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Abstract

Support vector machines (SVMs) are one of the most powerful learning algorithms for solv-
ing classification problems. However, in their original formulation, they only deal with binary
classification. Traditional extensions of the binary SVMs for multiclass problems are based either
on decomposing the problem into a number of binary classification problems, which are then
independently solved, or on reformulating the objective function by solving larger optimization
problems. In this paper, we propose MC2ESVM, an approach for multiclass classification based
on the cooperative evolution of SVMs. Cooperative evolution allows us to decompose an M -
class problem into M subproblems, which are simultaneously optimized in a cooperative fashion.
We have reformulated the optimization problem such that it focuses on learning the support
vectors for each class at the time that it takes into account the information from other classes. A
comprehensive experimental study using common benchmark datasets is carried out to validate
MC2ESVM. The experimental results, supported by statistical tests, show the effectiveness of
MC2ESVM for solving multiclass classification problems, while keeping a reasonable number of
support vectors.

I. Introduction

Support Vector Machines (SVMs) [1] are powerful supervised learning algorithms with

strong theoretical foundations that have shown a high performance over a wide range of

problems [2]–[4]. The main idea behind SVMs is to find the hyperplane that maximizes

the separation between two classes, which is defined through the so-called support vectors.

In spite of the effectiveness of SVMs in solving binary classification problems, real world

problems often require discriminating among more than two classes.
Over the last years, there has been interest in extending SVMs to multiclass problems.

These approaches can be differentiated into two major groups: (1) decomposition strategies
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and (2) single machine methods. The first type of approach is based on decomposing the

M -class problem into several binary classification problems. The most well-known decom-

position techniques are the one-vs-one (OVO) and the one-vs-all (OVA) methods. These

have been found to be quite effective in solving multiclass problems [5], [6]. However, they

assume that each binary classification problem to be solved is independent of the rest.

On the other hand, single machine approaches are based on modifying the optimization

problem, such that the multiclass SVM classifier is constructed based on solving a single

optimization problem [7]. Nonetheless, they have the shortcoming of dealing with a more

complex and larger optimization problem.

Evolutionary algorithms (EAs) encompass a family of algorithms that aim at solving

complex optimization problems. EAs have been applied with success to the solution of

different machine learning problems [8]–[10]. In recent years, several studies that hybridize

EAs with SVMs have been reported [11]–[13]. Most of them deal with the hyper-parameter

optimization problem. There are only a few attempts to deal with the parameter optimization

problem, such as those reported in [14], [15]. They have, however, only focused on the classical

binary classification problems.

This paper introduces MC2ESVM (Multiclass Classification based on the Cooperative

Evolution of SVMs). MC2ESVM aims at taking advantage of the benefits of both decompo-

sition and single machine approaches, by decomposing the multiclass problem and solving the

resulting problems as single-objective optimization problems, optimizing the support vector

for each class. This can be approached in a natural fashion with cooperative coevolutionary

algorithms. Moreover, the inherent advantages of evolutionary algorithms allow MC2ESVM

to handle non-positive semidefinite kernels1. The main contributions of this paper are the

following:

• The decomposition of the multiclass problem via coevolutionary optimization. This

allows SVMs to be able to learn multiclass classifiers in a single optimization run by

simultaneously solving a set of simpler problems. To the best of the authors’ knowledge,

this is the first attempt to combine coevolutionary algorithms with SVMs for multiclass

problems.
1Non-positive semidefinite kernels can lead to a non-convex optimization for SVMs.



• A derivation of the optimization problem that learns the class-specific support vectors,

considering the information from other classes.

The performance of MC2ESVM is assessed using a suite of 25 multiclass classification

datasets. We first compare it with state-of-the-art SVMs extensions in terms of the prediction

performance and common learning algorithms. Second, we compare with respect to the

support vectors. Afterwards, we assess its scalability as either the number of instances or

classes are increased. Finally, we assess the stability of the algorithm and the evolutionary

parameters. Our experimental results show the effectiveness of MC2ESVM for solving the

classification task, while keeping a reasonable number of support vectors. These findings are

supported by a set of non-parametric tests.
The remainder of this paper is organized as follows. Section II describes some preliminary

concepts related to the main extension to multiclass SVM and coevolutionary optimization.

Section III describes in detail our proposed MC2ESVM. Next, Section IV outlines the

experimental settings for our study, while Section V presents the experimental results and

the statistical validation. Finally, Section VI provides our general conclusions.

II. Preliminaries

This section discusses the main preliminaries in which our contribution is based. Sec-

tion II-A describes the main extensions proposed to solve multiclass problems using SVMs.

Next, in Section II-B, we describe the main characteristics of coevolutionary algorithms.

A. Multiclass Extensions for SVMs

A number of approaches for extending SVMs so that they can handle multiclass problems

have been proposed. Fig. 1 shows the proposed methods to approach multiclass problems

with SVMs. They are briefly discussed next.

1) Decomposition strategies

These approaches follow the idea of dividing the multiclass problems into several binary

classification problems. The most common decomposition methods for multiclass SVMs are

the following:

• One-vs-All (OVA) [16]: OVA decomposes the M -class problem into M subproblems.

M -binary SVMs are constructed for each subproblem, such that the ith SVM is trained

using the samples belonging to the ith class as positive samples and the remaining are
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Fig. 1: SVMs extensions for handling multiclass problems.

treated as negative samples. A new sample is assigned to the class with the largest

activation value. OVA introduces an artificial imbalance during the training. Thus, the

higher the value of M , the higher the imbalance rate.

• One-vs-One (OVO) [17]: In OVO, an SVM is trained for each possible pair of classes,

resulting in a total of M (M − 1)/2 SVMs. This number is usually larger than the one

of the OVA approach. In the prediction phase, a new sample is classified for each SVM

and the class with the majority vote wins. The main criticism of OVO is that when M

is large, the evaluation of the M (M − 1)/2 SVMs can slow down the prediction stage

of the resulting OVO.

• Directed Acyclic Graph (DAG) [18]: The training phase is similar to OVO, resulting

in M (M − 1) /2 SVMs constructed for each pair of classes. The difference relies on the

prediction stage. DAG starts at the root, where an SVM is used to classify the test

sample, and it moves either to the left or to the right path, depending on the predicted

class given by the SVM. This process is repeated until a leaf node is reached, which

indicates the predicted class. Note that, however, the performance of DAG depends on

the SVM at the root node.

A comparison between these three strategies is performed in [24], finding that their



accuracy is quite similar, with no statistical difference.

2) Single Machine Methods

These methods aim at solving directly the multiclass problem during the training phase.

This is attained by modifying the SVM objective function, such that it simultaneously allows

computing the multiclass classifier. For instance, in [19], authors propose MSVM-WW, where

the single objective formulation for the multiclass SVM is given as follows:

min
wr,ξr,br

1
2

M∑
r=1
‖wr‖2 + C

N

N∑
i=1

∑
q

ξqi

subject to 〈wr,xi〉+ br ≥ 〈wq,xi〉+ bq + 2− ξqi , ξri ≥ 0.
(1)

where q = {1, . . . ,M}\r, N is the number of training samples, and C is a penalty parameter

that controls the trade-off between accuracy and complexity.

This formulation, however, has to deal with a large number of slack variables. Other for-

mulations of the objective function are MSVM-LLW [20], which reduces the dimensionality

of the problem by means of a sum-to-zero constraint; MSVM-CS [21], which only takes

into account the largest activation and the bias term is not considered during the training;

MSVM2 [22], which adds a quadratic function to the slack variables; and GenSVM [23], which

uses a simplex encoding to reduce the dimensionality of the problem. These approaches have

reported similar performance to those obtained by either OVA or OVO. Nonetheless, these

methods have the disadvantage of dealing with larger optimization problems.

B. Coevolutionary Optimization

A coevolutionary algorithm is an evolutionary algorithm which is able to manage two

or more populations simultaneously [25]. An important characteristic of these algorithms is

that they allow to split the problem into different parts and assign a different population

to each subproblem. Each population focuses its efforts on solving one specific part of the

problem. Two different kinds of coevolutionary algorithms can be described:

• Competitive coevolutionary algorithms [26]. The individuals of each population

compete against each other, such that the fitness value of an individual decreases as the

result of an increment in the fitness value of its adversaries. Competitive coevolution is

normally adopted for game-like problems.



• Cooperative coevolutionary algorithms [27]. Each population evolves individuals

representing a part of the solution. A complete solution is composed by joining individ-

uals from all the populations. Therefore, the fitness value of an individual is the result

of its collaboration with other individuals from other populations.

In this work, our focus is on cooperative coevolution, due to the fact that it allows us to

decompose the multiclass classification problem in a natural fashion, by assigning to each

subproblem the task of learning the set of support vectors for each class.

III. MC2ESVM: Multiclass Classification based on Cooperative Evo-
lution of Support Vector Machines

The proposed MC2ESVM aims at training a multiclass SVM in a single step. The mul-

ticlass classifier is defined by the set of support vectors of each class. MC2ESVM is based

on the cooperative coevolutionary algorithm, in which each subpopulation optimizes the

support vectors for each class at the same time that it considers the other subpopulations

for solving the multiclass problem. Algorithm 1 describes MC2ESVM. Generally, it follows

these steps:

Algorithm 1 MC2ESVM
Require: X , the set of samples,
Y, the set of classes labels,
C, the regularization term,
P , the population size,
E, maximum number of evaluations.

Ensure: The set of support vectors
1: Generate randomly an initial population, Py for each class y ∈ Y
2: for each y ∈ Y do
3: Select randomly an individual from each class y′ ∈ Y \ y
4: Construct full solutions by combining the selected individuals of each class
5: Evaluate the full solutions using the fitness function
6: end for
7: while a stopping criterion is not met do
8: for each y ∈ Y do
9: Select the best individual from each population y′ ∈ Y \ y

10: for each individual in the current class do
11: Apply evolutionary operators to create an offspring
12: Evaluate the offspring with the fitness function
13: Add the offspring to the next generation if it improves its parents
14: end for
15: end for
16: end while

17: Construct the final solution based on the best individuals of each population



1) In line 1, for each class, a population is randomly created. The number of variables for

each population depends on the number of samples in the training set for the given

class.

2) In lines from 3 to 5, the fitness value is assigned for each individual of each class

(population). For doing so, an individual from other classes is randomly selected to

build the multiclass classifier. This is part of the cooperative coevolution.

3) Lines from 7 to 16 are the evolutionary process, as follows:

a) Line 9 selects the best individual from other classes and the evolutionary opera-

tors are applied to create an offspring, in line 11.

b) Line 12 computes the fitness value of the offspring solution by concatenating it

with the best solutions from other classes.

c) In line 13, the best solutions among the parents and offspring are selected to be

included in the next generation.

4) Once the evolutionary process is over, the final solutions, i.e., the support vectors for

the multiclass problem are obtained from the best individuals of each class; this is

done in line 17.

The details of MC2ESVM are given in the remainder of this section. First, in Section III-A,

we explain the optimization problem for finding the support vectors for a multiclass problem.

Next, Section III-B presents the representation adopted in the evolutionary optimization as

well as the evolutionary operators. Section III-C describes the final steps to construct the

multiclass SVM and in Section III-D, we discuss the extension to learn nonlinear functions.

A. Fitness Functions: Optimization Problem

In MC2ESVM, each subproblem aims at learning the support vector for a given class

label. Therefore, the optimization problem for the rth class is formulated as follows:

min
wr,ξr

1
2 ‖wr‖2 + C

nr∑
i=1

ξri

subject to 〈wr,xi〉 ≥ 1− ξri , ξri ≥ 0
(2)

where nr is the number of samples for the rth class.

For the sake of simplicity, we have omitted the bias term in our formulation. Moreover,

since a population is focused on learning the support vectors for a single class, the class



label is not part of Equation 2. This leads to a simpler dual problem, with no additional

constraints. For the dual formulation, the constraint is incorporated in the objective function

by using the Lagrange multipliers:

L (w, ξr, αri , βri ) = 1
2 ‖wr‖2 + C

nr∑
i=1

ξri −
nr∑
i=1

αri [〈wr,xi〉 − 1 + ξri ]−
nr∑
i=1

βri ξ
r
i

subject to αri , βri ≥ 0.
(3)

Setting the partial derivatives to zero gives:

∂L
∂wr

= 0→ wr =
nr∑
i=1

αrixi (4)

∂L
∂ξri

= 0→ βri = C − αri . (5)

Substituting Equations 4 and 5 in Equation 3, gives the following dual optimization

problem:

min
αr

i

1
2

nr∑
i,j=1

αriα
r
j 〈xi,xj〉 −

nr∑
i=1

αri

subject to 0 ≤ αri ≤ C.

(6)

At this point, Equation 6 learns the support vectors for a single class label. Since the

goal of MC2ESVM is to gain benefit from the cooperative evolution of each class label, an

additional term is added to Equation 6 that considers the information from other classes.

Thus, the optimization problem in cooperative evolution is stated as:

min
αr

i

1
2

nr∑
i,j=1

αriα
r
j 〈xi,xj〉 −

nr∑
i=1

αri + 1
nr

nr∑
i=1
P (xi)

subject to 0 ≤ αri ≤ C

(7)

where

P (x) =


Z if Z > 0

0 if Z ≤ 0
: Z = 2 +

nq∑
i=1

αqi 〈xi,x〉 −
nr∑
i=1

αri 〈xi,x〉 (8)

where q ∈ {1, . . . ,M} \ r is the index class with the largest activation.
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Fig. 2: Population scheme used in MC2ESVM.

Thus, by adding this term, we penalize the errors that occur in the multiclass classification.

In other words, MC2ESVM punishes those solutions that do not work well together.

In the next section, we describe the representation of the solutions and the evolutionary

operators used in MC2ESVM.

B. Representation

In MC2ESVM, each class works with the others in a cooperative fashion. As we have previ-

ously mentioned, each population manages the instances for a specific class. A representation

scheme of the population is shown in Fig. 2.

Each population consists of P individuals. All populations share the same individual

representation. Since the goal is to optimize the α vector from Equation 7, a real-valued

representation is adopted. Moreover, the number of variables of each population depends

on the number of instances available in the training set for each class2. By using this

representation, the number of variables is not increased in the optimization task, as usually
2For example, in a three-class problem, with 50 instances of class 1, 80 instances of class 2, and 100 instances of

class 3; the number of variables to optimize in subpopulations 1, 2, and 3 are equal to 50, 80, and 100, respectively.



happens with other methods. Moreover, all populations are evolved simultaneously and each

of them deals with simpler problems.

The α vector of each individual in each population is randomly initialized. For doing so,

each variable of an individual has a probability of 0.5 to take a value in the range (0, C];

otherwise, it takes a value of 0.

The individuals in each population are evolved. This is attained by using the differential

evolution operator [28], which generates a new child solution as follows:

α
r(s)
i =


α
r(t)
i + F ×

(
α
r(u)
i − αr(v)

i

)
with prob. CR,

α
r(s)
i Otherwise

(9)

where CR and F are two control parameters and s, t, u and v are the indexes for the current

individual, which acts as the parent solution, and three randomly selected individuals from

the rth population.

Finally, the child solution is added to the population for the next generation in the

evolutionary process if and only if it improves the sth parent; otherwise, the current parent

is kept.

C. Building the Multiclass SVM

Once the coevolutionary process is over, the next step is to build the multiclass classifier.

This is done by selecting from each population the member that gets the highest score in

the objective function and by concatenating the solutions. This can also be shown in Fig. 2.

It is worth noting that solutions with αri > 0 are considered the support vectors. These

solutions represent the multiclass classifier learned by MC2ESVM. A new instance xt is

classified as follows:

yt = argmax
r

∑
i∈SVr

αri 〈xi,xt〉 (10)

where SVr represents the set of support vectors from the rth class.

D. Learning Nonlinear SVMs

The optimization problem presented in Equation 7 learns a linear function from the

training data. For learning nonlinear functions, the so-called kernel trick is used with SVMs.



By using the kernel trick in MC2ESVM, the inner product, 〈xi,x〉, in Equations 7 and 10,

is replaced by a Kernel function, K (xi,x). Some commonly used kernel functions are the

following [29]:

• Linear kernel: K (xi,x) = 〈xi,x〉

• Polynomial kernel: K (xi,x) = (〈xi,x〉+ 1)d

• Radial basis function kernel: K (xi,x) = e−γ‖xi−x‖2

where d, γ are adjustable parameters for the above kernel functions.

IV. Experimental Setup

In this section, we describe the experimental settings in our study. In Section IV-A, we

present the datasets used in our experimental study. Section IV-B describes the algorithms

that are used to compare the performance of MC2ESVM. Finally, Section IV-C presents the

performance measures and statistical tests used to assess each algorithm.

A. Datasets

A set of 25 datasets available in the KEEL repository [30], [31] are used in our experimental

study. Since we want to assess the behavior of the proposed MC2ESVM in multiclass

problems, the datasets have been chosen based on the number of classes, i.e., those with

more than two classes. Table I shows some characteristics of these datasets, such as the

number of instances, the number of features, the imbalance rate (IR)3 and the number of

classes.

These datasets have been partitioned into 10 training/test subsets by using the k-fold

cross validation technique. Furthermore, features have been pre-processed in order to have

zero mean and unit standard deviation.

B. Considered Algorithms

Several multiclass extensions are used to compare the performance of MC2ESVM with

respect to them. The selection of these extensions is based on their availability on pub-

lic frameworks, such as KEEL and MSVMpack [7]. Concretely, these extensions are the

following:
3The IR is computed as the average of the IR of all pairwise classes.



TABLE I: Description of the datasets used in our study. For each dataset, we show the

number of instances, the number of attributes, and the number of classes.

ID Dataset Atts. Insts. IR Classes ID Dataset Atts. Insts. IR Classes
1 Automobile 25 203 5.69 6 14 Newthyroid 5 215 3.48 3
2 Balance 4 625 4.25 3 15 Penbased 16 10,992 1.05 10
3 Cleveland 13 303 3.87 5 16 Satimage 36 6,435 1.73 6
4 Contraceptive 9 1,473 1.55 3 17 Segment 19 2,310 1.00 7
5 Dermatology 34 366 2.17 6 18 Splice 60 3,190 1.77 3
6 Ecoli 7 336 15.27 8 19 Tae 5 151 1.04 3
7 Glass 9 214 3.60 6 20 Texture 40 5,500 1.00 11
8 Hayes-roth 4 132 1.47 3 21 Vehicle 18 846 1.05 4
9 Iris 4 150 1.00 3 22 Vowel 13 990 1.00 11
10 Led7digit 7 500 1.16 10 23 Wine 13 178 1.30 3
11 Lymphography 18 148 18.30 4 24 Yeast 8 1,484 11.65 10
12 Marketing 13 8,993 1.48 9 25 Zoo 16 101 3.20 7
13 Movement Libras 90 360 1.00 15

• Decomposition strategies using the sequential minimal optimization (SMO) [32] imple-

mented in KEEL:

— OVO — OVA
• Single machine methods available at MSVMpack:

— MSVM2 — MSVM-CS

— MSVM-LLW — MSVM-WW
For all cases, a radial basis function (RBF) kernel is used, because it is one of the

most popular and effective kernels used with SVMs [33]. Regarding the hyper-parameter

configuration of each method, and for the sake of allowing a fair comparison, the values of

the hyper-parameters are tuned for each method in each dataset, as it is suggested in [33],

[34]. For doing so, we used a random search for the hyper-parameters optimization [35], by

randomly sampling 100 points for the kernel’s parameter in the range γ = [2−10, 22], and

for the regularization parameter C = [2−4, 210] for all methods. Each configuration is tested

and the one with the best score in accuracy is chosen for each dataset.

It is worth noting that during the experiments, some configurations for the single machine

methods available at MSVMpack were unable to converge to an optimal solution. Thus, we

have modified the code in order to allow a maximum number of evaluations of the objective

function, which was fixed to 200,000. This limit is also set for all methods. Furthermore, in

the case of MC2ESVM, the convergence criterion is defined as having an improvement in the

best solution after 10 iterations lower than 0.001. MC2ESVM also requires some additional

parameters, which are common in evolutionary algorithms. These parameters were set as



follows:

• Population size = 20

• Crossover Rate (CR) = 0.8

• Differential weight (F ) = 1.6

We have further considered the set of common learning algorithms: Random Forest (RF),

Multi-Layer Perceptron (MLP), K-Nearest Neighbor (KNN), and Näıve Bayes (NB), for

comparison. To allow a fair comparison, the hyper-parameters of these methods are tuned.

In RF, the number of trees is adjusted in the range [1, 100]; in MLP, the learning rate is

tuned in the range [0, 1] and the number of neurons [1, 100]; KNN, the neighborhood size is

determined in [1, 10].

C. Performance Measures

We have considered two different metrics for measuring the performance of MC2ESVM

and the reference methods. The set of metrics are accuracy and Cohen’s kappa, which are

described next:

• Accuracy (Acc) is a common metric for assessing the performance of supervised learn-

ing algorithms. It indicates the ratio of samples that are correctly classified, i.e.,

Acc = 1
N

M∑
i=1

TPi (11)

where TPi is the number of correctly classified samples from class i.

• Cohen’s kappa (K) measures the degree of agreement between two observations: the

predicted class and the correct one. An easy way of computing Cohen’s kappa is as

follows:

K = N
∑M
i=1 TPi −

∑M
i=1 PiTi

N2 −∑M
i=1 PiTi

(12)

where Pi is the number of predicted samples as class i and Ti is the number of samples

from class i.

Cohen’s kappa ranges from −1, indicating total disagreement, through 0 (random

classification), to 1, which indicates a perfect agreement.

In order to support the comparisons, a set of non-parametric statistical tests is used.

Non-parametric tests are widely recommended for a safe and robust comparison of multiple

classifiers over multiple datasets by [36]–[38]. In this study, we have used the Friedman



TABLE II: Comparison between MC2ESVM and the SVM formulations for multiclass

problems.

Method Acc K
MC2ESVM 0.8167± 0.1787 0.7424± 0.2437
OVA 0.7920± 0.1897 0.7044± 0.2683
OVO 0.8003± 0.1868 0.7031± 0.2880
MSVM2 0.7682± 0.1886 0.6648± 0.2697
MSVM-CS 0.7958± 0.1970 0.7157± 0.2651
MSVM-LLW 0.7795± 0.1967 0.6715± 0.2988
MSVM-WW 0.7808± 0.1949 0.6875± 0.2705

Aligned Ranks test to compare among multiple algorithms, and the Holm’s procedure is

used to find out which algorithms are distinctive. In all cases, the significance level is set to

α = 0.05. A description of these tests can be found in [37], [38].

V. Experimental Results and Their Analysis

This section presents the results obtained in our experimental study and analyzes them.

In Section V-A, we report the results of MC2ESVM and the reference methods using the

set of multiclass datasets. Section V-B analyzes and compares the support vectors found by

each method. Section V-C, we assess the scalability of the proposed MC2ESVM with respect

to the number of classes and the number of samples. Finally, in Section V-D we analyze the

stability of MC2ESVM.

A. Classification Performance

The aim of this study is twofold. First, comparing the performance of MC2ESVM with

respect to other SVM formulations for multiclass problems. Second, comparing against

standard learning algorithms.

1) Comparing with SVMs Multiclass Extensions

In this first part of our study, we assess the performance of MC2ESVM when it is compared

with several extensions of SVMs for multiclass problems. Table II4 shows the average results

obtained from the 25 datasets.

Table III shows the ranking obtained by Friedman’s Aligned Ranks both with accuracy

score (Acc) and Cohen’s Kappa (K). We further show the adjusted p-value with the Holm’s
4The detailed results on each dataset and the hyper-parameters values of each method are provided as supple-

mentary material. The supplementary material and source code are available at http://ccc.inaoep.mx/∼arosales/
resources/MC2ESVM.tar.gz.



TABLE III: Average rankings of the methods computed with Friedman Aligned Ranks

(FAR) and Holm’s adjusted p-values (pHolm).

Method Acc K
FAR pHolm FAR pHolm

MC2ESVM 50.28 — 51.20 —
OVO 70.36 0.1611 75.30 0.1128
MSVM-CS 83.82 0.0385 78.54 0.1128
OVA 92.78 0.0091 94.56 0.0074
MSVM2 103.44 0.0008 102.94 0.0015
MSVM-WW 105.04 0.0007 101.12 0.0020
MSVM-LLW 110.28 0.0002 112.34 0.0001

test (pHolm). Note that MC2ESVM is set as a control method because the purpose of our

study is to compare the performance of our proposal against the rest.

Observing the results in Tables II and III, we can highlight the following:

• The worst performance of MC2ESVM is obtained in the Balance and the Vehicle

datasets, which have three and four classes, respectively. On the other hand, its best

performance is shown in the Cleveland, Ecoli, and Zoo datasets, which have at least

five classes each.

• It is worth noting that, in general, MC2ESVM significantly performs better than refer-

ence methods in datasets with imbalance rates greater than 1.5 and with five or more

classes. This may be explained due to the fact that OVO with a large number of classes,

significantly increases the number of binary classifiers, leading to an ensemble with a

more complex decision function. OVA, on the other hand, artificially makes higher this

imbalance.

• On well-balanced problems, the performance of MC2ESVM and reference methods are

quite similar, regardless of the number of classes.

• MC2ESVM statistically outperforms most of the SVM formulations for handling mul-

ticlass problems. In fact, it is statistically better in five out of six methods for the

accuracy score and in four out of six methods for Cohen’s Kappa statistic, under the

considered level of α = 0.05.

• MSVM-CS and the OVO decomposition are clearly the most competitive multiclass

SVMs for the proposed MC2ESVM. These competitive performances can also be noted

in the lack of a statistically significant difference when Cohen’s Kappa is considered.

• The difference between MC2ESVM and OVO in accuracy is marginal, but in Cohen’s



TABLE IV: Average Friedman Aligned Ranks (FAR) and Holm’s adjusted p-values (pHolm)

for the best methods.

Method Acc K
FAR pHolm FAR pHolm

MC2ESVM 27.16 — 27.96 —
OVO 39.92 0.0385 41.74 0.0254
MSVM-CS 46.92 0.0027 44.33 0.0161

Kappa, MC2ESVM clearly outperforms OVO. This is an interesting point to observe

because the hyper-parameters for each method were done by considering the accuracy

as the main criterion. Thus, MC2ESVM is not overfitted to this criterion.

• Except for MSVM-CS, the rest of the multiclass SVMs based on modifying the objective

function showed a low performance. This may be due to the fact that they have to deal

with a larger optimization problem than those based on decomposition.

• OVO can be highlighted as the best method based on decomposing the problem into

multiple binary classification problems, while MSVM-CS is an outstanding method from

those based on modifying the optimization problem.

The Holm’s test has reported no statistically significant difference between MC2ESVM

and OVO neither between MC2ESVM and MSVM-CS, when the multiple comparison is

done by considering all methods. This may be due to the number of algorithms in the

comparison and the fact that those algorithms have influence on the rank computation and

also in the post-hoc [39]. Therefore, we have thoroughly inspected these three algorithms by

comparing them. With this aim, Table IV shows the statistical comparison when considering

these methods. MC2ESVM is again considered as a control method in the test. Based on

this more focused test, we can note that indeed the differences between MC2ESVM and the

reference methods (OVO and MSVM-CS) are statistically significant at the considered level.

Fig. 3 graphically depicts a comparison of the computational time for each method. This

figure represents the probability that a given method learns the multiclass SVM in a given

amount of time. From it, we can note:

• Both OVO and OVA are the best ones, and have virtually the same performance.

• MC2ESVM is the second best one, requiring at most, 30 seconds for solving each

benchmark problem.

• Single machine methods are clearly the slowest ones. This is due to the fact that they
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Fig. 3: Probability of each method to learn a Multiclass SVM classifier in a given amount

of time.

TABLE V: Comparison between MC2ESVM and RF, MLP, KNN, and NB.

Method Acc K
MC2ESVM 0.8167± 0.1787 0.7424± 0.2437
RF 0.8048± 0.1742 0.7229± 0.2417
MLP 0.7932± 0.1837 0.7164± 0.2511
KNN 0.7607± 0.2020 0.6638± 0.2873
NB 0.7238± 0.1934 0.6319± 0.2577

deal with a larger optimization problem.

• In the best case, single machine methods required around 280 seconds to ensure solving

each dataset.

• Among all SVMs multiclass extensions, MSVM-CS is the worst one in terms of com-

putational time.

2) Comparing with other Learning Algorithms

In this section, our goal is to contrast the performance of MC2ESVM with common

learning algorithms. To this end, RF, MLP, KNN, and NB are chosen as reference methods.

Table V shows the reported results obtained by each method on each dataset and Table VI

shows the ranking for each algorithm computed with the Friedman’s Aligned Ranks method



TABLE VI: Average rankings of the methods computed with Friedman Aligned Ranks

(FAR) and Holm’s adjusted p-values (pHolm).

Method Acc K
FAR pHolm FAR pHolm

MC2ESVM 35.28 — 37.60 —
RF 53.76 0.0713 56.62 0.0634
MLP 61.04 0.0239 59.26 0.0634
KNN 77.22 < 0.010 78.42 < 0.010
NB 87.70 < 0.010 83.10 < 0.010

and the adjusted p-values with the Holm’s test. Observing these results, we stress the

following:

• MC2ESVM achieves, on average, the highest scores both on the accuracy and Kappa

statistics metrics.

• Among the reference methods, RF is the most competitive, since it has no statistically

significant difference with respect to MC2ESVM.

• NB is generally the worst one. The exception is on the Splice dataset, where it achieves

the best performance. This may be explained due to the inductive bias of this algorithm,

which assumes independence between attributes.

B. Analyzing the Support Vectors

The aim of this study is twofold. First, by comparing the number of support vectors

generated by each method, this can give insights about the complexity of the learned model.

Second, we show the effect in the decision function for each method.
For the first case, Fig. 4 graphically depicts the distribution of the number of support

vectors resulting from each method. Based on it, we can stress the following for this first

part:

• MC2ESVM, OVO, OVA, MSVM-WW, and MSVM-LLW are quite similar in terms of

the number of learned support vectors.

• MSVM-CS and MSVM2 are the worst performers under this criterion. This can be

explained due to the fact that these methods deal with a large number of variables

during the optimization process. Furthermore, MSVM-CS does not consider the bias in

its formulation, which can also explain this behavior.

The second goal of this study is to contrast the decision boundaries learned by each

method. For illustrative purposes, we have generated an artificial dataset with two features
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Fig. 4: Boxplot for the number of support vectors generated by each method.

and three classes. This artificial dataset is best known as the Madelon dataset and it is

generated following the methodology proposed in [40]. A noise level of 10% is induced in

this dataset.

Fig. 5 graphically depicts the decision regions that are learned by each method. Fig. 5a

shows the training points used to fit the model’s parameters. Figs. 5b to 5h show the region

for each class generated by each method. From this, the following can be noted:

• MC2ESVM seems to better capture the regions of each class, by exhibiting well-defined

regions for each. Moreover, MC2ESVM is able to learn a simpler function, which does

not show a wiggle shape.

• OVO and OVA show overlapped regions. This may be explained due to the fact that

both OVO and OVA work by solving several binary classification problems, indepen-

dently, which leads to regions of uncertainty.

• In general, MSVM-CS and MSVM2 generate more complex decision boundaries than

the other methods. This is also consistent with the fact that they are the ones with the

highest number of support vectors, which can be considered a measure of the model’s

complexity.
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Fig. 5: Decision boundary for each of the SVM multiclass extensions.

• MSVM-WW has the highest overlapped area. This is also consistent with its low

performance in the classification task.

C. Analyzing the Scalability

The aim of this study is to assess the scalability of MC2ESVM with respect to the number

of classes and the number of training instances. In order to perform these studies, we have

generated a set of artificial datasets, following the methodology proposed in [40], as in the

previous study, but with the following considerations:

• For assessing the scalability with respect to the number of classes, the datasets are

generated by varying the number of classes from 3 to 15. In all cases, a set of 25

features and 1,500 samples are fixed.

• For assessing the scalability with respect to the number of instances, the number of

classes is fixed in 3 and the number of features is kept in 25. The number of instances

for each dataset ranges from 800 to 6,000, with a step size of 400.

Fig. 6 depicts the behavior of MC2ESVM under these conditions. Based on these figures,

we can remark the following:
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Fig. 6: Scalability when either the number of classes or instances increases.

• The number of evaluations increases as either the number of instances or the number

of classes is increased. This is an expected result, since MC2ESVM deals with more

complex problems.

• The number of classes seems to be more harmful in the scalability of MC2ESVM. This

may be due to the fact that, as the number of classes grows, the complexity of the

decision boundaries is increased, making harder the recognition. Another factor that also

contributes to this is the cooperative approach, which decomposes the problem, having

a population for each class. Thus, the number of evaluations of the objective function

increases, at least, by a factor of the number classes. However, since each population

works with the instances of the corresponding class, the computation requires a lower

computational cost.

D. Analyzing the Stability

Due to the stochastic nature of the cooperative evolutionary algorithm in MC2ESVM,

another interesting issue is concerned with its stability. Thus, in order to assess it, we have

carried out two analyzes. On the one hand, the classification performance over different

replications is determined. On the other hand, we examine the parameters of the evolutionary

algorithm.
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Fig. 7: Mean and standard deviation of the 15 replications of MC2ESVM for each dataset.

For the first part, we have performed 15 replications of MC2ESVM over each dataset.

Fig. 7 shows the mean and standard deviation. From it, we can note how MC2ESVM is able

to get virtually the same performance in all replications. Thus, MC2ESVM exhibits a stable

behavior, showing a low variance in the classification performance.
The remaining issue to analyze is the evolutionary parameters. Since MC2ESVM uses

differential evolution operators, we have tested it by varying the value of the differential

weight (F ) and the crossover rate (CR). Fig. 8 shows the performance on five representative

datasets when these parameters are varied. Fig. 8a shows the effect of varying F in the

range [0.1,2.0] and Fig. 8b for CR in the range [0.1,1.0]. Based on these results, a value in

the range [1.5,1.7] for the F parameter and in the range [0.6,0.9] for the CR parameter, are

good recommendations.

VI. Conclusions

This paper introduced a multiclass classification approach based on the cooperative evo-

lution of support vector machines, called MC2ESVM. The method is general in the sense

that it subsumes the decomposition-based and the single-machine methods. MC2ESVM is

intuitive and takes advantages of the cooperative evolution to decompose the classification
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Fig. 8: Performance of MC2ESVM under different parameters values.

problem, such that each subproblem faces the learning of the support vectors to the specific

class, but acting in a cooperative fashion by considering the information of the other classes.

Unlike decomposition-based extensions, MC2ESVM is able to capture in a single model

the multiclass classification problem, leading to a simpler decision function than the one

obtained by fusing multiple binary classifiers. In contrast with single machine methods,

MC2ESVM does not increase the number of variables to be optimized, deriving in a simpler

optimization problem with no additional constraints. These features make the proposed

extension a more flexible approach.

The experimental evaluation over a set of 25 common benchmark datasets shows that

MC2ESVM is able to outperform most of the multiclass SVM extensions. This claim is

supported by a set of non-parametric tests with a level of significance of α = 0.05. The

experimental results have also revealed that MC2ESVM performs better on problems with

an imbalance rate higher than 1.5 and with a number of classes greater than five. MSVM-

CS excels as the most competitive among the single machine methods. OVO stands as

the best method from those based on binary decomposition. This finding is also confirmed

in [5]. A focused analysis of these two prominent methods and MC2ESVM revealed that

the latter is able to statistically perform better. MC2ESVM does not seem to be overfitted



to the hyper-parameters optimized by the accuracy criterion. In fact, it shows a greater

improvement on Cohen’s Kappa when it is compared to the other methods. Furthermore,

the computational time required by MC2ESVM is not as high as that of existing single

machine methods. In fact, it requires a reasonable time for learning a model, similar to that

required by decomposition-based methods. Thus, it has benefitted from the advantages of

each approach.
Another interesting conclusion is that MC2ESVM showed to be able to learn simpler

functions than most of the methods based on adapting the optimization problem. OVO

and OVA, on the other hand, suffer from generating regions whit high uncertainty. Finally,

the most important criterion for scalability of MC2ESVM is the number of classes, which

increases the number of evaluations in the optimization.
An advantage of EAs is that they will allow SVM to handle non-positive semidefinite

kernels. This type of kernel leads to a non-convex optimization problem, narrowing their

applicability to the quadratic solver of SVMs. As part of our future work, we will analyze

the performance of MC2ESVM on non-positive semidefinite kernels. Another interesting

path for future research is to deepen into the interaction scheme of solutions of different

populations. Finally, exploiting the parallelizable nature of EAs to handle the so-called Big

Data problems is another interesting topic for future research.
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[37] S. Garćıa and F. Herrera, “An extension on “statistical comparisons of classifiers over multiple data sets” for all
pairwise comparisons,” J. Mach. Learn. Res., vol. 9, pp. 2677–2694, Dec. 2008.
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