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Abstract—In recent years, several indicator-based multi-
objective evolutionary algorithms (IB-MOEAs) have been pro-
posed. Each IB-MOEA presents different search preferences
depending on the quality indicator (QI) that it uses in its selection
mechanism. However, due to these search biases, IB-MOEAs
behave differently on each multi-objective optimization problem,
producing Pareto front approximations whose characteristics are
related to the QI on which they are based. In this paper, we
propose a novel algorithm based on the island model that aims
to take advantage of the cooperation of individual IB-MOEAs
based on the indicators hypervolume, R2, IGD+, ε+, and ∆p

with the aim of improving both convergence and distribution
of the Pareto fronts produced. Our experimental results, taking
into account seven quality indicators, empirically show that the
cooperation of several IB-MOEAs is better than using panmictic
versions of them. Additionally, we also show that the performance
of our proposal does not depend on the Pareto front shape of
the problem being solved.

Index Terms—Multi-Objective Optimization, Quality Indica-
tors, Island Model

I. INTRODUCTION

Many real-world problems can be mathematically defined
as multi-objective optimization problems (MOPs), since they
involve the simultaneous optimization of two or more con-
flicting objective functions. In general, an MOP is formally
described as follows:

min
~x∈Ω

{
~F (~x) = (f1(~x), . . . , fm(~x))

}
, (1)

where ~x is the vector of decision variables, Ω ⊆ Rn is the
feasible region set and ~F (~x) is the vector of m ≥ 2 objective
functions where fi : Rn → R for i = 1, . . . ,m. Due to
the conflict among the objective functions, solving an MOP
involves finding the best possible trade-offs among them. The
particular set that yields the optimum values, according to the
Pareto dominance relation1 for all the objective functions is
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1Given ~x, ~y ∈ Rn and ~F : Rn → Rm, we say that ~x Pareto dominates

~y (denoted as ~F (~x) ≺ ~F (~y)) if and only if ∀i = 1, . . . ,m, fi(~x) ≤ fi(~y)
and there exists at least an index j ∈ {1, . . . ,m} such that fj(~x) < fj(~y).

known as the Pareto optimal set and its image is known as the
Pareto optimal front (PF∗).

In the last 30 years, Multi-Objective Evolutionary Al-
gorithms (MOEAs) have become an increasingly popular
approach to solve complex MOPs [1]. MOEAs originally
adopted the Pareto dominance relation as their primary se-
lection mechanism. However, it has been empirically shown
that the selection pressure of Pareto-based MOEAs quickly
dilutes when tackling MOPs having more than three objective
functions, i.e., the so-called many-objective optimization prob-
lems (MaOPs). This has given rise to other types of MOEAs:
those based on decomposition (which transform an MOP
into several single-objective optimization problems which are
solved simultaneously) [2] and those based on the use of
quality indicators (QIs) [3].

QIs2 are functions that quantitatively determine how good
is a Pareto front approximation generated by an MOEA.
According to Zitzler et al. [4], an approximation set3 should
ideally be as close as possible to PF∗, covering it completely
and having evenly distributed solutions. QIs aim to assess
these desired features, i.e., convergence, spread and uniformity
of solutions [5], [6]. In the specialized literature there is a
plethora of QIs focused on assessing one or more desired
aspects. A remarkable QI is the hypervolume indicator (HV)
[7] that simultaneously assesses convergence and uniformity of
solutions by measuring the volume dominated by an approxi-
mation set. On the other hand, the Riesz s-energy indicator [8],
which is based on potential theory, measures the uniformity of
solutions, being invariant to the shape of the manifold. Thus, as
each QI is focused on specific aspects, they exhibit particular
preferences over Pareto front approximations [9], [10]. For
instance, on some specific MOPs, HV prefers approximation
sets where solutions are closer to the Pareto front’s knee [11].

The incorporation of QIs into the environmental selection,
the density estimator or the archiver of an MOEA gave rise to
the so-called indicator-based MOEAs (IB-MOEAs) [3], [12]–
[14]. The underlying idea of these indicator-based selection

2Let A ⊂ PF∗ be an approximation set. A k-ary quality indicator is a
function I : (A1, . . . ,Ak)→ R which assigns a real value to a vector of k
approximation sets.

3An approximation set is a set of mutually non-dominated vectors of
objective function values.



mechanisms is to solve (or approximate) the indicator-based
subset selection problem (IBSSP) [15], i.e., select from a set
of µ+λ solutions, a subset of size µ that optimizes the QI. The
vast majority of IB-MOEAs employ convergence-related QIs
in their selection mechanisms, being HV the most important
one, because among all classical indicators it is the only one
that is Pareto-compliant4. However, its computational cost
increases super-polynomially with the number of objectives.
Thus, its use is prohibitive for MaOPs. In consequence, other
less expensive convergence QIs such as R2 [16], Inverted
Generational Distance plus (IGD+) [17], additive ε indicator
(ε+) [6], and the Averaged Hausdorff Distance indicator (∆p)
[18] have been successfully employed in MaOPs. As an IB-
MOEA drives its population towards PF∗ by tackling the
IBSSP, the final population will exhibit characteristics strongly
related to the preferences of its base QI. Due to this bias, the
approximation sets of different IB-MOEAs for a specific MOP
significantly vary.

Recently, an open research area that has attracted the
attention of the evolutionary multi-objective optimization com-
munity is the design of MOEAs whose performance does
not strongly depend on the Pareto front shapes. Ishibuchi
et al. [19] pointed out that, currently, many MOEAs are
overspecialized on benchmark problems whose Pareto fronts
are strongly correlated with the shape of a simplex. In this
paper, we propose an MOEA based on the island model [20] in
which five steady-state IB-MOEAs based on the indicators HV,
R2, IGD+, ε+, and ∆p, and a Riesz s-energy-based archive
cooperate. The goals of our proposed approach are twofold:
(1) show that its performance does not depend on the Pareto
front shapes, making it able to tackle MOPs with complicated
Pareto fronts, and (2) empirically show that the cooperation
of IB-MOEAs gives better results than the use of panmictic
IB-MOEAs.

The remainder of this paper is organized as follows. Sec-
tion II briefly introduces the QIs adopted in our proposed ap-
proach. In Section III, we describe the previous related work.
Our proposal is outlined in Section IV and the experimental
results are shown in Section V. Finally, our main conclusions
and future work are sketched in Section VI.

II. QUALITY INDICATORS

In this section, we formally define the HV, R2, IGD+, ε+,
∆p and Riesz s-energy (Es) indicators. In all cases, let A
be an approximation set and Z be a reference set. m is the
dimension of the objective space.

Definition 1 (Hypervolume indicator): Given an anti-optimal
reference point ~r ∈ Rm, the hypervolume is defined as
follows:

HV (A, ~r) = L

(⋃
~a∈A

{
~b | ~a ≺ ~b ≺ ~r

})
, (2)

where L(·) denotes the Lebesgue measure in Rm.

4A (weakly) Pareto-compliant QI guarantees that the indicator values of
one algorithm are better (or at least not worse) than another in case the
approximation sets of the former (weakly) dominates the other’s.

Definition 2 (Unary R2 indicator): The unary R2 indicator
is defined as follows:

R2(A,W ) = − 1

|W |
∑
~w∈W

max
~a∈A
{u~w(~a)}, (3)

where W is a set of weight vectors and u~w : Rm → R is
a scalarizing function defined by ~w ∈ W that assigns a real
value to each m-dimensional vector.

Definition 3 (IGD+ indicator): The IGD+, for minimiza-
tion, is defined as follows:

IGD+(A, Z) =
1

|Z|
∑
~z∈Z

min
~a∈A

d+(~a, ~z), (4)

where d+(~a, ~z) =
√∑m

k=1 (max{ak − zk, 0})2.
Definition 4 (Unary ε+ indicator): The unary ε+-indicator

gives the minimum distance by which a Pareto front approx-
imation needs to or can be translated in each dimension in
objective space such that a reference set is weakly dominated.
Mathematically, it is defined as follows:

ε+(A,Z) = max
~z∈Z

min
~a∈A

max
1≤i≤m

{zi − ai}. (5)

Definition 5 (∆p indicator): For a given p > 0, the ∆p is
defined as follows:

∆p(A, Z) = max {GDp(A, Z), IGDp(A, Z)}. (6)

∆p is defined on the basis of two indicators: GDp and IGDp

which are slight modifications of the indicators Generational
Distance (GD) [21] and Inverted Generational Distance (IGD)
[22], respectively. These are defined in the following.

Definition 6 (GDp indicator):

GDp(A,Z) =

(
1

|A|
∑
~a∈A

d(~a,Z)p

)1/p

, (7)

where d(~a,Z) = min~z∈Z
√∑m

i=1(ai − zi)2.
Definition 7 (IGDp indicator):

IGDp(A,Z) = GDp(Z,A) =

(
1

|Z|
∑
~z∈Z

d(~z,A)p

)1/p

,

(8)
Definition 8 (Indicator contribution): Let I be any indicator

in the set {HV,R2, IGD+, ε+,∆p}. The individual contribu-
tion C of a solution ~a ∈ A to the indicator value is given as
follows:

CI(~a,A) = |I(A)− I(A \ {~a})|. (9)

Definition 9 (Riesz s-energy): For a given s > 0, the Riesz
s-energy indicator is defined as follows:

Es(A) =
∑
i 6=j

‖~ai − ~aj‖−s , (10)

as s → ∞, Es prefers more uniform solutions. This indi-
cator measures the even distribution of a set of points in d-
dimensional manifolds.



Definition 10 (Riesz s-energy individual contribution): The
individual contribution C of a solution ~a ∈ A to the Riesz
s-energy indicator is as follows:

CEs(~a,A) =
1

2
[Es(A)− Es(A \ {~a})] (11)

III. PREVIOUS RELATED WORK

In this section, we briefly describe three IB-MOEAs that
employ the indicators HV, R2 and IGD+ as the core of their
density estimators. A density estimator (DE) is the secondary
selection criterion and its main goal is to break ties when
solutions have the same dominance rank. Additionally, we
outline a hyper-heuristic in which the best indicator-based DE
(IB-DE), according to the problem being solved, is selected
from a pool of IB-DEs.

The S-Metric Selection Evolutionary Multi-Objective Algo-
rithm (SMS-EMOA) [3] is a steady-state MOEA that employs
Pareto dominance as its main selection criterion, and it adopts
a density estimator based on the HV indicator. At each gener-
ation, SMS-EMOA produces a single offspring which is added
to the main population. This joint population is then divided
into nondominated layers, using the nondominated sorting
algorithm [23]. If the worst layer (the one that is dominated
by all the remaining layers) has more than one solution, the
HV-based density estimator is in charge of deleting the worst-
contributing solution to the HV value. SMS-EMOA has been
extensively tested on different benchmark problems, showing
outstanding performance. Due to the HV preference, SMS-
EMOA selects solutions close to the Pareto front’s knee, al-
though, for linear Pareto fronts, it produces evenly distributed
solutions [11]. A recent study has empirically shown that the
distributions produced by SMS-EMOA on each MOP strongly
depend on the way in which the reference point is defined
[24], i.e., the reference point is a preference information on
preferable sets [25].

Following the SMS-EMOA scheme, the algorithms R2-
EMOA [12] and IGD+-Many Objective Evolutionary Algo-
rithm (IGD+-MaOEA) [13] have been proposed to reduce
SMS-EMOA’s computational cost and to exploit the properties
of the R2 and IGD+ indicators. The underlying idea of
both R2-EMOA and IGD+-MaOEA is to replace the HV-
based density estimator by the corresponding QI of each IB-
MOEA. On the one hand, R2-EMOA requires a set of convex
weight vectors5 as search directions and a scalarizing function
(SF) because of the use of the R2 indicator. In concave
and linear Pareto fronts, when using an adequated SF, R2-
EMOA produces evenly distributed solutions. However, for
disconnected, degenerated or for Pareto fronts which are not
strongly correlated to the simplex form [19], R2-EMOA has
several drawbacks because its convex weight vectors cannot
intersect the Pareto front completely. On the other hand,
Falcón-Cardona and Coello showed that the performance of
IGD+-MaOEA does not depend on the Pareto front shape.
IGD+-MaOEA was one of the first algorithms tested on the

5A weight vector ~w is a convex weight vector if and only if
∑m

i=1 wi = 1
and wi ≥ 0, i = 1, . . . ,m.

R2-EMOA

SMS-EMOA

Master island

Riesz s-energy-based archive

Fig. 1. cMIB-MOEA is composed of five islands (each one executing a
specific IB-MOEA) and a master island that manages a Riesz s-energy-based
archive. The communication between the master island and the other islands
is bidirectional.

Deb-Thiele-Laumanns-Zitzler minus (DTLZ−1) benchmarks
which was proposed by Ishibuchi et al. [19]. However, IGD+-
MaOEA is not able to produce evenly distributed solutions in
most problems. In some cases, for example, when dealing with
concave Pareto fronts, the distributions of IGD+-MaOEA are
similar to those of SMS-EMOA.

In 2018, Falcón-Cardona and Coello proposed the Multi-
Indicator Hyper-heuristic (MIHPS) whose main idea is to
select the best IB-DE from the pool {R2-DE, IGD+-DE, ε+-
DE, ∆p-DE}, depending on the MOP being solved. MIHPS is
based on the SMS-EMOA framework, but it probabilistically
selects a new IB-DE every Tw iterations. This decision is
biased by the past performance of the IB-DE on the global
convergence of MIHPS. If the IB-DE helped to improve
convergence, its selection probability is rewarded. Otherwise,
it is penalized. The experimental results showed that MIHPS
tends to prefer IGD+-DE, ε+-DE and ∆p-DE during the first
evolutionary stages and prefers R2-DE in the last generations.
Based on these results, the behavior of MIHPS is controlled
by an internal competition between all the IB-DEs. In other
words, each IB-DE competes with the others to be selected
as much as possible, which means that it has to produce
better convergence behavior in comparison with the remaining
heuristics. Hence, at the end of the evolutionary process, the
advantages and also the drawbacks of a single IB-DE are
predominant.

IV. OUR PROPOSED APPROACH

In this section, we describe our proposal, called Cooperative
Multi-Indicator-based MOEA (cMIB-MOEA). Our proposed
cMIB-MOEA relies on the cooperation of five IB-MOEAs:
SMS-EMOA, R2-EMOA, IGD+-MaOEA and two more IB-
MOEAs very similar to IGD+-MaOEA but using the indi-
cators ε+ and ∆p that are denoted as ε+-MaOEA and ∆p-
MaOEA, respectively. To make possible the cooperation be-
tween the IB-MOEAs, cMIB-MOEA uses an island model as
shown in Fig. 1. Additionally, a Riesz s-energy-based archive
A is employed to maintain uniformly distributed solutions
coming from the IB-MOEAs. Algorithm 1 outlines the master
island that controls each island associated with an IB-DE, and
it also manages A. cMIB-MOEA requires as a parameter a



set of indicators; in our case, we use HV, R2, IGD+, ε+, and
∆p. Each indicator is associated with the above mentioned IB-
MOEAs. For each indicator Ij , j = 1, . . . , k, a subpopulation
Pj of size µ/k is randomly initialized, where µ is the size
of A. Additionally, the structures of the jth IB-MOEA are
also initialized. Then, in line 5, the set of nondominated
solutions extracted from all the subpopulations is used to
initialize A. Lines 6 to 15 outline the main loop of cMIB-
MOEA. First, all the IB-MOEAs are independently executed
during fmig generations, using Algorithm 2, to updating their
corresponding subpopulations. In line 9, the current archive is
combined with all the subpopulations and, then, the set of non-
dominated solutions is extracted. If the contents of the archive
is greater than µ, a density estimator based on the Riesz s-
energy indicator is applied to reduce its size to µ. Finally,
in line 15, the migration process, described in Algorithm 3, is
executed. cMIB-MOEA returns the archive as its final solution
set. In the following, we describe Algorithms 2 and 3.

Algorithm 1 cMIB-MOEA general framework
Require: Number nmig of solutions to migrate; migration frequency

fmig; Population size µ; Set of indicators I = {I1, . . . , Ik}
Ensure: Pareto front approximation

1: Set archive A as empty
2: for j = 1 to k do
3: Randomly initialize subpopulation Pj of size µ/k
4: Initialize the j th IB-MOEA
5: A ← Nondominated(

⋃k
j=1 Pj)

6: while stopping criterion is not fulfilled do
7: for j = 1 to k do
8: Pj ← IB-MOEA(Pj , Ij , fmig)

9: A ← A∪
{⋃k

j=1 Pj

}
10: A ← Nondominated(A)
11: Obtain ~z∗ and ~znad from A to normalize A
12: while |A| > µ do
13: ~aworst ← arg max~a∈A CEs(~a,A)
14: A ← A \ {~aworst}
15: {P1, . . . , Pk} ←Migration(nmig, {P1, . . . , Pk}, {I1, . . . , Ik})
16: return A

Algorithm 2 describes the general framework proposed by
Beume et al. in SMS-EMOA [3]. However, in this case, we
describe it in a generic way so that the IB-MOEA works with
a given indicator I from the set {HV,R2, IGD+, ε+,∆p}.
Since each IB-MOEA is executed at every step of cMIB-
MOEA during fmig generations, this number is the stopping
condition of the loop in line 2. At every generation, a single
offspring is generated and, then, added to the main population.
The joint population Q is ranked, using the nondominated
sorting algorithm to produce the layers R1, . . . , Rt, where Rt

has the worst solutions according to the Pareto dominance
relation. If this layer has more than one solution, all the
individual contributions to the indicator I are calculated using
equation (9) and obtaining the solution ~rworst with the minimal
C value. Then, ~rworst is deleted from Q and P is updated in
line 11.

The migration process of cMIB-MOEA is rather simple.
If the archive has more than nmig solutions, then migration
is possible. To the jth population, we only migrate solutions

Algorithm 2 Generic steady-state IB-MOEA
Require: Population P ; Indicator I; migration frequency fmig
Ensure: Updated population P

1: g ← 0
2: while g < fmig do
3: Generate offspring ~q from population P
4: Q← P ∪ {~q}
5: Obtain ~z∗ and ~znad from Q and normalize it
6: {R1, . . . , Rt} ← NDsorting(Q)
7: if |Rt| > 1 then
8: ~rworst ← arg min~r∈Rt CI(~r,Rt)
9: else

10: ~rworst is the single solution in Rt

11: P ← Q \ {~rworst}
12: g ← g + 1
13: return P

from A that were not produced by the jth IB-MOEA. In other
words, Pj can receive solutions from all other populations
Pi, i 6= j. The selection of the nmig solutions to be migrated
to Pj is randomized. The selected nmig solutions will re-
place the worst nmig contributing solutions to the indicator
Ij , previously computed. In this case, we employ an elitist
replacement scheme.

Algorithm 3 Migration
Require: Number nmig of solutions to migrate; Set of subpopula-

tions {P1, . . . , Pk}; Set of indicators {I1, . . . , Ik}
Ensure: Updated subpopulations

1: if |A| > nmig then
2: for j = 1 to k do
3: if there are nmig solutions in A that were not produced

by the j th IB-MOEA then
4: Randomly select nmig solutions from A that were not

generated by the j th IB-MOEA
5: Replace from Pj its nmig worst-contributing solutions

to Ij , using the previously selected solutions
6: return {P1, . . . , Pk}

An essential aspect that it is worth to emphasize is why
we employ SMS-EMOA in spite of its high computational
cost. Hernández and Coello [26] empirically showed that when
using SMS-EMOA with micro-populations, i.e., populations of
no more than 30 individuals, then, the running time of SMS-
EMOA remains relatively constant although the number of
objective functions increases. Based on this fact, we set the
size of each subpopulation equals to µ/k such that this number
does not exceed 30 individuals.

V. EXPERIMENTAL RESULTS

In this section, we analyze the performance of cMIB-
MOEA6 when compared to panmictic versions of SMS-
EMOA, R2-EMOA, IGD+-MaOEA, ε+-MaOEA, and ∆p-
MaOEA. We adopted MOPs from the Deb-Thiele-Laumanns-
Zitzler (DTLZ) [27], Walking-Fish-Group (WFG) [28], Lamé
superspheres [29], Viennet (VIE) [21], and the DTLZ−1 and
WFG−1 test suites [19]. Table I summarizes the MOPs that we

6The source code of cMIB-MOEA is available at http://computacion.cs.
cinvestav.mx/∼jfalcon/cMIBMOEA/cMIB-MOEA.html

http://computacion.cs.cinvestav.mx/~jfalcon/cMIBMOEA/cMIB-MOEA.html
http://computacion.cs.cinvestav.mx/~jfalcon/cMIBMOEA/cMIB-MOEA.html


employed for two and three objective functions, emphasizing
their Pareto front shapes. For each test instance, we performed
30 independent executions. The performance of cMIB-MOEA
and the adopted IB-MOEAs was compared using the quality
indicators HV, R2, IGD+, ε+, ∆p. However, as each of these
QIs prefers the IB-MOEA that uses it as its IB-DE, we
decided to leave aside that IB-MOEA for a fair comparison.
For example, when comparing performance using HV, we
included all the adopted IB-MOEAs except for SMS-EMOA.
Additionally, we employed the Hausdorff distance as a neutral
convergence measure and the Solow-Polasky indicator for
diversity [30].

A. Parameters settings

For a fair comparison, cMIB-MOEA and the other IB-
MOEAs use the same population size µ as described in
Table II. For both two and three objective functions µ =

CH1+m−1
m−1 , where this combinatorial number determines how

many convex weight vectors (as required by R2-EMOA)
are generated via the Simplex-Lattice-Design method. All
subpopulations are set to µ/5, where five is the number of
subpopulations. The stopping criterion of all the MOEA is the
maximum number of function evaluations (MaxFeval). Addi-
tionally, Table II indicates the fmig and nmig parameters of
cMIB-MOEA. All the adopted IB-MOEAs utilize Simulated
Binary Crossover (SBX) and polynomial-based mutation as
their variation operators. In all cases, the crossover probability
and the mutation probability were set to 0.9 and 1/n (where
n is the number of decision variables), respectively. Both
the crossover distribution index and the mutation distribution
index are equal to 20. Regarding the MOPs, the number of
variables of problems DTLZ, DTLZ−1, Lamé and Mirror is
n = m+K − 1, where K = 10 for DTLZ2 and DTLZ5 and
their minus versions, K = 20 for DTLZ7 and DTLZ7−1, and
K = 5 in all Lamé and Mirror instances that are determined
by a different γ value as shown in Table I. Considering the
WFG and WFG−1 problems, the number of variables are 24
and 26 for two and three objectives, respectively, in both cases
the number of position-related parameters is two. The decision
space of the three Viennet problem is of dimension two.

B. Discussion of results

The comparison of cMIB-MOEA with the panmictic IB-
MOEAs has two main goals: 1) determine that the cooperation
between IB-MOEAs produces better global results, and 2)
show that cMIB-MOEA is a more general multi-objective opti-
mizer. Regarding the first goal, we compared the performance
of cMIB-MOEA with the other IB-MOEAs using the QIs:
HV, R2, IGD+, ε+, ∆p, Hausdorff distance and the Solow
Polasky indicator. From these QIs, the Hausdorff distance
is the only neutral convergence measure, i.e., none of the
MOEAs uses it as an IB-DE. Table III shows the mean and
standard deviation of all IB-MOEAs on each test instance,
regarding the Hausdorff distance. It is worth noting that the
reference set required by this metric (and also by IGD+, ε+,
and ∆p) was built uniformly sampling the true Pareto front of

TABLE I
ADOPTED MOPS IN THE STUDY. FOR EACH CASE, THE PARETO FRONT

GEOMETRY IS DESCRIBED, INDICATING IF IT IS CORRELATED WITH THE
SHAPE OF A SIMPLEX.

MOP Pareto front
shape Simplex-like

DTLZ2 Concave Yes
DTLZ2−1 Convex No

DTLZ5 Degenerate No
DTLZ5−1 Convex No

DTLZ7 Disconnected No
DTLZ7−1 Disconnected No

WFG1 Mixed Yes
WFG1−1 Mixed No

WFG2 Disconnected Yes
WFG2−1 Slightly concave No

WFG3 Degenerate No
WFG3−1 Linear No

Lamé γ = 0.25 Highly convex No
Lamé γ = 1.00 Linear Yes
Lamé γ = 5.00 Highly concave Yes
Mirror γ = 0.25 Highly concave No
Mirror γ = 1.00 Linear No
Mirror γ = 5.00 Highly convex No

VIE1 Convex No

VIE2 Mixed
(convex and degenerate) No

VIE3 Degenerate No

TABLE II
PARAMETERS ADOPTED IN THE COMPARISON. H1 AND H2 ARE THE

PARAMETERS FOR THE GENERATION OF THE SET OF WEIGHT VECTORS OF
THE R2-EMOA USED BY CMIB-MOEA AND THE CORRESPONDING

PANMICTIC VERSION.

Dim. H1 H2 µ µ/5 Maxfeval fmig nmig

2 19 99 100 20 50,000 20 5
3 5 13 105 21 60,000 21 5

all problems, producing sets of size 200 and 300 for two- and
three-dimensional MOPs, respectively. From Table III, cMIB-
MOEA is the best optimizer since it obtained the best value
in 14 out of 39 problems while SMS-EMOA obtained the
second-ranked MOEA, having the best result in 9 out of 39
MOPs. In order to reinforce the evidence that the cooperation
between the individual IB-MOEAs benefits cMIB-MOEA, we
also compared it using their baseline QIs, i.e., HV, R2, IGD+,
ε+, and ∆p. Due to space limitations, we do not show the
numerical tables7 here, but we summarize the results in Fig. 3.
This figure is a heat map that shows the number of times
that each IB-MOEA was ranked first or second according to
the above mentioned QIs. Based on this figure, cMIB-MOEA
is also the best optimizer regarding the HV, R2, and ∆p

indicators, and it obtained the second place for IGD+ and ε+.
cMIB-MOEA obtained the first place in 27 out of 39 MOPs,
regarding HV while for both R2 and ∆p, it is the best MOEA
in 22 test instances. As we explained above, the decision
of leaving aside, for example, SMS-EMOA when making an
HV-based comparison is to avoid the preference that HV has

7The complete study is available at http://computacion.cs.cinvestav.mx/
cMIB-MOEA/cMIB-MOEA.html.

http://computacion.cs.cinvestav.mx/cMIB-MOEA/cMIB-MOEA.html
http://computacion.cs.cinvestav.mx/cMIB-MOEA/cMIB-MOEA.html


Fig. 2. Pareto fronts generated by cMIB-MOEA and the adopted IB-MOEAs. Each front corresponds to the median of the Solow Polasky value.

towards SMS-EMOA and, with the aim of providing unbiased
results. In the light of the experimental results, we have the first
insight that the cooperation between individual IB-MOEAs
instead of using panmictic versions of them, improves the
quality of an optimizer. Since each individual IB-MOEA is
exploring and exploiting different regions of the Pareto front,
according to its QI-based preferences, cMIB-MOEA takes
advantage of the strengths of each IB-MOEA to improve the
global behavior. Additionally, we performed some experiments
in order to determine the impact of the migration process, and
we concluded that it helps to improve the search progress. In
consequence, we claim that the cooperation is the responsible
for getting better results, since cMIB-MOEA is the best
optimizer in four out of six convergence measures, i.e., HV,
R2, ∆p, and the Hausdorff Distance and it gets the second
place in the remaining ones, i.e., IGD+ and ε+.

The second goal of our experiments is to obtain evidence
showing that cMIB-MOEA is a more general optimizer, i.e.,
that its performance does not depend on the Pareto front shape
as it happens with other MOEAs [19]. Once we know that
cMIB-MOEA had better convergence results, it is possible to
analyze the Pareto fronts of all the adopted IB-MOEAs using
the Solow Polasky Diversity indicator (SPD). Fig. 3 reveals
that distributions generated by cMIB-MOEA have the best
SPD value in 33 out of 39 test instances. In consequence,
cMIB-MOEAs outperforms the panmictic versions of SMS-
EMOA, R2-EMOA, IGD+-MaOEA, ε+-MaOEA, and ∆p-
MaOEA, which indicates that its performance is good when
dealing with complex Pareto front shapes as shown in Table I.
Figure 2 shows a comparison of Pareto fronts produced by
cMIB-MOEA and the adopted IB-MOEAs. From this figure,
we can see that the cMIB-MOEA produces evenly distributed
Pareto fronts independently of the associated geometry. This

Fig. 3. Heat map that revels the number of times an IB-MOEA was ranked
first or second according to the indicators HV, R2, IGD+, ε+, ∆p, and Solow
Polasky (SPD).

behavior is not as evident in the other IB-MOEAs.

VI. CONCLUSIONS

In this paper, we proposed an MOEA based on the island
model that takes advantage of the cooperation of five indicator-
based MOEAs and one archive based on the Riesz s-energy in-
dicator. The adopted IB-MOEAs are SMS-EMOA, R2-EMOA,
IGD+-MaOEA, ε+-MaOEA, and ∆p-MaOEA, based on the
indicators HV, R2, IGD+, ε+, and ∆p, respectively. Based
on our experimental results, we empirically showed that our
approach, denoted as cMIB-MOEA, is better than panmictic
versions of the individual IB-MOEAs and it also is a more
general optimizer since its performance does not depend on
the Pareto front shapes. As part of our future work, we are



TABLE III
MEAN AND STANDARD DEVIATION (IN PARENTHESES) OF THE HAUSDORFF DISTANCE. A SYMBOL # IS PLACED WHEN CMIB-MOEA PERFORMED

SIGNIFICANTLY BETTER THAN THE OTHER IB-MOEAS BASED ON A ONE-TAILED WILCOXON TEST, USING A SIGNIFICANCE LEVEL OF α = 0.05. THE
TWO BEST VALUES ARE SHOWN IN GRAY SCALE, WHERE THE DARKER TONE CORRESPONDS TO THE BEST VALUE.

Problema Dim. cMIB-MOEA SMS-EMOA R2-EMOA IGD+ -MaOEA ε+ -MaOEA ∆p -MaOEA

DTLZ2 2
1.105384e-02

(9.270729e-04)
3.173838e-02#
(1.613701e-03)

9.590904e-03
(1.391367e-04)

5.901683e-02#
(8.997635e-03)

5.888548e-02#
(1.039106e-02)

2.202810e-02#
(1.382455e-02)

3
1.092411e-01

(5.923393e-03)
1.594444e-01#
(4.319644e-03)

9.818462e-02
(4.189210e-04)

1.976556e-01#
(1.981525e-02)

1.924996e-01#
(2.326289e-02)

1.390080e-01#
(1.353515e-02)

DTLZ2−1 2
3.788524e-02

(2.808735e-03)
7.352529e-02#
(4.638478e-03)

1.631498e+00#
(2.864086e-01)

3.803191e-01#
(9.505168e-02)

3.970059e-01#
(9.754773e-02)

6.172824e-02#
(7.946931e-03)

3
3.699226e-01

(1.824022e-02)
4.168909e-01#
(1.539622e-02)

1.384586e+00#
(1.464603e-01)

1.289982e+00#
(1.636542e-01)

1.288563e+00#
(1.892405e-01)

5.732136e-01#
(9.746681e-02)

DTLZ5 2
1.144525e-02

(2.091661e-03)
3.121338e-02#
(1.973508e-03)

9.483349e-03
(1.314487e-04)

5.586760e-02#
(9.183465e-03)

6.197110e-02#
(1.253256e-02)

1.841037e-02#
(5.364925e-03)

3
1.222078e-02

(4.516118e-03)
3.331912e-02#
(1.979639e-03)

7.259896e-02#
(3.636487e-02)

5.756635e-02#
(1.250585e-02)

5.937786e-02#
(1.155631e-02)

1.846343e-02#
(3.622081e-03)

DTLZ5−1 2
3.811842e-02

(2.470698e-03)
7.833632e-02#
(4.100489e-03)

1.611194e+00#
(2.759175e-01)

3.779225e-01#
(1.242316e-01)

4.104359e-01#
(1.043483e-01)

6.285257e-02#
(1.445305e-02)

3
3.144057e-01

(1.871137e-02)
3.854935e-01#
(1.594254e-02)

1.375219e+00#
(2.965503e-01)

1.158505e+00#
(1.802020e-01)

1.223359e+00#
(2.628891e-01)

5.038938e-01#
(1.127651e-01)

DTLZ7 2
6.069350e-02

(2.496451e-01)
2.115424e-02

(1.394340e-03)
5.462852e-02

(6.044331e-02)
7.816969e-02#
(2.465541e-01)

3.257727e-02
(7.789854e-03)

3.384385e-02
(2.748613e-02)

3
3.477614e-01

(4.239738e-01)
6.813853e-01#
(4.366072e-01)

3.168888e-01
(2.950831e-01)

4.690831e-01#
(3.918240e-01)

6.705290e-01#
(6.218506e-01)

6.520370e-01#
(5.645169e-01)

DTLZ7−1 2
8.858600e-03

(4.680836e-03)
1.180794e-02#
(1.042123e-03)

3.498117e-02#
(1.530521e-02)

1.713431e-02#
(5.742480e-03)

1.656072e-02#
(4.531754e-03)

1.278824e-02#
(2.264126e-03)

3
5.376569e-01

(1.845419e-01)
5.226155e-01

(1.108634e-01)
5.009742e-01

(1.179733e-01)
5.716971e-01#
(1.722787e-01)

5.834904e-01#
(1.787834e-01)

5.136677e-01
(1.140769e-01)

WFG1 2
1.872677e+00
(6.490135e-01)

2.144039e+00#
(4.656587e-01)

2.781527e+00#
(4.513154e-01)

2.084150e+00#
(5.979649e-01)

2.274507e+00#
(2.864709e-01)

2.260408e+00#
(2.907941e-01)

3
2.779055e+00
(3.589481e-01)

2.299031e+00
(2.955950e-01)

2.842268e+00#
(3.041895e-01)

3.108680e+00#
(3.236080e-01)

3.227137e+00#
(1.808980e-01)

3.084785e+00#
(3.347422e-01)

WFG1−1 2
2.193076e+00
(6.692088e-01)

2.460818e+00#
(3.054873e-01)

3.587648e+00#
(3.319739e-02)

2.425968e+00#
(5.121160e-01)

2.487955e+00#
(5.919251e-01)

2.010333e+00
(7.165466e-01)

3
3.023132e+00
(7.234743e-01)

3.178590e+00#
(4.988111e-01)

3.663829e+00#
(3.787046e-02)

3.568923e+00#
(1.927237e-01)

3.704674e+00#
(4.030209e-02)

3.484878e+00#
(2.869542e-01)

WFG2 2
6.510102e-01

(4.642023e-01)
7.509476e-01#
(4.184325e-01)

7.049981e-01#
(3.837817e-01)

8.250346e-01#
(3.655539e-01)

5.792721e-01
(4.581925e-01)

7.594202e-01#
(4.075064e-01)

3
1.478811e+00
(1.087477e-01)

1.992816e+00#
(6.342904e-02)

1.977591e+00#
(5.231918e-02)

2.117238e+00#
(1.639465e-01)

2.142116e+00#
(2.007878e-01)

1.461806e+00
(2.294549e-01)

WFG2−1 2
2.872757e-02

(3.355407e-03)
2.506092e-02

(1.060659e-03)
1.617072e-01#
(6.794276e-02)

4.626452e-02#
(7.036978e-03)

4.659729e-02#
(7.037695e-03)

4.722215e-02#
(5.741114e-03)

3
4.547563e-01

(3.543713e-02)
1.343296e+00#
(6.894212e-02)

7.481390e-01#
(6.541303e-02)

9.564823e-01#
(1.533654e-01)

9.681967e-01#
(1.663861e-01)

6.546428e-01#
(1.130453e-01)

WFG3 2
3.433451e-02

(2.669749e-03)
2.694516e-02

(1.619053e-03)
5.124899e-01#
(1.930205e-01)

5.335781e-02#
(1.258117e-02)

4.742735e-02#
(1.091492e-02)

5.758475e-02#
(1.446585e-02)

3
2.153750e+00
(3.335947e-02)

2.094386e+00
(4.249273e-02)

2.120770e+00
(4.575346e-02)

1.437151e+00
(1.419643e-01)

1.394558e+00
(1.555797e-01)

1.737576e+00
(1.254863e-01)

WFG3−1 2
3.115905e-02

(2.233907e-03)
2.413419e-02

(8.927896e-04)
4.257092e-01#
(1.720072e-01)

5.551999e-02#
(1.297264e-02)

5.153979e-02#
(1.523855e-02)

5.393184e-02#
(1.070818e-02)

3
3.271397e-01

(1.790222e-02)
4.234791e-01#
(2.478000e-02)

5.930895e-01#
(9.457878e-02)

4.351743e-01#
(4.750045e-02)

5.659076e-01#
(1.642249e-01)

4.833494e-01#
(1.070514e-01)

LAME γ = 0.25
2

1.022964e-01
(4.251508e-04)

7.199513e-02
(1.597357e-03)

7.790940e-01#
(5.055874e-02)

4.493894e-01#
(6.963783e-02)

4.163650e-01#
(8.842754e-02)

1.076818e-01#
(1.009479e-02)

3
2.181521e-01

(9.166538e-02)
3.306315e-01#
(4.715269e-02)

7.909163e-01#
(3.595584e-02)

7.110521e-01#
(4.389321e-02)

7.342863e-01#
(2.043919e-02)

2.176095e-01
(5.148371e-02)

LAME γ = 1.00
2

1.233049e-02
(1.295561e-02)

7.492362e-03
(2.686326e-04)

9.955142e-02#
(5.413129e-02)

1.391223e-02
(2.175235e-03)

1.414534e-02#
(2.384110e-03)

1.657829e-02#
(4.202435e-03)

3
8.615970e-02

(1.671945e-02)
7.227939e-02

(4.298681e-03)
6.209480e-02

(4.602889e-03)
1.097183e-01#
(1.840681e-02)

1.210148e-01#
(2.856508e-02)

1.039719e-01#
(1.373382e-02)

LAME γ = 5.00
2

3.559403e-02
(1.292145e-03)

1.401908e-01#
(1.961413e-03)

3.420893e-02
(7.261769e-05)

2.214712e-01#
(1.573873e-02)

2.128242e-01#
(1.431933e-02)

3.450596e-02
(2.787760e-03)

3
1.350820e-01

(8.562792e-03)
3.581202e-01#
(9.384830e-03)

1.500124e-01#
(2.721855e-04)

4.019987e-01#
(1.775541e-02)

3.900596e-01#
(3.091858e-02)

1.837234e-01#
(2.418483e-02)

MIRROR γ = 0.25
2

4.790673e-02
(2.298588e-03)

1.691297e-01#
(4.416528e-03)

4.996473e-02
(3.078737e-05)

2.797045e-01#
(1.626290e-02)

2.887144e-01#
(2.052701e-02)

4.789617e-02
(2.289451e-03)

3
4.546330e-02

(4.264168e-03)
2.399739e-01#
(3.823196e-03)

9.488459e-02#
(1.195802e-02)

3.408904e-01#
(1.539832e-02)

4.277988e-01#
(1.271120e-01)

4.936646e-02#
(5.774740e-03)

MIRROR γ = 1.00
2

9.824648e-03
(8.012889e-04)

7.610307e-03
(2.856453e-04)

8.211471e-02#
(4.629837e-02)

1.297673e-02#
(1.605581e-03)

1.339788e-02#
(2.260016e-03)

1.584752e-02#
(3.354279e-03)

3
8.149582e-02

(4.428020e-03)
9.869028e-02#
(3.037584e-03)

1.355981e-01#
(1.433308e-02)

1.017920e-01#
(1.173971e-02)

1.077039e-01#
(1.064985e-02)

1.177466e-01#
(2.897291e-02)

MIRROR γ = 5.00
2

6.923700e-02
(3.416160e-03)

5.861688e-02
(1.416267e-03)

7.132397e-01#
(5.417028e-02)

3.364190e-01#
(4.422825e-02)

3.267493e-01#
(5.924901e-02)

6.846537e-02
(4.729740e-03)

3
1.304210e-01

(8.209513e-03)
3.406023e-01#
(3.904404e-03)

7.781739e-01#
(2.151215e-02)

7.651215e-01#
(5.207308e-02)

7.749160e-01#
(4.590298e-02)

2.092879e-01#
(2.264808e-02)

VIE1 3
1.552675e+00
(7.068297e-02)

1.474508e+00
(5.003594e-03)

1.165155e+00
(2.271376e-01)

1.086031e+00
(3.372768e-01)

1.112837e+00
(3.207447e-01)

1.556628e+00
(9.208280e-02)

VIE2 3
6.330866e-02

(1.959696e-02)
8.020737e-02#
(7.431943e-03)

4.439421e-01#
(2.447103e-01)

5.004996e-01#
(1.673603e-01)

5.041798e-01#
(1.984323e-01)

6.229146e-02
(1.629636e-02)

VIE3 3
3.597395e+01
(6.800830e-03)

3.597358e+01
(2.920827e-03)

3.578840e+01
(1.476454e-01)

3.575047e+01
(1.663358e-01)

3.575928e+01
(1.427880e-01)

3.595831e+01
(2.397284e-02)



interested in a more in-depth study of the behavior of cMIB-
MOEA, focusing on the impact of the migration mechanisms
in order to speed up convergence. We are also interested in
studying the behavior of cMIB-MOEA when tackling many-
objective optimization problems.
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