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Abstract—Premature convergence is one of the best-known
drawbacks that affects the performance of Evolutionary Al-
gorithms. An alternative for dealing with this problem is to
explicitly try to maintain proper diversity. In this paper, a new
replacement strategy that preserves useful diversity is presented.
The novelty of our method is that it combines the idea of
transforming a single-objective problem into a multi-objective
one, by considering diversity as an explicit objective, with the
idea of adapting the balance induced between exploration and
exploitation to the various optimization stages. Specifically, in
the initial phases, larger amounts of diversity are accepted.
The diversity measure considered in this paper is based on
calculating distances to the closest surviving individual. Analyses
with a multimodal function better justify the design decisions
and provide greater insight into the working operation of the
proposal. Computational results with a packing problem that
was proposed in a popular contest illustrate the usefulnessof
the proposal. The new method significantly improves on the best
results known to date for this problem and compares favorably
against a large number of state-of-the-art schemes.

Index Terms—Diversity preservation, replacement strategy,
survivor selection, exploration, exploitation.

I. I NTRODUCTION

EVOLUTIONARY Algorithms (EAs) are one of the most
promising approaches for several kinds of optimization,

such as continuous [1] and multimodal [2] optimization. Since
their inception,EAs have been widely used in many different
areas, and nowadays are probably one of the most well-known
metaheuristics [3]. In spite of their success, adaptingEAs to
new problems is not an easy task, because it usually involves
many difficult design decisions [4]. As an example of the
difficulties that arise in the design ofEAs, it is known that one
of the keys to success is to induce a proper balance between
exploration and exploitation [5]. However, the implications
of maintaining diversity in such a balance and the way in
which exploration and exploitation are promoted inEAs are
not always fully understood [6] and depend on the specific
variant ofEA applied. For instance, while in some schemes the
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mutation operator is in charge of promoting exploration [7], in
other cases this task is assigned to the crossover operator [8].

Since the inception ofEAs, premature convergence has been
recognized as one of their recurrent drawbacks [6]. Premature
convergence arises when all the population members are
located in a reduced part of the search space — different
from the optimal region — and the components selected do
not allow escaping from such a region. Many schemes have
been devised in an effort to avoid this drawback [9]. These
studies have revealed that for most problems, maintaining a
diverse population is a prerequisite for avoiding premature
convergence [6]. However, if the population is too diverse,
exploitation might be prevented, resulting in too slow a
convergence and in poor-quality solutions. For this reason,
Mahfoud used the concept ofuseful diversity[10] to refer to
those amounts of diversity that result in high-quality solutions.

Regarding the design ofEAs, it is important to note that
most initialEAs were generational approaches [11], i.e. in each
generation the offspring unconditionally replaced the previous
population regardless of fitness. In these initial schemes,also
known as “reproduction with emphasis” schemes [12], the
parent selection was in charge of biasing the search towards
the most promising regions. As a result, many of the initial
attempts to balance the exploration and exploitation of the
search space were based on modifying the parent selection
scheme [13]. Other alternatives included modifying the vari-
ation strategy [7] and/or the population model [14]. How-
ever, in most currentEAs the “reproduction with emphasis”
is replaced or at least combined with the “survival of the
fittest” principle [12]. Specifically, these algorithms, instead
of replacing the old population with the child population, use
an additional selection stage — the replacement strategy or
survivor selection — to decide which individuals survive to
the next generation [15]. Our hypothesis is that by intro-
ducing a diversity preservation mechanism into the survivor
selection stage, a more proper balance between exploration
and exploitation can be induced, with the long-term result
being higher quality solutions. We base this on the fact that
while the variation and parent selection stages make decisions
that affect the current generation — creation of the offspring
—, the survivor selection mechanism makes decisions that
might have a more drastic effect on the whole optimization
process. Specifically, this mechanism is in charge of deciding
which solutions survive to the next generation, so even if some
improper individuals are generated by the parent selectionand
variation stages, this can be fixed — at least partially — by a
properly designed replacement stage.
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In the literature, several survivor selection schemes thattake
diversity into account have also been devised [16], [17]. The
novelty of our scheme is the dynamic balance we achieve
between exploration and exploitation by incorporating the
stopping criterion as an input to the replacement strategy.
Specifically, in the first stages of the optimization procedure
we induce a larger exploration by diversifying the survivors,
while in the last stages, we promote exploitation. Similar
ideas have been adopted to maintain diversity by influencing
other components [18]. However, to the best of the authors’
knowledge, no survivor selection stage has incorporated the
use of the stopping criterion to bias its decisions.

We selected a packing problem (2DPP) modeled on the com-
petitions held at the2008 Genetic and Evolutionary Computa-
tion Conferenceto illustrate the benefits of our newly designed
approach1. This problem was tackled by several research
groups, which is why we decided to use it as a benchmark
problem. Moreover, it is interesting to note that the schemes
that have provided the best results for this problem [19]–[21],
and which will be extended in this work [19], are memetic
approaches. In memetic algorithms, premature convergence
can be even more harmful than in other variants ofEAs [22],
[23]. Consequently, applying diversity management in the
survivor selection stage seems even more important.

The rest of the paper is organized as follows. A discussion
of the relevant background is given in Section II. Section III
presents an analysis of some related approaches that justify
the decisions made when designing the new scheme. In
Section IV the new diversity-based replacement scheme is
described. The benchmark problem, as well as the basics of
the memetic scheme that is expanded upon in this paper, are
outlined in Section V. Section VI is devoted to presenting
our experimental validation. Finally, our conclusions andsome
lines of future work are given in Section VII.

II. D IVERSITY PRESERVATION IN EVOLUTIONARY

ALGORITHMS

Premature convergence is a well-known drawback ofEAs,
so a large number of techniques to deal with this problem
have been devised [9]. Most of these techniques are based on
directly or indirectly managing the diversity of the popula-
tion [6]. These methodologies range from general techniques
to problem-dependent heuristics. In this section, we review
some of the most popular general techniques, which will be
used to show the potential of the new method developed in
this paper. For a broader review of diversity management
techniques, the reader is referred to [6].

A. Classic Diversity Management Schemes

Since most initialEAs were generational schemes, several
attempts to properly balance exploration and exploitationthat
do not affect the survivor selection mechanism have been
developed. These methods are reviewed in this section. In

1The original website (http://www.sigevo.org/gecco-
2008/competitions.html) is not being maintained. We have created a
new website where the evaluator and instances can be downloaded
(http://2dpp.cimat.mx).

generationalEAs, the main source of selection pressure usually
comes from the parent selection. For this reason, specially
during the 90s, a large effort was dedicated to devising new
parent selection schemes where the selection pressure might
be controlled [15]. In addition, some schemes capable of
dynamically adapting the balance between exploration and
exploitation were also devised. However, some studies found
that parent selectors were not able to maintain proper diversity
per se [13] even if relatively large populations were used.
Thus, these schemes have to be combined with other strategies
to successfully preserve diversity.

The population model has also been studied with the
aim of improving diversity preservation inEAs. EAs with
structured populations — instead of panmictic schemes —
have gained considerable popularity in recent years [24]. In
these schemes, some recombination restrictions are imposed
by taking into account the positions of the individuals in the
population. Some of these schemes, such as the island-based
model [25], were initially devised as a way of reducing the
interactions between individuals with the aim of facilitating
their parallelization. However, they have important effects
on diversity [14], as a result of which they have also been
used as a way of promoting exploration. Since these schemes
do not explicitly try to maintain diversity, in the long term,
diversity is usually highly reduced. Moreover, since several
components that influence the loss of diversity have to be
selected, controlling this reduction in diversity is not aneasy
task [26]. In order to alleviate this problem, some island-
based models that try to explicitly maintain diversity have
been devised [27]. However, they usually introduce many
parameters and require several adjustments.

Schemes based on mating restrictions are similar to those
described above in the sense that some interactions between
individuals are avoided. However, this is not done based on
the positions of the individuals in the population. Instead, the
distance between individuals in genotypic or phenotypic space
is normally used. In some cases, promoting mating between
dissimilar individuals seems to be the most promising [12],
while in other cases, the opposite is true [28]. A scheme
that adapts the mating selection was recently proposed [29].
However, it resulted in a method with many dependencies on
the problems to be solved. Note also that it is recognized
that while some of these alternatives might delay convergence,
this effect is not completely avoided. As a result, they might
introduce additional mechanisms. For instance, the Cross
generational elitist selection, Heterogeneous recombination,
Cataclysmic mutation scheme (CHC) uses a highly disruptive
crossover operator and detects convergence of the population
to launch a highly disruptive mutation.

Another alternative resides in adapting the variation stage.
For instance, some parameter control techniques have been
devised that try to adapt the balance between exploration and
exploitation by using different parameter values in different
stages of the optimization process [30]. In other cases, a
pool of operators with different capabilities are simultaneously
considered [31]. In these schemes, diversity is not usually
taken into account directly. Instead, it is indirectly managed
by selecting different operators or parameter values, which
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can cause performance drawbacks in some cases [32]. Using
diversity in the control loop [33], [34] is a very promising
approach which requires further development. In order to adapt
the variation stage, the complete history of the evolution might
be used [35]. However, for very long executions this is usually
not possible so other alternatives must be considered.

Finally, restarting schemes are also quite popular. In these
schemes, instead of avoiding a fast convergence, this event
is detected, and then all or part of the population is restarted.
Several different ways of establishing the restarting points have
been devised [36]. These schemes are easy to implement and
have yielded significant improvements in some cases [37]. In
addition, since they are based on recovering diversity, they
can be easily combined with schemes that attempt to maintain
diversity. A particular case of this type of schemes is the saw-
tooth genetic algorithm (saw-toothGA) [37]. This scheme uses
a variable population size and periodic partial reinitialization
of the population in the shape of a saw-tooth function. In order
to configure such a function two parameters are required: the
period (P ) and the amplitude (D).

B. Replacement Schemes based on Diversity

Some diversity-preservation techniques that rely on modify-
ing the replacement phase have also been devised. The basic
principle of these schemes is that by diversifying the survivors,
more exploration can be induced. The reason for this is two-
fold. First, if the diversity of a given population is large,it
means that several regions of the search space are maintained.
Second, most crossover operators tend to be more explorative
when distant individuals are involved [38]. For instance, in
geometric crossovers [39] — such as the one used in this paper
— offspring are in the segment between their parents under
a given metric, meaning that the distances between parents
and their offspring tend to be larger when distant parents
are involved. This means that when the population maintains
distant parents and this kind of crossover is used, the offspring
can explore other regions and, when coupled with proper
mutation and replacement, a larger diversity might be induced.
Note that with the use of non-geometric crossovers, such as
the one defined in [40], a larger diversity might be induced
by the crossover operator. However, in this case, controlling
the diversity of the population seems more complex. For
instance, in such a crossover a bit-flip mutation is applied
to the genes where both parents contain the same allele.
This means that the degree of exploration increases when
similar individuals are used. Thus, while maintaining distant
individuals is appropriate for exploring different regions, the
effect on the diversity induced by the variation scheme is the
opposite. Moreover, defining non-destructive non-geometric
crossover for the 2DPP is not easy, so we decided to apply a
geometric crossover. Note that local search and mutation are
also used in our method. When these components are applied,
alleles not present in an individual might be recovered.

One of the first studies on using the replacement phase
to control the diversity resulted in Cavicchio’spreselection
scheme[41]. Subsequently, preselection was extended to cre-
ate crowding [42], which has been quite popular in recent

years [16], [43]. The basic principle of crowding is to force
new individuals entering the population to replace similar
individuals. Some of the most popular crowding methods are
the following:

• In Mahfoud’s deterministic crowding[43] (DETCR) each
pair of parents and their corresponding offspring are
paired by minimizing the sum of the distances between
them. Then, for each pair, the offspring survives if it is
at least as good as the parent.

• Probabilistic crowding[44] (POBCR) is similar to deter-
ministic crowding, but it uses a non-deterministic rule
to establish the winner. Specifically, the probability of
survival of each competitor is proportional to its fit-
ness value. A scaled variant of probabilistic crowding
(SPOBCR) was also devised [45].

• In the recently proposedadaptive generalized crowd-
ing [16] (AGCR), the selection pressure of the replacement
rule depends on the value of a parameter. Two different
ways of adapting such a parameter were proposed: a self-
adaptive and an adaptive scheme. In the adaptive scheme,
which is the one applied in this paper, the adaptation is
done based on the entropy of the population.

• In Restricted Tournament Selection[46] (RTS), after a
new individual (C) is created,CF individuals from the
current population are randomly selected. Then, C and
its most similar individual — from those in the selected
set — compete for a place in the population using a
traditional binary tournament. The creation of individuals
is done as in steady-state schemes.

Several other replacement strategies that promote diversity
have been proposed. One of the most popular is probably
the clearing [47] strategy (CLR). Clearing can be regarded
as an extension of fitness sharing. However, while in fitness
sharing the fitness of each individual is normalized depending
on the number of individuals in its region — defined via
the parameterσ —, in the clearing procedure the resources
of a niche are attributed to the bestW elements in each
niche. Moreover, the winners of each niche are automatically
preserved by copying them to the next population. Note that
if too many niches are detected, this might lead to a large
immobilization of the population. As a result, Petrowsky
proposed preserving only the winners with a fitness greater
than the mean [47], which is the alternative used in our paper.

In some methods, maximizing diversity is considered as
an objective that is combined with the original objective to
calculate the fitness of each individual. However, since the
two measures are not entirely compatible, such a combination
is complex and problem-dependent. In order to alleviate this
problem, other ways of combining them have been devised.
For instance, inCOMB [17] the individuals are sorted by the
original cost and by their contribution to diversity. Then,the
rankings of the individuals are combined to generate the fitness
value using two parameters (NClose andNElite). In each step
of the replacement phase, the individual with the lowest fitness
is erased and the ranks are recalculated. Since this scheme uses
ranks instead of the original function value, it results in amore
robust scheme. The main drawback is that two new parameters



4 IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, MONTH YEAR

must be set, and due to the way in which individuals are
scored, some individuals that contribute practically nothing
to diversity might be preserved. Another alternative is the
method devised in [48] (CD/RW). In the CD/RW method, a
new individual enters the population by replacing another one
that is worse both in quality and diversity contribution. Ifsuch
an individual is not found, areplace-worststrategy (RW) is
applied, i.e., the worst individual in the population is erased
if it is worse than the newly generated individual. The main
drawback is thatRW does not take diversity into consideration,
so if the method relies too much on this scheme, premature
convergence might appear very quickly.

Finally, another quite popular alternative is to explicitly
consider diversity as an objective and apply a multi-objective
optimization scheme [49], [50]. These kinds of schemes are
usually referred to as diversity-based multi-objectiveEAs
(MOEAs) [51]. In these approaches, a measure of population
diversity is not required. Instead, the auxiliary objective must
be a measure of the diversity introduced by the individual
in the population. Several different ways of calculating the
auxiliary objective have been proposed [51]. One of the most
populars is probably thedistance to the closest neighbor
(DCN) metric [49]. In DCN, the auxiliary objective of a given
individual is calculated as its distance to the closest member in
the population. In addition, it was shown that calculatingDCN

by taking into account only the members that have already
been selected to survive is preferred, at least for continuous
optimization problems [52]. Some variants of these schemes
have been applied to the benchmark problem that is addressed
in this paper [19], [53]. Finally, we would like to note that
the concept of multiobjectivization [54] is highly relatedto
diversity-basedMOEAs. However, in the case of multiobjec-
tivization the calculation of each individual’s objectives does
not depend on the content of the population, which represents
a substantial difference in the design and analysis of this kind
of approach. Readers are referred to [51], [55] for a more
extensive survey on both kinds of schemes.

III. M ATHEMATICAL ANALYSIS OF RELATED

APPROACHES

In this paper, an extension of the replacement strategy
presented in [52] (MULTI ) is devised. Initially, we attempted
to use this method directly to deal with the packing problem
we consider here. However, the results were unsatisfactory.
Our initial analyses showed that even with the incorporation
of such a replacement strategy, the diversity was reduced
too quickly and a proper balance between exploration and
exploitation was not achieved. The difference with previous
successful applications of related schemes is that, in thiscase,
a memetic approach is used and that much longer executions
are required to attain high-quality solutions. In addition, other
mechanisms for promoting diversity were not incorporated.
These differences have serious implications for the optimiza-
tion procedure. For instance, while in [52] the variation scheme
does not usually generate clones, when a local search is
applied, clones are more likely to appear. Moreover, given that
much longer executions are run, the balance required between

Algorithm 1 MULTI survivor selection scheme
1: CurrentMembers = Population∪ Offspring
2: Best = Individual with bestf(x) in CurrentMembers
3: NewPop ={ Best}
4: CurrentMembers = CurrentMembers -{ Best}
5: while (|NewPop| < N) do
6: CalculateDCN of CurrentMembers, considering as reference

NewPop
7: ND = Non-dominated individuals of CurrentMembers (without

repetitions)
8: Selected = Randomly select an individual from ND
9: NewPop = NewPop∪ Selected

10: CurrentMembers = CurrentMembers -{Selected}
11: end while
12: Population = NewPop

exploration and exploitation might differ. In this section, we
present an analysis of this replacement strategy, which justifies
the design decisions made in this paper.

The replacement strategyMULTI (Algorithm 1) operates as
follows. First, the population of the previous generation and
the offspring are joined in a temporary set. Then, the best
individual, i.e., the one with the highest original objective
function value — for a maximization problem — is selected
to form part of the new population. Then, until the new
population is filled withN individuals, the following steps
are executed. First, theDCN objective is calculated. The
calculation considers the currently selected individualsas the
reference, i.e., for each pending individual, the distanceto the
nearest individual previously selected is taken into account.
Then, considering the individuals that have not been selected,
the non-dominated front is calculated. This front is computed
as a set with no repetitions, i.e., if a non-dominated member
appears several times in the population, it is only included
once in the front. While this does not prevent the appearance
of clones, it does reduce their growth rates. Finally, a non-
dominated individual is randomly selected to survive. Notethat
in each step, the probability of selecting any non-dominated
individual is the same because all of them are equally valid
when both objectives are considered simultaneously. However,
once that an individual is selected, theDCN values are re-
calculated, meaning that the selected region is penalized in
subsequent selections. While this action promotes a larger
diversity than other standard replacement strategies, theratio
between exploration and exploitation does not depend on the
stopping criterion, so there is no proper adaptation to the
requirement of the different stages of the optimization.

Even though some related methods have been successfully
applied to complex problems [19], [49], to the best of our
knowledge, the diversity induced by these kinds of methods
has not been previously analyzed. Thus, in order to have a bet-
ter understanding of the internal operation of this replacement
scheme, we present such an analysis here. A common metric
applied for analyzing the properties of diversity-preservation
schemes is thetakeover time[13], which is defined as the
number of generations required for convergence into a single
solution when no variation is accomplished. In our case, dueto
the way in which replacement is done, complete convergence
is not expected to appear. For instance, consider an extreme
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Fig. 1. Simple multi-modal function of one variable used to analyze diversity

case where in a population ofN individuals,N −1 are clones
of the best individual (B) and there is one individual (D)
that differs. Also, assume that all the offspring are clonesof
B. In such a case, in each step, the non-dominated set is
formed by D and one copy ofB, on the condition thatD
is not selected in any step — ifD is selected at some step,
complete convergence would not appear. Thus, in each of the
N −1 selections carried out by the replacement strategy,B is
selected with probability1

2
. This means that an individualB

is not selected in the whole process with probability
(

1

2

)N−1
,

which can be considered negligible for typical values ofN ,
so complete convergence does not appear.

Since calculating the takeover time makes no sense in this
case, a variant of this is studied for the minimization of
the single continuous mathematical function given in (1) (see
Fig. 1). This function is not complex, thus making it easier to
study the internal operation ofMULTI . This function consists
of 41 basins of attraction, so it seems interesting to calculate
the number of basins of attraction where there is at least one
individual. Given the complex interactions that appear in the
model, this study was carried out experimentally.

f(x) = min(⌈x⌉−x, x−⌊x⌋)+⌊x⌋×1e−2, x ∈ [0, 40] (1)

Fig. 2 shows the evolution of the number of basins of
attraction covered by the population. It was calculated using
the mean of 50 executions, where the parents were selected
usingbinary tournaments, the initial population was randomly
generated, the perturbation strength was a random number
in [−0.2, 0.2], no crossover was considered and different
population sizes (N ) were tested. Specifically,N was set to
50, 100 and 200. The stopping criterion was set to20 000
generations. We can see that in any of the cases, the number of
basins of attraction covered becomes stable without complete
convergence, i.e., several basins of attraction are explored
even in the final stages. Moreover, asN is increased, the
number of basins of attraction maintained also grows. Thus,
the population size is an effective way of increasing the
exploration capabilities. Note also, however, that in every
case there is a rapid decrease in the number of basins of
attraction maintained in the population in the first phases of
the optimization before remaining practically intact until the
end of the optimization. In fact, in any of the cases tested,
more than half of the basins of attraction are lost early on in
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Fig. 2. Evolution of the mean of the number of basins of attraction covered
in the population with theMULTI replacement scheme

the optimization process. As a result, the scheme is not really
maintaining a large level of exploration in the initial phases,
and in some executions the basin of attraction of the global
optimum is not covered. In practical cases, with the presence
of crossover and larger search spaces, the loss of diversity
might be slower. In any event, some disadvantages are clear:

• The reduction in diversity in the initial phases is too large.
• The user cannot control the reduction in detail (it can

only be partially controlled withN ), so while this pro-
cess might be suitable for certain stopping criteria, in
other cases the balance induced between exploration and
exploitation might not be convenient.

IV. OUR PROPOSAL

Our proposal builds on the multi-objective replacement
strategy presented before (Algorithm 1), and modifies it with
the aim of avoiding the drawbacks already discussed. The main
advantage of the new proposal is that the balance between
exploration and exploitation is automatically adjusted based
on the given stopping criterion. Thus, the stopping criterion,
as well as the elapsed time or the evaluations already executed,
are used as inputs to the replacement strategy, which is one
of the novelties of the new design. In this way, for shorter
stopping criteria the method induces a faster reduction in
diversity than for longer stopping criteria.

One of the reasons for the drawbacks previously discussed
is that the importance assigned to the original objective and di-
versity objective remains intact throughout the run. In such an
approach, more exploitation is done as the execution advances.
However, this is only due to the selection pressure induced by
the parent selection, which tends to gather more individuals
in the most promising zones, and to the fact that crossover
is more exploitative when acting on nearby individuals. As a
result, this balance can barely be controlled. However, since
the origins ofEAs several authors have claimed that adapting
this balance to the different stages of the optimization is
quite important [38]. Using weighted fitness functions might
be an alternative for balancing the priority of the objectives.
However, since the scale and form of the original objective
depend on the problem, generalizing this approach is truly
complicated. Instead, we have defined a dynamic penalty
approach that is independent of the scale of the original
objective.
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Fig. 3. Effect of the penalty approach with distanceD

One of the basic principles behind the development of the
replacement strategy devised in this paper (MULTI DYNAMIC )
is that individuals that contribute too little to diversity—the
contribution is measured with theDCN value— should not be
accepted regardless of their original objective value. In our
approach, individuals that contribute too little are penalized
by setting their original objective value to a very low quality
value. For a non-negative maximization function (as is the
case of 2DPP), the value 0 might be used. This is illustrated in
Fig. 3. In this figure, the valueD represents the minimumDCN

required to avoid being penalized. As the figure shows, any
individual whoseDCN value is lower than this threshold value
is penalized. As a result, the non-domination rank (shown at
the left of each individual) of the penalized individuals might
be increased. Obviously, with this approach, the penalized
individuals will not belong to the non-dominated front, unless
every pending individual has been penalized.

While the above approach is quite logical, one of the key
choices is how to evaluate whether an individual contributes
enough or not, i.e., how to set the valueD. The value
of D should depend on the optimization stage. Specifically,
this value should be reduced as the stopping criterion is
approached. In our scheme, an initialDI value must be set.
Then, a linear reduction ofD is done. The reduction is
calculated in such a way that by the end of the execution, the
resulting value is0. In this paper, the stopping criterion is set
by time. Thus, ifTEnd is the number of seconds allocated to
the run andTElapsed the elapsed time,D can be calculated as
D = DI −DI ∗

TElapsed

TEnd
. Some preliminary tests that took into

account different ways of updatingD were also developed.
Specifically, we defined a pairwise function that allows us to
specify the time whenD starts to decrease, as well as the
time when it reaches the zero value. In addition, we tested
reductions that were faster as well as slower than the linear
one. While these modifications provided some benefits in a
few specific cases, those benefits were not very significant
and depended on the particular instances, so in this work we
use the linear reduction. Some preliminary tests were also
carried out that used the number of generations to set the
stopping criterion. In these cases, instead ofTElapsed and
TEnd, the number of generations already evolved, as well as
the maximum number of generations, are used to computeD.
The conclusions that could be drawn when using generations

Algorithm 2 MULTI DYNAMIC survivor selection scheme
1: CurrentMembers = Population∪ Offspring
2: Best = Individual with bestf(x) in CurrentMembers
3: NewPop ={ Best}
4: CurrentMembers = CurrentMembers -{ Best}
5: while (|NewPop| < N) do
6: CalculateDCN of CurrentMembers, considering as reference

NewPop
7: D = DI − DI ∗

TElapsed

TEnd

8: Penalize(CurrentMembers, D)
9: ND = Non-dominated individuals of CurrentMembers (without

repetitions)
10: Selected = Randomly select an individual from ND
11: NewPop = NewPop∪ Selected
12: CurrentMembers = CurrentMembers -{Selected}
13: end while
14: Population = NewPop

instead of time as the stopping criterion were similar to those
obtained in this paper. However, the algorithms that main-
tained higher levels of diversity incurred more expensive local
searches, meaning that much more time was required to evolve
the same number of generations. Consequently, the results
presented in this paper rely on time as the stopping criterion.
In the case of using generations as the stopping criterion, the
relative order of some of the schemes tested changes, but the
benefits of the new proposal remain intact. Algorithm 2 shows
the pseudocode ofMULTI DYNAMIC . We would like to remark
that the only stage that uses multi-objective concepts is the
replacement strategy. Thus, the remaining parts of theEA are
kept as a single-objectiveEA.

Regarding the parameterization of our proposal, we would
like to note that while the setting ofDI obviously depends
on the problem, the main advantage ofMULTI DYNAMIC is
that DCN is defined in the space of the variables and not in the
space of the objectives. The relationships among the candidate
solutions in the space of the variables are usually easier to
analyze than those that arise in the space of the objectives
because the former space is known by the user. For instance,
it is usually quite easy to calculate the maximum distance
between any two solutions or the search space size. However,
in the space of the objectives this is usually not possible. Obvi-
ously, there are some optimization problems where meaningful
distances are not easily obtained. For instance, in evolutionary
robotics simple distances among synaptic weights are not
adequate and more complex definitions are used [51]. In any
case, in many problems, simple and meaningful distances can
be devised. Moreover, as shown in the experimental validation
attached as supplementary material, at least for the 2DPP, the
scheme is quite robust in the sense that a large range ofDI

values provides high-quality solutions.
Finally, it is also interesting to note that, similarly to [52],

we also carried out some experiments by penalizing the indi-
viduals that obtained the worst values in the original objective.
The key idea was to induce a large diversity but only between
promising individuals. This accelerated the achievement of
good-quality solutions, but in the long term there were no
benefits. In fact, some cases with improper parameterization
resulted in solutions of lower quality. Since this would require
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the use of additional parameters and the benefits were not very
significant, we did not incorporate it in our final designs. In
our opinion, incorporating these schemes in only some phases
of the optimization might yield better results. However, such
an analysis is beyond the scope of this paper.

A. Reduction of Diversity

In previous sections, we identified some of the drawbacks
of earlier schemes by considering the simple function given
in (1). As in previous cases, for our new model, analyzing
the takeover time makes no sense. However, it is interesting
to study the dependency between the parameters of the new
approach and the trend in the number of basins of attraction
covered by the population. We considered the same variation
operator and parent selection as in previous cases. Thus,
the only modification was the replacement strategy. In order
to study the effects of the parameterization, three different
population sizes (50, 100 and 200) were used. Moreover, for
each case, two different values ofDI were taken into account:
40

N
and 40

2×N
. These values were selected considering the range

of admissible values for the variablex. In the first case, in the
initial stages of the optimization there is no penalty only if
the individuals are perfectly distributed. This thus promotes
more exploration. In the second case, the balance towards
exploration is reduced.

Fig. 4 shows the evolution of the number of basins of
attraction (mean of 50 executions) covered for each case.
We can clearly see that as the final stages are approached,
the number of occupied regions diminishes. However, the
reduction can now be controlled and depends on the number
of generations allocated to the execution. Two important
effects are illustrated in this figure. First, the setting ofN

is particularly important to the amount of exploration induced
at the end of the optimization, i.e., for a fixed value ofN

the number of basins of attraction covered at the end of the
optimization is not heavily dependent onDI . The reason is
that, regardless ofDI , at the end of the optimization,D is
set to 0. The value ofDI is useful for setting the initial
balance between exploration and exploitation, and the way
in which this balance changes. Specifically, largerDI values
imply that in the initial stages, more exploration is induced
and diversity is reduced later but more quickly. Finally, it
is also interesting to note the behavior ofMULTI DYNAMIC

when N = 50 is used. In this case, in the initial phases the
number of basins of attraction covered increases. The reason
is that forN = 50, the random initialization might not cover
every basin of attraction and that with large values ofD, in
some of the selections carried out byMULTI DYNAMIC , all
of the pending individuals are penalized. In these cases, the
only objective taken into account isDCN, so the scheme is
very explorative and occupies the under-explored regions.The
advantage of maintaining a larger exploration in the initial
phases is that each basin of attraction can be better explored,
so the individuals are placed near the local optima. This means
that in the long term, additional information is used to discard
individuals, meaning that better decisions can be made. In fact,
10 000 executions of the scheme with theMULTI DYNAMIC
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Fig. 4. Evolution of the mean of the number of basins of attraction covered
in the population with theMULTI DYNAMIC replacement scheme

replacement were run, taking into account the aforementioned
population sizes, and in all of them the basin of attraction of
the best solution was covered. In contrast, when the original
MULTI scheme was applied, this basin of attraction was lost
multiple times.

V. TWO-DIMENSIONAL PACKING PROBLEM

A. Formal Definition

The problem used as a benchmark in this paper is the
packing problem that was proposed in theGECCO 2008
competition session. Problem instances are described by the
following data:

• The sizes of a rectangular grid:X , Y .
• The maximum number which can be assigned to a grid

position:M . The value assigned to each grid location is
an integer in the range[0, M ].

• The score or value associated with the appearance of each
pair (a, b) wherea, b ∈ [0, M ]: v(a, b).

A candidate solution is obtained by assigning a number to
each position on the grid. Thus, the search space consists of
(M + 1)

X·Y candidate solutions. The objective of the problem
is to pack a grid so that the sum of the point scores for every
pair of adjacent numbers is maximized. Two positions are
considered to be adjacent if they are neighbors in the same
row, column, or diagonal of the grid. Once a particular pair
is collected, it cannot be collected a second time in the same
grid. Mathematically, the objective is to find the gridG which
maximizes the objective functionf :

f =
M
∑

a=0

M
∑

b=0

v2(a, b) (2)

where

v2(a, b) =

{

0 if (a, b) are not adjacent in G

v(a, b) if (a, b) are adjacent in G
(3)

In order to better illustrate the benefits of the schemes
devised in this paper, an instance generator was developed.2

The generator allows for the creation of instances of different
complexities. Specifically, the grid size (X andY ), the maxi-
mum value (M ) and a ratio (R) must be specified. Each entry

2It can be downloaded from http://2dpp.cimat.mx
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v(a, b) with a, b ∈ [0, M ] is set to a random number between
0 and 999 999 with probabilityR. Otherwise, it is set to 0.
Thus, the complexity of the instances can be increased by
using larger values ofX , Y , M or R.

B. Memetic Approach

A memetic scheme (Algorithm 3) that follows the Lamar-
ckian approach [56] is used in this paper. Since in the Lamar-
ckian model modifications made by theindividual learning
procedure(local search in our case) are placed back into the
individuals, the burden associated with this kind of schemeis
usually shorter than with Baldwinian schemes, which is why
this model was selected. Specifically, note that in our scheme
the local search is stopped when a local optimum is reached.
In the cases where the modifications are placed back into
the individuals, the new individuals created by variation are
usually closer to a local optimum that when this information
is not placed back, which is why using the Lamarckian
model is faster in our case. The scheme considers the local
search and variation operators used in [19], applies a single-
objective parent selection based on binary tournaments, and
takes into account theMULTI DYNAMIC survivor selection. In
our proposal, the local search is applied to all the offspring.
Note that in some cases, schemes for balancing between
genetic and local searches were used [57] and it is known that
several other design decisions might affect performance [58].
For instance, local search might be applied only to a subset of
individuals selected according to some features [59], e.g., the
best ones. Applying local search only to the best individuals
is, in some ways, contrary to the principles of our scheme.
Note that our new proposal dynamically changes the balance
between exploration and exploitation. Thus, in each stage,all
the members of the population are considered promising. For
this reason, it is important to intensify the search in all the
regions maintained in the population. This is exacerbated by
the fact that in this problem, crossover can be quite disruptive,
but with the application of local search, drastic improvements
can be obtained. Specifically, while many good pairs are
maintained in the candidate solutions, some improper pairs
are also generated in the line selected by the crossover (see
the crossover definition for details). As a result, applyinga
local search to all the new members seems quite important;
otherwise, the new individuals might quickly be selected
for removal. In order to test these hypotheses, we used ten
different instances and tested our models by applying local
search only to a subset of the offspring. Specifically, two
different alternatives were tested. In the first one, the best
10% individuals were selected, while in the second case, the
same number of individuals were selected but randomly. When
comparing the results with the case where all the offspring
undergo a local search, we noted that in the case of selecting
the best individuals, the results obtained were inferior inevery
case and the differences were statistically significant. Selecting
individuals randomly was more encouraging. Specifically, in
four of the instances the results were similar to those obtained
by applying local search to all the offspring, and in one case
it obtained better results. However, in the remaining instances,

Algorithm 3 Diversity-based Lamarckian Memetic Algorithm
1: Initialization : Generate an initial populationP0 with N individ-

uals. Assignt = 0.
2: Local Search: Perform local search for every individual in the

population.
3: DI = RI × G
4: while (not stopping criterion)do
5: Evaluation: Evaluate all individuals in the population.
6: Mating selection: Perform binary tournament selection onPt

in order to fill the mating pool.
7: Variation : Apply genetic operators to the mating pool to

create a child populationCP .
8: Local Search: Perform a local search for every individual in

the offspring.
9: Survivor selection: Combine Pt and CP , and apply the

MULTI DYNAMIC replacement scheme to createPt+1.
10: t = t + 1
11: end while

applying local search to all the offspring was preferred, sothis
is the alternative used in this paper.

In our proposal, Hamming distances are used to calculate
theDCN value, meaning the maximum distance that can appear
between any two solutions is equal to the number of genes
(G = X×Y ). Note also that the number of alleles in each gene
is M +1. Thus, if the population size is lower thanM +2, the
distances between any two individuals in the population might
be as large asG. As a result, it might make sense to set the
value ofDI to G. However, we expect that this would induce
an exceedingly large explorative behavior for some instances.
In any case, relating the value ofDI to G seems appropriate.
Particularly, in this paper the value ofDI is set to a percentage
(RI × 100) of G, and the implication of using differentRI

values is analyzed.
A brief description of the variation operators and local

search is attached. For a more comprehensive description,
readers are referred to [19].

The local search procedure, which was initially proposed
in [20], is a single-objective stochastic hill-climbing approach.
In this scheme, the order in which neighbors are analyzed
is determined randomly. The local search moves to the first
newly generated neighbor that improves the current solution,
and it stops when none of the neighbors improves the current
solution. The definition of neighborhood applied considersa
new neighbor for each pair of adjacent grid positions(i, j)
and (k, l). Each neighbor is constituted by assigning the best
possible values to the positions(i, j) and(k, l) while leaving
intact the assignments in all other grid locations. In order
to assign the best values to both locations a pruning-based
mechanism that speeds up the generation of neighbors is used.

The variation stage is based on the application of crossover
and mutation [60]. Crossover is applied with probabilitypc and
two different parameters (min pm andmax pm) are used to
control the mutation. The crossover operator is the2D Sub-
String Crossover(SSX) [61]. It is an extension of one-point
crossover for two-dimensional chromosomes. The mutation
operator applied is theUniform Mutation with Domain In-
formation (UMD). Prior to the mutation, a random number
(apm) betweenmin pm and max pm is generated. Then,
each gene is mutated with a probabilityapm. In order to make
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new assignments to the gene, a random value is selected from
among those that produce a non-zero increase in the objective
value. If such a value does not exist, a random value between
0 andM is used.

VI. EXPERIMENTAL EVALUATION

In this section, the experiments conducted with our new
scheme are described. The optimization schemes were imple-
mented usingMETCO (Metaheuristic-based Extensible Tool for
Cooperative Optimization) [60]. The analyses were performed
with 10 different instances of the 2DPP. One of the instances
(GECCO) was the one used during theGECCO 2008 contest.
The remaining ones were created with the newly designed
instance generator. In order to test cases of different complex-
ities, instances with different features were used. Specifically,
three small, three medium and three large instances were
created. In the small instances,X andY were set to 10. In the
medium instances, they were set to 15. Finally, in the large
instances, they were set to 20, which is the same size as the
one used in theGECCO instance. Each group consists of three
instances. TheM value was set to 400 in every case and in
each group three differentR values were considered: 0.05,
0.10 and 0.15. The tags used for denoting the instances in this
paper are “XY M R S”, where the symbolS denotes the
seed used for the random number generator and the remaining
symbols have already been introduced.

Since stochastic algorithms were considered in this study,
each execution was repeated 30 times and comparisons were
carried out by applying a set of statistical tests. A similar
guideline as the one applied in [62] was used. Specifically,
the following tests were applied, assuming a significance level
of 5%. First, a Shapiro-Wilk testwas performed to check
whether or not the values of the results followed a Gaussian
distribution. If so, theLevene testwas used to check for the
homogeneity of the variances. If samples had equal variance,
an ANOVA testwas done; if not, aWelch testwas performed.
For non-Gaussian distributions, the non-parametricKruskal-
Wallis test was used to test whether samples are drawn from
the same distribution. In this work, the sentence “algorithm A
is better than algorithm B” means that the differences between
them are statistically significant, and that the mean and median
obtained by A are higher than the mean and median achieved
by B. In order to show the benefits of the new model and to
better understand its internal operation, two different sets of
experiments were performed.

A. Comparison with Other Schemes

In order to show the validity of the new scheme, it is very
important to do an extensive comparison with other schemes
developed in the specialized literature. We selected a large
set of schemes, including several recent as well as more ma-
ture methods. Specifically, the following schemes were used:
CD/RW, CLR, DETCR, SPOBCR, AGCR, RTS, COMB, RW, CHC

and Saw-ToothGA. In addition, a generational scheme with
elitism (GEN ELIT) was used. In this scheme,N −1 offspring
are created and all of them, as well as the best individual
of the previous generation survive. The variation scheme was

the same in every case except inCHC, and it was based
on the crossover and mutation operators already described.
As in previous studies [19], the parameterspc, min pm and
max pm were set to 1, 0.1 and 0.15, respectively, while the
population size was set to 50. InCHC, the use of half-uniform
crossover and no mutation (except for reinitialization) were
taken into account. For the reinitialization, the probability of
mutation was set to 0.35. InDETCR andSPOBCR, the members
of the population were paired randomly, so each member takes
part in the creation of one child. This is a requisite becausein
these schemes, the parents and their corresponding children are
paired to compete for a location in the new population. In the
case ofCHC, as in its original version, they were also paired
randomly. In the remaining schemes, parents were selected
through binary tournaments. In the case ofCLR, RTS, COMB,
AGCR and Saw-ToothGA additional parameters must be set.
These parameters were set experimentally and taking into
account the recommendations given by their corresponding
authors. InCLR, σ was set to0.20 × X × Y , and results
for three different values ofW (1, 2, 5) are shown. The tag
CLR W is used to denote each configuration. InRTS, results
for five different values ofCF (2, 5, 10, 25, 50) are presented.
The tagRTS CF is used to denote these schemes. InCOMB,
NClose and NElite were set to 3 and 8 as recommended
by the authors (other parameters were unsuccessfully tested).
In AGCR, results for two different scale factorsφ (0.25 and
0.75) are shown. The tagAGCR φ is used for these models.
Finally, in Saw-ToothGA, D and P were set to 45 and 50,
respectively. This was the best configuration found among
the 12 different parameterizations that were checked. These
configurations combined the valuesD = {45, 30, 15} with
P = {30, 50, 100, 200}.

The previous schemes, as well as the newMULTI DYNAMIC

model, were executed using a stopping criterion of 24 hours.In
this first experiment, the parameterRI of MULTI DYNAMIC

was set to 0.5, i.e., initially the individuals are penalized if
more than half of its genes are similar to those of an already
accepted individual. Additionally,MULTI DYNAMIC with RI

set to 0 was also executed. Note that with this parameteri-
zation, this scheme behaves like theMULTI scheme because
penalties are not used at all. As we mentioned before, we
also tested this scheme by incorporating the penalties proposed
in [52]. However, the application of these components involved
the use of additional parameters that have to be set by the
user, and no significant benefits were obtained. As a result,
the integration of these components with the newly designed
elements is left for future work. In order to obtain an overall
ranking of the different approaches tested, pairwise statistical
comparisons between the 20 configurations were carried out.
Since the benchmark set comprises 10 instances, 190 statistical
tests were done for each scheme. Table I shows, grouped by
category, the results of these statistical tests. For each category,
columns with the symbol↑ show the number of cases where
the model listed in each row is statistically better. The number
of cases where it is worse is shown in the column with the
symbol↓. Finally, the number of cases where the differences
are not statistically significant are shown in the column with
the symbol↔. In addition, a score is assigned to each model.
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TABLE I
STATISTICAL COMPARISON OF EVERY CONSIDERED SCHEME IN24 HOURS

SMALL MEDIUM LARGE GECCO TOTAL

↑ ↓ ↔ ↑ ↓ ↔ ↑ ↓ ↔ ↑ ↓ ↔ ↑ ↓ Score
MULTI DYNAMIC 57 0 0 57 0 0 57 0 0 19 0 0 190 0 190

MULTI 47 4 6 48 5 4 51 6 0 17 2 0 163 17 146
CHC 39 12 6 47 7 3 54 3 0 18 1 0 158 23 135

COMB 46 4 7 39 12 6 39 9 9 12 4 3 136 29 107
CLR 1 33 14 10 41 12 4 40 9 8 15 3 1 129 38 91
CLR 2 27 18 12 35 17 5 39 9 9 12 4 3 113 48 65

GEN ELIT 15 32 10 35 17 5 37 10 10 12 3 4 99 62 37
SPOBCR 40 9 8 52 3 2 8 48 1 3 16 0 103 76 27
CLR 5 21 22 14 27 24 6 30 20 7 11 7 1 89 73 16
CD/RW 3 43 11 14 25 18 29 20 8 11 4 4 57 92 -35

SawTooth-GA 16 27 14 15 25 17 15 37 5 5 9 5 51 98 -47
RTS 10 10 35 12 11 27 19 21 27 9 5 9 5 47 98 -51
RTS 25 16 29 12 14 26 17 15 38 4 5 9 5 50 102 -52

AGCR 0.25 50 3 4 3 37 17 3 54 0 1 18 0 57 112 -55
RTS 50 27 19 11 8 33 16 12 45 0 4 15 0 51 112 -61
RTS 5 3 43 11 8 33 16 22 23 12 5 9 5 38 108 -70
RTS 2 3 44 10 8 33 16 20 24 13 5 9 5 36 110 -74

RW 3 45 9 8 31 18 19 28 10 5 9 5 35 113 -78
DETCR 23 19 15 5 51 1 6 50 1 2 17 0 36 137 -101

AGCR 0.75 0 57 0 0 57 0 0 57 0 0 19 0 0 190 -190

This score is equal to the number of cases where the model
was superior minus the number of cases where the model
was inferior. The models are sorted by taking this score into
account. The statistical tests clearly show the superiority of
the MULTI DYNAMIC model. In fact, since its score is 190,
it means that it was superior to all the remaining models in
every instance. Among the remaining models, the behavior
depends on the category of the instances. For example, for
small instances it is quite important to preserve diversity. For
this reason, the approaches that place a larger emphasis on
exploitation, such asRTS with low CF values orRW, are
the worst-behaved schemes. However, in the larger instances,
it is also quite important to promote exploitation, so the most
explorative schemes, likeDETCR or RTS with high CF values,
are not proper approaches. Note that theMULTI and CHC

schemes also yielded quite promising behaviors. However,
both of them failed in several instances and did not obtain
results as good asMULTI DYNAMIC in any of the instances.

In order to better understand the reasons for the vast su-
periority of MULTI DYNAMIC , it is important to analyze how
diversity is managed in the different schemes. Entropy [16]is
a popular diversity metric that can be used for this purpose.
Note that, in our opinion, using entropy alone to control
diversity is not adequate. For instance, in a problem where the
representation is done with binary strings, a population where
half of the members are individuals containing 0 in every
gene and half of the members are individuals containing 1 in
every gene would have maximum entropy. In any case, a low
entropy value implies low diversity and since in our scheme
we ensure a minimal distance among individuals, analyzing
how the entropy evolves provides valuable information. Fig. 5
shows the evolution of the mean of the entropy for all the
models considered in theGECCO instance. In the case ofCHC

and Saw-ToothGA, only one execution was used to generate
this trend. Specifically, the executions were sorted takinginto
account the fitness at the end of the runs and the one that

obtained the fifteenth position was used. The reason is that,
since the exact times where the restarts are triggered vary
for each run, showing the mean of several executions is less
meaningful. Note that the only model where there is a slow
but continuous decrease in the entropy isMULTI DYNAMIC .
Due to the way in which the crossover operates, this means
that the balance between exploration and exploitation changes
gradually in our case. In the remaining models, given that the
stopping criterion is not taken into account, achieving such a
gradual reduction in diversity is too complex.

Previous analyses show the clear superiority of the
MULTI DYNAMIC scheme. In order to better illustrate the
advantages of our proposal, Fig. 6 shows the evolution of the
mean of the fitness for the different schemes in theGECCO

instance. It is evident how, due the explicit control of the
diversity, the convergence inMULTI DYNAMIC is much slower
than in many other schemes. In fact, even after 10 hours,
the fitness values reported byMULTI DYNAMIC are not as
high as those attained byCLR 1 or CHC. However, this slow
convergence is quite useful, in the sense that at the end of
the executions, the differences between theMULTI DYNAMIC

results and those obtained by any other schemes are quite
large. The behavior ofCHC is especially interesting. In this
case, the diversity is lost quite fast but is then recovered
in each reinitialization. This yields very good values in the
middle term; however, in the long term it is clearly inferiorto
MULTI DYNAMIC . Note that these results do not imply that our
scheme is not useful for lower stopping criteria. The reasonis
that if the stopping criterion is set to a more restricted time, the
balance between exploration and exploitation induced by our
scheme would be altered quicker. In any case, the application
of our proposal is not encouraging when very short times are
taken into account because the main advantages arise from
the controlled loss of diversity, which is not an important
issue in very short executions. In order to better illustrate this
issue, we note that when Table I is generated with a stopping
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Fig. 5. Evolution of the mean of the entropy for all the considered schemes (GECCO instance)
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Fig. 6. Evolution of the mean of the fitness for all the considered schemes (GECCO instance)

criterion of 3 hours,MULTI DYNAMIC ranks second with 149
points. For this time period,CHC was the best approach with
169 points. When the stopping criterion was set to 5 hours,
MULTI DYNAMIC was the best method, obtaining 173 points.
Finally, in the 12-hour run,MULTI DYNAMIC was also the best
scheme and obtained the maximum attainable score. It is also
interesting to remark that, in the largest instances, the fitness
of MULTI DYNAMIC is still increasing around the termination
time. This means that starting the intensification earlier in the
optimization process might be beneficial. In Section VII, we
discuss some alternatives to improve the performance for those
cases.

Finally, we would like to remark that our proposal should
not be regarded as an anytimeEA [63]. In fact, in anytime
optimizers, the stopping criterion is usually unknown, so our
adaptive penalties cannot be applied. In addition, usuallyit
is not just the end results that are used to measure the

performance [64]; the progress over time is also taken into
account. Since our proposal induces a slow convergence, it
will not perform correctly in this kind of metric.

In this experimental validation, the evolution of the fitness
and entropy is only shown for theGECCO instance. However,
it was also analyzed for the remaining ones. In those cases,
similar conclusions can be drawn. It is also important to note
that other methods for solving the 2DPP based on different
ways of controlling the diversity have also been provided in
the literature. For instance, island-based schemes and methods
that resort to restarts and populations with variable sizeshave
been tested [19], [53]. All of these methods are significantly
inferior to the one devised in this paper.

B. Analysis of Robustness

Since the MULTI DYNAMIC scheme incorporates a new
parameter (DI ), it is very important to analyze the robustness
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of the approach in terms of it. A detailed analysis of the
robustness ofMULTI DYNAMIC with respect to this parameter
is attached as supplementary material. The main conclusions
obtained from this study are:

• In instances with different features, the same parameter-
ization is able to yield high-quality solutions.

• Small modifications in the parameterization of
MULTI DYNAMIC do not have a large effect on
the results.

Finally, note that in order to facilitate future comparisons, for
each instance the best and mean results obtained with our
proposal are also incorporated in the supplementary materials.

VII. C ONCLUSIONS ANDFUTURE WORK

Premature convergence is a well-known drawback ofEAs
that requires further research. Since this drawback is so
popular, several schemes for dealing with it have been de-
vised. Among these schemes, those based on modifying the
replacement phase ofEAs seem quite promising. However,
they have not been the most popular schemes. This is why
several ideas that have been used to tackle premature con-
vergence by adapting different components ofEAs have not
been applied to modify the replacement phase. Particularly,
in this paper we have presented the first replacement scheme
(MULTI DYNAMIC ) that combines the idea of transforming a
single-objective into a multi-objective problem, by considering
diversity as an explicit objective, with the principle of adapting
the balance induced between exploration and exploitation to
the various optimization stages. In order to achieve a proper
balance in the different stages, in this paper the stopping
criterion, as well as the elapsed time or the evaluations already
executed, are used as an input to the replacement strategy.
This information is used to adapt the importance assigned
to each objective involved, which is done through a dynamic
penalty approach. In order to validate the method devised in
this paper, some analyses with simple continuous functions
are included. These analyses show that our proposal provides
a gradual reduction in diversity that cannot be obtained with
other approaches. We also study the influence of the inter-
nal parameters of theEA on this reduction. An extensive
experimental analysis with a complex benchmark problem
(2DPP) that was defined for a popular competition shows that
MULTI DYNAMIC is able to outperform a large number of
methods in a large set of instances with different complexities.
In fact, this new method significantly improves on the best-
known results to date for this problem. Moreover, an analysis
of the robustness reveals several other benefits of this newly
designed method. Particularly, the analyses indicate thatfor the
2DPP, the same parameterization is able to obtain high-quality
solutions for instances with different features, and that small
changes to its internal parameter do not have a large impact
on the results. Thus, the new method provides high-quality
results and its use is not complex.

Several lines of future work might be explored. First, in
order to analyze the generality of our scheme, we would like
to apply it to different combinatorial and continuous problems.
Since in many cases different ways of measuring distances

between solutions might be proposed, we would like to study
the properties that they should have in order to provide high-
quality results. Specifically, these distances could be related to
the definition of the variation operators, so some studies onthis
topic might be in order. Second, our experiments have shown
that due to the use of a multi-objective replacement scheme,
convergence is not obtained even in the final optimization
stage. Moreover, in some instances the fitness value is still
increasing around the termination time. One alternative to
offset this drawback might be to updateD in a way that,
prior to the termination time, it reaches the value 0. However,
even in this case complete convergence might be prevented by
the use of multi-objective concepts. Since other replacement
phases allow for complete convergence, they could be used
in the last stages instead of the multi-objective scheme. In
our opinion, intelligently combining different replacement
schemes could yield some additional benefits. This might be
combined with the use of different strategies to alter theD

value, including some adaptive and/or self-adaptive schemes.
Another alternative would be to adapt the way in which a non-
dominated individual is selected in our scheme. For instance, it
seems encouraging to be more greedy in terms of the original
objective in the final phases. Finally, we would like to combine
our diversity-preservation strategies with other methodsused
for the 2DPP. Specifically, since the crossover definition and
the management of diversity are closely linked, applying some
other crossover operators as the ones used in [21] seems to be
very encouraging.
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