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ABSTRACT
In recent years, Indicator-based Multi-Objective Evolutionary Algo-

rithms (IB-MOEAs) have become a relatively popular alternative for

solving multi-objective optimization problems. IB-MOEAs are nor-

mally based on the use of a single performance indicator. However,

the effect of the combination of multiple performance indicators for

selecting solutions is a topic that has rarely been explored. In this

paper, we propose a hyper-heuristic which combines the strengths

and compensates for the weaknesses of four density estimators

based on R2, IGD
+
, ϵ+ and ∆p . The selection of the indicator to be

used at a particular moment during the search is done using online

learning and a Markov chain. Additionally, we propose a novel

framework that aims to reduce the computational cost involved

in the calculation of the indicator contributions. Our experimental

results indicate that our proposed approach can outperform state-

of-the-art MOEAs based on decomposition (MOEA/D) reference

points (NSGA-III) and the R2 indicator (R2-EMOA) for problems

with both few and many objectives.
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1 INTRODUCTION
In this work, we focus on multi-objective optimization problems

(MOPs) which involve the simultaneous optimization of several,

often conflicting, objective functions of the form:
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min

x⃗ ∈Ω
F⃗ (x⃗ ) = ( f1 (x⃗ ), f2 (x⃗ ), . . . , fm (x⃗ ))⊺, (1)

where x⃗ is the vector of decision variables, Ω ⊆ Rn is the decision

variable space and F⃗ (x⃗ ) is the vector ofm (≥ 2) objective functions

(fi : Rn 7→ R) that belongs to the feasible objective space Ψ ⊆ Rm .

MOPs having four or more objective functions are called many-

objective optimization problems (MaOPs) [14]. Solving a MOP in-

volves finding the best possible trade-offs among its objectives (i.e.,

finding solutions in which an objective cannot be improved with-

out worsening another). The particular set that yields the optimum

values is known as the Pareto Optimal Set (P∗) and its image in

objective space is known as the Pareto Optimal Front (PF ∗).

Multi-Objective Evolutionary Algorithms (MOEAs) are popu-

lation-based and gradient-free metaheuristics that have been suc-

cessfully applied to solve MOPs [7]. MOEAs are inspired by the

natural evolution of organisms i.e., they drive the population to

PF ∗ by selecting the fittest individuals at each generation. Ac-

cording to Zitzler et al. [29], the main goals of MOEAs, regarding

their Pareto front approximations, are the following: (1) to achieve

convergence of the solutions, (2) to generate a uniform distribution

of solutions, and (3) to maximize the extent of the generated solu-

tions. Commonly, convergence is achieved by an environmental

selection based on Pareto dominance
1
, while diversity and spread

are handled by a density estimator (DE).

Quality indicators
2
(QIs) are functions that quantitatively deter-

mine how good is an approximation set generated by an MOEA

[32]. QIs aim to assess the desired features of approximation sets,

i.e., convergence, distribution, spread and a combination of them

[16, 22]. Regarding convergence QIs, an important property is

Pareto-compliance. A (weakly) Pareto-compliant QI guarantees

that one algorithm’s indicator values are better (or at least not

worse) than another in case the approximation sets of the former

(weakly) dominates the other’s. Table 1 introduces the features of

some remarkable state-of-the-art convergence QIs.

RegardingMaOPs, the selection pressure of Pareto-basedMOEAs

dilutes due to the exponential increase of solutions preferred by

Pareto dominance. In furtherance of tackling this issue, indicator-

based MOEAs (IB-MOEAs) have become a popular alternative

1
Given x⃗, y⃗ ∈ Ω, we say that x⃗ dominates y⃗ (denoted as x⃗ ≺ y⃗) if and only if

fi (x⃗ ) ≤ fi (y⃗ ) for i = 1, . . . ,m and ∃j ∈ {1, . . . ,m } : fj (x⃗ ) < fj (y⃗ ). In case,

fi (x⃗ ) ≤ fi (y⃗ ) for all i ∈ {1, . . . ,m }, x⃗ is said to weakly dominate y⃗ (denoted as

x⃗ ⪯ y⃗).
2
Let A ⊂ PF ∗ be an approximation set. A k -ary quality indicator is a function

I : (A1, . . . , Ak ) 7→ R which assigns a real value to a vector of k approximation

sets.
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Table 1: Features of some state-of-the-art convergence QIs.

Indicator Acronym Pareto-compliant
Required

information Ref.

Hypervolume HV Strictly Reference point [31]

R2 R2 Weakly

Set of weight

vectors and

utility function

[3]

Modified Inverted

Generational Distance
IGD
+

Weakly Reference set [13]

Additive ϵ
indicator

ϵ+ Weakly Reference set [32]

Averaged

Hausdorff Distance
∆p No

Reference set

p > 0
[25]

[2, 4, 30]. IB-MOEAs usually exploit the properties of a single in-

dicator as the backbone of three different mechanisms: (1) envi-

ronmental selectors (IB-ES), (2) density estimators (IB-DE), and (3)

archivers (IB-AR). The hypervolume indicator (HV) has been exten-

sively employed by IB-MOEAs [1, 2] because it is the only unary

indicator that is known to be strictly Pareto compliant. However,

since its computational cost significantly increases with the number

of objectives, its use eventually becomes prohibitive in MaOPs. In

contrast, other less-expensive indicators have been successfully

employed by IB-MOEAS (e.g., R2 [3], IGD
+
[13], ∆p [25] and ϵ+

[32]) at the expense of using an indicator with weaker mathematical

properties.

It is worth noting that every single indicator, when coupled to an

MOEA, imposes a specific bias in objective space regarding conver-

gence, distribution and spread [15, 20]. On the one hand, HV ensures

finding uniformly distributed solutions in linear Pareto fronts, but

it presents a bias to points close to the Pareto front’s knee.
3
On the

other hand, R2 promotes uniformly distributed solutions in con-

cave Pareto fronts while this is not possible in disconnected fronts

because the indicator is defined from a set of convex weight vec-

tors. Similar issues arise for the other indicators mentioned before.

Hence, by the No-Free Lunch Theorem (NFL), an IB-MOEA cannot

show a good performance in all types of MOPs. An alternative

approach to mitigate this problem is the use of hyper-heuristics

which are search methods or learning mechanisms for selecting or

generating heuristics to solve computational search problems [5].

In this paper, we propose what we believe to be the first multi-

indicator MOEA which is focused on exploiting the strengths and

compensating for the weaknesses of density estimators based on the

indicators: R2, IGD
+
, ∆p and ϵ+. In other words, we investigate the

effect of the combination of the previously mentioned indicators. A

hyper-heuristic using online learning and a Markov chain decides

which of these IB-DEs is to be used at a particular moment through

the search process. Additionally, we propose a novel framework

that reduces the computational cost of calculating the indicator

contributions. All these mechanisms are integrated into a steady-

state MOEA that uses Pareto dominance for its environmental

selection.

The remainder of this paper is organized as follows. Section 2

briefly introduces the most relevant related work onMulti-Indicator

MOEAs. Section 3 provides the mathematical definition of the se-

lected indicators. Our proposed approach is described in Section 4.

3
The knee of the Pareto front is the region which is closer to the ideal point defined as

z⃗∗ ∈ Rm , where z∗i = minx⃗∈Ω fi (x⃗ ).

Section 5 depicts our experimental results and, finally, the conclu-

sions and future work are highlighted in Section 6.

2 RELATEDWORK
The first IB-MOEA was proposed by Knowles and Corne [17], and

since then, several single-indicator based MOEAs have been intro-

duced. However, to the authors’ best knowledge, only four isolated

Multi-Indicator-based MOEAs (MIB-MOEAs) have been proposed

so far. In this section, we briefly review two remarkable IB-MOEAs,

and we describe the currently available MIB-MOEAs.

The S-Metric Selection Evolutionary Multi-Objective Algorithm

(SMS-EMOA) [2] is a steady-state MOEA that employs an IB-DE

based on the HV indicator. First, the population is divided into

nondominated layers through the nondominated sorting algorithm

[8]. In case the last layer has more than one individual, the one

having the worst HV contribution is deleted. SMS-EMOA maxi-

mizes the HV indicator through the evolutionary process which

is directly related to finding Pareto optimal solutions because HV

is strictly Pareto-compliant. However, its use is restricted to low-

dimensional MOPs. As an alternative to the high computational

cost of SMS-EMOA, Brockhoff et al. [4] proposed the R2-EMOA.

Instead of employing the HV contribution to delete an individual,

R2-EMOA uses the R2 contribution. The complexity of computing

the R2 contributions of N individuals is substantially less than cal-

culating the HV contributions. Hence, R2-EMOA can solve MaOPs

in a considerably lower time than SMS-EMOA.

The first MIB-MOEA was the Boosting Indicator-Based Evolu-

tionary Algorithm (BIBEA) [23] that was proposed by Phan and

Suzuki in 2011. BIBEA incorporates a parent selection mechanism

that aggregates the indicators HV and ϵ+ using the AdaBoost algo-

rithm. Through an offline learning process that uses Pareto optimal

points of a given MOP, AdaBoost searches for a set of weights that

assigns preferences to each of the indicator-based parent tourna-

ment selection operators such that the error related to the selection

of Pareto or non-Pareto optimal solutions is minimized. Having

computed the weights, BIBEA employs them to construct its multi-

indicator parent selection mechanism. Unfortunately, the authors

only provided an analysis of convergence and diversity of BIBEA,

leaving the comparison with other MOEAs out of the study. One

year later, Phan et al. [24] introduced a variant of BIBEA, called

BIBEA-P. The three main differences concerning BIBEA are the

following: (1) AdaBoost is replaced by Pdi-Boosting, (2) a boosting

indicator-based environmental selection is added, and (3) a com-

parison with other MOEAs is presented. The new environmental

selection uses the indicator that produces the minimum selection

error in the training stage. Thus, it is very similar to BIBEA. The

experimental results provided by its authors indicated that BIBEA-P

could outperform NSGA-II [8], SMS-EMOA [2], and IBEA [30].

Unlike BIBEA and BIBEA-P which are ensemble methods, the

Stochastic Ranking-based Multi-Indicator Algorithm (SRA) [18] is

an MOEA that aims to balance the search biases of the indicators ϵ+

and SDE [19]. SRA is a steady-state MOEA that uses the stochastic

ranking algorithm as its environmental selection mechanism to sort

the population using the two considered indicators as its sorting

criteria. After the sorting is done, the worst solution is deleted.

The authors show exhaustive experimentation using benchmark
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problems in low- and high-dimensional objective spaces, comparing

their results with those produced by a wide variety of state-of-the-

art MOEAs.

More recently, Hernández and Coello [11] proposed MOMBI-III

which is a hyper-heuristic that selects the best utility function for

its environmental selection based on the R2 indicator. Additionally,

MOMBI-III uses an IB-DE that calculates the contributions to the s-

energy indicator [10] to reduce the joint population of parents and

offspring to a specific size. Thus, MOMBI-III combines the effect of

R2 selection and the s-energy density estimation.

3 QUALITY INDICATORS
In this section, we formally define the R2, IGD

+
, ∆p and ϵ+ in-

dicators. In all cases, let A be an approximation set and Z be a

reference set.m is the dimension of the objective space.

Definition 1 (Unary R2 indicator). The unary R2 indicator is
defined as follows:

R2(A,W ) = −
1

|W |

∑
w⃗ ∈W

max

a⃗∈A
{uw⃗ (a⃗)} (2)

whereW is a set of weight vectors and uw⃗ : Rm 7→ R is a scalarizing
function defined by w⃗ ∈ W that assigns a real value to each m-
dimensional vector.

Definition 2 (IGD
+
indicator). The IGD+, for minimization, is

defined as follows:

IGD+ (A,Z ) =
1

|Z |

∑
z⃗∈Z

min

a⃗∈A
d+ (a⃗, z⃗) (3)

where d+ (a⃗, z⃗) =
√∑m

k=1
(max{ak − zk , 0})

2.

Definition 3 (∆p indicator). For a given p > 0, the ∆p is
defined as follows:

∆p (A,Z ) = max

{
GDp (A,Z ), IGDp (A,Z )

}
. (4)

∆p is defined on the basis of two indicators: GDp and IGDp which
are slight modifications of the indicators Generational Distance

(GD) [26] and Inverted Generational Distance (IGD) [6], respectively.

These are defined in the following.

Definition 4 (GDp indicator).

GDp (A,Z) = *.
,

1

|A|

∑
a⃗∈A

d (a⃗,Z)p+/
-

1/p

. (5)

where d (a⃗,Z) = minz⃗∈Z

√∑m
i=1

(ai − zi )2.

Definition 5 (IGDp indicator).

IGDp (A,Z) = GDp (Z,A) = *.
,

1

|Z|

∑
z⃗∈Z

d (z⃗.A)p+/
-

1/p

, (6)

Definition 6 (Unary ϵ+ indicator). The unary ϵ+-indicator
gives the minimum distance by which a Pareto front approximation
needs to or can be translated in each dimension in objective space
such that a reference set is weakly dominated. Mathematically, it is
defined as follows:

ϵ+ (A,Z) = max

z⃗∈Z
min

a⃗∈A
max

1≤i≤m
{zi − ai } (7)

Figure 1: Memoization structure that stores the minimum
and second best value per row of the IGD+ cost matrix. We
assume thatM = N .

First Second

Memoization

4 OUR PROPOSED APPROACH
In this section, our proposed approach, which is called Multi-In-

dicator Hyper-heuristic (MIHPS) is described in detail. First, we

outline the framework for the fast computation of the contribution

to the indicators R2, ϵ+, ∆p and IGD
+
. Then, we describe the hyper-

heuristic built from the four IB-DEs and a Markov chain. Finally,

the main loop of MIHPS is described.

4.1 Fast Individual Indicator Contribution
The contribution C of a single solution a⃗ ∈ A to an indicator I is
defined as follows:C (a⃗,A) = I (A) − I (A \ {a⃗}). For the indicators
R2, IGD

+
, ϵ+ and ∆p , it can be easily verified that their computation

takes Θ(mN 2), assuming that |A| = |Z| = |W | = N . Thus, for

a single solution, it takes Θ(mN 2) + Θ(m(N − 1)2) = Θ(mN 2)
and for all N solutions it takes Θ(mN 3). For instance, R2-EMOA

implements this computational-expensive method for calculating

the contributions. Hence, we propose a framework for contribution

computation of indicators whose definition involves subproblems

of maximization or minimization in pursuance of reducing the

previously indicated complexity Θ(mN 3).
Due to space limitations, we focus the analysis on IGD

+
. How-

ever, this analysis can be easily adapted for the other indicators

previously mentioned. In the left-hand side of Figure 1, we show a

cost matrix where d+i j = d
+ (a⃗j , z⃗i ) (see Eq. (3)). To compute IGD

+

using this matrix, we look at the minimum value of each row, sum

the values and divide the result byN . In case a solution a⃗, associated
with one or more of the minimum values, is removed from A, it

will be enough to find the second lowest value in the involved rows.

Based on this, a memoization structure is shown at the right-hand

side of Figure 1, where each row stores the minimum value, the

second minimum and the corresponding pointers to the associated

elements in A. Hence, the memoization structure can be used in

furtherance of reducing the cost of computing the contributions.

Algorithm 1 describes how to compute the contributions to IGD
+
.

First, the IGD
+ (A,Z) value is calculated and assigned to the vari-

able I
IGD

+ , using thememoization structure.Ci is the variable which

will store the individual contribution of the ith element of A. The

main loop is outlined in lines 4-12, where the contribution of each

solution is computed taking advantage of the memoization struc-

ture.ψ is a temporary variable which accumulates the IGD
+
value

of A \ {a⃗i }. For each element, we only have to determine if it
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participates in the IGD
+
value; if so, we look for the second best

value memoized. The obtained values are added toψ . Finally,ψ is

divided by N and assigned as the contribution of the considered

element. The complexity of calculating the IGD
+
value remains as

Θ(mN 2), and the main loop takes Θ(N 2). Hence, the required time

for computing the individual contributions of all solutions in A is

Θ(mN 2).

Algorithm 1 Fast IGD
+
Individual Contributions

Require: Approximation set A; Reference set Z

Ensure: IGD
+
individual contributions

1: Initialize Memoization
2: I

IGD
+ ← IGD

+ (A, Z, Memoization)
3: ∀i ∈ {1, . . . , |A | }, Ci ← 0

4: for i = 1 to N do
5: ψ ← 0

6: for j = 1 to N do
7: if Memoization[j].a⃗f

1
= a⃗i then

8: ψ ← ψ +Memoization[j].d+js
9: else
10: ψ ← ψ +Memoization[j].d+j f
11: ψ ← ψ /N
12: Ci ← I

IGD
+ −ψ

13: return {Ci }i=1, . . ., |A|

4.2 Hyper-heuristic
On the basis of the selected indicators, four IB-DEs are defined,

namely {IGD+-DE,R2-DE, ϵ+-DE,∆p -DE}. This set of IB-DEs is
the heuristic pool (Hpool ) from which the hyper-heuristic chooses

the most suitable one depending on the MOP being solved. Our

proposed hyper-heuristic is a modified version of the work of Mc-

Clymont and Keedwell [21] where a Markov chain (MC) is em-

ployed. The reasons to use an MC are: (1) its low computational

cost, (2) the good performance shown in [21], and (3) the related ran-

domness avoids stagnation on a single IB-DE. The hyper-heuristic

requires two steps: (1) performance information collection, and (2)

heuristic selection. First, once an IB-DE is selected, it is executed

at Tw generations. At each generation, the quality of the produced

population is measured using the R2 indicator, and each sample

is stored in a list associated to the IB-DE in Hpool . We decided to

use the R2 indicator because it is highly correlated to the HV [20].

Algorithm 2 outlines the second step which involves the use of the

Markov chain (see Figure 2), the gathered R2 values and a control

structure denoted as Chh . In the beginning, in line 1, we check if

the current IB-DE has been executed. If so, the counter variable of

Chh is augmented by one; otherwise, the transition probability is

updated, and a new IB-DE is selected (lines 4 to 19). Let i be the
last IB-DE executed and j be the current one. Only the probability

pi j is updated. Based on the R2 values of the current heuristic, we

calculate in line 6 a linear regression model where only the slope b
and the standard deviation σ of the data are relevant. Using these

two values, in lines 7 to 14, we modifiedpi j in three cases: (1) adding
2α if the slope is non-negative and σ ≥ σ̄ , where σ̄ is a threshold

value set to 0.1, (2) adding α if the slope is non-negative but σ < σ̄ ,
and (3) subtracting β if the slope is negative. We set α = β = 0.1. In

line 15, we normalized all values in the ith row of the matrix and,

finally, we select a new IB-DE using roulette wheel selection.

Algorithm 2 Switch of Heuristics

Require: Hpool , Chh , Tw
Ensure: Update current heuristic being executed

1: if Chh .counter < Tw then
2: Chh .counter ← Chh .counter + 1

3: else
4: i ← Chh .lastH, j ← Chh .currentH
5: d ← Hpool [j].data
6: {b, σ } ← ComputeData (d )
7: if b ≥ 0 and σ ≥ σ̄ then
8: Chh .pi j ← Chh .pi j + 2α
9: else if b ≥ 0 and σ < σ̄ then
10: Chh .pi j ← Chh .pi j + α
11: else if b < 0 then
12: Chh .pi j ← Chh .pi j − β
13: if Chh .pi j < 0 then
14: Chh .pi j ← 0

15: Normalize Chh .pit , t = 1, . . . , |Hpool |

16: Clear data of the current heuristic

17: Chh .lastH ← Chh .currentH
18: Chh .currentH ← RouletteW heel ()
19: Chh .counter ← 0

Figure 2: Markov chain and its corresponding transitionma-
trix. Each element pi j ∈ [0, 1] of the matrix indicates the
probability of going from the ith IB-DE to the jth one. For
a row i,

∑
4

j=1
pi j = 1. All initial transition probabilities pi j

are set to 1/|Hpool |.

(a) Markov chain (b) Transition matrix

4.3 MIHPS
The general framework of MIHPS is described by Algorithm 3.

MIHPS is similar to SMS-EMOA, but the HV-based DE is replaced

by the mechanism described next. MIHPS requires two parameters:

a set of weight vectorsW for the R2 indicator and the time window

Tw that determines the number of times a heuristic needs to be

executed. The structures Chh and Hpool required by Algorithm 2

are initialized in line 1, and the population is randomly initialized

using a uniform distribution in line 2. The main loop of MIHPS is

shown in lines 3 to 17. First, two randomly-selected solutions of P
create a new offspring using SBX and polynomial-based mutation in

lines 4 and 5. Then, the union of P and the newly-created solution is

assigned to Ψ in furtherance of ranking it using the nondominated

sorting algorithm [8] in pursuance of generating a set of layers

{L1, . . . ,Lk }. L1 has the nondominated solutions in Ψ, and Lk is

composed by the worst individuals regarding the Pareto dominance

relation. If the cardinality of Lk is greater than one, an IB-DE is

executed. In this case, Z, used by IGD
+, ϵ+ and ∆p , is set to L1.

Depending on the current IB-DE, the indicator contribution of each

element in Lk is calculated using the proposed framework in line

10 to identify the worst contributing solution pmin . In line 14, the
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Table 2: Properties of the WFG test problems

Problem Separability Frontality Geometry
WFG1 separable unifrontal convex, mixed

WFG2 non-separable

f1:m−1 unimodal

fm multimodal

convex

disconected

WFG3 non-separable unifrontal linear, degenerated

WFG4 separable multifrontal concave

WFG5 separable deceptive concave

WFG6 non-separable unifrontal concave

WFG7 separable unifrontal concave

WFG8 non-separable unifrontal concave

WFG9 non-separable multifrontal, deceptive concave

solution pmin is deleted from Ψ and the resulting population is

set as the population for the next iteration and assessed by the R2

indicator. This R2-value is added to the list of the current IB-DE

executed. Finally, in line 21, Algorithm 2 is invoked to select, if

necessary, a new IB-DE. MIHPS returns the main population as the

Pareto front approximation.

Algorithm 3MIHPS general framework

Require: Set of weight vectorsW , Tw
Ensure: Pareto front Approximation

1: Initialize Chh and Hpool
2: Randomly initialize population P
3: while stopping criterion is not fulfilled do
4: {p, q } ← Select (P )
5: offspring← Var iation (p, q )
6: Ψ ← P

⋃
{offspring}

7: {L1, L2, . . . , Lk } ← nondominated-sorting(Ψ)
8: if |Lk | > 1 then
9: Z ← L1

10: {Ci }i=1, . . ., |A| ← Contr ibution (Lk ,W , Z, Chh, Hpool )
11: Find solution pmin ∈ Lk having the minimum contribution value in

{Ci }i=1, . . ., |A|

12: else
13: pmin is equal to the sole individual in Lk
14: P ← Ψ \ {pmin }
15: δ ← −R2(P,W )
16: AddQualityMeasure (Chh, Hpool , δ )
17: Chh ← Switch (Chh, Hpool , Tw , )
18: return P

5 EXPERIMENTAL RESULTS
In this section, we investigate the performance of MIHPS,

4
consid-

ering the nine instances of the Walking-Fish-Group (WFG) [12] test

suite for 2, 3, 5, 6 and 10 objective functions. The main properties of

the WFG problems are depicted in Table 2. We present two exper-

iments: (1) a comparative study that includes the state-of-the-art

algorithms MOEA/D
5
[27] (based on decomposition), NSGA-III

6

[9] (based on reference points) and R2-EMOA
7
[4] (based on the R2

indicator), and (2) an analysis of the IB-DE preference of MIHPS.

The adopted parameter values used by all MOEAs are described

in Table 3. From this table, the parameterH is related to the Simplex

Lattice Design (SLD) [27] that generates the setW of weight vectors

required by all the MOEAs. Consequently, |W | = CH+m−1

H−1
. MIHPS

4
The source code is available at http://computacion.cs.cinvestav.mx/~jfalcon/MIHPS/

mihps.html

5
Available at http://dces.essex.ac.uk/staff/zhang/webofmoead.htm

6
Available at http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm

7
We employed the implementation from EMO Project 1.36 available at http://

computacion.cs.cinvestav.mx/~rhernandez/

and the selected MOEAs employ Simulated Binary Crossover (SBX)

and Polynomial-based mutation (PBX) as their variation opera-

tors. For two and three objectives, the crossover probability and

distribution index were set to 1.0 and 20, respectively; while for

high-dimensional objective spaces, these parameters were set to

1.0 and 30. For PBX, its probability and distribution index were

set to 1/n and 20, respectively. The stopping criterion consisted of

reaching a maximum number of function evaluations of the MOP,

as depicted in Table 3. The parameter Tw of MIHPS is equal to the

population size, and the niche size of MOEA/D was set to 20 in all

cases.

For performance assessment of the MOEAs, we selected the

HV [28] and the s-energy [10] indicators. The former is focused on

assessing convergence and diversity and its value is to bemaximized.

HV requires a reference point which for WFG1-WFG9 was set to

(2i + 1)i=1,2, ...,m , wherem is the number of objective functions.

The s-energy indicator is defined as follows:

Es (A) =
∑
i,j




a⃗i − a⃗j




−s

(8)

whereA = {a⃗1, . . . , a⃗ |A | }, a⃗i ∈ R
m
, and s > 0 is a fixed parameter.

This indicator has been used to discretizem-dimensional manifolds

since its minimization leads to a uniform distribution of the points

in A, if s ≥ m [10].

We performed 30 independent runs of each of the four compared

MOEAs using all the test instances. Tables 4, 5 and 6 show the

statistical results for the HV and s-energy indicators, respectively.

In these tables, the two best values among the algorithms are em-

phasized in grayscale, where the darker tone corresponds to the

best value. A sharp symbol (#) is placed when MIHPS performed

significantly better than the other approaches based on a one-tailed

Wilcoxon rank sum test using a confidence level of 95%.

5.1 Comparison with state-of-the-art MOEAs
In this section, we compare MIHPS against MOEA/D, NSGA-III

and R2-EMOA. The HV results shown in Table 4 indicate that

for two objective functions, MIHPS is competitive with respect to

NSGA-III which obtains the best result in 5 out of 9 problems, while

MIHPS gets the best result in 4 test instances and the second best

value in the remaining MOPs. In case of three objective functions,

MIHPS outperforms the other algorithms, having the best value

in 7 instances and the second place in the rest of MOPs. In these

two objective spaces, WFG2, whose Pareto front is disconnected,

presents the highest difficulty to MIHPS since it cannot obtain the

best HV value. Considering MOPs having 5 and 6 objective func-

tions, MIHPS maintains its good performance because it obtains

the best value in 15 out of the 18 instances. In this regard, we ob-

serve that in both cases MIHPS obtains the best result in WFG2.

Finally, when tackling 10-dimensional MOPs, MIHPS reduces its

performance, although it obtains the best value in 55% of the prob-

lems. However, in WFG1, MIHPS was outperformed by MOEA/D

and NSGA-III. In general, when MIHPS obtains the best value, the

difference concerning NSGA-III does not look huge, although the

Wilcoxon test states that the difference is indeed statistically sig-

nificant. For the cases when MIHPS obtains the second place, the

differences tend to be significant. Finally, the s-energy results in

http://computacion.cs.cinvestav.mx/~jfalcon/MIHPS/mihps.html
http://computacion.cs.cinvestav.mx/~jfalcon/MIHPS/mihps.html
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
http://computacion.cs.cinvestav.mx/~rhernandez/
http://computacion.cs.cinvestav.mx/~rhernandez/


GECCO ’18, July 15–19, 2018, Kyoto, Japan Falcón-Cardona and Coello Coello

Table 3: Parameters adopted in our experiments.

Objectives (m) 2 3 5 6 10

Population size 120 120 126 126 220

Objective function

evaluations (×10
3
)

50 50 70 80 120

W
F
G variables (n) 24 26 30 32 40

position-related

parameters
2 2 4 5 9

Weight-vector

partitions (H )
119 14 5 4 3

Table 5 indicate that MIHPS has a competitive performance in low-

dimensional MOPs and outperforms all the other MOEAs used in

our study when dealing with many-objective problems.

5.2 Selection Bias
The probabilistic selection of an IB-DE performed by MIHPS is

biased by its performance, regarding the R2 indicator. Consequently,

it is straightforward to think that the R2-DE will be preferred as

it intends to improve the values of R2 produced by the population.

Our experimental results support this fact, showing that the R2-DE

is preferred at the end of the search in almost all problem instances.

However, the other IB-DEs are used at the beginning of the search.

Figure 4 shows an example of the previous argument onWFG4 with

three objectives. Hence, we considered necessary to determine if

the combination of the indicators has an impact on the convergence

of MIHPS. For this purpose, we compared MIHPS with a version

of it where only R2-DE is turned on (denoted as MIHPS-R2), using

the parameter values shown in Table 3. Due to space limitations,

Table 6 presents the comparison regarding the HV indicator, for

low-dimensional instances of the WFG test suite. It can be seen

that MIHPS outperforms MIHPS-R2 in a statistically significant

way because it obtains the best HV value in 15 out of 18 problem

instances. For the three problems where MIHPS does not obtain

the best result, the difference is not very significant. Hence, these

results strongly support that even though R2-DE is mostly preferred

by MIHPS, the execution of the other IB-DEs contributes to a better

convergence, as confirmed by the results shown in Tables 4 and 5.

6 CONCLUSIONS AND FUTUREWORK
This paper presents a novel Multi-Indicator-based MOEA called

MIHPS, which combines the strengths of four density estimators

based on the use of R2, IGD
+
, ϵ+ and ∆p . We adopted a hyper-

heuristic which is on top of the algorithmic framework and is

focused on learning which IB-DE is the most suitable at each mo-

ment of the search. For this purpose, a Markov chain is employed

where the transition probabilities are updated based on the quality

improvement or decrease of the R2 values in the population. R2

was mainly adopted because is known to be highly correlated to

the hypervolume indicator but has a significantly lower computa-

tional cost. Additionally, we proposed an algorithmic framework

that considerably reduces the computational cost of calculating all

the contributions to the indicators and whose definition involves

minimization or maximization subproblems. Experimental results

indicate that the proposed approach outperforms in a statistically

significant way to MOEA/D, NSGA-III and R2-EMOA in 31 out of

45 of the test instances adopted, regarding the HV indicator, and

Table 4: Mean and standard deviation (in parentheses) of
the hypervolume indicator for the compared MOEAs and
MIHPS.

Objectives MOP MIHPS MOEA/D NSGA-III R2-EMOA

2

WFG1

5.353823e+00

(4.539967e-01)

5.085414e+00#

(2.839145e-01)

6.627788e+00

(3.886166e-01)

4.972801e+00 #

(2.120000e-01)

WFG2

1.087631e+01

(4.043935e-01)

9.812547e+00#

(5.469032e-01)

1.091544e+01

(3.990434e-01)

1.076935e+01#

(3.672361e-01)

WFG3

1.090360e+01

(1.338370e-02)

1.076476e+01#

(7.102684e-02)

1.090323e+01

(1.312870e-02)

1.085161e+01#

(2.379180e-02)

WFG4

8.650363e+00

(2.063378e-02)

8.497784e+00#

(2.407267e-02)

8.650159e+00#

(7.209313e-03)

8.592620e+00#

(2.586712e-02)

WFG5

8.157830e+00

(3.768882e-02)

8.105310e+00#

(6.867330e-03)

8.185022e+00

(3.730594e-02)

8.133849e+00#

(1.887475e-02)

WFG6

8.350939e+00

(5.352283e-02)

8.164502e+00#

(1.036161e-01)

8.373642e+00

(3.334034e-02)

8.328502e+00

(3.833023e-02)

WFG7

8.664098e+00

(2.142694e-02)

8.558870e+00#

(1.836725e-02)

8.670626e+00

(3.901721e-03)

8.625866e+00#

(1.282143e-02)

WFG8

8.067041e+00

(3.917163e-02)

7.927696e+00#

(3.876792e-02)

8.062539e+00

(2.129901e-02)

7.979584e+00 #

(4.206135e-02)

WFG9

8.371848e+00

(1.574505e-01)

8.097411e+00#

(1.679919e-01)

8.298658e+00#

(2.206774e-01)

8.238317e+00#

(2.196850e-01)

3

WFG1

5.189445e+01

(1.907972e+00)

4.994533e+01#

(2.615320e+00)

4.917540e+01#

(1.742752e+00)

4.582011e+01#

(1.903103e+00)

WFG2

9.999710e+01

(2.691156e-01)

9.425491e+01#

(1.887090e+00)

1.000303e+02

(2.020421e-01)

9.792476e+01#

(4.795771e-01)

WFG3

7.351098e+01

(8.728010e-01)

6.949014e+01#

(2.043137e+00)

7.359113e+01

(3.698540e-01)

7.136640e+01#

(7.927364e-01)

WFG4

7.598303e+01

(1.185769e-01)

7.398207e+01#

(3.092256e-01)

7.586556e+01#

(1.753519e-01)

7.265719e+01#

(3.311758e-01)

WFG5

7.343176e+01

(3.575197e-01)

7.173103e+01#

(4.978797e-01)

7.342821e+01#

(1.084695e-01)

7.196333e+01#

(4.816689e-01)

WFG6

7.376195e+01

(3.751150e-01)

7.200035e+01#

(6.485353e-01)

7.356399e+01#

(3.730537e-01)

7.084095e+01#

(6.665309e-01)

WFG7

7.653560e+01

(7.852050e-02)

7.046696e+01#

(2.114407e+00)

7.640131e+01#

(8.117286e-02)

7.080832e+01#

(1.568479e+00)

WFG8

8.067041e+00

(3.917163e-02)

7.927696e+00#

(3.876792e-02)

8.062539e+00

(2.129901e-02)

7.979584e+00 #

(4.206135e-02)

WFG9

7.386404e+01

(5.158326e-01)

6.675524e+01#

(2.213615e+00)

7.319658e+01#

(7.798323e-01)

6.578887e+01#

(1.219647e+00)

5

WFG1

4.535121e+03

(1.993775e+02)

4.522924e+03

(1.145447e+02)

4.049661e+03#

(1.445036e+02)

4.194966e+03#

(1.358394e+02)

WFG2

1.023085e+04

(3.828319e+01)

9.147103e+03#

(2.989196e+02)

1.022660e+04

(2.444328e+01)

9.984285e+03#

(6.289957e+01)

WFG3

6.788535e+03

(6.801749e+01)

5.831355e+03#

(1.740491e+02)

6.705622e+03#

(6.623165e+01)

5.038991e+03#

(7.488139e+02)

WFG4

8.920978e+03

(2.213267e+01)

8.212950e+03#

(2.178634e+02)

8.904989e+03#

(2.089724e+01)

7.421184e+03#

(2.591330e+02)

WFG5

8.624539e+03

(1.603036e+01)

8.104988e+03#

(1.012979e+02)

8.618204e+03#

(1.271126e+01)

7.948213e+03#

(1.147386e+02)

WFG6

8.645060e+03

(4.070264e+01)

7.556842e+03#

(1.664222e+02)

8.640890e+03

(4.979948e+01)

7.939967e+03#

(8.654630e+01)

WFG7

8.915641e+03

(4.822879e+01)

7.760876e+03#

(1.586662e+02)

8.950470e+03

(1.940161e+01)

4.558253e+03#

(3.763958e+02)

WFG8

8.424204e+03

(3.017833e+01)

7.008822e+03#

(3.386477e+02)

8.415246e+03

(2.900889e+01)

7.641489e+03#

(7.184083e+01)

WFG9

8.263995e+03

(1.370648e+02)

7.417024e+03#

(9.145927e+02)

8.356364e+03

(1.276761e+02)

4.747704e+03#

(1.345621e+03)

6

WFG1

5.480387e+04

(1.859254e+03)

5.551582e+04

(1.195407e+03)

4.624351e+04#

(7.644434e+02)

4.929380e+04#

(1.413982e+03)

WFG2

1.332612e+05

(6.368992e+02)

1.178550e+05#

(3.855927e+03)

1.315301e+05#

(8.750023e+02)

1.300786e+05#

(1.364547e+03)

WFG3

8.454601e+04

(1.418348e+03)

6.780238e+04#

(3.173871e+03)

7.863759e+04#

(1.621669e+03)

4.844251e+04#

(1.260649e+03)

WFG4

1.200307e+05

(4.138230e+02)

9.790915e+04#

(4.401103e+03)

1.173793e+05#

(4.685098e+02)

9.324355e+04#

(5.224468e+03)

WFG5

1.162325e+05

(1.007331e+02)

1.031395e+05#

(1.400494e+03)

1.148425e+05#

(2.629454e+02)

1.005002e+05#

(2.553915e+03)

WFG6

1.168731e+05

(6.069773e+02)

8.312614e+04#

(1.675956e+03)

1.149958e+05#

(6.346863e+02)

1.046326e+05#

(1.418536e+03)

WFG7

1.207436e+05

(6.783023e+02)

8.756181e+04#

(1.405257e+03)

1.188896e+05#

(7.429985e+02)

5.244257e+04#

(3.756718e+03)

WFG8

1.130648e+05

(5.882422e+02)

6.120502e+04#

(1.312103e+04)

1.108116e+05#

(5.780063e+02)

9.887326e+04#

(1.270952e+03)

WFG9

1.109319e+05

(1.703241e+03)

8.840778e+04#

(1.287881e+04)

1.095528e+05#

(1.821095e+03)

3.610090e+04#

(2.027429e+03)

10

WFG1

4.263671e+09

(5.387522e+07)

4.626119e+09

(9.082857e+07)

4.333786e+09

(4.767509e+07)

3.619171e+09#

(4.265568e+07)

WFG2

1.346432e+10

(4.695801e+07)

1.153362e+10#

(4.307707e+08)

1.343510e+10#

(5.838755e+07)

1.290151e+10#

(1.470863e+08)

WFG3

7.253349e+09

(2.738702e+08)

3.407782e+09#

(4.406816e+08)

7.851751e+09

(1.420734e+08)

3.849045e+09#

(7.035893e+07)

WFG4

1.263112e+10

(1.101730e+08)

8.323219e+09#

(7.081503e+08)

1.263780e+10

(8.783143e+07)

5.596499e+09#

(2.750563e+08)

WFG5

1.240345e+10

(2.216323e+07)

9.239992e+09#

(2.118588e+08)

1.237722e+10#

(2.716038e+07)

3.990706e+09#

(1.057584e+08)

WFG6

1.253598e+10

(6.372494e+07)

6.359273e+09#

(9.586607e+08)

1.250108e+10#

(5.551767e+07)

5.453261e+09#

(1.016168e+09)

WFG7

1.303975e+10

(3.716490e+07)

6.249289e+09#

(5.201314e+08)

1.306886e+10

(3.687103e+07)

4.403681e+09#

(1.233729e+08)

WFG8

1.190158e+10

(7.705432e+07)

2.888315e+09#

(9.700244e+08)

1.182430e+10#

(9.381721e+07)

6.936492e+09#

(8.189270e+08)

WFG9

1.167146e+10

(2.269656e+08)

6.798907e+09#

(2.162391e+09)

1.162166e+10#

(2.416780e+08)

3.605102e+09#

(1.128297e+08)
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Table 5: Mean and standard deviation (in parentheses) of the
s-energy indicator for the compared MOEAs and MIHPS.

Objectives MOP MIHPS MOEA/D NSGA-III R2-EMOA

2

WFG1

1.872714e+07

(5.589395e+07)

2.078402e+09#

(6.179776e+09)

4.220447e+08#

(1.823807e+09)

3.052235e+07#

(3.882580e+07)

WFG2

1.764804e+07

(4.335797e+07)

1.360580e+11#

(4.224067e+11)

7.707419e+08#

(3.611565e+09)

3.652743e+07#

(1.003287e+08)

WFG3

3.500463e+05

(2.876591e+04)

4.201784e+05#

(6.809222e+03)

6.939978e+06

(3.590074e+07)

4.135505e+05

(2.349694e+05)

WFG4

7.867810e+05

(1.057606e+06)

3.489431e+05

(7.920373e+03)

5.910070e+05

(5.234480e+05)

9.951450e+05#

(8.112717e+05)

WFG5

3.567459e+05

(1.003470e+05)

4.003092e+05#

(3.341154e+03)

3.741169e+05#

(2.671847e+04)

1.074483e+06#

(2.293603e+06)

WFG6

8.297581e+05

(9.897593e+05)

6.037467e+07

(2.375227e+08)

8.222445e+05

(1.287128e+06)

1.185283e+07#

(5.119626e+07)

WFG7

6.005176e+05

(4.064338e+04)

3.516485e+05

(2.187221e+03)

4.151943e+05

(2.517076e+05)

2.644334e+08#

(1.396116e+09)

WFG8

9.255261e+05

(1.969640e+06)

3.489084e+05

(6.242702e+03)

6.244380e+07#

(9.195854e+07)

1.143237e+06 #

(7.077474e+05)

WFG9

6.781110e+05

(4.898496e+05)

5.372987e+07

(1.257882e+08)

5.781309e+05

(5.713066e+05)

1.237779e+06

(1.588538e+06)

3

WFG1

6.143577e+07

(1.673973e+08)

8.654171e+13#

(3.671307e+14)

2.001574e+11#

(6.000690e+11)

1.008461e+09

(3.820614e+09)

WFG2

6.624223e+04

(9.279462e+04)

2.397235e+12#

(1.740974e+12)

5.495017e+04

(4.524221e+04)

1.443613e+08#

(3.538534e+08)

WFG3

3.520209e+08

(1.101941e+09)

3.964626e+14#

(1.471524e+15)

6.718343e+13#

(3.589166e+14)

3.814376e+08

(1.482391e+09)

WFG4

1.231146e+04

(2.935879e+02)

1.901945e+04#

(3.334860e+02)

1.377282e+04#

(2.686847e+02)

5.462352e+04#

(6.098394e+04)

WFG5

1.117281e+04

(3.901057e+02)

1.980568e+04#

(6.562792e+02)

1.325976e+04#

(9.325864e+01)

8.490656e+04#

(1.384068e+05)

WFG6

7.041258e+05

(3.731772e+06)

1.886531e+04

(7.058645e+02)

8.661346e+04

(3.057806e+05)

6.563986e+06#

(2.934294e+07)

WFG7

1.139288e+04

(2.613867e+02)

1.946851e+04#

(2.373307e+03)

1.332989e+04#

(1.499702e+02)

6.844411e+07#

(2.577339e+08)

WFG8

6.334416e+06

(2.629782e+07)

3.223364e+04

(1.063549e+04)

5.425657e+06

(1.419605e+07)

3.641170e+06

(8.239984e+06)

WFG9

3.184319e+04

(4.393248e+04)

6.666673e+10#

(3.590110e+11)

6.667038e+10#

(3.590103e+11)

3.207396e+05#

(8.767693e+05)

5

WFG1

9.801655e+08

(4.316843e+09)

8.428701e+21#

(3.989661e+22)

1.333338e+19#

(7.180219e+19)

6.356396e+11#

(3.274853e+12)

WFG2

3.412454e+04

(1.397693e+05)

9.851610e+21#

(3.854359e+22)

3.435707e+11#

(1.821926e+12)

3.979127e+08#

(9.931633e+08)

WFG3

1.922689e+15

(1.034797e+16)

1.134485e+23#

(6.037710e+23)

5.378389e+19#

(1.542099e+20)

1.829545e+13

(8.819243e+13)

WFG4

2.513006e+02

(1.532131e+01)

1.000468e+44#

(5.385078e+44)

3.037938e+06#

(8.843297e+06)

3.887261e+02

(6.295909e+02)

WFG5

1.959483e+02

(9.455351e+00)

4.882370e+35#

(9.117700e+35)

2.267384e+12#

(1.138301e+13)

4.307820e+02#

(1.013691e+03)

WFG6

1.859204e+02

(1.167860e+01)

1.173885e+36

(4.338642e+36)

1.755902e+10

(8.993706e+10)

1.467884e+03

(5.302806e+03)

WFG7

2.164027e+02

(3.118630e+01)

2.165757e+46#

(7.500306e+46)

5.257040e+09#

(2.069378e+10)

8.848340e+05#

(2.569514e+06)

WFG8

1.845485e+02

(1.050481e+01)

9.282909e+30#

(4.513332e+31)

2.933885e+09#

(1.555046e+10)

8.543378e+12

(4.600747e+13)

WFG9

2.590924e+02

(7.018357e+01)

1.632844e+34#

(7.170632e+34)

1.113532e+05#

(3.526911e+05)

6.328721e+05#

(1.575043e+06)

6

WFG1

6.047165e+08

(2.970199e+09)

1.146783e+25#

(1.045436e+25)

6.666671e+22#

(3.590110e+23)

1.078332e+12#

(5.048390e+12)

WFG2

5.221297e+03

(2.543207e+02)

7.565683e+26#

(2.720479e+27)

1.905108e+12#

(1.025097e+13)

5.201325e+10#

(1.625235e+11)

WFG3

1.653878e+18

(8.797877e+18)

2.000000e+23

(6.000000e+23)

1.333333e+23

(4.988877e+23)

1.204432e+03

(1.089896e+03)

WFG4

5.609587e+01

(4.538698e+00)

7.653501e+55#

(2.292190e+56)

1.354861e+14#

(7.296046e+14)

3.297595e+02

(1.563612e+03)

WFG5

3.818705e+01

(2.517843e+00)

6.406495e+43#

(1.354844e+44)

2.530719e+09#

(8.470160e+09)

1.927523e+02

(5.843129e+02)

WFG6

3.465443e+01

(2.886772e+00)

9.787867e+43#

(3.027649e+44)

6.666667e+22#

(3.590110e+23)

8.009979e+02

(3.432225e+03)

WFG7

4.038720e+01

(4.437763e+00)

6.635666e+55#

(2.699486e+56)

1.087107e+12#

(5.838292e+12)

7.460269e+04#

(3.384252e+05)

WFG8

3.997036e+01

(4.850055e+00)

3.528092e+36#

(1.620639e+37)

6.666667e+22#

(3.590110e+23)

1.833067e+02

(7.276364e+02)

WFG9

4.452187e+01

(1.485791e+01)

4.653538e+42#

(2.441525e+43)

4.219370e+05#

(1.138974e+06)

9.827496e+06#

(5.228468e+07)

10

WFG1

6.025963e+07

(4.819117e+07)

1.334400e+59#

(7.180024e+59)

2.666667e+39#

(1.123487e+40)

3.801374e+13#

(1.496857e+14)

WFG2

1.805484e+04

(4.251975e+03)

1.600000e+60#

(8.616264e+60)

6.939858e+30#

(3.712175e+31)

3.715520e+20#

(2.000830e+21)

WFG3

1.352050e+04

(7.158030e+04)

3.968305e+49#

(1.575951e+50)

4.695580e+39#

(1.121605e+40)

1.014720e+01

(1.772339e+00)

WFG4

3.429733e+00

(2.657303e+00)

7.893333e+111#

(4.250690e+112)

4.071902e+00#

(1.264681e+00)

2.097761e+01#

(2.430840e+01)

WFG5

1.266066e+00

(1.792841e-01)

2.438414e+72#

(5.575768e+72)

3.892117e+00#

(2.723236e-01)

2.960655e+02#

(3.920714e+02)

WFG6

1.082768e+00

(1.733274e-01)

6.860262e+71#

(3.694218e+72)

3.985430e+00#

(3.971706e-01)

1.323056e+06#

(6.788670e+06)

WFG7

1.381504e+00

(2.415390e-01)

2.572763e+102#

(9.786282e+102)

3.869951e+00#

(4.029032e-01)

3.825779e+01#

(6.971002e+01)

WFG8

3.184230e+00

(2.265388e+00)

2.055197e+62#

(6.219703e+62)

3.212638e+01#

(1.459811e+02)

9.061778e+03#

(4.659196e+04)

WFG9

2.201585e+00

(2.067237e+00)

4.338407e+70#

(1.149034e+71)

8.802783e+00#

(8.806394e+00)

2.885282e+01#

(3.981606e+01)

Figure 3: Pareto fronts produced by MIHPS. All fronts corre-
spond to the HV median.

Table 6: Mean and standard deviation (in parentheses) of the
hypervolume indicator for MIHPS and MIHPS-R2.

Objectives MOP MIHPS MIHPS-R2

2

WFG1

5.353823e+00

(4.539967e-01)

4.909215e+00#

(2.354320e-01)

WFG2

1.087631e+01

(4.043935e-01)

1.088208e+01

(4.060801e-01)

WFG3

1.090360e+01

(1.338370e-02)

1.083356e+01#

(3.044440e-02)

WFG4

8.650363e+00

(2.063378e-02)

8.584441e+00#

(2.619502e-02)

WFG5

8.157830e+00

(3.768882e-02)

8.132564e+00#

(1.937931e-02)

WFG6

8.350939e+00

(5.352283e-02)

8.305956e+00#

(4.739550e-02)

WFG7

8.664098e+00

(2.142694e-02)

8.620447e+00#

(2.985012e-02)

WFG8

8.067041e+00

(3.917163e-02)

7.986139e+00#

(3.097071e-02)

WFG9

8.371848e+00

(1.574505e-01)

8.263080e+00#

(1.838899e-01)

3

WFG1

5.189445e+01

(1.907972e+00)

5.188408e+01

(1.610899e+00)

WFG2

1.085075e+01

(3.864759e-01)

1.088208e+01

(4.060801e-01)

WFG3

7.351098e+01

(8.728010e-01)

7.302124e+01#

(3.418580e-01)

WFG4

7.598303e+01

(1.185769e-01)

7.594650e+01#

(1.511291e-01)

WFG5

7.343176e+01

(3.575197e-01)

7.347454e+01

(9.055205e-02)

WFG6

7.376195e+01

(3.751150e-01)

7.358466e+01#

(3.801285e-01)

WFG7

7.653560e+01

(7.852050e-02)

7.648279e+01#

(7.837593e-02)

WFG8

7.265162e+01

(2.082143e-01)

7.261357e+01#

(1.609685e-01)

WFG9

7.386404e+01

(5.158326e-01)

7.346278e+01#

(9.396951e-01)

in 34 out of 45 MOPs considering the s-energy indicator. Based on

these results, we believe that MIHPS is a suitable alternative for

solving multi-objective optimization problems having both few or

many objectives. As part of our future work, we are interested in

studying the particular effect of each IB-DE to understand their

specific contributions to the search process and to characterize

their convergence and distribution features empirically. Finally, we

would like to investigate the effect of the values adopted to update

the transition probabilities of the Markov chain.
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Figure 4: IB-DE preference on WFG4 with 3 objective func-
tions. Since MIHPS is a steady-state MOEA, the number of
generations is equivalent to the number of function evalua-
tions.
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