is changed (at each movement of the NSS) for any other direction ŵ ∈ Ci. Note
that the problem by eq. (2) is continuous of w, therefore, the optimal solution of
g(x|wi, z) should be close to that of g(x|wj , z) if wi and wj are close to each other.
Since the partition Ci has contiguous weight vectors, any information about the
problems defined with weight vectors wc ∈ Ci should be helpful for the search.

In this way, an agile search into the partition Ci is performed and a collapse of
the simplex search in the same direction ws is avoided. Additionally, the number
of movements in the simplex is limited to n+1. This criterion is taken according to

the discussion presented in Section 4.1. Here, we define m = |W |
n+1

partitions of the
set W , guaranteeing at least n + 1 movements in the simplex for each partition.
Such partitions can be easily constructed by using a naive modification of the
well-known k-means algorithm [21].

One iteration of the MONSS is carried out, when the simplex search iterates
n+1 times in each defined partition Ci. Therefore, at each iteration, the proposed
approach performs |W | function evaluations. All of the new solutions found in the
search process are stored in a pool called intensification set (I). At the end of each
iteration, the set S is updated using both the intensification set I and the weight
set W , such as it is shown in Algorithm 1.

In this way, the simplex search minimizes each subproblem, generating new
search trajectories among the solutions of the simplex, while the updating mecha-
nism replaces the misguided paths by selecting the best solutions according to the
Tchebycheff approach, simulating the Path Relinking method [14]. Summarizing,
the MONSS algorithm can be stated as shown in Algorithm 2.
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Input:
W : A well-distributed set of weight vectors.
S: The current approximation to the Pareto set.
I: The intensification set.
Output:
R: An approximation to the Pareto front.

1 begin

2 T = S ∪ I;
3 R = ∅;

4 forall the wi ∈ W do

5 R = R∪ {x⋆| min
x

⋆∈T
g(x⋆|wi, z)};

6 T = T \ {x⋆};

7 end

8 return R;

9 end

Algorithm 1: update(W,S , I)

Input:
W = {w1, . . . , wN}: A set of N weight vectors.
Tmax: A maximum number of iterations.
Output:
S: An approximation to the Pareto front.

1 begin

2 t = 0;

3 Generate initial solutions: Generate a set St = {x1, . . . , xN} of N random
solutions;

4 Generate partitions: Generate m =
|W |
n+1

partitions C = {C1, . . . , Cm} from W

(where n is the number of decision variables), such that: eq. (7) is satisfied;
5 while t < Tmax do

6 for i = 0 to m do

7 Randomly choose ws ∈ Ci;
8 Apply Simplex Search method:

a) Build the n-simplex: Construct the n-simplex from St,
such that: eq. (8) is satisfied.

b) Apply the NSS method: Execute the NSS method during n + 1
iterations. At each iteration:

* Repair the bounds according to eq. (9).
* Relax the search changing the search direction ws for any other ŵ ∈ Ci.
* Each new solution generated by any movements of the NSS method is

stored in the intensification set I.

9 end

10 Update the leading set: Update the set S using Algorithm 1. That is:

St+1 = update(W,St, I);
11 t = t + 1;

12 end

13 return St;

14 end

Algorithm 2: The flowchart of our proposed multi-objective nonlinear simplex

search algorithm

5 Experimental Study

To assess the performance of our proposed MONSS algorithm, we compare its re-
sults with respect to those obtained by the Multi-Objective Evolutionary Algorithm
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based on Decomposition (MOEA/D) [38]. MOEA/D is a state-of-the-art MOEA
that has shown its superiority with respect to older state-of-the-art MOEAs such
as NSGA-II [8] and SPEA2 [41]—see [38]. In our study, we only compare our pro-
posed approach with respect to MOEA/D for two main reasons: 1) MOEA/D is
an algorithm that decomposes the MOP into several single-objective optimization
problems (as or proposed approach); and 2) the proposed approach does not pre-
tend to be an evolutionary algorithm, instead of this, we study the use of Nelder
and Mead’s algorithm to solve MOPs with different characteristics. Therefore, a
more detailed discussion can be carried out by focusing in analyzing the results
achieved by our MONSS algorithm. In then next section, we present the test prob-
lems and the performance assessment measures adopted in our comparative study.

5.1 Test Problems and Performance Assessment

In our experiments, we adopted 20 MOPs with two and three objectives having
different characteristics in their Pareto optimal fronts such as: convexity, concavity
and discontinuity. Ten of these MOPs have been taken from different authors and
the definitions of such MOPs are summarized in Table 1 (in this work, we call to all
of them traditional test problems). For the sake of a more comprehensive study, we
also adopt the ten MOPs with complicate Pareto optimal sets proposed by Zhang
et al. [39], which constitute the well-known CEC’2009 test suite. Due to space
limitations, the description of these problems is omitted. However, the interested
reader is referred to [39] for the details about such test problems.

In order to assess the performance of our proposed approach on the test prob-
lems adopted, we compare it with respect to MOEA/D using the following per-
formance measures:

Hypervolume (IH): The IH performance measure was proposed by [42]. This
performance measure is Pareto compliant [43], and quantifies both convergence
and spread of nondominated solutions along the Pareto optimal front. The hyper-
volume corresponds to the non-overlapped volume of all the hypercubes formed
by a reference point r (given by the user) and each solution p in the Pareto set
approximation (P ). It is mathematically stated as:

IH(P ) = Λ

0

@

[

p∈P

{x|p ≺ x ≺ r}

1

A (10)

where Λ denotes the Lebesgue measure and r ∈ R
k denotes a reference vector being

dominated by all valid candidate solutions in P . A high IH value, indicates that
the approximation P is close to PF and has a good spread towards the extreme
portions of the Pareto front.

Two Set Coverage (IC): The IC performance measure was proposed by Zitzler
et al. [40], and it compares a set of non-dominated solutions A with respect to
another set B, using Pareto dominance. This performance measure is defined as:

IC(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(11)
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Table 1 Traditional test problems

MOP Definition MOP Definition

DEB2 f1(x) = x1 MUR f1(x) = 2
√

x1

[7] f2(x, g(x)) = g(x), ·h(x) [25] f2(x) = x1(1 + x2) + 5
and: x1 ∈ [1, 4], x2 ∈ [1, 2]
g(x) = 1 + 10x2

h(x) = 1 − (f1(x)/g(x))2 − f1(x)

g(x)
×

sin(12πf1(x))
xi ∈ [0, 1]

DTLZ5 f1(x) = cos(θ1) cos(θ2)h(x) REN1 f1(x) = 1

x2
1+x2

2+1

[9] f2(x) = cos θ1 sin(θ2)h(x) [32] f2(x) = x2
1 + 3x2

2 + 1
f3(x) = sin( π

2 xα
1 )h(x) xi ∈ [−3, 3]

g(x) =
P

n
i=3(xi − 0.5)2

h(x) = (1 + g(x))
α = π
xi ∈ [0, 1], n = 12

FON2 f1(x) = 1 − exp(− Pn
i=1(xi − 1

√

n
)2) REN2 f1(x) = x1 + x2 + 1

[13] f2(x) = 1 − exp(−
P

n
i=1(xi + 1

√

n
)2) [32] f2(x) = x2

1 + 2x2
2 − 1

xi ∈ [−4, 4], n = 3 xi ∈ [−3, 3]

LAU f1(x) = x2
1 + x2

2 VNT2 f1(x) =
(x1−2)2

2 +
(x2+1)2

13 + 3

[19] f2(x) = (x1 + 2)2 − x2
2 [33] f2(x) =

(x1+x2−3)2

36 +
(−x1+x2+2)2

8 − 17

xi ∈ [−50, 50] f3(x) =
(x1+2x2−1)2

175 +
(2x2−x1)2

17 − 13
xi ∈ [−4, 4]

LIS f1(x) = 8
q

x2
1 + x2

2 VNT3 f1(x) = 0.5(x2
1 + x2

2) + sin(x2
1 + x2

2)

[20] f2(x) = 4
p

(x1 − 0.5)2 + (x2 − 0.5)2 [33] f2(x) =
(3x1−2x2+4)2

8 +
(x1−x2+1)2

27 + 15
xi ∈ [−5, 10] f3(x) = 1

(x2
1+x2

2+1)
− 1.1 exp(−x2

1 − x2
2)

xi ∈ [−3, 3]

If all points in A dominate or are equal to all points in B, this implies that
IC(A, B) = 1. Otherwise, if no point of A dominates some point in B, then
IC(A, B) = 0. When IC(A,B) = 1 and IC(B, A) = 0 then, we say that A is
better than B. Since the Pareto dominance relation is not symmetric, we need to
calculate both IC(A,B) and IC(B, A).

5.2 Experimental Setup

As indicated before, we compared the results obtained by our proposed approach
with respect to those achieved by MOEA/D [38]. For a fair comparison, we used the
Tchebycheff approach and the same weight vectors for both algorithms. The weight
vectors were generated as in [38], i.e., the settings of N and W = {w1, . . . ,wN}

are controlled by a parameter H. More precisely, w1, . . . ,wN are all the weight
vectors in which each individual weight wi

j (i = 1, . . . , N and j = 1, . . . , k) takes a
value from:



0

H
,

1

H
, . . . ,

H

H

ff

Therefore, the number of such vectors in W is given by N = Ck−1

H+k−1
, where

k is the number of objective functions. Here, we use H = 99 (for two-objective
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Table 2 Parameters for MONSS and MOEA/D

Parameter MONSS MOEA/D

Nsol 100/300 100/300
Tmax 40/200 40/200
Tn – 30
Pc – 1
Pm – 1/n
ρ 1 –
χ 2 –
γ 1/2 –

problems) and H = 23 (for three-objective problems), i.e., 100 and 300 weight
vectors for MOPs having two and three objectives, respectively,

For each MOP, 30 independent runs were performed with each algorithm. The
parameters for both algorithms are summarized in Table 2, where Nsol repre-
sents the number of initial solutions (100 for two-objective problems and 300 for
three-objective problems). Tmax represents the maximum number of iterations. For
traditional test problems (i.e., the problems in Table 1) we used Tmax = 40, while
for the CEC’2009 test problems (denoted as UF1-UF10 in Table 3) we adopted
Tmax = 200. Therefore, both algorithms performed 4,000 (for traditional test prob-
lems) and 20,000 (for the CEC’2009 test problems) objective function evaluations,
in problems having two objectives. In the case of the three-objective problems,
both algorithms performed 12,000 (for traditional test problems) and 60,000 (for
the CEC’2009 test problems) objective function evaluations. The CEC’2009 test
suite was tested using six decision variables.

For MONSS, ρ, χ and γ represent the control parameters for the reflection,
expansion and contraction movements, respectively. For MOEA/D, the parameters
Tn, ηc, ηm, Pc and Pm represent the neighborhood size, crossover index, mutation
index, crossover rate and mutation rate, respectively.

For each MOP, the algorithms were evaluated using the IH and IC perfor-
mance measures. The results obtained are summarized in Tables 3 and 4. These
tables display both the average and the standard deviation (σ) of the IH and IC

performance measures for each MOP. The reference vectors used for computing
the IH performance measure are shown in Table 3. These vectors are established
close to the individual minima for each MOP, i.e., close to the extremes of the
Pareto optimal front. With that, a good measure of approximation and distribu-
tion is reported when the algorithms converge along the Pareto front. In the case
of the statistics for the IC metric comparing pairs of algorithms (i.e., IC(A, B)
and IC(B,A)), they were obtained as average values of the comparison of all the
independent runs from the first algorithm with respect to all the independent
runs from the second algorithm. For an easier interpretation, the best results are
presented in boldface for each performance measure and test problem adopted.

In order to determine if there were significant differences among the results
obtained by the algorithms (MONSS and MOEA/D), we adopted the Wilcoxon
rank sum [35]. This null hypothesis test computes the probability that given two
independent samples A and B, they come from distributions that have equal medi-

ans. The two samples of data are assumed to come from continuous distributions
that are identical except possibly for a location shift, but are otherwise arbitrary.
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In Table 3, P is the probability of rejecting the null hypothesis: “medians are equal”.
Therefore, small values of P cast doubt on the validity of the null hypothesis. In
our study, we performed the Wilcoxon rank sum using a P-value=0.05 as signifi-
cance level. H=0 indicates that the null hypothesis cannot be rejected at the 5%
level. H=1 indicates that the null hypothesis can be rejected at the 5% level.

5.3 Discussion of results

The main goal of the simulations performed in this study, is to verify the effec-
tiveness of our proposed MONSS when dealing with MOPs with different char-
acteristics. As indicated before, the results obtained by our proposed approach
were compared against those produced by MOEA/D. Tables 3 and 4 show the
results obtained by the algorithms in both the traditional and the CEC’2009 test
problems, for the IH and IC performance measures. These results are separately
discussed in the next sections for a better interpretation.

5.3.1 Traditional test problems

In Table 3, it can be seen that the results obtained by our proposed MONSS
outperformed those achieved by MOEA/D in most of the traditional test prob-
lems (i.e., the MOPs described in Table 1). This table provides a quantitative
assessment of the performance of MONSS in terms of the IH performance mea-
sure. This means that the solutions obtained by MONSS achieved a better ap-
proximation and spread of solutions along the Pareto front than those produced
by MOEA/D. The exception was DTLZ5 where MOEA/D obtained a better IH

value. However, according to Wilcoxon’s rank sum, MOEA/D was not significant
better than MONSS for this problem, i.e., the performance of both algorithms was
very similar. For LAU, LIS, REN2 and VNT2 test problems, the null hypothesis
test showed significant differences among the samples produced by MONSS and
MOEA/D. That means (in addition with the IH values) that the performance of
our proposed approach for these problems was significantly better than the one
achieved by MOEA/D. Although for DEB2, FON2, MUR, REN1 and VNT3, the
IH value indicates a better performance for MONSS, Wilcoxon’s rank sum did
not show significant differences, i.e., MONSS was not significantly better than
MOEA/D. However, MONNS was very competitive for these problems. To vali-
date our results, Fig. 3 shows the IH convergence plots for these problems. In this
figure, we can see the performance between MONSS and MOEA/D along each
iteration. From these plots, it is possible to observe that in most cases, MONSS
quickly achieves a better value for the IH performance measure.

Regarding the IC performance measure (Table 4), our proposed MONSS ob-
tained better results when compared against those produced by MOEA/D in most
of these test problems. This means that the solutions obtained by MONSS domi-
nated a higher ratio of solutions produced by MOEA/D. However, MOEA/D ob-
tained a better performance in terms of the IC performance measure for DTLZ5.
However, as can be seen in Table 4, the ratio of solutions dominated by MOEA/D
was not significantly high. The use of the IC performance measure also corrobo-
rates the results obtained by the IH performance measure and the Wilcoxon rank
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sum in the DTLZ5 test problem, i.e., the performance of both algorithms was very
similar.

5.3.2 CEC’2009 test problems

Regarding the CEC’2009 test problems (UF1-UF10 in Tables 3 and 4), we can see
that our proposed MONSS obtained a better value in the IH performance mea-
sure in most of the CEC’2009 test problems. The exceptions were the problems
UF5 and UF6, where MOEA/D obtained a better value in the IH performance
measure. The Wilcoxon rank sum showed significant differences among the sam-
ples produced by MONSS and MOEA/D in the majority of these problems. The
exception was UF10, where the null hypothesis test did not show significant dif-
ference. Therefore, although MONSS obtained a better IH value for this problem,
it was not significantly better than MOEA/D. However, for UF1-UF4, UF7 and
UF9, according to Wilcoxon’s rank sum, our proposed MONSS obtained signifi-
cantly better results than those achieved by MOEA/D. That means that a better
approximation and spread of solutions along the Pareto front were obtained by
MONSS in comparison with those achieved by MOEA/D. In fact, for UF5 and
UF6, MONSS was significantly outperformed by MOEA/D. The main reason for
the poor performance of MONSS in these problems is attributed to the difficult
landscapes that UF5 and UF6 possess—see [39]. Fig. 4 shows the IH converge
plots for the CEC’2009 test problems. This figure shows the performance between
MONSS and MOEA/D along the iterations. In fact, the poor performance of
MONSS for UF5 and UF6 can be seen in Fig. 4 E) and F), respectively.

With respect to the IC performance measure, MONSS obtained better results
in comparison with those achieved by MOEA/D in most of these test problems.
Therefore, the solution obtained by MONSS dominated a higher ratio of solutions
produced by MOEA/D. The exception were UF5 and UF6, in which MOEA/D
produced more solution that dominate to those obtained by MONSS. This also
corroborates the results obtained for the indicator IH in UF5 and UF6, where
MONSS was significantly outperformed by MOEA/D. However, in spite of being
an algorithm based on a direct search method, MONSS became very competitive in
comparison with a powerful state-of-the-art MOEA (i.e. MOEA/D), and in most
cases, the performance of MONSS significantly outperformed the one achieved by
MOEA/D.

6 Conclusions and Future Work

We have proposed a new method based on the use of mathematical programming
techniques for approximating solutions along the Pareto front of a MOP. The
proposed approach was, in principle, designed for dealing with box-constrained
multi-objective optimization problems having low and moderate dimensionality
(between 2 and 12 decision variables).

Our results indicate that our proposed MONSS outperforms a state-of-the-
art multi-objective evolutionary algorithm (MOEA/D) in terms of convergence in
most of the test problems adopted. The number of objective function evaluations
in these test problems was restricted to 4,000 (for traditional test problems) and
20,000 (for the CEC’2009 test problems) for the two-objective problems. In the
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Table 3 Results corresponding to the IH performance measure for MONSS and MOEA/D

MOP
MONSS MOEA/D

P (H)
reference

IH IH vector (r)
(σ) (σ)

0.983980 0.980044
DEB2

(0.000253) (0.018523)
0.145286 (0) (1.1, 1.1)T

0.434615 0.437779
DTLZ5

(0.001253) (0.000623)
0.145286 (0) (1.1, 1.1, 1.1)T

0.545732 0.542475
FON2

(0.000916) (0.001483)
0.137323 (0) (1.1, 1.1)T

14.052315 13.970412
LAU

(0.004976) (0.029470)
0.000000 (1) (4.1, 4.1)T

0.315755 0.260127
LIS

(0.002831) (0.009704)
0.000000 (1) (1.0, 1.0)T

3.144421 3.143494
MUR

(0.000428) (0.000980)
0.761822 (0) (4.1, 4.1)T

3.613325 3.598263
REN1

(0.000627) (0.019908)
0.520139 (0) (37.1, 1.1)T

19.013226 19.011884
REN2

(0.002713) (0.004712)
0.000000 (1) (−1.9, 2.1)T

2.165237 2.163965
VNT2

(0.000895) (0.001096)
0.000002 (1) (4.5,−16.0,−11.5)T

11.735691 11.723060
VNT3

(0.013317) (0.035286)
0.579294 (0) (8.5, 17.5, 0.5)T

0.807203 0.700705
UF1

(0.018045) (0.056916)
0.000000 (1) (1.1, 1.1)T

0.838738 0.829808
UF2

(0.018344) (0.011885)
0.007288 (1) (1.1, 1.1)T

0.543851 0.454699
UF3

(0.094089) (0.089608)
0.000253 (1) (1.1, 1.1)T

0.443920 0.429724
UF4

(0.010838) (0.010334)
0.000012 (1) (1.1, 1.1)T

0.038956 0.221446
UF5

(0.047168) (0.090002)
0.000000 (1) (1.1, 1.1)T

0.059901 0.193941
UF6

(0.076414) (0.100058)
0.000004 (1) (1.1, 1.1)T

0.652922 0.418607
UF7

(0.042732) (0.145031)
0.000000 (1) (1.1, 1.1)T

0.704555 0.668449
UF8

(0.010813) (0.020402)
0.000000 (1) (1.1, 1.1, 1.1)T

1.050053 0.961896
UF9

(0.006325) (0.084149)
0.000000 (1) (1.1, 1.1, 1.1)T

0.325869 0.295680
UF10

(0.096517) (0.117077)
0.304177 (0) (1.1, 1.1, 1.1)T

case of three objectives, the search was restricted to 12,000 (for traditional test
problems) and 60,000 (for the CEC’2009 test problems) objective function evalu-
ations. The good results obtained by our proposed approach with this relatively
low number of objective function evaluations suggest that it can be a good choice
for dealing with expensive objective functions.

The main motivation for the work presented here has been to show that it is
possible to design a competitive multi-objective optimization algorithm using only
direct search methods, and without relying on metaheuristic search mechanisms.
It is, however, also clear to us that our proposed approach has some disadvantages
with respect to multi-objective metaheuristics. The main ones have to do with
the difficulties of the NSS method for moving in highly accidented search spaces.
It is possible, however, to improve the performance of our proposed approach in
such cases by varying the step sizes (i.e., the control parameters ρ, χ and γ) until
finding a suitable region of the search space in which the NSS movements can be
properly conducted. This is, however, an issue that deserves further research.
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Table 4 Results corresponding to the IC performance measure for MONSS and MOEA/D

IC(MONSS, MOEA/D) IC(MOEA/D, MONSS)
MOP

(σ) (σ)
0.068682 0.028632

DEB2
(0.022168) (0.011789)
0.057920 0.065374

DTLZ5
(0.004841) (0.048562)
0.226095 0.045333

FON2
(0.074152) (0.021868)
0.093033 0.047000

LAU
(0.081053) (0.025710)
0.348161 0.010101

LIS
(0.134523) (0.013040)
0.033010 0.013000

MUR
(0.013697) (0.009000)
0.059347 0.043000

REN1
(0.047529) (0.027586)
0.005000 0.004333

REN2
(0.006191) (0.005588)
0.044133 0.018711

VNT2
(0.013296) (0.006107)
0.231700 0.035242

VNT3
(0.041898) (0.010910)
0.328315 0.092295

UF1
(0.101923) (0.069648)
0.532979 0.042355

UF2
(0.058161) (0.019300)
0.173409 0.114337

UF3
(0.247981) (0.114386)
0.303535 0.235692

UF4
(0.079261) (0.091731)
0.025000 0.813333

UF5
(0.098953) (0.199555)
0.140000 0.156667

UF6
(0.156205) (0.272899)
0.196863 0.052480

UF7
(0.077797) (0.108817)
0.125916 0.102632

UF8
(0.040859) (0.020653)
0.235295 0.072039

UF9
(0.073415) (0.027979)
0.236593 0.117121

UF10
(0.154094) (0.103371)

Motivated by the limitations of our proposed approach, we intend to hybridize
it with a multi-objective evolutionary algorithm, so that it can be applied to multi-
objective optimization problems of higher dimensionality and highly accidented
search spaces. The idea of this hybridization is to use a multi-objective evolutionary
algorithm to locate the promising regions of the search space and then adopt our
MONSS algorithm to exploit such regions in an efficient manner. We believe that
this sort of multi-objective memetic algorithm could be a powerful tool for solving
complex and computationally expensive multi-objective optimization problems in
an efficient and effective manner.
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18 Saúl Zapotecas-Mart́ınez, Carlos A. Coello Coello

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 5  10  15  20  25  30  35  40  45

MONSS
MOEA/D

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5  10  15  20  25  30  35  40  45

MONSS
MOEA/D

A) IH convergence for DEB2 problem B) IH convergence for DTLZ5 problem

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5  10  15  20  25  30  35  40  45

MONSS
MOEA/D

 0

 2

 4

 6

 8

 10

 12

 14

 16

 5  10  15  20  25  30  35  40  45

MONSS
MOEA/D

C) IH convergence for FON2 problem D) IH convergence for LAU problem

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5  10  15  20  25  30  35  40  45

MONSS
MOEA/D

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 5  10  15  20  25  30  35  40  45

MONSS
MOEA/D

E) IH convergence for LIS problem F) IH convergence for MUR problem

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5  10  15  20  25  30  35  40  45

MONSS
MOEA/D

 10

 12

 14

 16

 18

 20

 5  10  15  20  25  30  35  40  45

MONSS
MOEA/D

G) IH convergence for REN1 problem H) IH convergence for REN2 problem

 2.04

 2.06

 2.08

 2.1

 2.12

 2.14

 2.16

 2.18

 2.2

 5  10  15  20  25  30  35  40  45

MONSS
MOEA/D

 11

 11.1

 11.2

 11.3

 11.4

 11.5

 11.6

 11.7

 11.8

 11.9

 5  10  15  20  25  30  35  40  45

MONSS
MOEA/D

I) IH convergence for VNT2 problem J) IH convergence for VNT3 problem

Fig. 3 IH convergence plots for MONSS and MOEA/D in the test problems DEB2, DTLZ5,
FON2, LAU, LIS, MUR, REN1, REN2, VNT2 and VNT3. The x axis and y axis show the
number of iterations and the IH value, respectively
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Fig. 4 Convergence plot for MONSS and MOEA/D in the test problems UF1-UF10. The x
axis and y axis show the number of iterations and the IH value, respectively
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