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Abstract—In recent years, several non-dominated sorting ap-
proaches have been proposed. Non-dominated sorting is an essen-
tial part of Pareto dominance-based multi-objective evolutionary
algorithms (MOEAs) and therefore the relevance of being able
to perform such process as efficiently as possible. As the use
of parallelism has become increasingly popular within MOEAs,
there is an evident need for parallel implementations of non-
dominated sorting algorithms. In this paper, we have focused on
an efficient non-dominated sorting (ENS) approach and explored
its parallelization. The time complexity of the parallel version of
ENS is theoretically analyzed in four different scenarios.

Keywords: Non-dominated sorting (NDS), Evolutionary algo-
rithms (EA), Parallelism.

I. INTRODUCTION

Multi-objective optimization evolutionary algorithms
(MOEAs) are used by many researchers to solve many-
objective optimization problems. Non-dominated sorting
is one of the most important steps in Pareto dominance-
based MOEAs and it consists of a process that classifies
solutions into different non-dominated fronts. Let there
be N solutions in the population P. Let population
P = {sol1, sol2, . . . , solN} where each solution has M
objectives associated with it, i.e., these solutions are in an
M -dimensional objective space. A solution sol of population
P in M -dimensional objective space is represented as follows:
sol = {f1(sol), f2(sol), . . . , fM (sol)} where fm(sol) is the
value of sol for the mth(1 ≤ m ≤ M) objective. To sort
the solutions into different fronts, first their dominance
relationship needs to be established. Here, we are considering
minimization problems. A solution soli in the population
dominates another solution solj denoted as soli ≺ solj if it
satisfies the two following conditions:
• fm(soli) ≤ fm(solj),∀m ∈ {1, 2, . . . ,M}
• fm(soli) < fm(solj),∃m ∈ {1, 2, . . . ,M}

The notation soli ⊀ solj represents that solution soli does
not dominate solution solj . We say that two solutions soli
and solj are non-dominated or non-comparable when none of
the solutions dominate the other one, i.e., soli ⊀ solj and
solj ⊀ soli. Now, we provide the formal definition of non-
dominated sorting.

Definition 1 (Non-dominated sorting). Non-dominated sort-
ing divides the set of N solutions {sol1, sol2, . . . , solN} in the

population P into K(1 ≤ K ≤ N) different non-dominated
fronts {F1, F2, . . . , FK} classified in decreasing order of their
dominance. The division of the solutions in these fronts is such
that
• No solution in a front dominates others, i.e., ∀soli, solj ∈

Fk: soli ⊀ solj and solj ⊀ soli (1 ≤ k ≤ K)
• Each solution in a front is dominated by at least one

of the solutions in its preceding front, i.e., ∀sol ∈ Fk,
∃sol′ ∈ Fk−1: sol′ ≺ sol (2 ≤ k ≤ K)

There are different approaches proposed for NDS [1]–
[17] . Some of these approaches have also been parallelized.
Specifically, the approaches described in [9], [11], [15] focus
on the parallelization of a the very popular NDS approach
developed by Deb et al. [2]. However, the parallelism property
exists in other approaches such as the naive approach [1], ENS
[10], DCNS [13], BOS [12], etc. This paper explores the scope
of parallelism in ENS. The time complexity of the serial and
the parallel versions of ENS is also theoretically analyzed in
four different scenarios.

The rest of this paper is organized as follows. Some of the
approaches that have been proposed for non-dominated sorting
are briefly discussed in Section II. The serial version of ENS
along with its time complexity in four scenarios is discussed in
Section III. Parallelism in ENS is illustrated in Section IV. The
time complexity in four scenarios in which the serial version
of ENS is analyzed, is also discussed in this section. Finally,
Section V concludes the paper and also provides some possible
paths for future research.

II. RELATED WORK

The past few years have witnessed different approaches for
non-dominated sorting. One of the earliest algorithms for non-
dominated sorting was proposed by Srinivas et al. [1] and is
now considered as a naive approach where a solution can be
compared with other solutions multiple times. The worst case
time complexity of this naive approach is O(MN3) when
N solutions are in N different fronts and the best case time
complexity is O(MN2) when N solutions are in a single
front. The space complexity of this naive approach is O(N).
To improve the time complexity of this naive approach, Deb
et al. [2] proposed the so-called fast non-dominated sorting,



which has a time complexityO(MN2) and a space complexity
O(N2). Jensen et al. [3] proposed a divide-and-conquer based
approach with a time complexity O(N logM−1 N). For the
bi-objective case, the time complexity of Jensen’s approach is
O(N logN). The main limitation of Jensen’s approach is that
it is not suitable when solutions share the same value for any of
the objectives. Similarly to Jensen’s approach, Fang et al. [4]
also proposed a divide-and-conquer based approach with a
worst case time complexity O(MN2) and a best case time
complexity O(MN logN). However, in case of having two
duplicate solutions, one of them is considered to be dominated
by the other one. Tang et al. [5] proposed an approach based on
arena’s principle with a worst case time complexity O(MN2)
and a best case time complexity O(MN

√
N) [10].

Deductive and Climbing sort were developed by Mc-
Clymont et al. [6]. In general, deductive sort performs bet-
ter than climbing sort with a worst case time complexity
O(MN2) and a best case time complexity O(MN

√
N).

Wang et al. [18] proposed an approach known as corner sort
specifically for many-objective cases. The worst case time
complexity of this approach is O(MN2). The limitation of
Jensen’s approach is removed by Fortin’s approach [7]. Re-
moving the limitation increases the worst case time complexity
to O(MN2), however, the average case time complexity
remains the same as in Jensen’s approach. Furthermore, the
time complexity of non-dominated sorting has been proved to
be O(N logM−1 N) by Buzdalov et al. [8].

Mishra et al. [13] developed a divide-and-conquer based
approach named as DCNS. This approach works in two
phases. The first phase sorts the solutions based on a particular
objective and the second phase assigns rank to the solutions.
The worst case time complexity of DCNS is O(MN2) and
the best case time complexity is O(MN logN). A Hierar-
chical Non-dominated Sorting known as HNDS was recently
proposed by Bao et al. [17]. The worst case time complexity
of HNDS is O(MN2) and the best case time complexity is
O(MN

√
N). Roy et al. [12] proposed an efficient approach

in terms of the number of dominance comparisons which is
known as Best Order Sort (BOS). This approach also works
in two phases. The first phase sorts solutions based on each
of the M objectives and the second phase assigns rank to
the solutions. The worst case time complexity of BOS is
O(MN2) and the best case time complexity isO(MN logN).
Zhang et al. [14] developed a tree-based approach known
as T-ENS. The fronts are represented in the form of a tree
to save unnecessary dominance comparisons. The worst case
time complexity of T-ENS is O(MN2) and the best case
time complexity is O(MN logN/logM). This approach also
suffers from the same limitation as Jensen’s approach [16].
Gustavsson et al. [16] proposed an Efficient Non-dominated
Sort based on Non-dominated Tree (ENS-NDT). The worst
case time complexity of ENS-NDT is O(MN2) and the best
case time complexity is O(MN logN). This approach reduces
the number of dominance comparisons to a great extent. This
approach is also able to handle duplicate solutions efficiently.

There are some other approaches also proposed for NDS

[19]–[26]. In the recent past, authors have also focused on
the incremental version of the non-dominated sorting problem
where a set of non-dominated fronts is updated when a
new solution is inserted. Drozdik et al. [27] developed an
approach based on M -fronts with a worst case time complexity
O(MN2). For the two-objective case, an approach was devel-
oped by Buzdalov et al. [28] with a time complexity O(N).
For the general case, Li et al. [29] developed an approach
with a worst case time complexity O(MN2) and a best case
time complexity O(M). However, the maximum number of
dominance comparisons is 1

4N
2. There is a great improvement

over the best case time complexity of the NDS approaches.
Mishra et al. [30] proposed a generalized approach with
constant space complexity. To further improve the performance
in some cases, a dominance binary tree based approach is
discussed. Recently, Yakupov et al. [31] proposed an approach
with time complexity O(N logNM−2).

Smutnicki et al. [9] proposed a Very Fast Non-Dominated
Sorting which explores the scope of parallelism in fast non-
dominated sort [2]. Parallelism is explored in two different
manners. The time complexity of the first version of the
parallel algorithm is O(M+N logN) and the time complexity
of the second version is O(M+N). A parallel non-dominated
sort based on the use of GPUs was proposed by Gupta et
al. [11]. Ortega et al. [15] developed three parallel versions of
non-dominated sorting. The first one is based on multicores,
the second one is based on Graphical Processing Units (GPUs)
and the third one is based on multicores and GPUs.

III. EFFICIENT NON-DOMINATED SORTING

Efficient non-dominated sort (ENS) was developed by
Zhang et al. [10]. ENS works in two phases. The first phase
sorts the solutions based on the first objective. In the second
phase, different sets of fronts are obtained. Algorithm 1
summarizes the flow of the ENS approach.

Algorithm 1 ENS framework
Input: P: Population of size N where each solution is asso-

ciated with M objectives
Output: Non-dominated fronts in sorted order

1: Sort population based on the first objective in ascending
order

2: F ← Φ // Initialize the set of fronts
3: for each solution sol ∈ P do // Consider the solution se-

quentially from the sorted list
4: INSERT-SS(F , sol) // Sequential search based strategy

is used. A binary search based strategy can also be used

5: return F

A. First Phase: Pre-sorting

During pre-sorting, solutions are sorted based on the first
objective. In spite of sorting the solutions based on the first
objective, the solutions can be sorted based on other objectives
as well. When the solutions are sorted based on the first



objective, if the objective values of two solutions for the first
objective are the same, then, the objective values of the second
objective are considered. Similarly, if the objective values of
two solutions for the second objective are the same, then, the
objective values of the third objective are considered. If two
solutions have the same values for all the objectives, then any
order of the solutions can be considered.

In the sorted list of solutions, the solution which comes
later cannot dominate the solutions which come earlier in
the list. So, when the solutions in this list are compared
then the solutions which come later cannot dominate the
previous solutions. Thus, it can save unnecessary dominance
comparisons.

B. Second Phase: Rank Assignment

In the second phase, the rank is assigned to the solutions.
For this purpose, the solutions are considered from the sorted
list of solutions based on the first objective. Initially, the first
solution is assigned to the first front as it cannot be dominated
by any other solution in the sorted list. In this approach, the
solution is only compared with those solutions which have
been already assigned to their respective front. In the ENS
approach, a solution can be assigned to their respective front
using two search techniques – sequential search and binary
search.

1) Sequential Search based Strategy: In a sequential search
based strategy, a solution sol is compared with the solutions of
existing fronts in a sequential manner, starting from the first
front. Initially, sol is compared with the first front solutions and
if it is non-dominated with these solutions, then sol is assigned
to the first front. If sol is dominated by any of the solutions of
F1, then it is compared with the solutions of the second front
F2. In general, if sol is dominated by any of the solutions
of the kth front, then sol is compared with the solutions of
the k + 1th front. If sol is dominated by at least one of the
solutions of all the existing fronts, then sol is inserted into
the newly created front. The sequential search based strategy
is provided in Algorithm 2. Since a sequential search based
strategy is adopted in this case, this variant of ENS is known
as ENS-SS.

2) Binary Search based Strategy: In a binary search based
strategy, a solution sol is not compared with the solutions of
all the existing solutions, as happens when using a sequential
search based strategy. In this case, the set of fronts is visualized
as a dominance binary search tree. In a dominance binary
search tree, a node has lower dominance than its left sub-
tree and a higher dominance than its right sub-tree [30]. The
binary search based strategy is summarized in Algorithm 3.
Let there be K fronts which have been identified. So, here
sol is compared with the maximum of logK fronts. As the
approach is based on a binary tree structure, we have used
three variables to follow the tree structure – min, max and
mid; mid represents the root of the sub-tree. Initially, min = 1
and max = K so sol is compared with the Fmid front where
mid = d(min+max)/2e. If sol is non-dominated with each of the
solutions of Fmid, then there are two possibilities:

Algorithm 2 INSERT-SS(F , sol)
Input: F : Set of fronts {F1, F2, . . . , FK}, sol: Solution for

insertion in F
Output: Updated set of fronts

1: done← FALSE // Initially sol is not inserted
2: K ← |F| // Obtain the number of fronts
3: for k ← 1 to K do // Check for each front in F sequen-

tially starting from the first front
4: flag← TRUE
5: for u← nk down to 1 do // Check for each solution

in Fk sequentially starting from the last solution
6: if sol is dominated by Fk(u) then
7: flag← FALSE
8: BREAK // Check for next front
9: if flag = TRUE then // sol is non-dominated with Fk

10: Fk ← Fk ∪ {sol} // Insert sol in Fk

11: isInserted← TRUE // sol has been inserted
12: BREAK
13: if isInserted = FALSE then // sol has not been inserted

yet
14: FK+1 ← FK+1 ∪ {sol} // Insert sol in a new front

• If mid = min, i.e., sol is non-dominated with respect to
each of the solutions of the leaf node of the dominance
tree, then insert sol in Fmid.

• Otherwise, sol can be non-dominated with respect to
solutions of a higher dominance front. So, the root of
the left sub-tree is explored.

If sol is dominated by any of the solutions of Fmid, then
there can be one of the following three conditions:
• If min = K, i.e., sol is dominated by the solutions in the

last front, then sol will create a new front FK+1.
• If max = mid + 1, i.e., sol is dominated by the leaf node,

then insert sol into Fmax.
• Otherwise, sol is compared with the root of the right sub-

tree.
Since a this binary search based strategy is adopted in this
case, this variant of ENS is known as ENS-BS.

C. Complexity Analysis

Now, we discuss the time complexity of both variants of
ENS in four different scenarios.

1) All the solutions are in a single front: Here, ENS-SS
and ENS-BS perform the same. In this case, the ith solution
is compared with all the previous i−1 ranked solutions. Thus,
the time complexity in this case is given by Eq. 1. This is the
worst case time complexity of both ENS-SS and ENS-BS.

T1=1+
∑N

i=2
[M(i−1)+1]

=1+M
∑N

i=2
(i−1)+

∑N

i=2
1

=1+M
1

2
N(N−1)+N−1 =

1

2
MN(N−1)+N

=O(MN2) (1)



Algorithm 3 INSERT-BS(F , sol)
Input: F : Set of fronts {F1, F2, . . . , FK}, sol: Solution for

insertion in F
Output: Updated set of fronts

1: K ← |F| // Obtain the number of fronts
2: min← 1
3: max← K
4: mid←

⌊
1+K
2

⌋
5: while TRUE do // sol has not been inserted yet
6: flag← TRUE
7: for u← nmid down to 1 do // Check for each solution

in Fmid sequentially starting from the last solution
8: if sol is dominated by Fmid(u) then
9: flag← FALSE

10: BREAK // sol cannot be inserted in Fmid

11: if flag = TRUE then // sol is non-dominated with Fmid

12: if mid = min then // The front at leaf is explored
13: Fmid ← Fmid ∪ {sol} // Insert sol in Fmid
14: BREAK // sol has been inserted
15: else
16: max← mid, mid←

⌊min+max
2

⌋
// Explore left

sub-tree
17: else
18: if min = K then // The front at right most leaf is

explored
19: FK+1 ← FK+1 ∪ {sol} // Insert sol in a new front
20: BREAK // sol has been inserted
21: else if max = mid + 1 then
22: Fmax ← Fmax ∪ {sol} // Insert sol in Fmax
23: BREAK // sol has been inserted
24: else
25: min← mid + 1, mid←

⌊min+max
2

⌋
// Explore right

sub-tree

2) All the solutions are in different fronts: In this case,
ENS-SS and ENS-BS perform differently. In case of ENS-SS,
the ith solution is compared with the previous i − 1 ranked
solutions. Thus, the time complexity of ENS-SS is given by
Eq. 1. In case of ENS-BS, the ith solution is compared with the
previous

⌈
log i

⌉
ranked solutions. Thus, the time complexity

of ENS-BS is given by Eq. 2. This is the best case time
complexity of ENS-BS.

T1BS=1+
∑N

i=2

[
M
⌈
log i

⌉
+1
]

=1+M
∑N

i=2

⌈
log i

⌉
+
∑N

i=2
1

=1+MN logN−M(N−1)+(N−1)

=O(MN logN) (2)

3) Equal division of N solutions in
√
N fronts such that all

the solutions in a front are dominated by each of the solutions
in its preceding front: Here, ENS-SS and ENS-BS perform
differently as the number of fronts is

√
N . In this case, for

a solution to be assigned to the kth front – (a) it should be
dominated by at least one of the solutions of the previous

k − 1 fronts and (b) it should be non-dominated with respect
to all the previous solutions of the kth front. A solution which
needs to be assigned to the kth front, is dominated by the
first solution of all the previous fronts with respect to which
it is compared. This is because each solution in a front is
dominated by each of the solutions in its preceding front. Let
the time complexity corresponding to (a) be T1A and the one
corresponding to (b) be T1B .

In case of ENS-SS, a solution is assigned to Fk if (a) it
is dominated by the first solution of all the previous k − 1
fronts and (b) it is non-dominated with respect to each of the
solutions in Fk. The time complexity of ENS-SS is obtained
using Eq. 3. This is the best case time complexity of ENS-SS.

T1SS=T1A + T1B

=

√
N∑

k=2

√
NM(k−1)+

√
N

1+

√
N∑

i=2

M(i−1)+1


=MN(

√
N−1)+N

=O(MN
√
N) (3)

In the case of ENS-BS, a solution is assigned to Fk if (a) is
dominated by the first solution of the previous

⌈
log k

⌉
fronts

and (b) is non-dominated with respect to each of the solutions
in Fk. The time complexity of ENS-BS is obtained using Eq. 4.

T1BS=T1A + T1B

=

√
N∑

k=2

√
NM

(⌈
log k

⌉)
+
√
N

1+

√
N∑

i=2

M(i−1)+1


=

1

2
MN logN−M(N−

√
N)+

1

2
MN(

√
N−1)+N

=O(MN
√
N) (4)

4) Equal division of N solutions in
√
N fronts such that

all the solutions in a front are dominated by only one solution
in its preceding front: Here, ENS-SS and ENS-BS perform
differently as the number of fronts is

√
N . In this case, for

a solution to be assigned to the kth front – (a) it should be
dominated by at least one of the solutions of the previous
k − 1 fronts and (b) it should be non-dominated with respect
to all the previous solutions of the kth front. A solution which
needs to be assigned to the kth front, is dominated by the
last solution of all the previous fronts with respect to which
it is compared. This is because each solution in a front is
dominated by only one solution in its preceding front and
for the number of dominance comparisons to be maximum,
the solution should be dominated by the last solution of the
previous fronts to which it is compared after being non-
dominated with respect to the rest of the solutions of the same
front. Let the time complexity corresponding to (a) be T1A

and the one for (b) be T1B .
In case of ENS-SS, a solution is assigned to Fk if (a) it is

dominated by the last solution of all the previous k− 1 fronts



and (b) it is non-dominated with each of the solutions in Fk.
The time complexity of ENS-SS is obtained using Eq. 5.

T1SS=T1A + T1B

=

√
N∑

k=2

√
NM(k−1)

√
N+
√
N

1+

√
N∑

i=2

M(i−1)+1


=

1

2
MN(N−1)+N

=O(MN2) (5)

In case of ENS-BS, a solution is assigned to Fk if (a) it
is dominated by the last solution of the previous

⌈
log k

⌉
fronts and (b) it is non-dominated with respect to each of the
solutions in Fk. The time complexity of ENS-BS is obtained
using Eq. 6.

T1BS=T1A + T1B

=

√
N∑

k=2

√
NM

(⌈
log k

⌉)√
N+
√
N

1+

√
N∑

i=2

M(i−1)+1


=

1

2
MN
√
N logN−MN(

√
N−1)+

1

2
MN(

√
N−1)+N

=O(MN
√
N logN) (6)

IV. SCOPE OF PARALLELISM

Parallelism is possible in the first phase of ENS if a
parallel sorting algorithm can be used, for example, parallel
merge sort [32]. Using parallel merge sort, the worst case
time complexity becomes O(MN) and the best case time
complexity becomes O(N) when each of the merge operations
at a particular level are performed simultaneously. This time
complexity can be improved further if the merge operation
can itself be implemented in a parallel manner as discussed in
[32]. In this manner, the worst case time complexity becomes
O(M log3 N) and the best case time complexity becomes
O(log3 N).

To obtain parallelism in the second phase, a solution can
be compared with each of the solutions in a particular front
simultaneously. After comparing, it can be decided whether
the solution can be inserted in that front or not. Thus, the
second phase also has the parallelism property.

The parallel version of the sequential search based strategy
to insert a solution in the identified set of fronts is summarized
in Algorithm 4. Similarly, the parallel version of the binary
search based strategy to insert a solution in the identified set
of fronts is summarized in Algorithm 5. In both algorithms,
a solution sol is compared with each of the solutions of a
particular front simultaneously and their dominance relation is
stored in an array of size nk (nk is the number of solutions in
that particular front). This array stores whether solution sol is
non-dominated with respect to the solutions of that particular
front or not. After comparing sol with the solutions of a
particular front simultaneously and storing their dominance
relation in an array, we process this array in a parallel
manner using Algorithm 6 to know whether the solution is

Algorithm 4 INSERT-SS-PARALLEL(F , sol)
Input: F : Set of fronts {F1, F2, . . . , FK}, sol: Solution for

insertion in F
Output: Updated set of fronts

1: done← FALSE // Initially sol is not inserted
2: K ← |F| // Obtain the number of fronts
3: for k ← 1 to K do // Check for each front in F sequen-

tially starting from the first front
4: isNondominated[1 . . . nk]← FALSE // Initialize

an array of size nk to store whether sol is non-dominated
with the solutions of Fk or not
/* PARALLEL SECTION STARTS */

5: for u← nk down to 1 do // Check for each solution
in Fk simultaneously

6: if sol and Fk(u) are non-dominated then
7: isNondominated[u]← TRUE // sol is non-domin-

nated with solution Fk(u)

/* PARALLEL SECTION ENDS */
// Check whether sol is non-dominated with Fk or not
in a parallel manner

8: if INCLUSION(isNondominated[ ]) = TRUE then
9: Fk ← Fk ∪ {sol} // Insert sol in a Fk

10: isInserted← TRUE // sol has been inserted
11: BREAK // Do not check other fronts
12: if done = FALSE then // sol has not been inserted

yet
13: FK+1 ← FK+1 ∪ {sol} // Insert sol in a new front

non-dominated with respect to each of the solutions of that
particular front or not.

As the size of the array is nk, so this array is processed
at log nk levels. At the lth level nk/2l ‘AND’ operations
are performed. We perform ‘AND’ operations because for a
solution to be inserted in a front, it needs to be non-dominated
with respect to each of the solutions of that front and ‘AND’
produces ‘TRUE’ if its two inputs are ‘TRUE’. After the single
‘AND’ operation at the last level, if ‘TRUE’ is obtained, then
it means that sol is non-dominated with respect to each of
the solutions of that particular front. The time complexity to
compare a solution with respect to each of the solutions of a
particular front simultaneously is O(M). The time complexity
to process the array of size nk which stores whether sol is non-
dominated with the solutions of a front or not is O(log nk) as
all the ‘AND’ operations at a particular level can be performed
simultaneously.

Example 1. Let’s assume we have eight solutions
{sol1, sol2, . . . , sol8} in a front. Solution sol is compared
with all these eight solutions simultaneously and whether or
not sol is non-dominated with respect to these solutions, it is
stored in an array. This array is also processed in a parallel
manner at log 8 levels. Here, we are getting ‘FALSE’ after
the ‘AND’ operation at the last level, which means that sol is
dominated by at least one of the eight solutions. All the eight
solutions along with the array which stores the dominance



Algorithm 5 INSERT-BS-PARALLEL(F , sol)
Input: F : Set of fronts {F1, F2, . . . , FK}, sol: Solution for

insertion in F
Output: Updated set of fronts

1: K ← |F| // Obtain the number of fronts
2: min← 1
3: max← K
4: mid←

⌊
1+K
2

⌋
5: while TRUE do // sol has not been inserted yet
6: isNondominated[1 . . . nmid]← FALSE // Initialize an

array of size nmid to store whether sol is non-dominated
with the solutions of Fk or not
/* PARALLEL SECTION STARTS */

7: for u← nmid down to 1 do // Check for each soluti-
on in Fmid simultaneously

8: if sol and Fmid(u) are non-dominated then
9: isNondominated[u]← TRUE // sol is non-domin-

ated with solution Fmid(u)

/* PARALLEL SECTION ENDS */
// Check whether sol is non-dominated with Fk or not
in a parallel manner

10: if INCLUSION(isNondominated[ ]) = TRUE then
11: if mid = min then // The front at leaf is explored
12: Fmid ← Fmid ∪ {sol} // Insert sol in Fmid
13: BREAK // sol has been inserted
14: else
15: max← mid, mid←

⌊min+max
2

⌋
// Explore left

sub-tree
16: else
17: if min = K then // The front at right most leaf is

explored
18: FK+1 ← FK+1 ∪ {sol} // Insert sol in a new front
19: BREAK // sol has been inserted
20: else if max = mid + 1 then
21: Fmax ← Fmax ∪ {sol} // Insert sol in Fmax
22: BREAK // sol has been inserted
23: else
24: min← mid + 1, mid←

⌊min+max
2

⌋
// Explore right

sub-tree

relationship is shown in Fig. 1.

Now, we discuss the time complexity of parallel versions
of both variants of ENS in different scenarios.

A. All the solutions are in a single front

Here, ENS-SS and ENS-BS perform the same. The time
complexity of the parallel version is given by Eq. 7.

T∞ = 1+
∑N

i=2

[
M+

⌈
log i

⌉
+1
]

= 1+
∑N

i=2
M+

∑N

i=2

⌈
log i

⌉
+
∑N

i=2
1

= 1+M(N−1)+N logN−(N−1)+(N−1)

= M(N−1)+N logN+1

= O(MN+N logN) (7)

Algorithm 6 INCLUSION(isNondominated[ ])

Input: isNondominated[ ]: A boolean array
Output: TRUE : If all the values in the array is TRUE,

FALSE : otherwise
1: nk ← |isNondominated| // Obtain the size of

isNondominated[ ]
2: for i← 1 to dlog2 nke do

/* PARALLEL SECTION STARTS */
3: for j ← 1 to

⌈
nk

2i

⌉
do

4: a← 2i.j −
(
2i − 1

)
5: b← a + 2i−1

6: if b ≤ nk then
7: isNondominated[a] ← isNondominated[a] &&

isNondominated[b]

/* PARALLEL SECTION ENDS */
8: if isNondominated[a] = TRUE then
9: return TRUE // sol is non-dominated with each of the

solutions of the front
10: else
11: return FALSE // sol is dominated by at least one of the

solutions of the front

sol1 sol2 sol3 sol4 sol5 sol6 sol7 sol8

True True True True True True True False

True True True False

FalseTrue

False

: : :Level-1

: : :Level-2

: : :Level-3

sol

AND AND AND AND

AND AND

AND

Store whether

sol is non-

dominated

with soli

1 ≤ i ≤ 8

Compare sol with all the eight solutions of a particular

front simultaneously

sol is not non-dominated with

each of the solutions of a par-

ticular front

Fig. 1: Parallel Comparison of a solution with respect to each
of the solutions of a particular front and to know whether or
not a solution is non-dominated with respect to each of the
solutions.

If we obtain the dominance relationship between the solutions
beforehand and store it in a matrix as done in [9], then the
time complexity of the parallel version is given by Eq. 8.

T∞ = M+

[
1+
∑N

i=2

[
1+
⌈
log i

⌉
+1
]]

= M+1+
∑N

i=2
1+
∑N

i=2

⌈
log i

⌉
+
∑N

i=2
1

= M+N+N logN

= O(M+N logN) (8)

B. All the solutions are in different fronts

In this case, there is no parallelism in the second phase as
each front has a single solution. However, if we obtain the
dominance relationship between the solutions beforehand as



in [9], then the time complexity of parallel ENS-SS is given
by Eq. 9 and the time complexity of parallel ENS-BS is given
by Eq. 10.

T∞SS = M+

[
1+
∑N

i=2
[(i−1)+1]

]
= M+1+

∑N

i=2
(i−1)+

∑N

i=2
1

= M+1+
(N−1)(N+2)

2
= O(M+N2) (9)

T∞BS = M+1+
∑N

i=2

[⌈
log i

⌉
+1
]

= M+1+
∑N

i=2

⌈
log i

⌉
+
∑N

i=2
1

= M+1+N logN−(N−1)+(N−1)

= O(M+N logN) (10)

C. Equal division of N solutions in
√
N fronts

In the case of the serial version, we have discussed two
scenarios when there is an equal division of N solutions in√
N fronts. The time complexity in these two scenarios were

also different in case of the serial version. However, in the
case of the parallel version, the time complexity remains the
same for both scenarios. This is because in the case of the
parallel version, a solution is compared with respect to each
of the solutions of a particular front simultaneously and then
it is decided whether it is non-dominated with respect to each
of the solutions of that front or it is dominated by at least one
of the solutions of that front.

Let the time complexity of the first part be T∞A and the
second part be T∞B . The time complexity of ENS-SS is
obtained using Eq. 11.

T∞SS = T∞A + T∞B

=
∑√

N

k=2

√
N
(
M+

⌈
log
√
N
⌉)

(k−1)+

√
N

[
1+
∑√

N

i=2
M+

⌈
log i

⌉
+1

]
=

1

2
(M+

⌈
log
√
N
⌉
)N(
√
N−1)+

1

2
N logN+MN−M

√
N+
√
N

= O(MN
√
N + N

√
N logN) (11)

The time complexity of ENS-BS is obtained using Eq. 12.

T∞BS = T∞A + T∞B

=
∑√

N

k=2

√
N
(
M+

⌈
log
√
N
⌉) ⌈

log k
⌉
+

√
N

[
1+
∑√

N

i=2
M+

⌈
log i

⌉
+1

]
=
(
M+

⌈
log
√
N
⌉) [

N log
√
N−(N+

√
N)
]

+

1

2
N logN+MN−M

√
N+
√
N

= O(MN logN + N log2 N) (12)

When each solution in a front is dominated by each of the
solutions in its preceding front, then in case of the parallel
versions of ENS-SS and ENS-BS, the time complexity because
of (b) has been improved as compared to the serial version.
However, the time complexity has not been improved because
of (a). This is because, in the case of the serial version, a
solution is only compared with a single solution of each of
the previous fronts and the time complexity of comparing a
solution to one of the solutions is O(M). However, in the
case of the parallel version, it is compared with each of the
solutions of a particular front in O(M) time and then the array
which stores the dominance relationship with

√
N solutions

of a particular front is processed in a parallel manner in
O(log

√
N) time. So, the overall time complexity becomes

O(M + log
√
N) in spite of the O(M) time complexity of

the serial version.
If the dominance relationship between the solutions can be

obtained beforehand as done in [9], then the time complexity
of the parallel version of ENS-SS is given by Eq. 13 and the
one for ENS-BS is obtained by Eq. 14.

T∞SS = T∞A + T∞B

= M+
∑√

N

k=2

√
N
(

1+
⌈
log
√
N
⌉)

(k−1)+

√
N

[
1+
∑√

N

i=2
1+
⌈
log i

⌉
+1

]
= M+

1

2

(
1+
⌈
log
√
N
⌉)

N(
√
N−1)+N

(
log
√
N+1

)
= O(M + N

√
N logN) (13)

T∞BS = T∞A + T∞B

= M+
∑√

N

k=2

√
N
(

1+
⌈
log
√
N
⌉) ⌈

log k
⌉
+

√
N

[
1+
∑√

N

i=2
1+
⌈
log i

⌉
+1

]
= M+

(
1+
⌈
log
√
N
⌉) [

N log
√
N−(N+

√
N)
]

+

N
(

log
√
N+1

)
= O(M + N log2 N) (14)

V. CONCLUSIONS & FUTURE WORK

In this paper, a parallel version of Efficient Non-dominated
Sort (ENS) is discussed. The time complexity of such parallel
version is also analyzed. The worst case time complexity of
the serial version of ENS is O(MN2) when all the solutions
are non-dominated with respect to each other. However, in
the same scenario, the time complexity of the parallel version
is O(M + N logN). The best case time complexity of the
serial version of ENS-SS is O(MN

√
N) when there is an

equal division of N solutions in
√
N fronts such that all the

solutions in a front are dominated by each of the solutions in
its preceding front. However, in the same scenario, the time
complexity of the parallel version is O(M + N

√
N logN).

The best case time complexity of the serial version of ENS-
BS is O(MN logN) when N solutions are divided into



N different fronts. However, in the same scenario, the time
complexity of this parallel version is O(M + N logN).

As part of our future work, we would like to explore the
parallelization of other non-dominated sorting approaches such
as the naive approach [1], DCNS [13] and BOS [12]. It
would also be interesting to develop new approaches for non-
dominated sorting. In this paper, we have theoretically proved
the time complexity of a parallel version of ENS. It would be
interesting to see the actual speedup of our proposed parallel
version with respect to its corresponding serial version.
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