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Abstract—One of the bottlenecks in steady-state multi-
objective evolutionary algorithms (MOEAs) is non-dominated
sorting because it is performed every time whenever a new
offspring is generated. The recent literature shows that there is
no requirement to perform the complete non-dominated sorting
procedure because the entire structure of non-domination level
(NDL) does not change. Some approaches have been recently
proposed based on this idea. In this paper, we update our
previous work where an offspring is inserted into the set of
fronts, to further reduce the number of dominance comparisons.
Additionally, we also explore parallelism in the updated approach
in two different manners considering the PRAM CREW model.
Finally, the time and space complexities of two parallel versions
is theoretically analyzed.

Index Terms—Evolutionary multi-objective optimization
(EMO) algorithms, Non-domination level (NDL), Non-dominated
sorting, Parallelism.

I. INTRODUCTION

In the past decade, evolutionary algorithms have attracted a
lot of attention because of their applicability in solving differ-
ent problems with multiple objectives [1], [2]. Evolutionary al-
gorithms which are used to solve multi-objective optimization
problems (MOOPs) are termed as Multi-Objective Evolution-
ary Algorithms (MOEAs). Based on their selection scheme,
MOEAs can be classified in two groups: (1) generational and
(2) steady-state [3], [4]. In case of generational MOEAs, a set
of offspring solutions is generated which may compete just
among themselves or also with their parent solutions. How-
ever, in steady-state MOEAs, when a new offspring solution
is generated, the parent population is updated to accommodate
the new offspring solution. So, in case of steady-state MOEAs,
the non-domination level (NDL) structure of the solutions
changes when a new offspring is generated. The working
flow of a steady-state MOEA is summarized in Algorithm 1.
Here, when a new offspring solution is generated, the full
non-dominated sorting [1] process needs to be performed. Let
the initial population be P = {sol1, sol2, . . . , solN} which
contains N solutions and each solution has M objectives. Non-
dominated sorting classifies these N solutions into K fronts

which are arranged in decreasing order of their dominance
F = {F1, F2, . . . , FK} such that
• All the solutions of a particular front are non-dominated

with each other.
• Every solution of a front is dominated by one of the

solutions in its previous front.
The cardinality of the front Fk is nk, so N = n1 + n2 +

. . .+nK . A solution is said to be non-dominated with a front
F , if it is non-dominated with respect to all the solutions of
F .

Algorithm 1 Working Flow of Steady-State EMO Algorithm
Input: Parameters of the algorithm
Output: Population P

1: Population initialization P← {sol1, sol2, . . . , solN}
2: while terminating condition is not satisfied do
3: soloff ← Generate an offspring solution
4: P← P ∪ {soloff}
5: Apply non-dominated sorting on population P and obtain

different fronts
6: Find the worst solution solworst from the sorted fronts
7: P← P \ {solworst}
8: return P

One simple solution to change the NDL structure is to apply
non-dominated sorting considering the new offspring solution
along with the existing solutions. A number of approaches
have been proposed in the past for this purpose. The worst
case time complexity of the naive approach [5] is O(MN3)
and the best case time complexity is O(MN2). Deb et al. [1]
developed an approach to improve the performance of the
naive approach, with worst case time complexity O(MN2).
A divide-and-conquer based approach was proposed by Jensen
et al. [6] with a time complexity O(N logM−1 N). A divide-
and-conquer based approach was also proposed by Fang et
al. [7] with a worst case time complexity O(MN2) and a best
case time complexity O(MN logN). This approach does not
handle duplicate solutions correctly as one duplicate solution
is considered as dominated by another. An approach based on



arena’s principle was developed by Tang et al. [8] with best
case time complexity O(MN

√
N) [9].

Deductive and Climbing sort were developed by Mc-
Clymont et al. [10]. These approaches infer the dominance
relationship between two solutions in order to reduce the
number of dominance comparisons. The worst case time com-
plexity of Deductive and Climbing sort is O(MN2). However,
Deductive sort performs better than Climbing sort. The best
case time complexity of Deductive sort is O(MN

√
N). Wang

et al. [11] proposed corner sort specially for many-objective
cases. This approach has a worst case time complexity
O(MN2). The limitation of Jensen’s approach was removed
by Fortin et al. [12] with a worst case time complexity
O(MN2). Buzdalov et al. [13] proved the time complexity
to be O(N logM−1 N).

An efficient non-dominated sorting (ENS) approach was
developed by Zhang et al. [9]. This approach works in two
phases. Solutions are sorted based on a particular objective in
the first phase. In the second phase, the solutions are taken
from this sorted order to assign them to different fronts. The
sorting in the first phase helps in reducing many unnecessary
dominance comparisons. Two variants called ENS-SS and
ENS-BS, are proposed. The worst case time complexity of
both variants is O(MN2). The best case time complexity of
ENS-SS is O(MN

√
N) and for ENS-BS is O(MN logN). A

divide-and-conquer based approach was proposed by Mishra
et al. [14], [15] also with a best case time complexity
O(MN logN). Recently, Bao et al. [16] proposed a Hier-
archical Non-dominated Sorting (HNDS) approach. The worst
case time complexity of HNDS is O(MN2) and its best case
time complexity is O(MN

√
N).

Best Order Sort (BOS) was proposed by Roy et al. [17].
BOS requires a lower number of dominance comparisons to
sort the solutions. Mishra et al. [18] has generalized BOS by
retaining the comparison set concept while handling dupli-
cate solutions efficiently. The authors of BOS have recently
proposed an improved version of BOS namely Bounded Best
Order Sort (BBOS) [19]. A tree-based approach called T-
ENS was proposed by Zhang et al. [20]. The best case time
complexity of T-ENS is O(MN logN/logM). The worst case
time complexity of T-ENS is O(MN2). Based on ENS-
BS [9], a tree-based approach called ENS-NDT was developed
by Gustavsson et al. [21]. This approach was developed to
significantly reduce the number of dominance comparisons
performed even though its worst case time complexity is
O(MN2). This approach handles duplicate solutions effi-
ciently.

Some approaches for non-dominated sorting focus on their
efficient parallel implementation. These approaches have ex-
plored the parallelism in fast non-domitaed sorting [1]. A
very fast non-dominated sorting procedure was proposed by
Smutnicki et al. [22]. The time complexity of this parallel
approach was proved to be O(M + N). Gupta et al. [23]
proposed a parallel version which adopts GPUs. Three parallel
versions were proposed by Ortega et al. [24] which are based
on the use of multicores, GPUs and their combination. The

parallelsim in BOS [17] has been analyzed in [25] considering
multicore and GPUs. The parallelism in ENS [9] has been
theoretically analyzed by Mishra et al. [26].

Algorithm 2 Steady-State EMO Algorithm to change the NDL
structure
Input: Parameters of the algorithm
Output: Population P

1: Population initialization P← {sol1, sol2, . . . , solN}
2: Perform non-dominated sorting on P
3: while stopping condition is not satisfied do
4: soloff ← Generate an offspring solution
5: P← P ∪ {soloff}
6: Insert soloff in existing non-dominated fronts using our

approach
7: Find the worst solution solworst
8: P← P \ {solworst}
9: Remove solworst from the existing non-dominated fronts

10: return P

The incorporation of an offspring solution in the population
does not change the entire NDL structure of the solutions [4],
[27]–[29]. So, it becomes unnecessary to perform the complete
non-dominated sorting again. Several approaches [4], [27],
[29] have been proposed where the NDL structure is changed
without performing the complete non-dominated sorting. In
these approaches, the new offspring solution is inserted into
the existing set of non-dominated fronts. The working flow
of a steady-state MOEA which uses these approaches is
summarized in Algorithm 2. In this algorithm, the set of
solutions is sorted using non-dominated sorting at once. When
a new offspring solution is generated, it is inserted into the
existing set of fronts without performing the complete non-
dominated sorting. Drozdik et al. [30] developed an M-front
based approach with worst case time complexity O(MN2).
Buzdalov et al. [27] proposed an approach which is only
suitable for 2 objectives. Mishra et al. [28] developed a dom-
inance matrix based approach to restrict multiple dominance
comparisons between the same pair of solutions in different
generations of steady-state MOEAs. Li et al. [4] developed
a generic approach which is suitable for any number of
objectives. The worst case time complexity of this approach
is O(MN2), however, the maximum number of dominance
comparisons is 1

4N
2. The time complexity in the best case

is O(M) which is a significant improvement over the best
case time complexity of non-dominated sorting approaches.
A tree based approach was proposed by Mishra et al. [29].
Another approach developed by Yakupov et al. [31] has a
time complexity O(N logM−2 N).

In this paper, we focus on updating the NDL structure
of the solutions after the insertion of an offspring solution.
Special attention is given to reduce the number of dominance
comparisons. For this purpose, we have updated the approach
proposed in [4], [29]. Although the worst case time complexity
of the proposed approach is same as reported in [4], [29],
the number of dominance comparisons may be reduced. Our
proposed approach considers the sorted order of the existing
solutions based on the first objective and this sorted order



of the solutions is used to reduce the number of dominance
comparisons. The parallel version of the proposed approach
is also explored considering the PRAM CREW model as this
model is the earliest as well as one of the best-known model
of parallel computation. In this regard, we have focused on the
parallelism in two different manners and the time complexity
of these two versions is also analyzed.

The rest of this paper is organized as follows. Our proposed
approach is described in Section II. Its parallel version as
well as its complexity analysis are discussed in Section III.
Another parallel version with an improved time complexity
is illustrated in Section IV. Finally, Section V concludes the
paper and provides some possible paths for future research.

II. OUR PROPOSED APPROACH

This section describes the procedure to insert an off-
spring solution soloff in the sorted set of fronts F =
{F1, F2, . . . , FK} which are organized in decreasing order of
their dominance. In this approach, we are considering that
the initial set of fronts is obtained by ENS [9], DCNS [14],
[15], ENS-NDT [21] or T-ENS [20]. The reason is that these
approaches initially sort the solutions based on an individual
objective (generally the first objective) and we require this
sorted order. We can also use any other sorting algorithms.
However, in that case, we need to sort all the solutions based
on an individual objective. This sorting is performed only
once.

The procedure to insert an offspring solution into the set
of fronts which are arranged in decreasing order of their
dominance, is summarized in Algorithm 3. The input to this
procedure is the solution to be inserted soloff, the set of fronts
F = {F1, F2, . . . , FK} and the sorted list of solutions based
on the first objective denoted as sL. Here, we first find the
correct position of soloff in the sorted set of fronts, then
the position of solutions in the existing set of fronts are
updated whenever required. To find the proper position of
soloff, this solution is compared with the solutions of every
front in F starting from the first front to the last until its
proper position has been identified. Two solutions sol and sol ′

are compared using DOMRELATION(sol, sol ′) procedure. This
procedure can return any of the following three values:
• 0: When sol and sol ′ both are non-dominated.
• 1: When sol dominates sol ′.
• −1: When sol is dominated by sol ′.

When soloff is compared with a solution of front Fk(1 ≤ k ≤
K), then there can be three possibilities:

i. If soloff is non-dominated with respect to a particular
solution of Fk (line 6), then soloff is compared with other
solutions of Fk.

ii. If soloff is dominated by a particular solution of Fk (line
8), then soloff is compared with the solutions of the next
front Fk+1 as soloff cannot be inserted into Fk. If soloff is
dominated by minimum one solution from all the existing
K fronts (line 26), then soloff is inserted into new front
FK+1.

Algorithm 3 INSERT(F , soloff, sL)
Input: F = {F1, F2, . . . , FK}, soloff: An offspring solution which

is to be inserted into F , sL: Sorted solutions based on the first
objective

Output: Updated set of fronts when soloff is inserted
1: for k ← 1 to K do
2: ndCount← 0
3: Sdom ← ∅ // Set of dominated solutions by soloff
4: for j ← 1 to |Fk| do
5: domRel← DOMRELATION(soloff, Fk(j)) // Find the

dominance relation between soloff and Fk(j)
6: if domRel = 0 then // soloff and Fk(j) are

non-dominated
7: ndCount← ndCount + 1
8: else if domRel = −1 then // soloff is dominated by Fk(j)
9: BREAK // Check the next front for inclusion of soloff

10: else // soloff dominates Fk(j)
11: Sdom ← Sdom ∪ {Fk(j)} // Add solution to Sdom
12: Fk ← Fk \ {Fk(j)} // Remove solution from Fk

13: j ← j − 1

14: if ndCount = |Fk| then // soloff is non-dominated with
every solution of Fk

15: Fk ← Fk ∪ {soloff} // Add soloff to Fk

16: return F // Process of soloff insertion completes
17: else if |Fk| = 0 then // All the solutions of Fk are

dominated by soloff
18: Fk ← Fk ∪ {soloff} // Add soloff to Fk

19: Increase the NDL of Fk+1, Fk+2, . . . , FK by 1
20: Fk+1 ← Sdom
21: return F // Process of soloff insertion completes
22: else
23: Fk ← Fk ∪ {soloff} // Add soloff to Fk

24: UPDATE(F , k + 1, Sdom, sL)
25: return F // Process of soloff insertion completes
26: FK+1 ← soloff // Create a new front
27: return F // Process of soloff insertion completes

iii. If soloff dominates a particular solution (line 10), then we
continue comparing soloff with the rest of the solutions
in Fk to obtain the set of solutions in Fk which are
dominated by soloff. The solutions which are dominated
by soloff are stored in Sdom and removed from Fk.

If soloff is non-dominated with respect to Fk (line 14), then
soloff is inserted into Fk and the process terminates. If soloff
dominates all the solutions in Fk (line 17), then NDL of
the fronts Fk+1, Fk+2, . . . , FK is increased by one and the
solutions in Sdom are assigned to front Fk+1. Otherwise, i.e.,
soloff dominates some of the solutions in front Fk(1 ≤ k ≤ K)
(line 22), then solutions in the lower dominance front than Fk

can be re-arranged. For this purpose, we use the recursive
UPDATE() procedure as discussed in Algorithm 4.

The set of solutions are re-arranged in lower dominance
fronts than the front where soloff is inserted, using the
UPDATE() procedure. In this procedure, we check for the
solutions in Findex which are non-dominated with S. The non-
dominated solutions from Findex are added to S and removed
from Findex. By removing the solutions from Findex, a solution
does not occupy more than one front. Let the initial cardinality
of S be l. In the UPDATE() procedure, the solutions of Findex



Algorithm 4 UPDATE(F , index, S, sL)
Input: F = {F1, F2, . . . , FK}, index: NDL of the front whose

solutions need to be checked for insertion in S, S: Set of
solutions, sL: Sorted solutions based on the first objective in F

Output: Updated set of non-dominated fronts F
1: if index = |F|+ 1 then
2: F|F|+1 ← S // S is the lowest dominance front
3: else
4: l← |S| // Store the initial cardinality of S
5: for i← 1 to |Findex| do // Consider each solution of

Findex sequentially
6: check← 0
7: for j ← 1 to l do // Check for comparison with

initial l solutions of S
8: if sL[Findex(i)] > sL[S(j)] then // Check whether

sL[Findex(i)] comes later in sL than S(j)
9: domRel← DOMRELATION(S(j), Findex(i))

10: if domRel = 1 then // S(j) dominates Findex(i)
11: check← 1
12: BREAK
13: if check = 0 then // Findex(i) is non-dominated

with first l solutions of S
14: S ← S ∪ {Findex(i)} // Add Findex(i) to S
15: Findex ← Findex \ {Findex(i)} // Remove Findex(i) from

Findex
16: i−−
17: if l = |S| then // No solution from Findex is

non-dominated with every solution of S
18: Increase the NDL of Findex, Findex+1, . . . , FK by 1
19: Findex ← S
20: else if Findex = ∅ then // Each of the solutions from

Findex has been added to S
21: Findex ← S
22: else
23: T ← Findex
24: Findex ← S
25: UPDATE(F , index + 1, T, sL)

are compared with the initial l solutions of S because when a
solution of Findex is found to be non-dominated with respect
to S, then it is added to S thus increasing its cardinality.
In general, a solution of Findex is compared with all the
solutions in S before being inserted in S as in [4], [29]. In
this approach, we are focusing on reducing the number of
dominance comparisons. So, for this purpose, a solution of
Findex is not compared with all the solutions in S. Instead,
this solution is only compared with those solutions in S which
occur before that solution in the sorted list sL. The reason
for this is that the solution in Findex cannot dominate the
solutions in S as in the initial set of fronts the solutions
in Findex belong to a lower dominance front than that of S.
Also, the solution which comes later in sL cannot dominate
the solution which comes earlier in this list. So, the solution
in Findex which comes earlier than the solution of S in sL will
always be non-dominated with respect to the solution of S.
Thus, we compare only those solutions in Findex which come
later than the solution of S in sL because these are the only
solutions which can be dominated by the solutions of S. After
comparing the solution of Findex with the solutions of S, one
of the following three conditions may occur:

• No solution from Findex is found to be non-dominated
with respect to S, i.e., l = |S| (line 17). In this case, the
NDL of fronts Findex, Findex+1, . . . , FK is increased by 1.
Also, the non-domination level ‘index’ is assigned to S,
i.e., S will constitute front Findex.

• All the solutions of Findex are added to S, i.e., Findex = ∅
(line 20). In this case, S will constitute front Findex.

• Otherwise (line 22), we move all the solutions of Findex
to T . The non-domination level of Findex is assigned to
S, i.e., S will constitute front Findex. Now, the update
procedure is repeated with UPDATE(F , index+1, T, sL).

Implication of having the sorted order of the solutions: We
have used the sorted solutions based on the first objective to
reduce the number of dominance comparisons. However, these
sorted solutions do not always help to reduce the number of
dominance comparisons. This depends on the orientation of the
solutions in the fronts. If the values of the first objective of the
solutions in lower dominance fronts overlap with the values of
the first objective of the solutions in higher dominance fronts,
then the number of dominance comparisons may be reduced.
If the values of the first objective of the solutions in lower
dominance fronts is larger than the values of the first objective
of the solutions in higher dominance fronts, then the number
of dominance comparisons will remain the same as the one
obtained in [4], [29].

A. Space Complexity

In this approach, we are storing the sorted order of the
solutions based on the first objective. So, the space required by
our approach is O(N) considering that there are N solutions
in the initial population.

B. Time Complexity

In this approach, we first find the position of the offspring
solution in the sorted list of solutions based on the first
objective. The time complexity of obtaining the position of the
offspring solution using a binary search strategy is O(logN)
considering that there are N solutions in the sorted list.

We first discuss the time complexity of the UPDATE() pro-
cedure. Let the offspring solution soloff be inserted into the kth

front. In the worst case, each call to the UPDATE() procedure
moves one solution from Findex to its preceding front. In
this case, the maximum number of dominance comparisons is
given by Eq. (1). For the number of dominance comparison to
be maximum, an offspring solution dominates nk−1 solutions
in front Fk before being inserted in that front.

#dCompUpdategeneral max
= (nk − 1)nk+1 + (nk+1 − 1)nk+2+

. . .+ (nK−1 − 1)nK (1)

However, overall, the maximum number of dominance com-
parisons is given by Eq. (2). In this case, the offspring solution



is inserted into the first front and dominates n1 − 1 solutions
in that front.

#dCompUpdateoverall max
= (n1 − 1)n2 + (n2 − 1)n3 + . . .+

(nK−1 − 1)nK (2)

Hence, the worst case time complexity of the UPDATE()
procedure is O(MN2). The minimum number of dominance
comparisons occurs when the UPDATE() procedure is called
with the index value K + 1, i.e., the offspring solution soloff
is inserted into the last front FK . In this case, the number
of dominance comparisons is given by Eq. (3) and the time
complexity in the best case of the UPDATE() procedure is
O(1).

#dCompUpdatemin
= 0 (3)

In this approach, initially the position of the offspring
solution soloff is identified in the sorted set of fronts. Let
the offspring solution soloff be inserted into the kth front
Fk. After the position is identified, the solutions in the set
of fronts with a lower dominance than Fk are checked for
their movement in the next higher dominance front. Thus, the
maximum number of dominance comparisons is obtained by
Eq. (4) when the offspring solution soloff is inserted into front
Fk after dominating nk − 1 solutions in that front.

#dCompgeneral=(n1 + n2 + . . .+ nk) + #dCompUpdategeneral max

=(n1 + n2 + . . .+ nk) + [(nk − 1)nk+1+

(nk+1 − 1)nk+2 + . . .+ (nK−1 − 1)nK ]
(4)

However, overall, the maximum number of dominance com-
parisons is obtained by Eq. (5). Thus, the worst case time
complexity of our approach is O(MN2).

#dCompoverall = (n1) + #dCompUpdateoverall max

= (n1) + [(n1 − 1)n2 + (n2 − 1)n3 + . . .+

(nK−1 − 1)nK ] (5)

The number of dominance comparisons becomes maximum
when there are two fronts [4], [29]. When the number of
solutions N is even, the cardinality of the first front, i.e.,
n1 = N/2 + 1 and the cardinality of second front, i.e.,
n2 = N/2 − 1. When the number of solutions N is odd,
the cardinality of the first front, i.e., n1 = dN/2e and the
cardinality of the second front, i.e., n2 = bN/2c. The maximum
number of dominance comparisons for an even number of
solutions is N2

/4 + 1 and for an odd number of solutions is
(N2+3)/4 [4], [29].

III. PARALLEL ALGORITHM-1

The main motivation for parallelizing evolutionary algo-
rithms is that their implementation has a low data dependency.
This section describes a parallel algorithm to update the
NDL structure of the solutions after insertion of an offspring
solution. In the UPDATE() procedure of the serial algorithm,
all the solutions of a particular front are checked to see whether

Algorithm 5 UPDATE PARALLEL-1(F , index, S, sL)
Input: Same as Algorithm 4
Output: Updated set of non-dominated fronts F

1: if index = |F|+ 1 then
2: F|F|+1 ← S // S is the lowest dominance front
3: else
4: l← |S| // Store the initial cardinality of S
5: for i← 1 to |Findex| do
6: isDominated[1, 2, . . . , l]← FALSE // Stores whether a

particular solution of Findex is dominated by the solutions of
S or not
/* PARALLEL SECTION STARTS */

7: for j ← 1 to l do
8: if sL[Findex(i)] > sL[S(j)] then // Check

whether Findex(i) comes later in sL than S(j)
9: isDominated[j] ← Findex(i) is dominated by S(j) or

not
/* PARALLEL SECTION ENDS */

10: Process isDominated[ ] array in a parallel manner to see
wether solution Findex(i) is non-dominated with respect to
S or not

11: if Findex(i) is non-dominated with respect to S then
12: S ← S ∪ {Findex(i)} // Add Findex(i) to S
13: Findex ← Findex \ {Findex(i)} // Remove Findex(i)

from Findex
14: i−−
15: if |S| = l then // No solution from Findex is

non-dominated with respect to S
16: Increase the NDL of Findex, Findex+1, . . . , FK by 1
17: Findex ← S
18: else if Findex = ∅ then // Each of the solutions from

Findex has been added to S
19: Findex ← S
20: else
21: T ← Findex
22: Findex ← S
23: UPDATE PARALLEL-1(F , index + 1, T, sL)

they can be inserted into their immediately higher dominance
front or not. In particular, the solutions of Findex are checked
for their insertion in S. A particular solution of Findex can be
simultaneously compared with l solutions of S. The solution
in Findex which is non-dominated with respect to S is added
to S and removed from Findex. The parallel version of the
UPDATE() procedure is summarized in Algorithm 5.

As the initial cardinality of S is l, an array of size l denoted
as isDominated[ ] is created which stores whether a particular
solution sol ∈ Findex is dominated by a solution s ∈ S. ‘TRUE’
in this array means that sol is dominated and ‘FALSE’ indicates
that it is not dominated. After comparing sol with the solutions
of S in a parallel manner and storing their dominance relation
in an array isDominated[ ], this array is processed in a parallel
manner to know whether sol is non-dominated with respect to
S or not.

To process isDominated[ ] in a parallel manner various
‘OR ’ operations are performed at log l levels. At the xth level,
l/2x ‘OR ’ operations are performed. All the ‘OR ’ operations at
each level can be performed simultaneously. After performing
the ‘OR ’ operation at the last level, a final value is obtained.
If we get ‘TRUE’, then it means that a particular solution



sol1 sol2 sol3 sol4 sol5 sol6 sol7 sol8

False False False False False False False True

False False False True

TrueFalse

True

: : :Level-1

: : :Level-2

: : :Level-3

sol

OR OR OR OR

OR OR

OR

Store whether

sol is domi-

nated by soli

1 ≤ i ≤ 8

Compare sol (a particular solution of Findex) with all
the eight solutions of S simultaneously

sol is dominated by at-least
one solution of S.

Fig. 1: Simultaneous comparison of a solution sol ∈ Findex
with the solutions in S and checking whether sol is non-
dominated with respect to S.

sol is dominated by at least one solution of S, otherwise
sol is not dominated by any of the solutions, i.e., it is non-
dominated and can be added to S. The time complexity of
processing isDominated[ ] in a parallel manner is O(log l) as
the ‘OR ’ operation are performed at log l levels and all the
‘OR ’ operations at a level are performed simultaneously.

Example 1. Let S = {sol1, sol2, . . . , sol8}. Consider there
is a solution sol of Findex. Solution sol is compared with
sol1, sol2, . . . , sol8 simultaneously. An array of size 8 is used
which stores whether sol is dominated by soli(1 ≤ i ≤ 8).
This array of size eight is processed in a parallel manner at
three levels. Two consecutive values in this array are processed
using an ‘OR’ operation. At the end, we obtain ‘TRUE’ which
means that sol is dominated by at least one of the solutions
of S. This complete process is shown in Fig. 1.

The isDominated[ ] array can be filled in O(M) time in a
parallel manner. Let the offspring solution soloff be inserted
into the kth front. Then, the worst case time complexity is
given by Eq. (6). Here, the offspring solution dominates nk−1
solutions in the kth front.

Tupdate = [M + log (nk − 1)nk+1] + [M + log (nk+1 − 1)

nk+2] + . . .+ [M + log (nK−1 − 1)nK ] (6)

However, overall, the worst case time complexity of the
parallel version of the UPDATE() procedure occurs when the
offspring solution is inserted into F1 and is given by Eq. (7).

Tupdate = [M + log (n1 − 1)n2] + [M + log (n2 − 1)n3] +

. . .+ [M + log (nK−1 − 1)nK ] (7)

The worst case time complexity to update the NDL structure
using the parallel version of the UPDATE() procedure is given
by Eq. (8) as the number of fronts is two in the worst case [4],
[29]. In this Equation, the O(logN) factor represents the time
to find the position of the offspring solution in the sorted list

Algorithm 6 UPDATE PARALLEL-2(F , index, S, sL)
Input: Same as Algorithm 4
Output: Updated set of non-dominated fronts F

1: if index = |F|+ 1 then
2: F|F|+1 ← S // S is the lowest dominance front
3: else
4: l← |S| // Store the initial cardinality of S
5: isNonDominated[1, 2, . . . , |Findex|]← FALSE // Stores whether

a particular solution of Findex is non-dominated with respect to
all the solutions of S or not
/* PARALLEL SECTION STARTS */

6: for i← 1 to |Findex| do
7: isDominated[1, 2, . . . , l]← FALSE // Stores whether a

particular solution of Findex is dominated by the solutions of
S or not
/* PARALLEL SECTION STARTS */

8: for j ← 1 to l do
9: if sL[Findex(i)] > sL[S(j)] then // Check whether

Findex(i) comes later in sL than S(j)
10: isDominated[j] ← Findex(i) is dominated by S(j) or

not
/* PARALLEL SECTION ENDS */

11: Process isDominated[ ] array in parallel manner to know
wether Findex(i) is non-dominated with respect to S. If it is
non-dominated then make isNonDominated[i] to be TRUE,
i.e., isNonDominated[i]← TRUE

/* PARALLEL SECTION ENDS */
12: for i← 1 to |Findex| do
13: if isNonDominated[i] = TRUE then
14: S ← S ∪ {Findex(i)} // Add Findex(i) to S
15: Findex ← Findex \ {Findex(i)} // Remove Findex(i)

from Findex
16: i−−
17: if |S| = l then // No solution from Findex is

non-dominated with every solution of S
18: Increase the NDL of Findex, Findex+1, . . . , FK by 1
19: Findex ← S
20: else if Findex = ∅ then // Each of the solutions from

Findex has been added to S
21: Findex ← S
22: else
23: T ← Findex
24: Findex ← S
25: UPDATE PARALLEL-2(F , index + 1, T, sL)

of solutions based on the first objective.

Tapproach = logN +Mn1 + [M + log (n1 − 1)n2]

= logN +Mn1 +M + n2 log (n1 − 1)

= O(MN +N logN) (8)

When the dominance nature of each solution with respect
to other solutions are obtained in a parallel manner in O(M)
time beforehand and stored in a matrix as in [22], then the
time complexity in the worst case is obtained by Eq. (9).

Tapproach = logN +M + n1 + [1 + log (n1 − 1)n2]

= logN +M + n1 + 1 + n2 log (n1 − 1)

= O(M +N logN) (9)



IV. PARALLEL ALGORITHM-2

In the first parallel version of the UPDATE() procedure,
a solution of Findex is compared with all the solutions of
S simultaneously. However, all the solutions of Findex are
processed in a sequential manner. To further speed up the
UPDATE() procedure, all the solutions in Findex can be pro-
cessed simultaneously. If any of these solutions are non-
dominated with respect to each of the solutions of S, then
these solutions are added to S in a sequential manner to
avoid a write collision. The parallel version of the improved
UPDATE() procedure is summarized in Algorithm 6. In this
parallel version, an array of size l corresponding to each
solution of Findex is considered which stores whether that
particular solution of Findex is dominated by the solutions of
S or not. By processing this array in a parallel manner, it
can be decided whether the particular solution of Findex can
be added to S or not. Here, an array isNonDominated[ ] of
length |Findex| is considered which stores whether a particular
solution of Findex is non-dominated with respect to S or not.
This information is obtained by processing the isDominated[ ]
array for that particular solution in a parallel manner.

Example 2. Let’s assume that there are four solutions
{sol1, sol2, sol3, sol4} in S and Findex also has four solutions
{sol ′1, sol ′2, sol ′3, sol ′4}. All the four solutions of Findex are
simultaneously compared with respect to the four solutions of
S in a parallel manner. Each solution of Findex is checked to
see whether it is dominated by at least one of the solutions
of S or not. After finding the dominance relation of all the
solutions of Findex with respect to S, if this solution is non-
dominated then, it is added to S. This complete process is
shown in Fig. 2.

We discuss the time complexity of this second parallel
version of the UPDATE() procedure. Let the offspring solution
soloff be inserted into the kth front. Then, the worst case time
complexity is given by Eq. (10). Here, the offspring solution
dominates nk − 1 solutions in the kth front.

Tupdate = [M + log (nk − 1) + nk+1] + [M + log (nk+1 − 1)

+nk+2] + . . .+ [M + log (nK−1 − 1) + nK ] (10)

However, overall, the worst case time complexity of this
second parallel version of the UPDATE() procedure occurs
when the offspring solution is inserted into the first front and
is given by Eq. (11).

Tupdate = [M + log (n1 − 1) + n2] + [M + log (n2 − 1)+

n3] + . . .+ [M + log (nK−1 − 1) + nK ] (11)

The worst case time complexity to update the NDL structure
using the parallel version of the UPDATE() procedure is given
by Eq. (12) as the number of fronts is two in the worst case [4],
[29].

Tapproach = logN +Mn1 + [M + log (n1 − 1) + n2]

= O(MN) (12)

When the dominance nature of each solution with respect
to other solutions are obtained in a parallel manner in O(M)
time beforehand and stored in a matrix as in [22], then the
time complexity in the worst case is obtained by Eq. (13).

Tapproach = logN +M + n1 + [1 + log (n1 − 1) + n2]

= O(M +N) (13)

V. CONCLUSIONS & FUTURE WORK

In the current paper, we have focused on updating the NDL
structure of the solutions when a new solution is inserted
into the existing set of fronts. We have suggested a way
to reduce the number of dominance comparisons. However,
the maximum number of dominance comparisons remains
the same as in the approaches proposed in [4], [29]. Our
proposed approach considers the sorted order of the existing
solutions based on the first objective and this sorted order
of the solutions is used to reduce the number of dominance
comparisons. To further improve the performance of updating
the NDL structure, we have focused on its parallelization
considering the PRAM CREW model. In this regard, we
have explored the parallelism in two different manners. The
time complexity in the worst case of the parallel version is
O(M +N) which is the same as the time complexity of the
parallel version of non-dominated sorting as reported in [22].

For future work, we are interested in improving the perfor-
mance of the algorithm in terms of the dominance comparisons
and, if possible, its worst case time complexity as well.
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