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Abstract. In the last decade, there has been a growing interest in multi-
objective evolutionary algorithms that use performance indicators to
guide the search. A simple and effective one is the S-Metric Selection
Evolutionary Multi-Objective Algorithm (SMS-EMOA), which is based
on the hypervolume indicator. Even though the maximization of the
hypervolume is equivalent to achieving Pareto optimality, its computa-
tional cost increases exponentially with the number of objectives, which
severely limits its applicability to many-objective optimization problems.
In this paper, we present a parallel version of SMS-EMOA, where the
execution time is reduced through an asynchronous island model with
micro-populations, and diversity is preserved by external archives that
are pruned to a fixed size employing a recently created technique based
on the Parallel-Coordinates graph. The proposed approach, called S-
PAMICRO (PArallel MICRo Optimizer based on the S metric), is com-
pared to the original SMS-EMOA and another state-of-the-art algorithm
(HypE) on the WFG test problems using up to 10 objectives. Our exper-
imental results show that S-PAMICRO is a promising alternative that
can solve many-objective optimization problems at an affordable com-
putational cost.

1 Introduction

We are interested in solving Multi-objective Optimization Problems (MOPs),
which have the following form:

Minimize F (x) := (f1(x), f2(x), . . . , fm(x)) (1)

subject to x ∈ S, (2)
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where x is the vector of decision variables, S ⊂ IRn is the feasible region set and
F (x) is the vector of m (≥ 2) objective functions (fi : IRn → IR). The aim is
to seek from among the set of all values which satisfy the constraint functions
defined in equation (2) the particular set x ∗ which yields the optimum values
for all the objective functions.

Multi-objective Evolutionary Algorithms (MOEAs) are stochastic, population-
based, search techniques which are well-suited for solving a wide variety of com-
plex MOPs. In the last decades, several MOEAs have been proposed [4, 22], with
the vast majority relying on two concepts: Pareto dominance3 as their primary
selection mechanism, followed by a density estimator. The former favors non-
dominated solutions over dominated ones, whereas the latter induces a total
order of incomparable solutions, preserving diversity4 at the same time.

One of the main concerns is that Pareto-based MOEAs face difficulties to
reach the Pareto optimal front5 when dealing with many-objective optimization
problems (m ≥ 4) [12, 14, 16]. This is due to the fact that most or all solutions
in the population quickly become non-dominated with respect to the rest, and
the best individuals are identified only by the density estimator. Thus, in some
cases good locally non-dominated solutions in terms of convergence might be
discarded at the expense of keeping good solutions in terms of diversity, in spite
of the fact that they may be distant from the Pareto optimal front [1]. To address
this issue, a new trend is the incorporation of performance indicators6 into the
selection mechanism of a MOEA [2, 7, 10, 18, 24]. The hypervolume indicator [23]
is, with no doubt, a natural choice, (see for example [7, 24]) since it is the only
unary indicator that is known to be Pareto compliant. Also, it has been proven
that maximizing the hypervolume is equivalent to reaching the Pareto optimal
set [8]. However, the main drawback of this sort of approach is its computational
cost, which increases exponentially with the number of objectives [3], making it
prohibitive for many-objective optimization problems.

In this work, we focus on the S-Metric Selection Evolutionary Multi-Objective
Algorithm (SMS-EMOA) [7], due to its simplicity and superiority over other al-
gorithms [20]. This optimizer is a steady state genetic algorithm that ranks indi-
viduals according to Pareto dominance and uses the hypervolume as its density
estimator. The computational complexity of SMS-EMOA is of order O(|P |2m)
for two objectives (|P | denotes the population size), O(|P |3m2) for 3 objectives
and O(|P |m) for higher dimensionality [7, 21]. Parallelizing SMS-EMOA arises
as a possible alternative to reduce its computational cost, where at least two
strategies are possible [17]: (1) parallelization of the computations, in which
the operations applied to an individual are performed in parallel, and (2) pa-

3 A solution x ∈ S dominates a solution y ∈ S (x ≺ y), if and only if ∀i ∈ {1, . . . ,m},
fi(x) ≤ fi(y) and ∃j ∈ {1, . . . ,m}, fj(x) < fj(y).

4 Diversity refers to achieving a uniform distribution of solutions covering all regions
of the objective function space.

5 POF := {F (x) ∈ IRm : x ∈ S, 6 ∃y ∈ S,y ≺ x}.
6 A performance indicator, defined as I : IRm → IR, measures the quality of an ap-

proximation set (the final population of a MOEA).
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Fig. 1. Average execution time of SMS-EMOA.

rallelization of the population, in which the population is partitioned and each
subpopulation evolves in semi-isolation (individuals can be exchanged between
subpopulations). Klinkenberg et al. [13] and Lopez et al. [15] have studied the
first approach. In [13], a variation of SMS-EMOA parallelized the evaluations
of individuals using a surrogate model, whose purpose was to approximate the
function values. In [15], the exact hypervolume contributions of SMS-EMOA
were parallelized through the use of Graphics Processing Units (GPUs). To the
best of our knowledge, our work is the first attempt to incorporate the second
sort of approach (parallelization of the population) into SMS-EMOA.

In order to get a better grasp of the variability of the execution times of SMS-
EMOA, we sampled several points on DTLZ1 [4], varying the number of objective
functions and the population size on a PC Intel(R) Core(TM) i7 CPU 950 @ 3.07
GHz × 8 with 3.8 GB memory, using the same parameters in all experiments [7].
The average resulting surface is shown in Figure 1. An interesting observation
is that, regardless of the number of objectives, time was almost negligible when
using small populations (less than 12 individuals). This fact is considered in
our proposal, where we improve diversity using the parallel asynchronous island
model [19] and external archives for each micro-population. Furthermore, these
external archives are kept to a constant size by a recently proposed density
estimator based on the visualization technique of Parallel Coordinates [9], which
is scalable in objective space.

The remainder of this paper is organized as follows. Section 2 is devoted
to the description of our proposed parallel MOEA. In Section 3 we present
our experimental results. Finally, Section 4 provides our conclusions and some
potential lines of future research.

2 Our Proposed Approach

The PArallel MICRo Optimizer based on the S metric (S-PAMICRO) draws
ideas from the island model, where the overall population is split into l micro-
populations, called islands, containing less than 12 individuals each. Every island
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evolves independently a serial SMS-EMOA with an external archive of size l ×
|P |, where |P | corresponds to the micro-population size. In this approach, the
islands are connected in a logical unidirectional ring, exchanging nmig solutions
occasionally7 in an asynchronous fashion. The goal of S-PAMICRO is to reduce
the execution time of SMS-EMOA, hopefully improving the quality of solutions
in high dimensional spaces.

Algorithm 1 Outline of an island in S-PAMICRO

Input: MOP, stopping criterion, island identification i, number of islands l, number
of migrants nmig, and frequency of migration fmig.

Output: Final sub-population A
1: A← ∅
2: n← l|P | {archive size limit}
3: Initialize micro-population P at random
4: while the stopping criterion is not satisfied do
5: P ← SMS-EMOA(MOP, fmig, P ) {execute during fmig evaluations of the

objective vector}
6: R← Check the arrival of migrants from (l + i− 1) (mod l) island
7: A← A ∪ P ∪R
8: if |A| > n then
9: A← Pruning(A,n)

10: S ←Uniform Random Selection(A)
11: Send copies of S to the (i + 1) (mod l) island
12: P ← Elitist Ranking Replacement(P ∪R)
13: return A

In Algorithm 1, we present the pseudocode of an island in S-PAMICRO.
First, the external archive A and its maximum size are specified. Next, the
micro-population P is initialized at random or from a user-defined file, which
may contain preliminary results from other optimizer(s). In line 5, SMS-EMOA
is executed during fmig function evaluations. Then, an island receives, without
blocking, the immigrants R from the source island, according to the adopted
topology. In line 7, the external archive is updated, adding the current micro-
population as well as the immigrants. In lines 8 and 9, the external archive is
truncated if it exceeds its limits, using the technique described in the next para-
graph. In the following two lines, the candidates to be migrated are selected by
using the policy of uniform-random migration [4], in which nmig randomly indi-
viduals are selected from the archive and a copy of them is sent to the destination
island. In line 12, the micro-population is updated, replacing some individuals
with the immigrants. Here, we employed elitist-ranking replacement [4], where
immigrants are combined with the current population, and then they are ranked
using Pareto dominance, and the worst solutions are removed. This elitism mech-
anism preserves the currently best solutions for the next iteration, assuring prox-

7 This is known as migration.
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Algorithm 2 Pruning

Input: Population P , desired size n
Output: Reduced population P
1: {F1, . . . , Fk} ← Rank population P in fronts according to Pareto dominance.
2: Normalize population P
3: while |P | > n do
4: if |Fk| ≤ |P | − n then
5: r ← Fk

6: k ← k − 1
7: else
8: D ← Calculate pop. density of P
9: r ← arg maxp∈Fk

D[p]
10: Fk ← Fk \ {r}
11: P ← P \ {r}
12: return P

imity to the Pareto optimal front. At the end, the final sub-populations of all
islands i ∈ {0, 1, . . . , l − 1} are collected and adjusted to the size l × |P |, using
the same pruning technique.

Our pruning technique is provided in Algorithm 2. First the population is
ranked using the well-known non-dominated sorting procedure [4]. In line 2, the
population is normalized in objective space by means of two reference points:
zmin, composed of the best objective values found so far, and zmax, formed with
those vectors parallel to the axes with the lowest L2 norm. Next, individuals are
removed from the worst current front. If the size of this front is less or equal
than the number of individuals to be removed, then the whole front is discarded
(lines 4-6). Otherwise, the most densely populated members are eliminated from
the current front (lines 8-11). The density estimator, originally proposed in [9],
is based on a visualization technique, called Parallel Coordinates.8 The core idea
is to create a digital image9 containing the Parallel Coordinates of each distinct
pair of objective functions. These m(m− 1)/2 digital images are attached next
to each other and only normalized individuals are considered. Such images are
represented as 2D matrix, whose dimension depends on the number of objectives
(m), the population size |P | and a resolution parameter (γ). An element of this
matrix identifies the level of overlapping line segments and those individuals
covering a wide area of the image have a better density estimator. Interested
readers are referred to [9] for more details.

8 This graph is built in the 2-dimensional plane, where m copies of the real line IR are
placed perpendicular to the x-axis and a point in IRm is represented by a series of
connected line segments with vertices on the parallel axes.

9 The term digital image refers to a two-dimensional light intensity function g(a, b)
where a and b denote spatial coordinates and the value of g at any point (a, b) is
proportional to the gray level of the image at that point; where a, b, and g take
discrete values.
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Table 1. Parameters adopted in our experiments

m
WFG MOEAs pMOEAs

feval
S-PAMICRO

n k |P | |P | l γ

2 24 4 100 10 10 40,000 3

3 24 4 120 10 12 50,000 2

5 47 8 196 11 18 50,000 2

10 105 18 276 11 25 80,000 2

S-PAMICRO was developed in the EMO Project, our framework for Evolu-
tionary Multi-Objective Optimization. This software is implemented in C lan-
guage and MPICH.10

3 Experimental Results

In this section, we investigate the effectiveness of S-PAMICRO on the Walking-
Fish-Group (WFG) test suite [11]. In this benchmark, properties, such as non-
separability, multi-modality, deceptiveness and bias, are preserved as we increase
the number of objectives, making these problems harder to solve for a MOEA.
The decision variables (n) and the position-related parameter (k) are specified
in Table 1.

We compared the results of our proposed algorithm with respect to SMS-
EMOA, S-PAMICRO without an external archives (pSMS-EMOA), and the Hy-
pervolume Estimation Algorithm (HypE) [2] for 2, 3, 5 and 10 objectives. HypE
ranks the population by means of Pareto dominance and its secondary selec-
tion criterion is based on the estimation of the hypervolume contributions using
Monte Carlo sampling (for 2 and 3 objectives, the exact value is computed). All
the MOEAs were implemented in the EMO Project, using real-numbers encod-
ing. For fair comparisons, the parameters were similar in the sequential and par-
allel cases (see Table 1). The variation operators were polynomial-based mutation
and simulated binary crossover (SBX) [6]. As suggested in [5], the crossover rate
and its distribution index were set to 0.9 and 20, for 2 and 3 objectives, and
1.0 and 30 for many-objective problems. The mutation rate and its distributed
index was set to 1/n and 20, respectively. For HypE, the number of sampling
points was fixed to 20,000 and the resolution parameter of S-PAMICRO (γ) is
shown in Table 1 [9].

The stopping criterion consisted of reaching a maximum number of objective
function evaluations (feval), limiting the execution time to no more than two
hours for each run. The population size |P | of the sequential algorithms (SMS-
EMOA/HypE) and the parallel MOEAs (pSMS-EMOA/S-PAMICRO) are de-
fined in Table 1, as well as the number of islands or processors (l) in the latter
case. Experiments were carried on a Cluster of 10 PCs Intel(R) Core(TM) i7
CPU 950 @ 3.07 GHz × 8 with 3.8 GB memory. The frequency of migration,

10 https://www.mpich.org
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Fig. 2. Average execution time of optimizers.

fmig, was set to 80 function evaluations and the number of migrants nmig
was set to 2. We performed 30 independent runs for all scenarios. For compar-
ing results, we adopted the hypervolume indicator, bounded by the reference
points (3, 5, 7, . . .) for the instances WFG1 and WFG3; and (2.2, 4.2, 6.2, . . .) for
the rest of the problems. We applied the Wilcoxon rank sum test (one-tailed)
to the mean hypervolume indicator values, in order to determine wheter if S-
PAMICRO performed better than the other MOEAs at the significance level of
5%.

The average execution time, using a logarithmic scale for the y-axis, is shown
in Figure 2. As can be observed, S-PAMICRO considerably spent less time than
SMS-EMOA and HypE. For example, in 10D, a run of our proposed approach
takes 16 seconds from the two hours that were allowed to the other MOEAs. In
5D, S-PAMICRO ended in 5 seconds, compared with the 26 minutes spent by
HypE. Even in low dimensionality, our algorithm could reduce time a little bit.
Furthermore, the overhead of handling the external archive in S-PAMICRO is
relatively low.

But much more important are our results with respect to the quality of the
solutions. In Table 2, we present the hypervolume indicator values of all the
experiments. An arrow pointing upwards (↑) means that our algorithm outper-
formed in a significantly better way, the other MOEAs compared. Conversely,
an arrow pointing downwards (↓) means that our algorithm was significantly
beaten. In the majority of the cases for 5D and 10D, S-PAMICRO obtained
the best results, outperforming SMS-EMOA, HypE and pSMS-EMOA. While in
2D and 3D, our proposal only surpassed pSMS-EMOA, obtaining competitive
results with respect to SMS-EMOA and HypE.

In summary, we observed that S-PAMICRO could achieve much better re-
sults than SMS-EMOA and HypE in high dimensionality, spending much less
computational time. For this reason, we believe that our proposed approach is
a promising alternative for solving many-objective optimization problems.



8 R. Hernández, C.A. Coello and E. Alba

Table 2. Median and standard deviation of the hypervolume indicator on the WFG
benchmark. The two best values are shown in gray scale, where a darker tone corres-
ponds to the best value.

m HypE SMS-EMOA pSMS-EMOA S-PAMICRO

WFG1

2 5.17e+00±4.11e-1 ↑ 4.45e+00±3.63e-1 ↑ 3.66e+00±2.59e-1 ↑ 6.61e+00±9.65e-1
3 5.66e+01±1.62e+0 ↓ 5.28e+01±2.50e+0 ↑ 4.23e+01±3.08e+0 ↑ 5.56e+01±3.71e+0

5 2.82e+03±1.17e+2 ↑ 3.18e+03±7.20e+1 ↑ 3.91e+03±4.83e+1 ↑ 5.16e+03±3.88e+2

10 4.19e+09±1.81e+8 ↑ 1.88e+09±2.62e+8 ↑ 5.28e+09±5.76e+7 ↑ 5.87e+09±2.33e+8

WFG2

2 5.46e+00±2.79e-2 ↑ 5.47e+00±1.25e-1 ↑ 5.39e+00±1.71e-1 ↑ 5.49e+00±4.00e-2
3 5.34e+01±4.21e+0 ↓ 4.47e+01±4.47e+0 5.18e+01±2.00e+0 ↑ 5.32e+01±2.50e-1
5 4.24e+03±3.00e+2 ↑ 4.41e+03±3.32e+2 ↑ 4.66e+03±1.52e+1 ↑ 4.75e+03±2.00e+1

10 4.66e+09±3.22e+8 ↑ 3.80e+09±2.86e+8 ↑ 4.91e+09±1.75e+8 ↑ 4.93e+09±1.96e+8

WFG3

2 1.09e+01±3.06e-2 ↑ 1.09e+01±2.09e-2 ↑ 1.08e+01±3.23e-2 ↑ 1.09e+01±4.50e-2
3 7.59e+01±2.19e-1 ↑ 7.60e+01±1.52e-1 7.48e+01±1.06e-1 ↑ 7.61e+01±3.61e-1
5 5.55e+03±1.55e+2 ↑ 6.84e+03±5.88e+1 ↑ 6.93e+03±3.11e+1 ↑ 7.22e+03±5.86e+1

10 8.37e+09±1.38e+8 ↓ 7.64e+09±1.95e+8 ↑ 5.91e+09±3.30e+8 ↑ 8.19e+09±1.98e+9

WFG4

2 2.91e+00±3.46e-3 ↓ 2.90e+00±1.08e-2 2.77e+00±2.05e-2 ↑ 2.90e+00±2.10e-2
3 2.96e+01±5.19e-2 ↓ 2.97e+01±5.43e-2 ↓ 2.66e+01±2.41e-1 ↑ 2.88e+01±4.45e+0

5 1.69e+03±9.10e+1 ↑ 2.50e+03±6.71e+1 ↑ 3.13e+03±7.15e+1 ↑ 3.47e+03±1.16e+2

10 1.86e+09±1.03e+8 ↓ 1.37e+09±6.15e+7 ↓ 2.00e+09±4.38e+8 ↑ ↓ 1.22e+09±5.81e+8

WFG5

2 2.59e+00±2.40e-3 ↑ 2.58e+00±2.82e-3 ↑ 2.53e+00±1.21e-2 ↑ 2.59e+00±8.62e-3
3 2.74e+01±7.07e-1 ↓ 2.73e+01±1.38e-1 ↓ 2.52e+01±1.92e-1 ↑ 2.70e+01±1.46e-1
5 1.96e+03±1.33e+2 ↑ 2.47e+03±5.10e+1 ↑ 2.75e+03±1.50e+2 ↑ 3.31e+03±9.51e+1

10 1.95e+09±1.06e+8 ↑ 1.04e+09±3.14e+7 ↑ 1.04e+09±3.47e+8 ↑ 3.99e+09±6.24e+8

WFG6

2 2.65e+00±5.79e-2 ↑ 2.64e+00±5.43e-2 ↑ 2.56e+00±3.93e-2 ↑ 2.68e+00±2.11e-2
3 2.77e+01±2.68e-1 2.79e+01±2.12e-1 ↓ 2.52e+01±3.86e-1 ↑ 2.77e+01±4.05e-1
5 1.80e+03±1.37e+2 ↑ 2.08e+03±7.00e+1 ↑ 2.93e+03±6.19e+1 ↑ 3.39e+03±6.23e+1

10 1.83e+09±1.28e+8 ↑ 9.82e+08±3.55e+7 ↑ 2.02e+09±2.55e+8 ↑ 3.83e+09±5.36e+8

WFG7

2 2.92e+00±1.60e-3 ↓ 2.91e+00±1.05e-2 ↓ 2.84e+00±1.25e-2 ↑ 2.91e+00±3.05e-1
3 2.97e+01±2.72e-2 ↓ 2.99e+01±1.35e-2 ↓ 2.73e+01±2.64e-1 ↑ 2.93e+01±1.95e-1
5 1.82e+03±1.10e+2 ↑ 2.66e+03±7.07e+1 ↑ 3.20e+03±7.84e+1 ↑ 3.55e+03±4.62e+1

10 2.22e+09±1.08e+8 ↓ 1.26e+09±5.23e+7 1.12e+09±2.77e+8 8.52e+08±7.72e+8

WFG8

2 2.25e+00±1.46e-2 ↓ 2.24e+00±1.13e-2 ↓ 2.10e+00±2.99e-2 ↑ 2.24e+00±3.37e-2
3 2.34e+01±2.82e-1 ↑ 2.52e+01±8.04e-2 ↓ 2.19e+01±4.28e-1 ↑ 2.43e+01±5.25e-1
5 1.52e+03±1.20e+2 ↑ 2.26e+03±5.62e+1 ↑ 2.55e+03±1.16e+2 ↑ 2.86e+03±3.62e+2

10 1.84e+09±1.29e+8 ↓ 1.06e+09±4.60e+7 ↓ 1.53e+09±3.69e+8 ↓ 4.64e+08±7.71e+8

WFG9

2 2.30e+00±2.61e-1 ↑ 2.78e+00±2.34e-1 ↑ 2.63e+00±2.09e-1 ↑ 2.81e+00±4.88e-1
3 2.16e+01±1.56e+0 ↑ 2.82e+01±1.77e+0 ↓ 2.25e+01±1.10e+0 ↑ 2.74e+01±6.78e+0

5 1.75e+03±1.65e+2 ↑ 2.36e+03±1.12e+2 ↑ 2.57e+03±6.33e+1 2.61e+03±8.93e+2

10 1.66e+09±1.10e+8 ↑ 1.12e+09±6.31e+7 ↑ 1.87e+09±3.46e+8 ↑ 2.31e+09±9.27e+8
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4 Conclusions and Future Work

This paper presented a parallel version of the S-Metric Selection Evolutionary
Multi-Objective Algorithm (SMS-EMOA). The new approach, called PArallel
MICRo Optimizer based on the S metric (S-PAMICRO), draws ideas from the
asynchronous island model with relatively small populations. Diversity is pre-
served through external archives that are pruned to a limit size, using a recently
proposed technique that is based on automatic image analysis. We compared
our proposal with respect to HypE (Hypervolume Estimation Algorithm), and
with respect to the serial version of SMS-EMOA and another parallel version
of it. We observed that S-PAMICRO is a viable alternative for solving many-
objective optimization problems at an affordable computational time. In fact,
the execution time of SMS-EMOA seems to grow linearly and not exponen-
tially when using micro-populations. Further studies are nevertheless required,
adopting more benchmarks. We are also interested in studying the effects of the
additional parameters related to the migration operator.
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and Thomas Bäck. Multiple Criteria Decision Making for Sustainable Energy and
Transportation Systems: Proceedings of the 19th International Conference on Mul-
tiple Criteria Decision Making, Auckland, New Zealand, 7th - 12th January 2008,
chapter A Reduced-Cost SMS-EMOA Using Kriging, Self-Adaptation, and Para-
llelization, pages 301–311. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

14. Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. Many-Objective Evolutionary
algorithms: A survey. ACM Computing Surveys, 48(1):13:1–13:35, September 2015.

15. Edgar Manoatl Lopez, Luis Miguel Antonio, and Carlos A. Coello Coello. Evolu-
tionary Multi-Criterion Optimization: 8th International Conference, EMO 2015,
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