
Parallel Best Order Sort for Non-dominated Sorting:
A Theoretical Study Considering the PRAM-CREW

Model
Sumit Mishra1,2 and Carlos A. Coello Coello3

1Department of Computer Science & Engineering,
Indian Institute of Information Technology Guwahati, Assam – 781015, INDIA

2Departamento de Computación, CINVESTAV-IPN, Mexico City, MEXICO
3Departamento de Sistemas, UAM-Azcapotzalco, Mexico City, MEXICO

Email: sumit@iiitg.ac.in, ccoello@cs.cinvestav.mx

Abstract—In the current paper we focus on parallelization of
non-dominated sorting which is an essential step in Pareto-based
multi-objective evolutionary algorithms. The parallel approaches
can help to reduce the overall execution time of multi-objective
evolutionary algorithms. Although there have been some propos-
als to parallelize non-dominated sorting algorithms, most of them
have focused on the fast non-dominated sort algorithm proposed
by Deb et al. This paper explores the scope of parallelism
in a recently proposed approach known as Best Order Sort,
which was proposed by Roy et al. We focus on two different
ways of achieving parallelism in Best Order Sort. The time and
space complexity of these two parallel schemes is also analyzed
theoretically considering the PRAM CREW model.

Index Terms—Multi-objective optimization, Dominance, Non-
dominated sorting, Parallelism

I. INTRODUCTION

Pareto-based multi- and many-objective evolutionary al-
gorithms heavily rely on non-dominated sorting which is a
process in which solutions are sorted and placed in different
non-dominated fronts based on the dominance relationship
between them. Let there be N solutions in population P =
{sol1, sol2, . . . , solN} which need to be sorted into various
non-dominated fronts. Let’s consider that M objectives are
associated with each solution. A solution soli ∈ P can
be represented in M -dimensional objective space as soli =
{f1(soli), f2(soli), . . . , fM (soli)}. Here, fm(soli), 1 ≤ m ≤
M denotes the value of soli for the mth objective. Without loss
of generality, the minimization problem where all the objective
values need to be minimized, is considered. In minimization
problems, the dominance relation among solutions can be
described as follows. A solution soli is said to dominate
another solution solj denoted as soli ≺ solj iff the two
following conditions are satisfied:
• fm(soli) ≤ fm(solj),∀m ∈ {1, 2, . . . ,M}
• fm(soli) < fm(solj),∃m ∈ {1, 2, . . . ,M}.
When a solution soli does not dominate solj , this is repre-

sented as soli ⊀ solj . Two solutions soli and solj are said to
be non-dominated when neither soli ⊀ solj nor solj ⊀ soli.
Non-dominated sorting can be formally defined as follows.

Definition 1 (Non-dominated Sorting). Given N solutions
{sol1, sol2, . . . , solN}, non-dominated sorting divides N solu-
tions into K(1 ≤ K ≤ N) fronts {F1, F2, . . . , FK} organized
in decreasing order of their dominance such that
• ∀soli, solj ∈ Fk: soli⊀solj and solj ⊀ soli (1 ≤ k ≤ K)
• ∀sol ∈ Fk, ∃sol′ ∈ Fk−1: sol′ ≺ sol (1 < k ≤ K)

In these sorted fronts, F1 is the front with highest dominance,
F2 is the front with the second highest dominance and so on.

Different non-dominated sorting algorithms [1]–[14] are
available in the literature. Some of the most recent proposals
focus on parallel versions. These parallel algorithms [12]–
[14] have mainly focused on Fast non-dominated sort [1].
However, other proposals such as Jensen’s approach [2],
ENS [6], DCNS [8], [15] and BOS [7] among others, are
also suitable for parallelization. In this paper, we focus on
the parallelization of a rceent approach known as Best Order
Sort (BOS) [7]. BOS is one of the most efficient approaches
currently available which saves several dominance compar-
isons. We discuss the parallelism in BOS in two different ways
and, consequently, two different parallel versions are proposed
considering PRAM CREW model. The time complexity of
these parallel versions is theoretically analyzed in different
scenarios. The space complexity of these parallel versions is
also analyzed.

The rest of the paper is organized as follows: Some of
the approaches for non-dominated sorting are described in
Section II. Best Order Sort along with its complexity is
illustrated in Section III. In Section IV, we discuss the comput-
ing environment which is adopted for our parallel algorithm.
Parallelism in BOS is explored in Section V. Another parallel
approach is described in Section VI. Finally, Section VII
concludes the paper and provides some future research paths.

II. PREVIOUS RELATED WORK

The proposed approaches for non-dominated sorting can be
broadly classified into two categories – sequential and divide-
and-conquer. First we discuss the sequential approaches. Srini-

vas et al. [16] proposed the so-called naive approach where
a maximum of N − 1 and a minimum of 1 comparisons
between a pair of solutions can be performed. The worst and
the best case time complexity of this approach is O(MN3)
and O(MN2), respectively. The space complexity is O(N).
Deb et al. [1] proposed fast non-dominated sort to improve
the O(MN3) time complexity. The time complexity of this
approach is O(MN2) with space complexity O(N2). Mc-
Clymont et al. [3] developed two approaches: Deductive sort
and Climbing sort (the first one performs better than the second
one). The dominance relationship is used to make this ap-
proach efficient. Deductive sort has worst case time complexity
O(MN2) and best case time complexity O(MN

√
N).

Zhang et al. [6] proposed a framework called ENS (Efficient
Non-dominated Sorting). Two approaches (ENS-SS and ENS-
BS) were proposed based on the ENS framework. The worst
case time complexity of both approaches is O(MN2). The
best case time complexity of ENS-SS is O(MN

√
N) and

that of ENS-BS is O(MN logN). Bao et al. [11] devel-
oped a Hierarchical Non-dominated Sorting (HNDS) approach
with worst and best case time complexity O(MN2) and
O(MN

√
N), respectively. Some other approaches have no-

ticed that for a solution to be inserted into a front, there is
no need to compare this solution with all the solutions of
that front. Best Order Sort (BOS) [7], T-ENS (Tree Based
Efficient Non-dominated Sorting) [9] and ENS-NDT (Efficient
Non-dominated Sorting Based on Non-Dominance Tree) [10]
are such approaches. In T-ENS, a front is represented as a
tree to reduce the number of dominance comparisons. The
best case time complexity of T-ENS is O(MN logN/logM) and
the worst case time complexity is O(MN2). ENS-NDT [10]
is proposed by extending EBS-BS [6]. ENS-NDT has a best
case time complexity O(MN logN) and a worst case time
complexity O(MN2).

Mishra et al. [17] has modified BOS to handle duplicate
solutions efficiently. Recently, the generalized version of BOS
called Generalized Best Order Sort (GBOS) was proposed.
This approach handles duplicate solutions efficiently and re-
tains the comparison set concept of BOS [18]. Bounded Best
Order Sort (BBOS) [19] is an improved version of BOS. The
worst case time complexity of BBOS is O(MN2) and the best
case time complexity is O(MN logN). Recently, Moreno et
al. [20] improved the performance of non-dominated sorting
by especially focusing on Best Order Sort. Their work is
experimental. However, we have focused here on its theoretical
aspects.

Now divide-and-conquer based approaches are discussed. A
recursive approach was proposed by Jensen et al. [2] with time
complexity O(N logM−1 N). However, Jensen’s approach is
not always correct. Fortin et al. [4] modified Jensen’s ap-
proach to make it correct. Fortin’s approach has a worst case
time complexity O(MN2) and an average case complexity
O(N logM−1 N). Mishra et al. [8], [15] also proposed a
framework called DCNS (Divide-and-conquer Based Non-
dominated Sorting) with worst case time complexity O(MN2)
and best case time complexity O(MN logN).

III. BEST ORDER SORT

We discuss first the serial version of Best order sort (BOS).
We consider here the updated version of BOS1 where duplicate
solutions are also handled. BOS works in two phases. In the
first phase, sorting of the solutions is performed based on
every objective. In the second phase, rank is assigned to the
solutions. Algorithm 1 summarizes the steps of BOS.

Algorithm 1 INITIALIZATION OF BOS
Input: P: Set of N solutions where each solution is associated with M objectives
Output: Ranked solutions

// Global variables
1: Li

j ← ∅, ∀j = 1, 2, . . . ,M , ∀i = 1, 2, . . . , N // Stores the solutions with rank
i whose rank has been assigned based on the jth objective

2: isRankeds ← FALSE, ∀s ∈ P // Solutions ranked or not
3: NR← 0 // Stores the no. of solutions which have been ranked
4: NF← 1 // Stores the no. of fronts which have been discovered
5: Rs ← 0, ∀s ∈ P // Store the rank of each solution
6: for each j ∈ {1, 2, . . . ,M} do
7: Qj ← Sort N solutions based on the jth objective

Initially, N ×M empty sets denoted by Li
j are initialized,

where 1 ≤ j ≤M and 1 ≤ i ≤ N . Li
j stores the solutions with

rank i which have been assigned based on the jth objective.
The ranking status of each solution s, whether it is ranked
or not, is stored in a variable isRankeds. Variable NR stores
the number of solutions which have been ranked. Variable NF
stores the number of discovered fronts. Variable Rs stores the
rank of solutions s. Now, the solutions are sorted based on each
of the M objectives in ascending order. The list Qj stores the
sorted order of the solutions based on the jth objective. The
ith solution of list Qj is denoted by Qj(i).

Algorithm 2 performs the actual non-dominated sorting.
Here, M sorted lists are considered as a matrix of size N×M
known as ‘sorted matrix’ where the jth column represents Qj .
For ranking purpose, the solutions are considered from this
matrix in a row-wise manner, starting from the first column
to the last one, until all the solutions are ranked. When all
the solutions are ranked, the process of sorted matrix traversal
stops. Let a solution s be traversed in the jth column of the
sorted matrix. Algorithm 2 first checks whether s has already
been ranked or not (line 4). If s has been already ranked,
then s is added to LRs

j (line 5). Otherwise, s is ranked using
Algorithm 3. Once s is ranked, isRankeds is set to ‘TRUE’
(line 8) so that s is not ranked again.

When a solution s is assigned the rank based on the jth

objective using Algorithm 3, then s is compared with Lk
j (1 ≤

k ≤ NF) in a sequential manner. When s is non-dominated
with respect to every solution of Lk

j , then s is assigned the
rank k and s is added to Lk

j . If s is dominated by any of
the solutions of Lk

j (1 ≤ k ≤ NF), then the rank count is
incremented by one and the updated rank count is the rank of
solution s. After this, s is added to LRs

j .
The sorted order of the solutions based on each of the

M objectives is stored in a list of size N . Thus, O(MN)
space is required to store M sorted lists. N × M sets are
also considered, which requires O(MN) space. Thus, the

1https://github.com/Proteek/Best-Order-Sort/

Algorithm 2 MAIN STEP OF BOS
Input: Sorted set of solutions, Q1, Q2, . . . , QM

Output: Rank of each solution s ∈ P
1: for i← 1 to N do
2: for j ← 1 to M do
3: s← Qj(i) // Consider ith solution from Qj

4: if isRankeds = TRUE then // s is ranked or not
5: LRs

j ← LRs
j ∪ {s} // Include s to LRs

j

6: else // s is not ranked
7: FINDRANK(s, j) // Find the rank of s based on the jth objective
8: isRankeds ← TRUE
9: NR← NR + 1 // Increase the no. of ranked solutions

10: if NR = N then // All the solutions are ranked
11: BREAK // Non-dominated sorting finished

Algorithm 3 FINDRANK
Input: s: Solution which need to be ranked, j: List number where s has been found
Output: Rank of s
1: ranked← FALSE // Solution s is not yet ranked
2: for k ← 1 to NF do // Check all the fronts sequentially
3: isDominates← FALSE // s is non-dominated with respect to Lk

j

4: for t ∈ Lk
j do // for all solutions in Lk

j

5: isDominates← ISDOMINATES(t, s) // Check if t dominates s or not
6: if isDominates = TRUE then // t dominates s
7: BREAK
8: if isDominates = FALSE then // s is non-dominated with Lk

j

9: Rs ← k
10: ranked← TRUE
11: LRs

j ← LRs
j ∪ {s} // Include s in LRs

j

12: BREAK
13: if ranked = FALSE then // Solution s is not yet ranked
14: NF← NF + 1 // Increase the no. of fronts
15: Rs ← NF
16: LRs

j ← LRs
j ∪ {s} // Include s in LRs

j

space required by BOS is O(MN). The time complexity of
BOS, T (N,M) depends on the two steps: (i) sorting of the
solutions based on each objective, Tpresort(N,M) and (ii) rank
assignment, Trank(N,M).

T (N,M) = Tpresort(N,M) + Trank(N,M) (1)

The time complexity to sort the solutions based on ev-
ery objective, i.e., Tpresort(N,M) is O(MN logN) + (M −
1)O(N logN) = O(MN logN) considering heap sort [7],
[18]. Now, we analyze the time complexity of BOS in two
different scenarios. In these scenarios, different situations are
considered.

A. Number of fronts is 1

We discuss the time complexity of BOS in three different
situations when the number of fronts is 1.
1. All the solutions are the same (in terms of objective
values): In this case, Q1, Q2, . . . , QM have the same order
of the solutions. Thus, the solution in every column of an
individual row of the sorted matrix is the same. Thus, a
solution is explored for the first time in the matrix when it is
found in the first column and the solution is ranked. Thus, a
solution which is explored first time in the ith row, is compared
with the already ranked i−1 solutions which have been ranked
based on the first objective. Thus, the time complexity of the

second phase is given by Eq. (2). The time complexity of BOS
in this situation is given by Eq. (3).

Trank(N,M)=

N∑
i=1

M(i−1)=M
1

2
N(N−1)=O(MN2) (2)

T (N,M)=O(MN logN) +O(MN2)=O(MN2) (3)

2. Worst Case: Let there be no duplicate solutions. In the worst
case scenario, the first to the (M − 2)th objective values of
every solution is the same, however, the values of the last two
objectives should be able to declare all the solutions as non-
dominated. Here, Q1, Q2, . . . , QM−1 have the same order of
the solutions and in QM , it is just the opposite to Q1. Thus, the
solution in the first to the (M − 1)th column of an individual
row of the sorted matrix are the same and the solution in the
last column is different. Hence, two solutions are ranked in
each row – the first one from the first column and the second
one from the last column. So, all the solutions are ranked when
they are traversed in the initial N/2 rows of the sorted matrix.
Thus, a solution which is traversed for the first time in the
jth column (j ∈ {1,M}) of the ith row, is compared with the
already ranked i− 1 solutions which have been ranked based
on the jth objective. Hence, the time complexity of the second
phase is given by Eq. (4). The time complexity of BOS in this
situation is given by Eq. (5).

Trank(N,M)=
∑N/2

i=1
M [2(i−1)]

=M1/4N(N−2)=O(MN2) (4)

T (N,M)=O(MN logN) +O(MN2)=O(MN2) (5)

3. Best Case: In this scenario, traversal of the sorted matrix
follows a particular pattern. Here, before a solution is traversed
for the second time in the matrix, all the solutions should be
traversed at least one time. So, M solutions are ranked in each
row. Thus, all the solutions are ranked in initial N/M rows of
the sorted matrix. When M > N , then initial M solutions of
first row are ranked. Thus, a solution which is explored for the
first time in the ith row and the jth column, is compared with
the already ranked i − 1 solutions which have been ranked
based on the jth objective. Hence, the time complexity of the
second phase is given by Eq. (6). The time complexity of the
second phase is O(N) when M ≥ N as all the solutions will
be ranked in the first row itself. Hence, the time complexity
of BOS in this situation is given by Eq. (7) when M ≥ N .

Trank(N,M)=
∑N/M

i=1
M [M(i−1)]=1

2
N(N−M) (6)

T (N,M)=O(MN logN) +O(N)=O(MN logN) (7)

B. Number of fronts is N

Here, Q1, Q2, . . . , QM have the same order of the solutions.
Thus, the solution in every column of an individual row of the
sorted matrix are the same. Thus, a solution is explored for
the first time in the matrix when it is found in the first column
and the solution is ranked. Thus, a solution which is explored
for the first time in the ith row, is compared with the already
ranked i − 1 solutions which have been ranked based on the

first objective. Thus, the time complexity of the second phase
is given by Eq. (8). The overall time complexity of BOS is
given by Eq. (9).

Trank(N,M)=

N∑
i=1

M(i−1)=M
1

2
N(N−1)=O(MN2) (8)

T (N,M)=O(MN logN) +O(MN2)=O(MN2) (9)

IV. COMPUTING ENVIRONMENT FOR PARALLELISM

In this paper, we assume the PRAM CREW (Parallel
random-access machine with Concurrent Read, Exclusive
Write) model, as considered in [12]. This model is the earliest
as well as one of the best-known model of parallel computa-
tion. In this model, the same memory location can be read
by multiple processors simultaneously. However, the same
memory location cannot be written at the same time. Since
simultaneous write operations are not allowed, we design the
algorithm in such a way that no concurrent write operations
occur.

V. SCOPE OF PARALLELISM

BOS has two phases. The first phase involves sorting of
the solutions based on the second to the M th objective in
a parallel manner. The solutions are sorted based on the
first objective before sorting the solutions based on other
objectives as the sorted order based on the first objective
is used to decide the ordering when two solutions share a
common value for second to the M th objective. The worst
case time complexity of the parallel version of the first phase
is O(MN logN)+O(N logN) = O(MN logN). In the best
case, the time complexity is O(N logN) + O(N logN) =
O(N logN). To further improve the time complexity of the
parallel version, we can use the parallel sorting algorithm
while sorting the solutions. There are two ways to do this:
(i) use parallel merge sort while sorting and (ii) use parallel
merge sort and a parallel merge procedure in parallel merge
sort.
• Parallel merge sort without parallelism in the merge

procedure: Parallel merge sort requiresO(N) time to sort
N numbers. The overall worst case time complexity to
sort the solutions based on the first to the M th objective
is O(MN)+O(N) = O(MN) and the time complexity
in the best case is O(N) +O(N) = O(N).

• Parallel merge sort with parallelism in the merge
procedure: Parallel merge sort requires O(log3 N) time
to sort N numbers where the merge procedure also has
parallelism. The overall worst case time complexity to
sort the solutions based on the first to the M th objective is
O(M log3 N)+O(log3 N) = O(M log3 N) and the time
complexity in the best case is O(log3 N)+O(log3 N) =
O(log3 N).

The steps of the parallel version of BOS are summarized
in Algorithm 4. In the second phase of BOS, the solutions
can be ranked based on different objectives simultaneously. A
solution can be ranked a maximum of M times, corresponding

Algorithm 4 INITIALIZATION OF PARALLEL BOS
Input: P: Set of N solutions where each solution is associated with M objectives
Output: Ranked solutions

// Global variables
1: Li

j ← ∅, ∀i = 1, 2, . . . , N , ∀j = 1, 2, . . . ,M // Stores the solutions with rank
i whose rank has been assigned based on the jth objective

2: isRankeds[1, 2, . . . ,M]← FALSE, ∀s ∈ P // Solution s ranked or not based on
each of the objectives

3: NFj ← 1, ∀j = 1, 2, . . . ,M // Number of fronts discovered so far for the jth

objective
4: Rs[1, 2, . . . ,M]← 0, ∀s ∈ P // Rank of solution s based on each of the

objectives
/* START OF PARALLEL SECTION */

5: for each j ∈ {1, 2, . . . ,M} do
6: Qj ← Sort N solutions based on the jth objective

/* END OF PARALLEL SECTION */

to each of the M objectives. However, the rank of a solution
will be the same even if it will be ranked based on different
objectives. To avoid concurrent write to assign the same
rank to a solution based on different objectives (by different
processors), we store the rank of a solution s in an array Rs[]
of size M . Rs[j] indicates the jth entry in the array and stores
the rank of a solution s based on the jth objective. To check
the status of a solution s whether it is ranked or not based on
any of the M objectives, an array isRankeds[] is used whose
length is M . ‘TRUE’ at the jth position in this array signifies
that s has been ranked based on the jth objective. To keep the
number of discovered fronts when the solutions are ranked
based on a particular objective (say the jth), a variable NFj

is used.
Actual non-dominated sorting is performed in Algorithm 5.

To rank the solutions in a parallel manner, the solutions in
each column of a particular row of the sorted matrix are
ranked simultaneously. A solution s is ranked based on the
jth objective using Algorithm 6. Once the rank is assigned
to the solution based on the jth objective, isRankeds[j] is set
to ‘TRUE’ (line 5). After assigning rank to the solution of
each column of a particular row of the sorted matrix, we find
whether every solution has been ranked based on at least one
objective or not (line 7). If all the solutions have been ranked,
then the process stops; otherwise, we rank the solutions of the
next row of the sorted matrix.

In Algorithm 6, solution s is compared with Lk
j (1 ≤ k ≤

NFj) in a sequential manner. Once s is found to be non-
dominated with respect to all the solutions of Lk

j (line 8),
then s is assigned the rank k and s is added to Lk

j . If s is
dominated by any of the solutions of Lk

j (1 ≤ k ≤ NFj) (line
13), then rank count NFj is incremented by one and then, the
updated rank count is the rank of solution s. After this, s is
added to L

Rs[s]
j .

Check whether all the solutions have been ranked or
not: We can check whether all the solutions have been ranked
or not in a parallel manner considering isRankeds[] array for
each solution s. As the length of a particular array is M so
we process this array at logM different levels using an ‘OR’
operation. At the lth level, there will be M/2l ‘OR’ operations.
A solution is said to be ranked even if it has been ranked based
on at least one objective. So, the ‘OR’ operation is considered,

Algorithm 5 MAIN LOOP OF PARALLEL BOS
Input: Sorted set of solutions, Q1, Q2, . . . , QM

Output: Rank of each solution s ∈ P
1: for i← 1 to N do

/* START OF PARALLEL SECTION */
2: for j ← 1 to M do
3: s← Qj(i) // Take ith element from Qj

4: FINDRANK PARALLEL(s, j) // Find the rank of s based on the jth objective
5: isRankeds[j]← TRUE // Rank has been assigned to s based on the jth

objective
/* END OF PARALLEL SECTION */

6: Find whether all the N solutions in the population have been ranked or not using
isRankeds[] in a parallel manner

7: if All the solutions have been ranked then
8: BREAK

Algorithm 6 FINDRANK PARALLEL
Input: Solution s and List number j
Output: Rank of s
1: ranked← FALSE // Solution s is not yet ranked based on the jth objective
2: for k ← 1 to NFj do // for all discovered ranks based on the jth objective
3: isDominates← FALSE // s is non-dominated with Lk

j

4: for t ∈ Lk
j do // for all solutions in Lk

j

5: isDominates← ISDOMINATES(t, s) // Find whether t dominates s or not
6: if isDominates = TRUE then // t dominates s
7: BREAK
8: if isDominates = FALSE then // s is non-dominated with Lk

j

9: Rs[j]← k // Assign rank to s based on the jth objective
10: ranked← TRUE // Rank is assigned to s based on the jth objective
11: L

Rs[j]
j ← L

Rs[j]
j ∪ {s} // Include s to L

Rs[j]
j

12: BREAK
13: if ranked = FALSE then // Solution s is not yet ranked based on the jth objective
14: NFj ← NFj + 1 // Update rank count based on the jth objective
15: Rs[j]← NFj // Assign rank to s based on the jth objective
16: L

Rs[j]
j ← L

Rs[j]
j ∪ {s} // Include s to L

Rs[j]
j

as its output is ‘TRUE’ when any of its inputs is ‘TRUE’. After
processing the array at the last level, we get a single value
(either ‘TRUE’ or ‘FALSE’). ‘TRUE’ indicates that the solution
has been ranked and ‘FALSE’ indicates that the solution has
not been ranked. The time required to process a particular
array in a parallel manner is O(logM) because various ‘OR’
operations at a level can be performed simultaneously. There
are total of N such arrays, corresponding to N solutions.
All these arrays can be processed simultaneously, so the time
required to process all isRankeds[] arrays in a parallel manner
is O(logM).

After processing each isRankeds[] array we get single
value. So, at the end we have N values corresponding to N
such arrays. These N values are processed at logN levels
using an ‘AND’ operation. At the lth level, there will be N/2l

‘AND’ operations. After processing these N values, we get a
single value (either ‘TRUE’ or ‘FALSE’) after the last level.
‘TRUE’ indicates that all the solutions have been ranked and
‘FALSE’ indicates that not all the solutions have been ranked.
The time required to process these N values in a parallel
manner is O(logN) as all the ‘AND’ operations at a level can
be performed simultaneously. Thus, the time to check whether
all the solutions have been ranked or not using isRankeds[] ar-
rays for each solution s is O(logM)+O(logN) = O(logN).

Example 1. Consider a population P = {sol1, sol2, sol3, sol4}
with 4 objectives. isRankeds[] array for each solution s is

T T T F T T T F T T T F F F F F

FFTT

FT

TT T T

TT

sol1 sol2 sol3 sol4

Ranked Ranked Ranked Not Ranked

FT

F

AND AND

AND

Level-1

Level-2

OR OR OR OR OROROROR

OR OR OR OR

All the solutions are not ranked

T: True

F: False

: : :Level-2

: : :Level-1

Fig. 1: Checking whether four solutions are ranked or not in
a parallel manner. Four objectives are associated with each of
the eight solutions

shown in Fig. 1 where the length of each array is 4 as the
number of objectives is 4. The value of each of these arrays are
chosen randomly just to show the use of these arrays. Each of
these arrays are processed in a parallel manner. Once these
arrays are processed, we get four values corresponding to
each array. These four values are then processed in a parallel
manner at 2(= log 4) level to get a final value. As the final
value is ‘FALSE’ not all the solutions are ranked.

A. Parallelism in Dominance Comparisons

The dominance relationship between every pair of solutions
can be obtained in advance in a parallel manner in O(M) time
and stored in a 2D matrix (say Mdom) as done in [12]. We
call this 2D matrix ‘Dominance Matrix’. The dominance com-
parison between a pair of solutions takes O(M) time and all
the pairs of solutions can be compared simultaneously, so the
time complexity to obtain the dominance matrix in a parallel
manner is O(M). The Mdom[i][j] cell of the dominance matrix
stores the dominance relationship between soli and solj . The
O(M) time complexity to obtain the dominance matrix can be
further improved if a pair of solutions can be compared in less
time. For this purpose, we create two Boolean arrays of size
M . The first array (say Aij) stores whether soli is better than
solj for all the M objectives and the second array (say Aji)
stores whether solj is better than soli for all the M objectives.

In the process of checking whether soli is better than solj for
all the M objectives, if the objective value of soli is better than
(less than) the objective value of solj for the same objective,
then the corresponding cell of the array Aij is set to ‘TRUE’;
otherwise, it is set to ‘FALSE’. In the same manner, array Aji

can also be filled. Both arrays Aij and Aji are processed in
a parallel manner. As the size of the array is M , so these
arrays are processed in logM levels. At each level, an ‘OR’
operation is performed between two consecutive array cells. At
the lth level, we perform M/2l ‘OR’ operations. After the ‘OR’
operation at the last level, we get either ‘TRUE’ or ‘FALSE’.

After processing Aij and Aji, we have two values corre-
sponding to these two arrays. Let the final value corresponding
to Aij and Aji be denoted by Result1 and Result2 respectively.
With the help of Result1 and Result2, the dominance relation-
ship between soli and solj is identified as follows.
(i) Result1 = Result2 = FALSE: Solutions soli and solj

are the same (in terms of objective values).

1 2 3 1

1 2 4 1

soli

solj

F F T F

F T

T

OR

OROR

Aij

1 2 4 1

1 2 3 1

soli

solj

F F F F

F F

F

OR

OROR

Aij

Result1 Result2

soli dominates solj

Fig. 2: Obtain the dominance relationship between soli and
solj in a parallel manner

(ii) Result1 = Result2 = TRUE: Solutions soli and solj
are non-dominated.

(iii) Result1 = TRUE and Result2 = FALSE: Solution soli
dominates solj .

(iv) Result1 = FALSE and Result2 = TRUE: Solution soli
is dominated by solj .

Arrays Aij and Aji can be filled in O(1) time in parallel.
The time to process the arrays Aij and Aji in a parallel
manner is O(logM). The reason being that various ‘OR’
operations at an individual level can be performed in a
parallel manner. Hence, it requires O(logM) time to find the
dominance relationship between every pair of solutions. Thus,
the dominance matrix can be obtained in O(logM) time in
parallel. Now, we discuss the procedure to find the dominance
relation between two solutions with the help of an example.

Example 2. Let there be two solutions soli = {1, 2, 3, 1}
and solj = {1, 2, 4, 1} in a 4-dimensional space. To find
the dominance relationship between these two solutions, we
compare soli with solj to fill array Aij and compare solj with
soli to fill array Aji. These two arrays are shown in Fig. 2.
These two arrays are processed in a parallel manner using
‘OR’. After processing Aij , we are getting ‘TRUE’ and after
processing Aji, we are getting ‘FALSE’ which means that soli
dominates solj . The complete process to obtain the dominance
relationship between the two solutions is shown in Fig. 2.

Space Complexity to obtain the Dominance Matrix in
Parallel: In this process, a solution is compared with another
one using a Boolean array of size M . So, the space required
is O(M). The number of pairs of the solutions is N2 so, the
space required to obtain the dominance matrix in parallel is
O(MN2). The size of the dominance matrix is N ×N which
requires O(N2) space.

If the dominance matrix is obtained in advance in parallel
in O(logM) time, then it requires O(1) time to find the
dominance relationship between the solutions as only a lookup
in the dominance matrix will be required.

Avoiding Checking ranked solutions: We can avoid
checking whether all the solutions have been ranked or not
after ranking the solutions of a particular row of the sorted
matrix. For this purpose, we do not have to create an array
of size M for each solution to store the rank, rather the rank
of a solution can be stored in a single variable itself. In this
case, when the solution is ranked, then while assigning rank

to it, we have to check whether it is simultaneously ranked by
other processors or not to avoid a write collision. This type of
scenario is considered in [20]. However, in our work we are
focusing on the algorithms where no such type of collision
occurs. Now, we discuss the time complexity of the second
phase of parallel BOS in two different scenarios in which the
complexity is analyzed in the serial version of BOS.

B. Number of fronts is 1

We discuss the time complexity of the second phase of BOS
in three different situations as discussed for the serial version
of BOS.
1. All the solutions are the same: In this situation, the time
complexity of rank assignment is given by Eq. (10).

T∞rank(N,M)= logM +
∑N

i=1
(i−1)+ logN

= logM + 1/2N(N−1)+N logN

=O(logM +N2) (10)

2. Worst Case: Let there be no duplicate solutions. In this
situation, the time complexity of rank assignment is given by
Eq. (11).

T∞rank(N,M)= logM +
∑N/2

i=1
(i−1)+ logN

= logM + 1/8N(N−2)+1/2N logN

=O(logM +N2) (11)

3. Best Case: In this situation, the time complexity of rank
assignment is given by Eq. (12). This time complexity im-
proves with an increase in the number of objectives. The
time complexity is O(logN) when M ≥ N as the first row
solutions are traversed only.

T∞rank(N,M)= logM +
∑N/M

i=1
(i−1)+ logN

= logM +
1

2M2
N(N−M)+

N

M
logN (12)

C. Number of fronts is N

The time complexity of rank assignment is given by
Eq. (13).

T∞rank(N,M)= logM +
∑N

i=1
(i−1)+ logN

= logM + 1/2N(N−1)+N logN

=O(logM +N2) (13)

D. Space Complexity

We discuss the space complexity of parallel BOS. In the
first phase, merge sort is used which requires O(N) space to
sort N solutions. As the solutions are sorted based on each
of the M objectives individually, so the space required for the
first phase is O(MN). The space required to store M sorted
lists is O(MN). The space required to store N × M sets
is O(MN). The space complexity to obtain the dominance
matrix is O(MN2) and the space complexity of storing the
dominance matrix is O(N2). As there are N solutions, so the
space required to store the rank of all the solutions based on

all the M objectives is O(MN). The space required to store
isRankeds[] arrays for all the N solutions is O(MN). The
number of discovered fronts based on each of the M objectives
requires O(M) space. Thus, the overall space required by the
parallel version of BOS is O(MN2).

VI. FURTHER IMPROVEMENT

In the previous parallel version, a solution s is compared
with the solutions of Lk

j a in a sequential manner. However,
this comparison can also be performed in a parallel manner.

Algorithm 7 PARALLEL FINDRANK-2
Input: Solution s and List number j
Output: Rank of s
1: ranked← FALSE // Rank is not yet assigned to s based on the jth objective
2: for k ← 1 to NFj do // for all discovered ranks based on the jth objective
3: isNondominated[1, 2, . . . , |Lk

j |]← FALSE // An array of length |Lk
j | to store

the dominance relation of s with the solutions of Lk
j

/* START OF PARALLEL SECTION */
4: for t ∈ Lk

j do // for all solutions in Lk
j

5: isNondominated[t]← ISNON-DOMINATED(t, s) // Find whether t is
non-dominated with s or not

/* END OF PARALLEL SECTION */
6: Find whether s is non-dominated with Lk

j // This can be checked by processing
the isNondominated[] array in a parallel manner

7: if s is non-dominated with every solution of Lk
j then

8: Rs[j]← k // Assign rank to s based on the jth objective
9: ranked← TRUE // Rank is assigned to s based on the jth objective

10: L
Rs[j]
j ← L

Rs[j]
j ∪ {s} // Include s to L

Rs[j]
j

11: BREAK
12: if ranked = FALSE then // Rank is not yet assigned to s based on the jth objective
13: NFj ← NFj + 1 // Update rank count based on the jth objective
14: Rs[j]← NFj // Assign rank to s based on the jth objective
15: L

Rs[j]
j ← L

Rs[j]
j ∪ {s} // Include s to L

Rs[j]
j

Algorithm 7 is used to assign rank to a solution s based
on the jth objective in an improved manner as compared to
Algorithm 6. In this procedure, solution s is compared with
Lk
j (1 ≤ k ≤ NFj) in a parallel manner. Solution s is compared

with every solution of Lk
j simultaneously and the dominance

relationship of s with every solution of Lk
j is stored in a

Boolean array of size njk where njk = |Lk
j |. The comparison

of s with every solution of Lk
j in a parallel manner can take

O(1) time as we already have the dominance matrix. ‘TRUE’
in this Boolean array indicates that s is non-dominated with
a particular solution of Lk

j , whereas ‘FALSE’ indicates that s
is dominated by a particular solution of Lk

j . After obtaining
the array, it is processed in a parallel manner at log njk levels
using ‘AND’ operation between two consecutive values. The
number of ‘AND’ operations at the lth level is njk/2l. After
processing the array at the last level, we get a final value.
‘TRUE’ signifies that s is non-dominated with respect to every
solution of Lk

j and ‘FALSE’ signifies that s is dominated by
at least one of the solutions of Lk

j . All ‘AND’ operations
can be performed at the same time at each level, so the time
complexity to process the Boolean array is O(log njk).

When s is non-dominated with every solution of Lk
j (line

7), then s is assigned the rank k and s is added to Lk
j . If s is

dominated by any of the solutions of Lk
j (1 ≤ k ≤ NFj) (line

12), then rank count NFj is incremented by one and then, the
updated value of rank count is the rank of solution s. After
this, s is added to L

Rs[j]
j .

sol1 sol2 sol3 sol4

True True True False

True False

False

sol

AND AND

AND

: : :Level-1

: : :Level-2

Compare sol with all the four

solutions simultaneously

Store the domi-

nance relation of

sol with all four

solutions

Fig. 3: Parallel comparison of sol with all the solutions of a
front which are ranked based on the same objective.

Example 3. Let there be four solutions {sol1, sol2, sol3, sol4}
which have been ranked (say based on the jth objective) as
shown in Fig. 3. Let’s assume that there is a solution ‘sol’
which needs to be compared with these four solutions. In the
previous parallel version, sol is compared with all these four
solutions in a sequential manner. However, in this parallel
version sol can be compared with all these four solutions
simultaneously. After comparison, the dominance relation of
sol with all the four solutions are stored in an array of size
four. As the size of the array which stores the dominance
relation is 4, so we process this array at log 4 different levels
using ‘AND’ operations. After processing the array at two
levels, we are getting ‘FALSE’ which indicates that sol is
dominated by at least one of these four solutions.

We discuss the time complexity of rank assignment of the
improved version of parallel BOS in two different scenarios.

A. Number of fronts is 1

The time complexity of rank assignment is discussed in
three different situations as discussed for the serial version of
BOS.
1. All the solutions are the same: When all the solutions are
duplicate, then the time complexity of the rank assignment is
obtained by Eq. (14).

T∞rank(N,M)= logM+1+ logN+
∑N

i=2
1+dlog ie+ logN

= logM+2N logN+1

=O(logM+N logN) (14)

2. Worst Case: Let there be no duplicate solutions, then the
time complexity of the rank assignment in the worst case is
given by Eq. (15).

T∞rank(N,M)= logM+1+ logN+
∑N/2

i=2
1+dlog ie+ logN

= logM+N logN−N/2+1

=O(logM+N logN) (15)

3. Best Case: Time complexity of rank assignment in the best
case is given by Eq. (16). When M ≥ N , then the first row of
the matrix is traversed and T∞rank(N,M) becomes O(logN).

T∞rank(N,M)= logM+1+ logN+
∑N/M

i=2
1+dlog ie+ logN

= logM+2N/M logN−N/M logM+1 (16)

B. Number of fronts is N

The time complexity of rank assignment is given by
Eq. (17).

T∞rank(N,M)= logM+
∑N

i=1
(i−1)+ logN

= logM+1/2N(N−1)+N logN

=O(logM+N2) (17)

C. Space Complexity

We discuss the space complexity of the improved parallel
BOS. The improved version is the same as the previous
parallel version except for the improved FINDRANK()
procedure which is discussed in Algorithm 7. The space
complexity of the previous parallel version is O(MN2). In
the improved FINDRANK() procedure, an array is considered
in line 3 of Algorithm 7. The maximum size of this array
can be N . As ranking is performed based on M objectives
simultaneously, so this array can be used by each of the M
processors. Hence, the space required to store this array is
O(MN). Thus, the space complexity of the improved parallel
version is O(MN2).

Discussion: The time complexity of the parallel version of
the first phase in the best case is O(log3 N) when all the
solutions have a different value for the first objective. The
best case time complexity of the parallel version of the
second phase is O(logN) (see Eqs. (12) and (16)). Thus,
the best case time complexity of the parallel version of BOS
is O(log3 N) + O(logN) = O(log3 N). In [12], the time
complexity of the parallel version of non-dominated sorting is
proved to be O(M + N). The best case time complexity of
the parallel version of BOS is O(log3 N) which is better than
O(M+N) as proved in [12]. The worst case time complexity
of the parallel BOS is O(logM+N2) (see Eqs. (13) and (17))
which is not good as compared to the time complexity reported
in [12].

VII. CONCLUSIONS & FUTURE WORK

In the current paper, we have explored the scope of par-
allelism in an efficient algorithm for non-dominated sorting
(BOS) in two different manners. We have analyzed the time
complexity of two parallel versions in different scenarios. The
space complexity is also analyzed. In this paper, we have
focused on the parallelism from a theoretical point of view.
In the future, we would like to find the scope of parallelism
in other approaches as well. It would also be interesting to
explore whether a divide-and-conquer based strategy can be
utilized in BOS to explore its parallelization. An important
question for non-dominated sorting is how to obtain the lower
bound on its time complexity and we aim to pursue this goal.

ACKNOWLEDGEMENTS

The second author is on sabbatical leave from CINVESTAV-
IPN. He gratefully acknowledges support from CONACyT
grant no. 2016-01-1920 (Investigación en Fronteras de la
Ciencia 2016).

REFERENCES

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA–II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, April 2002.

[2] M. T. Jensen, “Reducing the Run-Time Complexity of Multiobjective
EAs: The NSGA-II and Other Algorithms,” IEEE Transactions on
Evolutionary Computation, vol. 7, no. 5, pp. 503–515, October 2003.

[3] K. McClymont and E. Keedwell, “Deductive Sort and Climbing Sort:
New Methods for Non-dominated Sorting,” Evolutionary Computation,
vol. 20, no. 1, pp. 1–26, Spring 2012.

[4] F.-A. Fortin, S. Greiner, and M. Parizeau, “Generalizing the Improved
Run-Time Complexity Algorithm for Non-dominated Sorting,” in 2013
Genetic and Evolutionary Computation Conference (GECCO’2013).
New York, USA: ACM Press, July 2013, pp. 615–622.

[5] H. Wang and X. Yao, “Corner Sort for Pareto-Based Many-Objective
Optimization,” IEEE Transactions on Cybernetics, vol. 44, no. 1, pp.
92–102, January 2014.

[6] X. Zhang, Y. Tian, R. Cheng, and J. Yaochu, “An Efficient Approach to
Nondominated Sorting for Evolutionary Multiobjective Optimization,”
IEEE Transactions on Evolutionary Computation, vol. 19, no. 2, pp.
201–213, April 2015.

[7] P. C. Roy, M. M. Islam, and K. Deb, “Best Order Sort: A New
Algorithm to Non-dominated Sorting for Evolutionary Multi-objective
Optimization,” in Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference Companion. Denver, Colorado, USA: ACM
Press, July 20-24 2016, pp. 1113–1120.

[8] S. Mishra, S. Saha, and S. Mondal, “Divide and Conquer Based Non-
dominated Sorting for Parallel Environment,” in 2016 IEEE Congress
on Evolutionary Computation (CEC’2016). Vancouver, Canada: IEEE
Press, 24-29 July 2016, pp. 4297–4304.

[9] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A Decision Vari-
able Clustering-Based Evolutionary Algorithm for Large-Scale Many-
Objective Optimization,” IEEE Transactions on Evolutionary Computa-
tion, vol. 22, no. 1, pp. 97–112, February 2018.

[10] P. Gustavsson and A. Syberfeldt, “A New Algorithm Using the Non-
dominated Tree to Improve Non-dominated Sorting,” Evolutionary Com-
putation, vol. 26, no. 1, pp. 89–116, September 2018.

[11] C. Bao, L. Xu, E. D. Goodman, and L. Cao, “A Novel Non-dominated
Sorting Algorithm for Evolutionary Multi-Objective Optimization,”
Journal of Computational Science, vol. 23, pp. 31–43, November 2017.

[12] C. Smutnicki, J. Rudy, and D. Zelazny, “Very Fast Non-dominated
Sorting,” Decision Making in Manufacturing and Services, vol. 8, no.
1-2, pp. 13–23, 2014.

[13] S. Gupta and G. Tan, “A Scalable Parallel Implementation of Evolution-
ary Algorithms for Multi-Objective Optimization on GPUs,” in 2015
IEEE Congress on Evolutionary Computation (CEC’2015). Sendai,
Japan: IEEE Press, 25-28 May 2015, pp. 1567–1574.

[14] G. Ortega, E. Filatovas, E. M. Garzon, and L. G. Casado, “Non-
dominated Sorting Procedure for Pareto Dominance Ranking on Multi-
core CPU and/or GPU,” Journal of Global Optimization, vol. 69, no. 3,
pp. 607–627, November 2017.

[15] S. Mishra, S. Saha, S. Mondal, and C. A. Coello Coello, “A Divide-And-
Conquer Based Efficient Non-dominated Sorting Approach,” Swarm and
Evolutionary Computation, vol. 44, pp. 748–773, February 2019.

[16] N. Srinivas and K. Deb, “Multiobjective Optimization Using Nondomi-
nated Sorting in Genetic Algorithms,” Evolutionary Computation, vol. 2,
no. 3, pp. 221–248, Fall 1994.

[17] S. Mishra, S. Saha, and S. Mondal, “MBOS: Modified Best Order
Sort Algorithm for Performing Non-dominated Sorting,” in 2018 IEEE
Congress on Evolutionary Computation (CEC’2018). Rio de Janeiro,
Brazil: IEEE Press, July 8–13 2018, pp. 725–732.

[18] S. Mishra, S. Mondal, S. Saha, and C. A. Coello Coello, “GBOS:
Generalized Best Order Sort Algorithm for Non-dominated Sorting,”
Swarm and Evolutionary Computation, vol. 43, pp. 244–264, December
2018.

[19] P. C. Roy, K. Deb, and M. M. Islam, “An Efficient Nondominated
Sorting Algorithm for Large Number of Fronts,” IEEE Transactions on
Cybernetics, no. 99, pp. 1–11, 2018.

[20] J. Moreno, G. Ortega, E. Filatovas, J. Martı́nez, and E. Garzón,
“Improving the Performance and Energy of Non-dominated Sorting
for Evolutionary Multiobjective Optimization on GPU/CPU Platforms,”
Journal of Global Optimization, pp. 1–19, 2018.

