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Abstract. Recently, it has been shown that the current Many-Objective
Evolutionary Algorithms (MaOEAs) are overspecialized in solving cer-
tain benchmark problems. This overspecialization is due to a high cor-
relation between the Pareto fronts of the test problems with the convex
weight vectors commonly used by MaOEAs. The main consequence of
such overspecialization is the inability of these MaOEAs to solve the mi-
nus versions of well-known benchmarks (e.g., the DTLZ−1 test suite).
In furtherance of avoiding this issue, we propose a novel steady-state
MaOEA that does not require weight vectors and uses a density estimator
based on the IGD+ indicator. Moreover, a fast method to calculate the
IGD+ contributions is integrated in order to reduce the computational
cost of the proposed approach, which is called IGD+-MaOEA. Our pro-
posed approach is compared with NSGA-III, MOEA/D, IGD+-EMOA
(the previous ones employ convex weight vectors) and SMS-EMOA on
the test suites DTLZ and DTLZ−1, using the hypervolume indicator.
Our experimental results show that IGD+-MaOEA is a more general op-
timizer than MaOEAs that need a set of convex weight vectors and it is
competitive and less computational expensive than SMS-EMOA.

Keywords: Multi-Objective Optimization, Quality Indicators, Density
Estimation

1 Introduction

In the scientific and industrial fields, there is a wide variety of problems that in-
volve the simultaneous optimization of several, often conflicting, objective func-
tions. These are the so-called multi-objective optimization problems (MOPs)
which are mathematically defined as follows:

min
x∈Ω

F (x) = (f1(x), f2(x), . . . , fm(x))T (1)
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where x is the vector of decision variables, Ω ⊆ Rn is the decision variable space
and F (x) is the vector of m(≥ 2) objective functions. The solution of an MOP is
a set of solutions that represent the best possible trade-offs among the objectives,
i.e., finding solutions in which an objective function cannot be improved without
worsening another. The particular set that yields the optimal values is known as
the Pareto Optimal Set (P∗) and its image in the objective space is known as
the Pareto Optimal Front (PF∗).

Multi-Objective Evolutionary Algorithms (MOEAs) are population-based
and gradient-free methods that have been successfully applied to solve MOPs
[1]. For several years, MOEAs have adopted the Pareto dominance relation.1

However, Pareto-based MOEAs does not perform properly when tackling MOPs
having four or more objective functions, i.e., the so-called many-objective opti-
mization problems (MaOPs) [2]. This behavior is due to the rapid increase of
solutions preferred by the use of Pareto dominance which directly produces a di-
lution of the selection pressure. With the aim of properly regulating the selection
pressure of a MOEA three main approaches have been considered for MaOPs:
(1) to define new dominance relations (mainly based on relaxed forms of Pareto
dominance), (2) decomposition of the MOP, and (3) indicator-based selection.

Many-Objective Evolutionary Algorithms (MaOEAs) based on decomposi-
tion and performance indicators2 are the most popular alternatives in the cur-
rent literature [2]. Most of the state-of-the-art MaOEAs employ a set of convex
weight vectors. A vector w ∈ Rm is a convex weight vector if

∑m
i=1 wi = 1 and

wi ≥ 0 for all i = 1, . . . ,m. These weight vectors lie on an (m− 1)-simplex and
are used by MaOEAs as search directions [3], reference points [4,5] or as part
of an indicator’s definition [6]. However, in 2017, Ishibuchi et al. [7] empirically
showed that the use of convex weight vectors overspecializes MaOEAs on MOPs
whose Pareto fronts are strongly correlated to the simplex formed by the weight
vectors.

In this paper, we propose a steady-state MaOEA that uses Pareto dominance
as its main selection criterion and a density estimator based on the Inverted
Generational Distance plus (IGD+) indicator. The proposed approach, called
IGD+-MaOEA, does not require a set of convex weight vectors in any of its
mechanisms in furtherance of avoiding the previously indicated overspecializa-
tion. Furthermore, a fast IGD+ contribution computation method is integrated
into the proposed approach to reduce its computational cost.

The remainder of this paper is organized as follows. Section 2 presents an
overview of some state-of-the-art MaOEAs. The detailed description of our pro-
posal is outlined in Section 3. Our experimental results are provided in Section 4.

1 Given two solutions u,v ∈ Rm, u dominates v (denoted as u ≺ v), if and only if
ui ≤ vi for all i = 1, . . . ,m and there exists at least an index j ∈ {1, . . . ,m} such
that ui < vi. In case ui ≤ vi for all i = 1, . . . ,m, u is said to weakly dominate v
(denoted as u � v).

2 A unary performance indicator I is a function that assigns a real value to a set of
m-dimensional vectors.
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Finally, Section 5 presents our conclusions and some possible paths for future
work.

2 Previous Related Work

The MOEA based on Decomposition (MOEA/D) [3] transforms an MOP into as
many single-objective optimization problems as weight vectors there are, through
a scalarizing function. For each weight vector wi, MOEA/D defines a neighbor-
hood of size T , i.e., it finds the T nearest solutions to wi, using Euclidean
distances. Using this neighborhood structure, MOEA/D tries to optimize the
scalarizing functions at each generation simultaneously. Hence, the aim is to
find the intersections between the Pareto front and the weight vectors according
to the value of the scalarizing function.

Deb et al. [4] proposed the Nondominated Sorting Genetic Algorithm III
(NSGA-III). NSGA-III uses a (µ+ λ) selection scheme, i.e., using a population
of µ potential parents produces, at each generation, λ offspring. Then, the union
set of parents and offspring is classified using the nondominated sorting method
[8] that creates a set of disjoint ranks R1, R2, . . . , Rk, using Pareto dominance.
Ranks are added into the next population until one of them (e.g., Rj) makes the
population size to be larger than µ. Hence, some solutions have to be deleted
from Rj using a density estimator that employs a set of convex weight vectors to
define a niche count per weight vector. Solutions from the most crowded regions
are deleted until the desired population size is achieved.

In 2016, Manoatl and Coello [5] introduced the IGD+-Evolutionary Multi-
Objective Algorithm (IGD+-EMOA) that is an indicator-based MaOEA. They
defined an environmental selection mechanism on the transformation of an MOP
into a Linear Assignment Problem, using the IGD+ indicator. As IGD+ needs
a reference set, the authors proposed to use a set of weight vectors that try to
approximate the Pareto front geometry employing Lamé Superspheres. However,
by doing this, only smooth concave or convex geometries can be appropriately
approximated. Consequently, IGD+-EMOA has difficulties to solve MOPs having
highly irregular Pareto fronts, namely disconnected and degenerated.

The S-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA)
[9] is a steady-state version of the NSGA-II [8] but it implements a density esti-
mator based on the hypervolume (HV) indicator. Due to this HV-based density
estimator, SMS-EMOA increases selection pressure and drives the population to
the maximization of the HV, which is directly related to finding Pareto optimal
solutions [10]. Moreover, SMS-EMOA does not rely on convex weight vectors.
However, its main drawback is the high computational cost associated to the
computation of the individual HV contributions when the number of objective
functions is greater than three, which makes its use prohibitive in MaOPs.
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3 Our Proposed Approach

Ishibuchi et al. [11] proposed the IGD+ indicator as an improved version of the
Inverted Generational Distance (IGD) indicator [1]. The main difference between
IGD+ and IGD is that the former is weakly Pareto-compliant3 while the latter
is Pareto non-compliant. Mathematically, given an approximation to the Pareto
front A and a reference set denoted as Z, IGD+ is defined as follows (we assume
minimization):

IGD+(A,Z) =
1

|Z|
∑
z∈Z

min
a∈A

d+(a, z), (2)

where d+(a, z) =
√∑m

k=1[max(ak − zk, 0)]2. IGD+ measures the average dis-
tance from each reference vector to the nearest dominated region related to an
element in A. The aim is to minimize the value of IGD+. If IGD+(A,Z) = 0,
it implies that A = Z; else if the value is greater than zero, IGD+ intends to
determine how different are both sets.

The contribution C of a solution a ∈ A to IGD+, is defined as follows:

C(a,A,Z) = |IGD+(A,Z)− IGD+(A \ {a},Z)|. (3)

Clearly, the computational cost of calculating the contribution of a single solution
is Θ(mNM), where |A| = N and |Z| = M . Based on Eq. (3), our proposed
IGD+-based density estimator (IGD+-DE) aims to delete from A the solution
having the minimum contribution. The total runtime of IGD+-DE is Θ(mN2M)
which is too expensive. In furtherance of reducing this computational cost, in the
next section we propose a method based on memoization to achieve Θ(mNM)
time for the full IGD+-DE procedure.

3.1 Fast IGD+ contribution

IGD+ in Eq. (2) is basically composed by |Z| minimum d+ values, where each
one is related to a solution, not necessarily different, in A. If a ∈ A is related
to one or more elements in Z, it is called contributing solution; otherwise, it is
called noncontributing solution. It is worth noting that the IGD+ contribution
of the latter is zero, and, thus, IGD+-DE deletes it first. Algorithm 1, proposed
by Falcón-Cardona and Coello [12], stores in a memoization structure, for each
z ∈ Z, the two smallest d+ values and the corresponding pointers to the solutions
in A (see Fig. 1) when IGD+(A,Z) is computed in line 2. For each a ∈ A, the
nested for-loops of lines 4-15 compute ψ = IGD+(A\ {a},Z). For this purpose,
the algorithm takes advantage of the memoization structure. If a is related to one
or more minimum d+ values, then the second best value is added to ψ; otherwise,
the minimum d+ is added. At the end, C(a,A,Z) = |IGD+(A,Z)−ψ| is assigned

3 Let A and B be two non-empty sets of m-dimensional vectors and let I be a unary
indicator. I is weakly Pareto-compliant if and only if A weakly dominates B implies
I(A) ≤ I(B) (assuming minimization of I).
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First Second

Memoization

Fig. 1: IGD+ cost matrix and the memoization structure. Each row of the memo-
ization structure stores the two smalles d+ values and the corresponding pointers
to the related solutions.

to Ci. Consequently, the total runtime of Algorithm 1 is Θ(mNM)+Θ(mNM) =
Θ(mNM).

When this method is integrated into IGD+-DE, its overall cost goes from
Θ(mN2M) to Θ(mNM). The cost of calculating all the IGD+ contributions is
Θ(mNM) and it takesΘ(M) finding the minimum contribution, thus,Θ(mNM)+
Θ(M) = Θ(mNM) is the runtime of IGD+-DE.

Algorithm 1 Fast IGD+ Contribution
Require: Approximation set A of size N ; Reference set Z of size M
Ensure: Vector C = (Ci)i=1,...,N of IGD+ contributions
1: Memoization← ∅
2: total← IGD+(A,Z,Memoization)
3: ∀i ∈ {1, . . . , |A|}, Ci ← 0
4: for i = 1 to N do
5: ψ ← 0
6: for j = 1 to M do

7: if Memoization[j].af
j = ai then

8: ψ ← ψ +Memoization[j].d+js
9: else
10: ψ ← ψ +Memoization[j].d+jf
11: end if
12: end for
13: ψ ← ψ/N
14: Ci ← |total− ψ|
15: end for
16: return C

3.2 IGD+-MaOEA

IGD+-MaOEA is a steady-state MOEA similar to SMS-EMOA [9]. However,
instead of using HV contributions, this approach uses IGD+-DE. Algorithm 2
describes the general framework of IGD+-MaOEA, where the main loop is pre-
sented in lines 2 to 13. First, a new solution q is generated by variation opera-
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tors.4 q is added to P to create the temporary population Q which is ranked by
the nondominated sorting method in line 5. If the layer Rk has more than one
solution, then IGD+-DE is executed in line 7, using Algorithm 1 where the set
of nondominated solutions R1 performs as the reference set Z. In case |Rk| = 1,
the sole solution of Rk is deleted. For both cases, uworst denotes the solution to
be deleted. In line 12, the population for the next generation is set. At the end
of the evolutionary process, the current population P is returned.

Algorithm 2 IGD+-MaOEA general framework

Require: No special parameters needed
Ensure: Approximation to the Pareto front
1: Randomly initialize population P
2: while stopping criterion is not fulfilled do
3: q ← V ariation(P )
4: Q← P ∪ {q}
5: {R1, . . . , Rk} ← NondominatedSorting(Q)
6: if |Rk| > 1 then

7: C ← IGD+DE(A = Rk,Z = R1)

8: Let uworst be the solution with the minimum IGD+ contribution in C
9: else
10: Let uworst be the sole solution in Rk

11: end if
12: P ← Q \ {uworst}
13: end while
14: return P

4 Experimental Results

In order to assess the performance of IGD+-MaOEA5, we used the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite and its minus version, DTLZ−1 proposed by
Ishibuchi et al. [7] adoptingm = 3, 4, 5, 6, 7 objective functions. For all DTLZ and
DTLZ−1 instances, n = m+K−1, where K is set to 5 for DTLZ1, 10 for DTLZ2-
6 and 20 for DTLZ7 [1]. The values of K apply to the corresponding minus
problems. The purpose of using DTLZ−1 is to show that IGD+-MaOEA is more
general than traditional MaOEAs based on the use of convex weight vectors.
We compared IGD+-MaOEA with respect to NSGA-III6, MOEA/D7, IGD+-
EMOA8 and SMS-EMOA9 (the latter for only MOPs having 3 and 4 objective

4 Simulated binary crossover (SBX) and polynomial-based mutation operators are
employed [8].

5 The source code of IGD+-MaOEA is available at http://computacion.cs.

cinvestav.mx/~jfalcon/IGD+-MOEA.html
6 We used the implementation available at: http://web.ntnu.edu.tw/~tcchiang/

publications/nsga3cpp/nsga3cpp.htm.
7 We used the implementation available at: http://dces.essex.ac.uk/staff/zhang/
webofmoead.htm

8 The source code was provided by its author, Edgar Manoatl Lopez.
9 We employed the implementation available at jMetal 4.5.

http://computacion.cs.cinvestav.mx/~jfalcon/IGD+-MOEA.html
http://computacion.cs.cinvestav.mx/~jfalcon/IGD+-MOEA.html
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm.
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm.
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm
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functions due to its high computational cost). Results were compared using
the hypervolume indicator, using the following reference points: (1, 1, . . . , 1) for
DTLZ1/DTLZ1−1, (1, 1, . . . , 1, 21) for DTLZ7/DTLZ7−1 and (2, 2, . . . , 2) for the
remaining MOPs.

4.1 Parameters settings

Since our approach and all the considered MaOEAs are genetic algorithms that
use SBX and PBX, we set the crossover probability (Pc), crossover distribution
index (Nc), mutation probability (Pm) and the mutation distribution index (Nm)
as follows. For MOPs having 3 objective functions Pc = 0.9 and Nc = 20, while
for MaOPs, Pc = 1.0 and Nc = 30. In all cases, Pm = 1/n, where n is the number
of decision variables and Nm = 20. Table 1 shows the population size, objective
function evaluations (employed as our stopping criterion) and the parameter
H for the generation of the set of convex weight vectors described in [3]. The
population size N is equal to the number of weight vectors, i.e., N = CH+m−1

m−1 .
In all cases, the neighborhood size T of MOEA/D is set to 20.

Table 1: Common parameters settings
Objectives 3 4 5 6 7

Population size (N) 120 120 126 126 210

Objective function
evaluations (×103)

50 60 70 80 90

Weight-vector
partitions (H)

14 7 5 4 4

4.2 Comparison with MaOEAs based on convex weight vectors

Tables 3 and 4 show the average HV and the standard deviation (in parenthe-
ses) obtained by all the algorithms compared. The two best values among the
MaOEAs are emphasized in grayscale, where the darker tone corresponds to the
best value. Aiming to have statistical confidence of the results, we performed a
one-tailed Wilcoxon test using a significance level of 0.05. Based on the Wilcoxon
test, the symbol # is placed when IGD+-MaOEA performs better than other
MaOEA in a statistically significant way.

Regarding the original DTLZ problems, in Table 3 it is shown that IGD+-
MaOEA achieves the best performance in 9 out of 35 problems. Our proposed
approach obtained the best HV values in DTLZ3, DTLZ5 and DTLZ6. For
DTLZ7, IGD+-MaOEA obtained the second best value when using from 5 to
7 objective functions. Regarding DTLZ1, DTLZ2 and DTLZ4, our proposed
approach never obtained the first or the second best HV values among the com-
pared MaOEAs in a statistically significant manner. Nevertheless, it is worth
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Table 2: Average runtimes (in seconds) of IGD+-MaOEA and SMS-EMOA on
the DTLZ and DTLZ−1 test suites using 3 objective functions.

MaOEa Type DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

IGD+-MaOEA
Original 55.87 s 81.66 s 42.44 s 72.80 s 54.92 s 65.31 s 76.26 s
Minus 78.45 s 91.74 s 68.86 s 92.13 s 93.18 s 102.94 s 81.92 s

SMS-EMOA
Original 963.43 s 2144.43 s 359.28 s 1648.35 s 995.15 s 1944.93 s 1785.38
Minus 1453.27 s 1868.63 s 1125.25 1906.52 s 1947.56 s 1950.85 1364.88

noting that numerically, the differences in all cases are minimal. On the other
hand, NSGA-III obtained the best HV values in 7 of the 35 instances, being the
best in DTLZ1 and DTLZ7. Overall, IGD+-EMOA obtained the worst place in
the performance rank because it only produced the best HV values only in 2
instances. Hence, we conclude that IGD+-MaOEA outperforms MOEA/D and
IGD+-EMOA and is competitive with respect to NSGA-III.

Table 4 shows the statistical results for the DTLZ−1 test suite. IGD+-MaOEA
is the best MaOEA in these problems because it presented the best HV values
in 27 out of 35 instances. Its performance is more evident when tackling the
instances having many objectives. In case of three-dimensional problems, it ob-
tained the second best overall HV values, being SMS-EMOA the best optimizer.
It is worth noticing that none of the MaOEAs that use convex weight vectors
obtained the best HV value in any of the problems. This strongly evidences their
overspecialization in MOPs whose Pareto fronts are closely related to the shape
of an (m− 1)-simplex. MOEA/D obtained the second place in 16 problems and
NSGA-III in 15. IGD+-EMOA is the worst MaOEA in these problems as it never
obtained the best HV values nor the second best ones. Hence, it is evident that
the strategy based on weight vectors for the construction of the IGD+-EMOA’s
reference set has a negative impact on its performance. Moreover, based on the
direct comparison between IGD+-MaOEA and IGD+-EMOA, the former can be
considered as a better optimizer.

4.3 Comparison with SMS-EMOA

From Tables 3 and 4, it is clear that SMS-EMOA outperforms IGD+-MaOEA
in the DTLZ test suite and that both are competitive in the DTLZ−1 instances.
However, the aim of SMS-EMOA is to maximize HV and this indicator is being
employed for comparison purposes which clearly favor this algorithm. Neverthe-
less, it is worth noting that the overall HV differences between both algorithms
is not very significant. It is also worth highlighting that IGD+-MaOEA gener-
ates similar distributions to those of SMS-EMOA. This is shown in Fig. 2 where
the Pareto fronts for DTLZ2 are similar. This distribution is due to the use of
the set of nondominated solutions as the reference set in the IGD+-DE algo-
rithm. Hence, this kind of reference set is highly recommended to approximate
the performance of HV-based MaOEAs using the IGD+ indicator. Moreover, the
average computational cost of IGD+-MaOEA is significantly lower than that of
SMS-EMOA. This claim is supported by the average runtimes shown in Table 2.
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Table 3: Hypervolume results for the compared MOEAs on the DTLZ problems.
We show the mean and standard deviations (in paretheses). The two best values
are shown in gray scale, where the darker tone corresponds to the best value.
The symbol # is placed when IGD+-MaOEA performs better in a statistically
significant way.

MOP Dim. IGD+-MaOEA IGD+-EMOA NSGA-III MOEA/D SMS-EMOA

DTLZ1

3
9.664790e-01

(2.049666e-03)
9.740508e-01

(4.467021e-04)
9.741141e-01

(3.120293e-04)
9.740945e-01

(2.619649e-04)
9.745172e-01

(5.241259e-05)

4
9.846496e-01

(2.656403e-03)
9.943998e-01

(9.261547e-05)
9.942231e-01

(8.570576e-04)
9.944018e-01

(6.220464e-05)
9.946409e-01

(2.134463e-05)

5
9.881899e-01

(3.232379e-03)
9.943585e-01

(2.338311e-02)
9.986867e-01

(3.379577e-05)
9.986355e-01

(3.735697e-05)

6
9.906617e-01

(2.651917e-03)
9.035094e-01#
(7.491169e-02)

9.996492e-01
(2.587221e-05)

9.996231e-01
(1.535746e-05)

7
9.948828e-01

(1.318848e-03)
9.264419e-01#
(6.287378e-02)

9.999224e-01
(7.339504e-06)

9.998569e-01
(2.567104e-05)

DTLZ2

3
7.420261e+00
(1.353052e-03)

7.421843e+00
(1.327349e-04)

7.421572e+00
(6.064709e-04)

7.421715e+00
(1.372809e-04)

7.431551e+00
(5.463841e-05)

4
1.556161e+01
(2.748489e-03)

1.556734e+01
(4.007277e-04)

1.556646e+01
(6.681701e-04)

1.556718e+01
(2.213968e-04)

1.558874e+01
(6.349012e-05)

5
3.166574e+01
(5.201361e-03)

3.166818e+01
(3.831826e-04)

3.166721e+01
(6.548007e-04)

3.166781e+01
(5.129480e-04)

6
6.373545e+01
(5.321646e-03)

6.182623e+01
(4.486397e+00)

6.373806e+01
(1.136133e-03)

6.373808e+01
(6.532194e-04)

7
1.278044e+02
(5.835291e-03)

1.117158e+02+
(1.213189e+01)

1.278161e+02
(1.524540e-03)

1.278230e+02
(4.937498e-04)

DTLZ3

3
7.304310e+00
(5.416726e-01)

5.978405e+00#
(2.296587e+00)

6.762070e+00#
(1.512456e+00)

7.191410e+00#
(9.234976e-01)

7.116381e+00#
(1.038033e+00)

4
1.554332e+01
(1.357241e-02)

1.553667e+01
(2.805291e-02)

1.426614e+01#
(3.337968e+00)

1.525936e+01#
(9.041126e-01)

1.557833e+01
(4.705930e-03)

5
3.165020e+01
(9.384670e-03)

3.165404e+01
(6.820552e-03)

2.926244e+01#
(5.291705e+00)

2.921654e+01#
(6.617692e+00)

6
6.371498e+01
(1.113938e-02)

5.883028e+01#
(5.646345e+00)

5.837271e+01#
(1.552667e+01)

5.395689e+01#
(1.319237e+01)

7
1.277759e+02
(1.177247e-02)

1.178341e+02#
(3.658990e+00)

1.164877e+02#
(2.147719e+01)

1.086977e+02#
(2.778728e+01)

DTLZ4

3
6.874113e+00
(7.238869e-01)

7.037545e+00
(7.189670e-01)

7.218780e+00
(4.062937e-01)

7.421636e+00
(1.147608e-04)

6.960992e+00
(5.030399e-01)

4
1.495718e+01

(1.406114e+00)
1.491851e+01

(1.029726e+00)
1.540943e+01
(3.164949e-01)

1.556707e+01
(2.297960e-04)

1.506728e+01
(6.892799e-01)

5
3.141161e+01
(5.091958e-01)

3.011363e+01#
(1.320577e+00)

3.163040e+01
(1.455720e-01)

3.166733e+01
(4.792449e-04)

6
6.342094e+01
(8.053848e-01)

6.220439e+01#
(4.109418e-01)

6.374155e+01
(5.870500e-04)

6.373585e+01
(1.078543e-03)

7
1.276686e+02
(5.342428e-01)

1.268979e+02#
(4.641205e-01)

1.278235e+02
(5.765414e-04)

1.278246e+02
(3.325992e-04)

DTLZ5

3
6.103250e+00
(3.206747e-04)

4.126358e+00#
(1.356638e-01)

6.086240e+00#
(3.462620e-03)

6.046024e+00#
(2.227008e-04)

6.105419e+00
(1.265596e-05)

4
1.195066e+01
(1.060364e-02)

8.053758e+00#
(6.181680e-02)

1.176583e+01#
(3.990838e-02)

1.187250e+01#
(4.856384e-03)

1.200938e+01
(7.506854e-04)

5
2.352758e+01
(5.631168e-02)

1.617222e+01#
(1.916164e-01)

2.162912e+01#
(9.476133e-01)

2.328373e+01#
(1.640165e-02)

6
4.655654e+01
(1.477530e-01)

3.216498e+01#
(2.350120e-01)

4.222308e+01#
(1.270959e+00)

4.584961e+01#
(4.179642e-02)

7
9.259723e+01
(2.885851e-01)

6.433872e+01#
(6.900391e-01)

8.421920e+01#
(2.089834e+00)

9.094108e+01#
(1.339743e-01)

DTLZ6

3
5.822452e+00
(9.468474e-02)

5.524093e+00#
(8.062048e-01)

5.755154e+00#
(7.832234e-02)

5.774939e+00#
(8.361881e-02)

5.838678e+00
(7.196085e-02)

4
1.141949e+01
(1.435037e-01)

9.520791e+00#
(5.465663e-01)

5.969793e+00#
(6.529944e-01)

1.136532e+01
(1.519071e-01)

1.112687e+01#
(1.725538e-01)

5
2.243194e+01
(2.205059e-01)

1.230783e-02#
(1.960431e-02)

6.433325e-02#
(1.002102e-01)

2.217372e+01#
(3.778954e-01)

6
4.395244e+01
(4.872918e-01)

6.039732e+00#
(1.208422e+01)

3.872393e+00#
(7.548978e-01)

4.349163e+01#
(5.731473e-01)

7
8.562322e+01
(8.346399e-01)

3.737526e+01#
(3.051737e+01)

7.781012e+01#
(2.442098e-00)

8.668146e+01
(1.610733e+00)

DTLZ7

3
1.613138e+01
(1.102308e-01)

1.571995e+01#
(7.026627e-02)

1.631926e+01
(1.253568e-02)

1.620770e+01
(1.240925e-01)

1.637100e+01
(7.629934e-02)

4
1.435812e+01
(1.541455e-01)

1.364183e+01#
(1.305431e-01)

1.462787e+01
(3.713300e-02)

1.406944e+01#
(5.544544e-02)

1.483349e+01
(1.533320e-01)

5
1.221977e+01
(5.193563e-01)

1.133320e+01#
(1.223979e-01)

1.284401e+01
(3.182259e-02)

6.515913e+00#
(1.170945e+00)

6
1.035596e+01
(4.758743e-01)

9.287520e+00#
(9.704494e-02)

1.082465e+01
(7.434508e-02)

1.366732e+00#
(1.894512e+00)

7
8.804845e+00
(3.468746e-01)

7.339032e+00#
(9.787487e-02)

8.942419e+00
(5.155349e-02)

1.089167e-01#
(1.867035e-01)
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Table 4: Hypervolume results for the compared MOEAs on the DTLZ−1 prob-
lems. We show the mean and standard deviations (in paretheses). The two best
values are shown in gray scale, where the darker tone corresponds to the best
value. The symbol # is placed when IGD+-MaOEA performs better in a statis-
tically significant way.

MOP Dim. IGD+-MaOEA IGD+-EMOA NSGA-III MOEA/D SMS-EMOA

DTLZ1−1

3
2.264909e+07

(8.207717e+04)
1.140466e+07#
(1.217933e+06)

2.044422e+07#
(2.230718e+05)

1.708422e+07#
(2.776295e+05)

1.640482e+07#
(1.253694e+06)

4
1.663320e+09

(4.001511e+07)
3.783933e+07#
(1.747066e+07)

6.137596e+08#
(8.114743e+07)

3.671230e+08#
(8.437648e+07)

1.176107e+09#
(1.162071e+08)

5
6.119188e+10

(4.760735e+09)
3.145584e+06#
(6.453973e+06)

1.653440e+10#
(7.395153e+09)

1.275157e+10#
(5.929635e+09)

6
1.040799e+12

(2.723386e+11)
5.143618e+05#
(1.818714e+06)

3.525438e+11#
(1.554685e+11)

6.835890e+10#
(4.577981e+10)

7
1.879388e+13

(7.487935e+12)
3.352615e+05#
(1.083160e+06)

5.717044e+12#
(2.906156e+12)

5.582247e+11#
(9.246709e+11)

DTLZ2−1

3
1.210884e+02
(9.009171e-01)

9.369690e+01#
(5.010715e+00)

1.226427e+02
(4.332124e-01)

1.241646e+02
(1.767939e-01)

1.261046e+02
(1.456397e-02)

4
4.674859e+02

(6.158074e+00)
6.908303e+01#
(2.593222e-01)

4.670265e+02#
(5.036135e+00)

4.782322e+02
(3.762262e-01)

5.109249e+02
(4.731194e-01)

5
1.655899e+03

(3.942682e+01)
1.817170e+02#
(2.352582e+00)

1.529187e+03#
(3.829295e+01)

1.570781e+03#
(5.466206e+00)

6
5.470358e+03

(1.134490e+02)
4.572952e+02#
(8.088396e+00)

4.188435e+03#
(3.496415e+02)

3.701069e+03#
(1.866271e+01)

7
1.926684e+04

(4.521928e+02)
1.187017e+03#
(1.260695e+01)

1.321225e+04#
(1.030901e+03)

1.320162e+04#
(6.203137e+01)

DTLZ3−1

3
5.017451e+09

(1.676399e+07)
3.163373e+09#
(3.448716e+08)

4.769399e+09#
(4.395958e+07)

4.788299e+09#
(5.251105e+07)

3.617983e+09#
(1.229064e+08)

4
5.016984e+12

(2.782494e+10)
1.858417e+11#
(1.368270e+11)

3.421113e+12#
(1.621812e+11)

3.382020e+12#
(8.277136e+10)

2.942443e+12#
(1.497601e+11)

5
4.010397e+15

(5.491013e+13)
2.308672e+10#
(5.932196e+10)

1.418461e+15#
(2.265638e+14)

2.169617e+15#
(3.559794e+13)

6
2.671524e+18

(7.441405e+16)
6.882907e+09#
(2.710629e+10)

4.952138e+17#
(1.783349e+17)

7.151722e+17#
(2.068326e+16)

7
1.792722e+21

(4.730737e+19)
3.686677e+10#
(1.841504e+11)

1.374261e+20#
(6.319205e+19)

8.941855e+20#
(5.275602e+19)

DTLZ4−1

3
1.232680e+02
(5.341538e-01)

8.745995e+01#
(7.308267e+00)

1.231716e+02#
(3.158586e-01)

1.241412e+02
(2.261829e-01)

1.261219e+02
(1.400665e-02)

4
4.872739e+02

(2.714648e+00)
6.889884e+01#
(2.509073e-01)

4.703987e+02#
(3.758543e+00)

4.774396e+02#
(2.932713e-01)

5.114649e+02
(3.829142e-01)

5
1.751991e+03

(1.604473e+01)
1.667599e+02#
(4.139344e+01)

1.532427e+03#
(3.367009e+01)

1.577174e+03#
(3.235047e+00)

6
5.844499e+03

(5.546305e+01)
4.266016e+02#
(3.968221e+02)

4.188345e+03#
(2.845836e+02)

3.654612e+03#
(4.982487e+00)

7
2.024392e+04

(1.637229e+02)
2.470440e+02#
(8.390175e+01)

1.311381e+04#
(6.546800e+02)

1.295551e+04#
(5.175739e+01)

DTLZ5−1

3
1.189566e+02

(1.131492e+00)
1.045511e+02#
(2.925727e+00)

1.212729e+02
(4.506920e-01)

1.230132e+02
(1.173182e-01)

1.248782e+02
(1.400672e-02)

4
4.524837e+02

(6.184888e+00)
1.458893e+02#
(1.837707e+01)

4.617533e+02
(3.033948e+00)

4.737665e+02
(5.201724e-01)

5.067611e+02
(3.943537e-01)

5
1.590424e+03

(3.260130e+01)
1.247849e+03#
(7.727654e+01)

1.526551e+03#
(4.186892e+01)

1.532378e+03#
(6.612506e+00)

6
5.201281e+03

(1.024733e+02)
4.775094e+03#
(8.471898e+02)

3.648377e+03#
(3.589604e+02)

3.670455e+03#
(1.117756e+01)

7
1.798605e+04

(3.438881e+02)
3.663675e+03#
(2.075826e+03)

1.169538e+04#
(9.150133e+02)

1.287945e+04#
(5.086978e+01)

DTLZ6−1

3
1.277596e+03

(8.980299e+00)
5.926270e+02#
(4.387564e+01)

1.281204e+03
(4.388455e+00)

1.290813e+03
(6.053013e-01)

1.307600e+03
(1.645502e+00)

4
9.344785e+03

(1.172155e+02)
7.139870e+02#
(1.364398e+02)

8.894185e+03#
(9.665925e+01)

8.908490e+03#
(7.411574e+00)

9.489564e+03
(6.321189e+01)

5
5.967159e+04

(9.243485e+02)
4.054599e+03#
(5.178149e+02)

4.774990e+04#
(2.111510e+03)

5.337501e+04#
(1.101944e+02)

6
3.401029e+05

(5.077651e+03)
2.826444e+04#
(4.152159e+03)

1.871320e+05#
(4.124992e+04)

1.611984e+05#
(2.134698e+02)

7
2.037163e+06

(1.966308e+04)
6.996351e+04#
(2.447352e+02)

6.943417e+05#
(1.558202e+05)

1.227654e+06#
(7.772613e+03)

DTLZ7−1

3
2.145249e+02
(5.714409e-01)

2.121154e+02#
(5.197201e+00)

2.144482e+02
(1.844494e-02)

2.144785e+02
(3.401603e-03)

2.143458e+02#
(2.207311e-04)

4
5.142917e+02

(2.116147e+00)
4.945863e+02#
(1.805875e+01)

5.130456e+02#
(1.613943e+00)

5.083181e+02#
(1.486713e+01)

5.142100e+02#
(1.152841e+00)

5
1.199552e+03

(5.112678e+00)
4.348046e+02#
(6.886537e+01)

1.190442e+03#
(4.159670e+00)

6.388549e+02#
(5.254422e+01)

6
2.741875e+03

(1.509787e+01)
7.362027e+02#
(1.136842e+02)

2.691994e+03#
(7.841504e+00)

9.262902e+02#
(3.468054e+00)

7
6.176946e+03

(1.308306e+01)
1.355104e+03#
(3.306126e+02)

6.016129e+03#
(2.260447e+01)

1.621765e+03#
(1.220737e+02)
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Fig. 2: Pareto fronts produced by IGD+-MaOEA and SMS-EMOA for DTLZ1−1,
DTLZ2 and DTLZ7−1 for 3 objective functions. Each front corresponds to the
median HV values.

5 Conclusions and Future Work

In this paper, we have proposed a steady-state MaOEA, called IGD+-MaOEA,
that adopts an IGD+-based density estimator and Pareto dominance as its main
selection criterion. Moreover, a fast method to compute the IGD+ contribu-
tions is employed in order to reduce the computational cost from Θ(mN2M) to
Θ(mNM), where m is the number of objective functions, N is the cardinality
of the approximation set and M the size of the reference set. IGD+-MaOEA
does not adopt convex weight vectors in any of its mechanisms. In consequence,
the performance of IGD+-MaOEA does not strongly depend on the Pareto front
shape. Our experimental results show that IGD+-MaOEA is a more general
multi-objective optimizer because its performance does not degrade when solv-
ing the DTLZ−1 test suite. In fact, IGD+-MaOEA is competitive with NSGA-III
and outperforms MOEA/D and IGD+-EMOA in the original DTLZ test suite
and it outpeforms these MaOEAs in all the DTLZ−1 problems. Moreover, we
compared our approach with SMS-EMOA and our experimental results indicate
that IGD+-MaOEA performs similarly to the former, which makes it a remark-
able approach to approximate the performance of HV-based MaOEAs. As part of
our future work, we are interested in producing uniformly distributed solutions
for both the DTLZ and DTLZ−1 test suites. Furthermore, we aim to improve
the convergence results of IGD+-MaOEA in the DTLZ test problems without
worsening its performance on the DTLZ−1 instances.
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