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Abstract—Complex systems are often characterized by com-
plex networks with links and entities. However, in many complex
systems such as protein-protein interaction networks, recom-
mender systems and online communities, their links are hard
to be revealed directly, but they can be inaccurately observed
by multiple data collection platforms or by a data collection
platform at different times. Then, the links of the systems are
inferred by the integration of the collected observations. As those
data collection platforms are usually distributed over a large
area and in different fields, their observations are unreliable and
sensitive to the potential structures of the systems. In this paper,
we consider the link inference problem in network data with
community structures, in which the reliability of data collection
platforms is unknown a priori and the link errors and reliability
of platforms’ observations are heterogeneous to the underlying
community structures of the systems. We propose an Expectation
Maximization algorithm for Link Inference in a network system
with Community structures (short for EMLIC). The EMLIC
algorithm is also used to infer the link errors and reliability of
platforms’ observations in different communities. Experimental
results on both synthetic data and eight real-world network data
demonstrate that our algorithm is able to achieve lower link
errors than the existing reliable link inference algorithms when
the network data have community structures.

Index Terms—Link inference, network data, community struc-
ture, expectation maximization, reliability

I. INTRODUCTION

THe link structure in complex networks has become one of
the most popular ways for interpreting the relationships

between entities in many real-world complex systems [1], [2],
including the social systems, biological systems, technological
systems, economical systems, ecological systems, evolutionary
systems, transportation systems, recommender systems and
etc. For instances, in the social systems, links represent the
interconnections, friendships, collaborations, votes and com-
petitions among individuals [3]–[6], while in the biological
networks they denote the transcription, signal transduction and
metabolism processes among genes [7].
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It usually assumes that the links of a network are revealed
directly [8], [9]. However, in some complex systems such
as protein-protein interaction networks, recommender systems
and online communities, their links cannot be revealed, but
they can be inferred from other metadata, e.g., the properties
and similarities of nodes, the extra observations, and etc
[8], [10]–[14]. Generally, these metadata are collected by a
set of platforms distributed in different fields. As they may
suffer from measurement errors, including the recording errors,
quantification errors, sampling bias and publication bias in the
collection of metadata, it is difficult for these platforms to infer
the real link structures from metadata [8], [11], [15], [16].

To detect the real link structures of systems, many studies
for the link inference in network data have been presented in
recent years [17]–[21]. One of the most common strategies is
to measure the topological similarity of networks under the
assumption of the reliable observations to links. A systematic
review of these studies in inferring missing links and link rec-
ommendations could be found in [22], [23]. Note that, in some
applications, it may be unreliable for the link observations
of a network. For instance, in the link inference of protein-
protein interaction networks, an observed link only represents
the probability that a signaling pathway exists between the
proteins across the link [8]. In the network crowdsourcing,
the observations to a link may be varied at different times
[11]. In these applications, those methods would result in the
missing of real links and the adding of spurious links as they
neglect the reliability of link observations.

The reliable link inference, which considers the reliability
of link observations, was firstly studied in [24]. This study
presented a stochastic blockmodel for link inference under the
assumption that the links of a network can be observed only
once. In this model, the link observation Ao is the generation
of an underlying probabilistic process pM , and the link relia-
bility R (i.e., the probability pM (Aij = 1|Ao) that edge eij is
true under Ao) is used to distinguish the missing and spurious
links of networks. This link inference model has been widely
generalized to discover communities and estimate the number
of communities in undirected networks, directed networks,
signed networks and multiplex networks [24]–[27]. Following
the degree-corrected stochastic block based inference model,
Ball et al. [28] presented a principled statistical approach based
on the generative network model to infer the link communities
in networks. In this generative network model, the existence of
edges between two vertices i and j is determined by di ·dj ·θrs,
where di is the degree of node i, and r and s are the clusters of
nodes i and j, respectively. This model was further extended
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to infer the communities and semantics of attributed networks
by simultaneously considering their link topologies, node and
link semantics [29], [30]. Moreover, Martin et al. [8] proposed
a reliable link inference model for uncertain networks, in
which the observed links are the real ones with a certain
probability. This model then uses a principled maximum-
likelihood method to infer both the underlying community
structures and the underlying truth of links.

Recently, Newman presented a novel reliable link inference
model [11], in which each link of a network is independently
observed more than once by a platform and the observations
to a link may conflict with each other. This model is under
the assumption that the observations Ao are captured by an
error model p(Ao|Θ,Z) with error parameter Θ and the real
state Z of links, and it uses an expectation maximization (EM)
method to infer Z and Θ by maximizing p(Ao|Θ,Z). Note
that, in social systems, the communications between individ-
uals can be observed in multiple platforms (e.g., Fackbook,
Webchat, Email, and transportation systems). Moveover, the
social systems are composed of many groups (e.g., friends,
classmates and colleagues) with different communication den-
sities. In these systems, the data collection platforms may have
heterogeneous reliability of observations to different groups.
Actually, the heterogeneity of platforms’ observations has been
widely considered into classical crowdsourcing models. It has
been demonstrated by one of its classical model EMLI [31]
that the aggregation accuracy of systems can be effectively im-
proved under the setting of heterogeneous reliability. Despite
recent process in heterogeneous crowdsourcing, the integration
of the structure heterogeneity of networks into reliable link
inference remains to be an outstanding problem.

In this paper, following the work [11], we present a general
link inference model for network data, which enables a deep
understanding of the impacts of the heterogeneous reliability
of platforms’ observations and the community structures of
networks on the link inference. Similar to the work [11], the
presented link inference model is also under the assumption
that the links of the systems can be observed multiple times. D-
ifferent from the work [11], it considers that i) the observations
can be collected by multiple platforms with heterogeneous
reliability; and ii) the link inference may be influenced by the
community structures of systems in which nodes are densely
linked in the same community whereas they are sparsely
connected across different communities [32]. Generally, the
community structures of networks are unknown a priori, but
they can be well detected by many classical methods, including
the modularity optimization [32]–[35], statistical inference
[28]–[30], [36], [37], Markov dynamics [38], multiobjective
optimization [39], refinement heuristic [40], and etc. Here,
we adopt the modularity-based optimization method BGLL to
detect the underlying communities of networks due to its high
detection performance and low computational complexity. Our
main contributions are summarized as follows:

1) We develop a general link inference model that takes
into account the heterogeneous reliability of platforms’
observations, the potential community structures and the
effects of those structures on the reliability and the
parameter errors of observations to links.

2) We propose a likelihood based expectation maximization
method (named as EMLIC) to infer the true state of
links, the reliability of platform’s observations to links in
different communities and the parameter errors of links
in different communities.

3) We verify the performances of EMLIC through extensive
experiments on both simulations and eight real-world
data sets. The results suggest that EMLIC has a lower
link error and a higher community preservation than
the existing reliable link inference algorithms when the
network data have community structures.

The rest of the paper is organized as follows. In Section
II, we present our link inference system model and problem
formulation. In Section III, we propose an EM algorithm for
the reliable link inference in the system. Extensive simulations
and experiments are given in Section IV. Finally, we conclude
and briefly discuss future work in Section V.

Notations: We use italic lower-case letters and block upper-
case letters to represent scalars and matrices, respectively. The
upper-case letters are used to denote vectors and sets and the
bold faced symbols are adopted to represent random variables.
Let A be a matrix, and Aij be the (i, j)-th entry of A. The
operator E represents mathematical expectation. The operators
|S| and ||S|| denote the number of elements and the sum of
the absolute value of elements in S, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a reliable link inference system model with
a certain n-node network G and q platforms (or a platform
at q different times), in which this network has m uncertain
links, each of which has an associated real state Zij ∈ {0, 1}
representing the presence (Zij = 1) or absence (Zij = 0)
of the link eij between nodes i and j, and the real link
structures are hard to be revealed directly, but they can be
inaccurately observed by multiple platforms or a platform
at different times. For each link eij , a platform α gives an
observation A

[α]
ij indicating whether this link exists in reality.

Fig. 1 gives a schematic illustration of a toy link inference
system with n = 8 nodes and m = 10 links observed by
q platforms. As shown in Fig. 1, the observed edges consist
of two types of links: i) the real links that exist in reality
and ii) the spurious links that are absent actually but they are
observed by some platforms. For all observed edges, the q
platforms may give conflicting observations. As the reliability
of platforms is unknown a priori, it is hard to determine
the real link structures of the network. Our link inference
system is to estimate the real link structures Z of the network
system G from the unreliable observations A collected by the
q platforms.

The link inference system with an n-node network and a set
of platforms corresponds to a graph GS = (V,E, I,A) with
|V | = n, |E| = m and |I| = q, where V and I are the sets
of nodes V = {1, 2, . . . , n} and platforms I = {1, 2, . . . , q},
respectively, and A denotes the observations of platforms to
the link structures of a network. For an edge eij and a platform
α, let A[α]

ij = 1 denote that the link eij is collected or observed
by the platform α and let A[α]

ij = 0 indicate otherwise. E is the
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Fig. 1: Illustration example of the link inference system with
n = 8 nodes, m = 10 links and q platforms. Left panel: The
certain n-node network with uncertain edges, including real
edges and spurious edges. Right panel: The observations A of
platforms to observed edges. Each observation A

[α]
ij denotes

whether the edge eij is collected by the platform α, and each
edge has an unknown real state Zij .

set of observed edges, and each edge eij ∈ E is observed by at
least one platform, i.e., E = {eij |

∑q
α=1 A

[α]
ij > 0, i, j ∈ V }.

Many real-world networks have community structures, i.e.,
nodes and links in the same community have similar properties
whereas these in different communities show different prop-
erties. Moreover, links densely exist in the same community
whereas they are sparse across different communities [32].
For instance, in protein-protein interaction networks, they have
many functional modules (e.g. co-regulation, co-expression,
signaling pathway, aggregating cellular, and etc), each of
which corresponds to a community. It has been demonstrated
that i) the links in some protein-protein interaction networks
cannot be exactly extracted, but they can be collected by a set
of gene methods or platforms; ii) each community has its own
link structures and loss ratio of links; and iii) the difficulties
to observe links may vary with their community locations.
Here, we call the links in the same community and the links
across different communities as the intra-community links and
inter-community links, respectively.

In our link inference system, observation data are often
collected by multiple platforms from different domains and
the difficulties of collecting links in different communities
are also different. Hence, it is typically unknown a priori
for the reliability of platforms’ observations depending on the
two factors: whether these platforms are observing a real or
spurious link and which function module the observed link
comes from. As the inter-community links are sparse generally,
we assume that the reliability of a platform’ observations
to inter-community links is only determined by the former
factor. Here, we model the reliability of a platform α as

Si=k
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Zij

If Si=Sj? pk p0
yes

no
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Fig. 2: A sketch of the mathematical model of reliable link
inference for network data with community structures.

R[α] = {R[α]
1k , R

[α]
10 , R

[α]
0k , R

[α]
00 }, where k = 1, . . . , c, c is

the number of communities of the network. Letting Si be
the community label of node i, for each a ∈ {0, 1}, R[α]

is represented as follows:
• R[α]

ak : the probability that platform α gives a true observation
to a link (e.g., link eij) conditioned on Zij = a, Si = Sj and
Si = k,
• R[α]

a0 : the probability that platform α gives a true observation
to a link (e.g., link eij) conditioned on Zij = a and Si ̸= Sj .
Here, it is unknown a priori for the R[α] values that need to
be estimated by our EMLIC method.

In our link inference system, we consider a general case
of real applications, in which it may be different for the
probability that an intra-community link actually exists in
different communities. Moreover, as the inter-community links
are sparse, it is assumed that the probability of the presence
of an inter-community link is the same. Here, we model the
prior probability of the existence of real links in a network G
as p(G) = {pk, p0}, k = 1, 2, . . . , c, where
• pk: the prior probability that an intra-community link (e.g.,
eij) exists actually conditioned on Si = k,
• p0: the prior probability that an inter-community link (e.g.,
eij) exists actually.
Here, the p(G) = {pk, p0} values are unknown a priori and
they are estimated by our EMLIC method.

Problem Formulation. Given a link inference system
model with q platforms and a network G with n nodes
and m uncertain links, our problem is to find the optimal
estimators of unknown parameters Θ = {R, p(G)}, including
the reliability of platforms R = {R[1], R[2], . . . , R[q]}, and
the expected probability of the existence of real links p(G)
in the system, together with the most likely link structures Z,
so as to maximize the marginal likelihood or probability of
observations A.

Fig. 2 gives a detailed sketch of the mathematical model of
the reliable link inference for network data with community
structures. Given the potential communities S of the network
G, the marginal likelihood p(A;S,Θ) of observations A is
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computed as follows:

p(A;S,Θ) =
∑
Z

p(A,Z;S,Θ)

=
∑
Z

p(Z;S) · p(A|Z;S,Θ)

=
∑
Z

∏
eij∈E

[
p(Zij ;Si, Sj) ·

( q∏
α=1

p(A
[α]
ij |Zij ;Si, Sj ,Θ)

)],

where p(Zij ;Si, Sj) is the probability of the existence of a
link eij connecting the nodes i and j, in which node i is in
the community Si while node j is in the community Sj , and
it is computed as follows:

p(Zij ;Si, Sj) =

{
(pk)

Zij · (1− pk)
(1−Zij) if Si = Sj , Si = k,

(p0)
Zij · (1− p0)

(1−Zij) if Si ̸= Sj .

p(A
[α]
ij |Zij ;Si, Sj ,Θ) is the probability of the observation of

platform α to link eij conditioned on the true state of the
edge eij being Zij given Si, Sj and Θ, and it is computed as
follows:

p(A
[α]
ij |Zij ;Si, Sj ,Θ) =

(R
[α]
1k )

A
[α]
ij · (1−R

[α]
1k )

(1−A
[α]
ij ) if Zij = 1, Si = Sj , Si = k,

(1−R
[α]
0k )

A
[α]
ij · (R[α]

0k )
(1−A

[α]
ij ) if Zij = 0, Si = Sj , Si = k,

(R
[α]
10 )

A
[α]
ij · (1−R

[α]
10 )

(1−A
[α]
ij ) if Zij = 1, Si ̸= Sj ,

(1−R
[α]
00 )

A
[α]
ij · (R[α]

00 )
(1−A

[α]
ij ) if Zij = 0, Si ̸= Sj .

Based on the descriptions above, our link inference problem
can be modeled as follows:

Θ∗ ← argmax
Θ

p(A;S,Θ),

Z∗ ← argmax
Z

p(Z|A;S,Θ∗).
(1)

Next, we will present an EM algorithm to find the optimal
values of Z and Θ.

III. EXPECTATION MAXIMIZATION FOR LINK INFERENCE
IN A NETWORK WITH COMMUNITIES: EMLIC

As shown in Eq. (1), the optimal estimate of Θ depends on
the marginal likelihood p(A;S,Θ) of A. As we known, the
computation of p(A;S,Θ) is often intractable as the latent
variables in Z = {Zij}, eij ∈ E, can take any possible
value. In this section, an EM algorithm (called as EMLIC)
is presented to find the maximum likelihood estimate (MLE)
of this statistic marginal likelihood model with observed data
A, unknown parameter Θ and latent variable Z. The EMLIC
finds the MLE of p(A;S,Θ) by iteratively maximizing the
expectation of its log likelihood function. The likelihood
p(A,Z;S,Θ) is computed as follows:

p(A,Z;S,Θ) = p(A|Z;S,Θ) · p(Z;S)

=
∏

eij∈E

[
p(Zij ;Si, Sj) ·

( q∏
α=1

p(A
[α]
ij |Zij ;Si, Sj ,Θ)

)]
.

(2)

As known from Eq. (2), the computation of p(A,Z;S,Θ)
needs to know the community structure S of the network

(a) (b)

Fig. 3: (Color online) The community structures of the SFI
network detected by the BGLL algorithm. (a) the community
structure of the original SFI network and (b) the community
structure of spurious SFI network with 10% randomly spurious
links. Nodes in different communities are plotted with different
colors and shapes.

G. For some networks with known community structures, we
can directly use their community information. However, for
most complex systems, their communities cannot be observed
a priori, but they can be detected based on the link structures
of networks. Recently, many community detection algorithms
have been proposed, and they can be used here to detect the
communities of the network G. Here, we choose a classical
algorithm BGLL to detect the community structure of the
network G with observed link structures E, and its systematic
descriptions are detailed in [33], [34]. The algorithm BGLL
is chosen as i) it has a good performance on detecting real
communities without knowing the number of communities a
priori; ii) it generates the same community division at different
trials, which removes the impacts of the instability of detected
communities on the link inference in EMLIC; and iii) it has
a low computational complexity, which makes it possible to
detect communities in large-scale networks [41].

In our link inference system, the observed link structures
include both real links and spurious links, and their true
states are unknown a priori. Here, we detect the community
structure of a network by using the BGLL algorithm [33] on
its observed link structures. Recent studies have demonstrated
that the existence of spurious links would not change the
original community structures of a network obviously. In order
to demonstrate it, we use the BGLL algorithm [33] to detect
communities in both the real SFI network with 118 nodes and
200 edges and its spurious version with 10% spurious links.
The detected communities are shown in Fig. 3. As shown in
Fig. 3, the spurious SFI network has a similar community
structure with the real one. More specifically, the real and
spurious SFI networks have 8 and 9 communities, respectively,
and the normalized mutual information [42] which evaluates
the community similarity between the two network partitions
is 0.9361. The main difference between the two network
partitions is that the community (drawn by the blue diamond
in Fig. 3(a)) of the real SFI network is further divided into
two small communities (drawn by the purple diamond and
blue diamond in Fig. 3(b)) of the spurious network. The
small difference between the communities in a real network
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Q(Θ|Θ(n)) = EZ|A;S,Θ(n)

[
ln p(A,Z;S,Θ)

]
=

∑
eij∈E

{
p(Zij = 1|Aij ;Si, Sj ,Θ

(n)) ·
[
ln

(
p(Zij = 1;Si, Sj) · (

q∏
α=1

p(A
[α]
ij |Zij = 1;Si, Sj ,Θ))

)]
+ p(Zij = 0|Aij ;Si, Sj ,Θ

(n)) ·
[
ln

(
p(Zij = 0;Si, Sj) · (

q∏
α=1

p(A
[α]
ij |Zij = 0;Si, Sj ,Θ))

)]}
.

(3)

and a spurious network would not affect the link inference
performances of EMLIC.

Based on the detected community structure S, our EMLIC
algorithm finds the MLE of unknown parameter Θ by itera-
tively executing the following two steps: E-step and M-step.

E-step: We compute the expected log likelihood function
Q(Θ|Θ(n)) of p(A,Z;S,Θ) as Eq. (3) in the top of this page.

Here, p(Zij = 1|Aij ;Si, Sj ,Θ
(n)) is the probability of the

presence of the link eij conditioned on the observation being
Aij given the community assignments Si and Sj and the
current estimation Θ(n) of parameters, and it can be computed
as follows:

p(Zij = 1|Aij ;Si, Sj ,Θ
(n))

=
p(Zij = 1|Aij ;Si, Sj ,Θ

(n))∑
Zij∈{0, 1} p(Zij |Aij ;Si, Sj ,Θ(n))

=
p(Zij = 1;Si, Sj) · p(Aij |Zij = 1;Si, Sj ,Θ

(n))∑
Zij∈{0, 1} p(Zij ;Si, Sj) · p(Aij |Zij ;Si, Sj ,Θ(n))

(4)

and p(Zij = 0|Aij ;Si, Sj ,Θ
(n)) = 1 − p(Zij =

1|Aij ;Si, Sj ,Θ
(n)).

M-step: We maximize the expected log function
Q(Θ|Θ(n)), and then get Θ of the next iteration. In
order to find the maximal value of Q(Θ|Θ(n)), we take the
derivative of Q(Θ|Θ(n)) to each parameter in Θ and let
their derivatives be equal to 0. Thereafter, for each α, k and
a ∈ {0, 1}, we get

(R
[α]
ak )

(n+1) =

∑
eij∈Υk,A

[α]
ij =a

p(Zij = a|Aij ;Si, Sj ,Θ
(n))∑

eij∈Υk
p(Zij = a|Aij ;Si, Sj ,Θ(n))

,

(R
[α]
a0 )

(n+1) =

∑
eij∈Γ,A

[α]
ij =a

p(Zij = a|Aij ;Si, Sj ,Θ
(n))∑

eij∈Γ p(Zij = a|Aij ;Si, Sj ,Θ(n))
,

p
(n+1)
k =

∑
eij∈Υk

p(Zij = 1|Aij ;Si, Sj ,Θ
(n))

|Υk|
,

p
(n+1)
0 =

∑
eij∈Γ p(Zij = 1|Aij ;Si, Sj ,Θ

(n))

|Γ| ,

(5)

where Υk = {eij ∈ E|Si = k, Sj = k} and Γ = {eij ∈
E|Si ̸= Sj}.

The two steps, i.e., E-step and M-step, are iteratively execut-
ed until the estimated Θ value converges (i.e., the deviation of
Θ is smaller than a predefined value. Here, we set it as 0.01)
or the iteration of EMLIC reaches its maximum number of
generations (here, we set it as 500). After that, for each link
eij , we compute its state Z∗

ij based on the estimated Θ(n+1)

as follows:

Z∗
ij ← argmax

Zij∈{0,1}
p(Zij |Aij ;Si, Sj ,Θ

(n+1)). (6)

Algorithm 1 EMLIC
1: Input: Observations A.
2: Output: Estimated presence state Z∗.
3: Detect the potential community structures S of the net-

work using the BGLL algorithm [33].
4: n← 0 and Θ(n) ← ∅.
5: Initialization: Generate an initial Z∗ based on the majority

voting, and then generate an initial Θ(1) based on Z∗.
6: while ||Θ(n+1) −Θ(n)|| ≥ 0.01 and n < 500 do
7: n← n+ 1.
8: E-step: Compute the expected log likelihood function

Q(Θ|Θ(n)) of p(A,Z;S,Θ(n)) based on Eq. (3).
9: M-step: Maximize Q(Θ|Θ(n)) of p(A,Z;S,Θ(n)),

and then get Θ(n+1) based on Eqs. (4) and (5).
10: end while
11: Compute Z∗ based on Eq. (6).

In EM algorithms, it is important for them to generate initial
parameters [31]. Here, we use the majority voting technique
to initialize Z in EMLIC as its computational complexity is
linear with the number of observations and it reflects the
observations of the majority of individuals. Specifically, for
each edge eij , its initial Z∗

ij value is the observation value
returned by the majority of individuals. Then, the initial values
of the parameters in Θ(1) are generated based on Eq. (5).
Here, if Z∗

ij = 1, p(Zij = 1|Aij ;Si, Sj ,Θ
(0)) = 1; and

p(Zij = 1|Aij ;Si, Sj ,Θ
(0)) = 0 otherwise.

The framework of EMLIC for the link inference of network
data with community structures is given in Algorithm 1. In
Algorithm 1, the initialization step in line 5 needs to make
a decision for each edge eij ∈ E by directly aggregating the
observations of q platforms. Therefore, it has a computational
complexity O(m · q), where m is the number of edges in
the network data. The While loop in lines 6-10 is executed
gmax times, where gmax is the predefined maximum number
of generations (here, we set it as 500). Within the While loop,
the E-step in line 8 needs to compute the Q(Θ|Θ(n)), which
has a computational complexity O(2 · m · q). The M-step
in line 9 needs to update the unknown parameters R[α] for
each platform and pk for each community, and each update
needs m operations at most. Therefore, the M-step has a
computational complexity O(m·q). In conclusion, the EMLIC
has a computational complexity O(m · q · gmax).
Comparisons of EMLIC with classical reliable link in-
ference algorithms. EMLIC, EMLI [31], EML [11] and the
work in [24] model the reliable truth inference problem into
a maximum posteriori estimation of observations. However,
they are different in the following aspects:
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1) In the system models, EMLIC, EML and the work in [24]
develop a reliable link inference model for network data in the
presence of missing and spurious links whereas EMLI presents
a reliable truth inference model in crowdsourcing platforms.
Compared with EML and the work in [24], EMLIC considers
the heterogeneous reliability of platforms and the impacts of
community structures on the link inference of the system.

2) In the system assumptions, the work in [24] is under
the assumption that the links of a network can be observed
only once while EML extends this assumption by allowing
multiple observations. Different from EML, EMLIC assumes
that the observations to the links of a network can be collected
by multiple platforms (or a platform at different times) and
each platform has its own reliability. When the reliability of
platforms is set to the same value in advance, EMLIC has the
same system assumptions as EML.

3) In the system solutions, both the work in [24] and EMLIC
consider the effects of community structures in link inferences.
However, their focuses are different, resulting in distinct link
inference performances. Specifically, the work in [24] uses the
Metropolis algorithm to sample a set of community partitions
and infers the true state of links based on their reliability under
the sampled community partitions. EMLIC first discovers the
most possible community structures of networks, and then uses
an EM algorithm to aggregate the true states of the links in
different communities based on the observations.

IV. EXPERIMENTAL RESULTS

In this section, we test EMLIC on the GN [43] and LFR [44]
benchmark networks and 8 real networks. Moreover, we adopt
three criteria to test the performances of EMLIC, and compare
EMLIC with three classical algorithms. In the following, the
experimental settings are first given, and then the experimental
comparisons are made. Finally, the effects of the experimental
settings on the performances of comparison algorithms are
analyzed.

A. Experimental Settings

Experimental networks: The GN [43] and LFR [44] bench-
mark networks and 8 real-world networks are chosen.
• GN benchmark networks [43]: They have 4 communities and
each one consists of 32 nodes and 256 links. In these networks,
each node has 8 links, including the intra-community links and
extra-community links, and the fraction of extra-community
links is determined by a mixing parameter µ ∈ [0, 1]. Actually,
with the increase of µ, the number of extra-community links of
nodes increases, and the communities in the networks become
less clear. Here, 11 GN benchmark networks are generated by
ranging the mixing parameter µ from 0 to 0.5 with the interval
0.05. The GN benchmark networks mainly examine whether
comparison algorithms can handle the effects of community
structures on reliable link inference.
• LFR benchmark networks: They were proposed by Lanci-
chinetti and Fortunato in [44]. Compared with the GN bench-
mark networks, they consider the heterogeneity properties,
especially in the distribution of community sizes and node
degrees which follow power law distributions with different

TABLE I: Basic information of real-world networks, including
the number of nodes n, the number of edges m, the average
node degree k̄, the number of communities c detected by
BGLL, and the modularity Q [32] of community structures.

Network n m k̄ c Q
Poolbooks 105 441 8.4 4 0.4986

Jazz 198 2742 27.70 4 0.4431
USAir 332 2126 12.71 9 0.3497

Elegans 453 2025 8.940 13 0.4322
Email 1133 5451 9.622 14 0.5412
Power 4941 6594 2.669 624 0.7756
Geom 7743 11898 3.073 2234 0.7775
Pgp 10680 20340 4.544 540 0.8604

exponential parameters β and γ, respectively, and they can
contain a large number of communities. Similar to the GN
benchmark networks, the fraction of extra-community links
in the LFR benchmark networks is determined by a mixing
parameter µ ∈ [0, 1]. Here, 11 LFR benchmark networks
are generated by ranging the mixing parameter µ from 0
to 0.5 with the interval as 0.05 under n = 1000, β = 1
and γ = 2. Moreover, similar to the work [35], we set the
minimum community size and the maximum community size
as 20 and 100, respectively. Experiments on these networks
are to investigate the impacts of the community heterogeneity
of networks on the link inference of comparison algorithms.
• Real-world networks: They mainly measure whether a link
inference algorithm can effectively handle the real structure
properties coming from different complex systems, including
the social communication system, the collaboration system,
the biological system and the email system. The link inference
in these systems promotes their collaborations and functional
formulation. The tested networks are introduced as follows:

The Poolbooks network (Poolbooks) was collected by New-
man from http://www.orgnet.com/ and it represents the pur-
chase of books about US politics in the online Amazon.com. In
this network, nodes represent the books, and links denote the
frequency of books that are copurchased by the same buyers.

The Jazz musicians network (Jazz) [45] was extracted from
http://www.redhotjazz.com. It shows the collaborations of Jazz
musicians. Specifically, the Jazz musicians and the musicians’
collaborations on playing the same Jazz are represented by the
nodes and edges of the network, respectively.

The USAir network (USAir) [46] illustrates the network of
US air transportation system. In USAir, each node is an airport
while each edge denotes an airline across two airports.

The C.elegans metabolic network (Elegans) [47] denotes the
metabolic relationships of the Caenorhabditis elegans. In this
network, nodes correspond to the Caenorhabditis elegans while
edges represent their metabolic relationships.

The Email network (Email) [48] records the interchanges of
emails between individuals in the origination of the University
of Rovira i Virgili. Specifically, the e-mail addresses and
the corresponding e-mail communications are denoted by the
nodes and edges of the network, respectively.

The Power Grid network (Power) [49] was revealed by
Watts and Strogatz, and it represents the topology of the Power
Grid in the Western States of United States. In the Power
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network, nodes and edges correspond to the Power Grid and
their topological communications, respectively.

The Geom network (Geom) [50] expresses the authors’
collaboration in computational geometry. In Geom, nodes
represent the authors and edges indicate the collaboration of
authors who wrote at least one common paper or book.

The Pretty Good Privacy network (Pgp) [51] was gener-
ated by the Pretty-Good-Privacy algorithm [52] for privacy
information communication. In Pgp, nodes represent the peers
in the Internet who send private information while edges
correspond to the private information flows between the peers.

The Poolbooks and Power networks can be downloaded
from http://www-personal.umich.edu/∼mejn/netdata/. The U-
SAir and Geom networks are collected from http://vlado.
fmf.uni-lj.si/pub/networks/data/default.htm and http://vlado.
fmf.uni-lj.si/pub/networks/data/collab/geom.htm, respectively,
while the Jazz, Elegans, Email and Pgp networks are revealed
from http://deim.urv.cat/∼alexandre.arenas/data/welcome.htm.

Table I shows the basic information of tested real networks.
As shown in Table I, the tested networks are ranging from
small-scale networks with hundreds of nodes to large-scale
networks with ten thousands of nodes. Moreover, they are
heterogeneous in the node degrees and communities. Specifi-
cally, the Power, Geom and Pgp networks have k̄ < 5 while
the Poolbooks, Jazz, USAir, Elegans and Email networks have
k̄ > 8, where k̄ is the average node degree. The modularity
Q of the tested networks is ranging from 0.4322 to 0.8644.
Generally, the larger the Q value is, the more clear community
structures the network has. Experiments on those networks are
to demonstrate that EMLIC can be effectively applied to real
complex systems with heterogeneous structure information.

For each real network, we randomly incorporate a ratio
pk of intra-community spurious links into the link structures
of community k, and insert a ratio p0 of inter-community
spurious links. Moreover, for each platform α, its observation
for each link eij in the tested spurious network is simulated
based on its reliability R[α]. We test comparison algorithms on
the tested spurious networks with different parameter settings.
Specifically, we take q = 30, pk ∈ [0.7, 1], p0 ∈ [0.3, 1],
R

[α]
1k ∈ [0.2, 0.9], R

[α]
0k ∈ [0.3, 0.9], k = 0, 1, 2, . . . , c

and α = 1, 2, . . . , q. For each simulation setting, 30 datasets
are generated randomly, and the averaged results over 30
independent trials are recorded. Moreover, influences of some
parameter settings are analyzed by varying one of the param-
eters while keeping the other parameters unchanged.
Comparison algorithms: The majority voting algorithm MV,
the link inference algorithm EML in [11] and the simplified
version of EMLIC (recorded as EMLI) [31] are adopted.
• MV: It is one of the most classical link inference methods,
which reflects the observations of the majority of platforms.
Here, for each edge eij , its state Z∗

ij is estimated by MV as
follows:

Z∗
ij ← argmax

d∈{0,1}

q∑
α=1

I(A[α]
ij = d).

where I(·) is an indicator function. If the predicate is true,
I(·) = 1, and I(·) = 0, otherwise. The comparison be-
tween MV and EMLIC aims to demonstrate the superior

performances of the EM based inference method with proper
assumptions on the link inference.
• EML [11]: It assumes that some edges in the tested networks
can be observed by multiple times and the observations for
each link may conflict with each other. It considers two rates
r1 and r2 corresponding to the probability of observing a real
edge and a spurious edge, respectively, and adopts a heuristic
EM algorithm to estimate both the true state of edges and
the two unknown rates. The comparison between EML and
EMLIC is made to demonstrate that EMLIC outperforms the
existing reliable link inference algorithms with homogeneous
reliability of platforms’ observations.
• EMLI [31]: In crowdsourcings, EMLI first adopts a con-
fusion matrix to represent the reliability of individuals, and
then aggregates the conflicting observations of individuals
based on the confusion matrix. Here, EMLI is considered as
a simplified version of EMLIC, which does not consider the
effects of community structures on the link inference. For the
network (e.g., the Erdő-Rényi network) with no community
structures, EMLI has the same performances on the link
inference as EMLIC. This is because in this case, EMLIC only
needs to estimate the reliability of a platform’ observations to
inter-community links. The reason for choosing EMLI as the
comparison algorithm is to demonstrate that by considering the
impacts of the communities of networks on the link inference,
EMLIC has superior performances than EMLI.
Criteria: The true error rate rt, the spurious error rate rs
and the normalized mutual information ρ [42] are adopted.
rt and rs are used to test the performances of comparison
algorithms on the link inference while ρ is adopted to evaluate
the performance of comparison algorithms on preserving the
community property of networks.
• True error rate rt: It measures the detection error rate on the
real links, i.e., the fraction of the edges that are not detected by
comparison algorithms but they exist in reality. rt is computed
as follows:

rt =
mt −ma

t

mt
,

where mt is the number of real links and ma
t denotes the num-

ber of real links that are detected. The rt value is in the range
of [0, 1]. A comparison algorithm has good performances on
the detection of real links when it has a low rt value.
• Spurious error rate rs: It evaluates the detection error rate
on the spurious links, i.e., the fraction of the edges that are
observed by comparison algorithms but they are absent in
reality. rs is computed as follows:

rs =
ma

s

ms
,

where ms denotes the number of spurious links while ma
s

records the number of spurious links that are observed. The rs
value is in the range of [0, 1]. A small value of rs corresponds
to a good performance on the detection of spurious links.
• Normalized mutual information ρ [42]: It measures the
similarity of communities between the real network and the
inferred network. Let S and Ŝ be the communities of the
real network and the inferred network, respectively, and ρ is
computed as follows:
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Fig. 4: (Color online) True error rate rt VS. Mixing parameter
µ on the benchmark networks. (a) the GN benchmark networks
and (b) the LFR benchmark networks.

ρ(S, Ŝ) =

−2
kS∑
i=1

k
Ŝ∑

j=1

Fij log
(
Fij · n/(||Fi.|| · ||F.j ||)

)
kS∑
i=1

||Fi.|| log(||Fi.||/n) +
k
Ŝ∑

j=1

||F.j || log(||F.j ||/n)

where kS is the number of communities in S and F represents
a confusion matrix with element Fij denoting the number of
common nodes in the community i of S and the community
j of Ŝ. Fi. and F.j are the sets of elements of the i-th row
and j-th column of F, respectively. The value of ρ(S, Ŝ) is in
the range of [0, 1]. The higher the ρ value is, the more similar
community structures the partitions S and Ŝ have.

B. Experimental Results on Tested Networks

Firstly, all comparison algorithms are tested on the GN and
LFR benchmark networks with different mixing parameters
µ, and the corresponding true error rates rt are recorded in
Fig. 4. The results illustrate that EMLIC performs significantly
better than EMLI, EML and MV on all networks, in terms
of rt. Specifically, the averaged rt value of EMLIC over
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Fig. 5: (Color online) Spurious error rate rs VS. Mixing pa-
rameter µ on the benchmark networks. (a) the GN benchmark
networks and (b) the LFR benchmark networks.

the 22 networks is about 5.060% lower than that of EMLI
(35.49%), EML (17.39%) and MV (29.20%). On average,
EMLIC has reduced 85.74%, 70.90% and 82.67% of the
rt value obtained by EMLI, EML and MV, respectively.
The high performance of EMLIC may be attributed to its
heterogeneous reliability setting of platforms’ observations to
the communities of networks, which is further demonstrated
by the comparisons among EMLIC, EMLI and EML.

The comparison between EML and EMLI in Fig. 4 shows
that the setting of the heterogeneous reliability of platforms
would degrade the performances of EML on the detection of
real links. This is to be expected as the maximization of the
likelihood function in EMs is nonconvex and EMs cannot
guarantee convergence to a maximum likelihood estimator.
Therefore, for some practical applications with multimodal
distributions, the EM algorithms may converge to a local
optimal solution. Generally, the number of local optimal solu-
tions exponentially increases with that of unknown parameters.
Here, EMLI has more unknown reliability parameters than
EML, which makes EMLI easier to trap into a local optimal
solution. Moreover, the parameters of EM algorithms are
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Fig. 6: (Color online) Normalized mutual information ρ VS.
Mixing parameter µ on the benchmark networks. (a) the GN
benchmark networks and (b) the LFR benchmark networks.

estimated from the observations under a given prior distri-
bution, and hence their performances rather strongly depend
on the adopted stochastic blockmodel. When the estimated
parameters are far from the underlying distributions of pa-
rameters, EM algorithms may have poor performances. Note
that, although it has more unknown parameters than EML and
EMLI, EMLIC has lower rt values than EMLI and EML.
This is because the incorporation of structure information
into the statistic blockmodel can improve the performances
of EMs [28], [29]. Here, EMLIC incorporates the underlying
community structures of networks into its statistic blockmodel,
thus generating good performances for network data with
community structures.

Fig. 4 also shows the impacts of the µ setting on the
link inference of comparison algorithms. Generally, with the
increase of µ, the corresponding benchmark network has less
clear community structures, and the impacts of the community
structures of the network on the link inference become smaller.
This is consistent with the reported performances of EMLI
which does not consider the impacts of community structures
on the link inference in Fig. 4. As shown in Fig. 4, the rt

TABLE II: Results on different real-world networks. All
results are averaged over 30 independent trials, and the best
result is marked in boldface for each network.

Network Index EMLIC EMLI EML MV

Poolbooks
rt 0.0919 0.4215 0.1373 0.2840
rs 0.1092 0.2935 0.3000 0.1377
ρ 0.8112 0.3992 0.7794 0.6718

Jazz
rt 0.0396 0.3145 0.1814 0.2849
rs 0.1028 0.2946 0.2356 0.1372
ρ 0.8520 0.4786 0.8520 0.8079

USAir
rt 0.0681 0.3215 0.1831 0.3012
rs 0.0998 0.2655 0.2584 0.1363
ρ 0.7090 0.5132 0.6496 0.6067

Elegans
rt 0.0732 0.3049 0.1954 0.3050
rs 0.0904 0.2284 0.2267 0.1294
ρ 0.5837 0.4400 0.5990 0.5469

Email
rt 0.0500 0.3375 0.2004 0.2979
rs 0.0793 0.2854 0.2157 0.1289
ρ 0.6868 0.4573 0.5892 0.5398

Power
rt 0.2108 0.3990 0.1477 0.2840
rs 0.0956 0.1839 0.2632 0.1347
ρ 0.8872 0.8609 0.9129 0.8911

Geom
rt 0.1454 0.5176 0.1394 0.2708
rs 0.0904 0.1974 0.2633 0.1295
ρ 0.9405 0.8711 0.9411 0.9283

Pgp
rt 0.0923 0.4655 0.1314 0.2845
rs 0.0974 0.2810 0.3047 0.1493
ρ 0.9034 0.7966 0.8975 0.8569

values of EMLI decrease with the increase of µ. Note that,
compared with EML and MV, EMLI is more sensitive to
the parameter µ. This is because EMLI needs to estimate
more reliability parameters which may be influenced by the
community structures of networks.

Fig. 5 shows the spurious error rate rs of comparison algo-
rithms on the GN and LFR benchmark networks with different
mixing parameters µ. From Fig. 5, we can obtain similar
observations from the rt comparison results. Specifically, for
the GN networks, the averaged rs of EMLIC is about 9.720%
lower than that of EMLI (28.90%), EML (25.68%) and MV
(13.75%), while for the LFR networks, EMLIC obtains an
averaged rs = 9.040% lower than the 28.22%, 23.92% and
13.39% of EMLI, EML, and MV, respectively. It is also shown
that the rs values of EMLIC on the LFR benchmark networks
are smaller than those on the GN benchmark networks and
they decrease with increasing network heterogeneity in com-
munity sizes and degrees. In addition, Fig. 5 demonstrates that
the rs values of EMLIC and EMLI are robust and sensitive
to µ, respectively. Those phenomena validate the superior
performances of EMLIC on the detection of spurious links.

The detected networks by comparison algorithms include
both real links and spurious links, which may change the
community properties of original networks. To demonstrate the
consistency of community properties, we record the ρ values of
the community structures between the detected networks by all
link inference algorithms and the original ones in Fig. 6. Fig. 6
illustrates that EMLIC achieves very competitive ρ values on
most cases, and outperforms or compares well with the other
comparison algorithms. It also indicates that the ρ values of
all comparison algorithms decrease with increasing µ. This
is to be expected that with the increase of µ, the potential
community structures of networks become more unclear and
the missing of intra-community links and the adding of spuri-
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Fig. 7: (Color online) Community preservation and undetected spurious links of comparison algorithms on the GN benchmark
network with µ = 0.4. (a) the real GN network, (b) the GN network only with spurious links and the GN network detected
by (c) EMLIC, (d) EMLI, (e) EML and (f) MV. Nodes plotted by different colors are in different communities.

TABLE III: Performance of comparison algorithms VS. Reli-
ability of platforms R1k & R0k on the Email network.

R1k & R0k Index EMLIC EMLI EML MV

[0.2, 0.6] & [0.3, 0.9]
rt 0.5996 0.5268 0.9966 0.8643
rs 0.4056 0.3902 0.0047 0.1349
ρ 0.3790 0.4222 0.4797 0.4438

[0.2, 0.6] & [0.2, 0.7]
rt 0.9576 0.6993 0.9473 0.8634
rs 0.7771 0.6584 0.5128 0.7122
ρ 0.4008 0.4890 0.4192 0.4042

[0.2, 0.9] & [0.3, 0.9]
rt 0.0500 0.3375 0.2004 0.2979
rs 0.0793 0.2854 0.2157 0.1289
ρ 0.6868 0.4573 0.5892 0.5398

[0.2, 0.9] & [0.2, 0.7]
rt 0.4599 0.4734 0.0560 0.2863
rs 0.5178 0.5624 0.9496 0.7133
ρ 0.5159 0.5138 0.6753 0.5589

[0.4, 0.9] & [0.3, 0.9]
rt 0.0105 0.1436 0.0275 0.0469
rs 0.0607 0.1177 0.1895 0.1353
ρ 0.7661 0.6275 0.6807 0.6661

[0.4, 0.9] & [0.2, 0.7]
rt 0.0436 0.3692 0.0069 0.0483
rs 0.2385 0.2479 0.8930 0.6955
ρ 0.7040 0.3935 0.6623 0.6534

ous links would result in the change of community structures.
Those phenomena demonstrate the superior performance of
EMLIC on preserving the community structures of networks.

Next, all comparison algorithms are tested on eight real-
world networks coming from different areas, and the corre-
sponding rt, rs and ρ are recorded in Table II. From Table II,
we can see that i) for the Poolbooks, Jazz, USAir, Elegans,
Email and Pgp networks which have a high node degree or
a clear community partition, EMLIC has the lowest rt value
among comparison algorithms; ii) for the low-degree Power
and Geom networks, EMLIC only gives a slightly larger rt
value than EML; and iii) for all real-world networks, EMLI
achieves a high true error rate rt as it needs to estimate a large
amount of reliability parameters and neglects the impacts of

community structures on the link inference.

Table II also shows that for all real networks, EMLIC has
the lowest rs values among comparison algorithms. Moreover,
all comparison algorithms achieve high ρ values for the Power,
Geom and Pgp networks which have a low node degree,
whereas they obtain low ρ values for the Poolbooks, Jazz and
Email networks which have a high node degree. This may be
explained by the fact that the numbers of undetected spurious
and real links are relevant to the networks’ node degree,
resulting in changing the underlying community structures of
original networks.

To further demonstrate the superior performances of EMLIC
on preserving community structures and identifying spurious
links, we plot the community divisions of the small-scale GN
benchmark and USAir networks and their spurious versions
detected by the comparison algorithms in Figs. 7 and 8, respec-
tively. Moreover, the undetected spurious links of networks by
comparison algorithms are also recorded in Figs. 7 and 8. Fig.
7 illustrates that only the GN benchmark network detected by
EMLIC has the same community division as the original and
spurious networks, which has 4 communities. The GN bench-
mark networks detected by the other comparison algorithms
tend to divide a large community of the original network into
two or more small communities. Fig. 7 also shows that the GN
benchmark network detected by EMLIC has less spurious links
than those by the other algorithms, especially for the spurious
inter-community links, which demonstrates the effectiveness
of the heterogeneous reliability strategy. From Fig. 8, we can
see that the USAir network detected by the EMLIC algorithm
has the most similar community division as the real one, and
its spurious links are far less than those of the USAir networks
detected by the other comparison algorithms.
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(a) (b) (c)

(d) (e) (f)

Fig. 8: (Color online) Community preservation and undetected spurious links of comparison algorithms on the USAir network.
(a) the real USAir network, (b) the USAir network only with spurious links and the USAir network detected by (c) EMLIC,
(d) EMLI, (e) EML and (f) MV. Nodes plotted by different colors are in different communities.
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Fig. 9: (Color online) Performance of comparison algorithms VS. Number of platforms q on the Email network. (a) the true
error rate rt. (b) the spurious error rate rs. (c) the normalized mutual information ρ.

C. Effects of Parameter Settings on Reliable Link Inference

In this part, the effects of the parameters, including the
number of platforms q, the reliability of platforms R and
the ratio of spurious links pk&p0, on the link inference are
investigated in the real Email network.

Fig. 9 shows the performances of comparison algorithms
in the Email network with different settings of q. It can be
observed that the performances of all comparison algorithms
improve with the increase of q, in terms of rt, rs and ρ.
It also illustrates EMLIC has the lowest rt and rs values
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TABLE IV: Performance of comparison algorithms VS Ratios
pk&p0 of spurious links on the real Email network.

pk & p0 Index EMLIC EMLI EML MV

[0, 1] & [0, 1]
rt 0.0264 0.3616 0.2393 0.2953
rs 0.0551 0.2062 0.1812 0.1281
ρ 0.6847 0.4141 0.5846 0.5509

[0, 1] & [0.3, 1]
rt 0.0293 0.3628 0.2461 0.3022
rs 0.0586 0.2182 0.1843 0.1434
ρ 0.6909 0.4469 0.6162 0.5919

[0.5, 1] & [0, 1]
rt 0.0264 0.3994 0.1983 0.2838
rs 0.0695 0.1892 0.2164 0.1450
ρ 0.7116 0.3970 0.5845 0.5553

[0.5, 1] & [0.3, 1]
rt 0.0408 0.3697 0.1948 0.2893
rs 0.0724 0.1614 0.2111 0.1281
ρ 0.6847 0.4141 0.5846 0.5509

[0.7, 1] & [0, 1]
rt 0.0413 0.3925 0.2034 0.3008
rs 0.0789 0.1650 0.2206 0.1335
ρ 0.6949 0.4008 0.5897 0.5692

[0.7, 1] & [0.3, 1]
rt 0.0500 0.3375 0.2004 0.2979
rs 0.0793 0.2854 0.2157 0.1289
ρ 0.6868 0.4573 0.5892 0.5398

and the highest ρ value when q > 20 (in this case, the
link inference systems have enough information about the
network). Note that, when q < 20, the EM based link
inference algorithms, including EMLIC, EMLI and EML, have
higher rs values than MV. Those phenomena suggest that
the amount of observations may have a large effect on the
performances of link inference algorithms, especially for the
EM based link inference algorithms. They also demonstrate the
superior performances of EMLIC on the link inference when
the systems have enough information about the network.

Table III records the impacts of the reliability of platforms
R[α] on the link inference of comparison algorithms in the
Email network. It can be seen that i) when R0k (R1k) keeps
unchanged, the performances of all comparison algorithms
improve with the increase of R1k (R0k), generally; ii) when
all platforms have a relatively low reliability (i.e., R1k ∈
[0.2, 0.6] and R0k ∈ [0.2, 0.7]), all algorithms cannot infer
the true links and the spurious links. When all platforms
have a relatively high reliability (i.e., R1k ∈ [0.4, 0.9] and
R0k ∈ [0.3, 0.9]), all algorithms have good performances in
terms of rt, rs and ρ; and iii) when the reliability of platforms
is in an acceptable range, among comparison algorithms
EMLIC has the best performances in terms of rt, rs and ρ.

Table IV records the performances of comparison algo-
rithms in the Email network varying with different ratios pk
and p0 of spurious links. The results illustrate that EMLIC
is the most influenced one among comparison algorithms by
the settings of pk and p0. Specifically, the performances of
EMLIC degrade with the increase of pk and p0, whereas
those of other algorithms have no obvious relation with pk
and p0. This is to be expected as the settings of pk and
p0 may have a large impact on the community divisions
of networks and only EMLIC would be influenced by the
change of community divisions. The results in Table IV also
demonstrate that EMLIC has the best performances for all
settings of pk and p0, in terms of rt, rs and ρ.

In order to demonstrate whether the platforms’ observations
with relatively low reliability positively influence the link in-
ference when they are coupled with those with high reliability,

TABLE V: Performance of comparison algorithms VS. Ratio
of platforms rp with low reliability on the real Email network.

rp Index EMLIC EMLI EML MV

0%
rt 0.0500 0.3375 0.2004 0.2979
rs 0.0793 0.2854 0.2157 0.1289
ρ 0.6868 0.4573 0.5892 0.5398

10%
rt 0.0446 0.4392 0.1811 0.3012
rs 0.0757 0.1164 0.2507 0.1372
ρ 0.6807 0.3607 0.5774 0.5323

20%
rt 0.0654 0.4500 0.3699 0.4079
rs 0.1009 0.2042 0.1484 0.1255
ρ 0.6976 0.3610 0.5983 0.5746

30%
rt 0.0350 0.3046 0.3708 0.4262
rs 0.0740 0.3133 0.1418 0.1053
ρ 0.6823 0.4748 0.5487 0.5290

40%
rt 0.0594 0.3234 0.4070 0.4291
rs 0.0526 0.2422 0.0844 0.0765
ρ 0.6245 0.4316 0.4925 0.4963

50%
rt 0.0635 0.3455 0.5566 0.5091
rs 0.0524 0.2260 0.0770 0.0975
ρ 0.6667 0.4618 0.4874 0.4889
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Fig. 10: Convergence performance of EMLIC on the Email
network.

we incorporate a ratio rp of platforms with low reliability
(i.e., R1k ∈ [0.3, 0.5], k = 1, 2, . . . , c) into the simulations,
and record the performances of comparison algorithms with
different settings of rp in Table V. It can be seen that the
performances of EMLIC and EMLI are robust to the parameter
rp whereas those of EML and MV decrease with the increase
of rp values. This is because EMLIC and EMLI consider the
heterogeneous reliability of platforms whereas EML and MV
take into account the homogeneous reliability of platforms.

Fig. 10 presents the convergence of EMLIC on the real
Email network. It records the rt, rs and ρ values averaged over
30 independent trials versus the number of generations. The
results illustrate that for all 30 independent trials, EMLIC can
converge within 500 generations. Specifically, the rt, rs and
ρ obtained by EMLIC are not changed in the 179 generation.

V. CONCLUSIONS

In this paper, we presented a link inference problem, in
which the links in a network cannot be directly revealed
but they can be observed by multiple platforms or a plat-
form at different times. We derived a link inference model
which considers the heterogeneous reliability of platforms’
observations and enables a comprehensive understanding of
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the impacts of community structures on the link inference of
networks. To solve this link inference problem, we proposed
an efficient expectation maximization algorithm EMLIC with a
low computational complexity O(m ·q ·gmax) for inferring the
true state of links, the reliability of platforms’ observations to
links in different communities and the link errors in different
communities. Simulations on the GN and LFR benchmark
networks and eight real-world networks demonstrated that the
EMLIC algorithm has lower error rates than the EMLI, EML
and MV algorithms, including the true error rate and the
spurious error rate. The results also illustrated that the spurious
networks detected by the EMLIC algorithm can effectively
preserve the community structures of real networks.

In this work, all links of a network can be observed directly
by the system. In future work, we will consider the partial
observations of platforms to the network’s links. Moreover,
the presented system may not work well for the networks
with many spurious links due to the differences between the
community structures detected by the BGLL algorithm on the
spurious network and the real one. In this case, inspired by
these works [28]–[30], we will construct a general inference
model which jointly infers the community structure and the
links of networks with a maximum posterior probability of
observations. In addition, we will study the link inference
problem in network data with temporal community structures
and dynamic link information, in which the links are observed
by multiple platforms at a series of times and the network data
in different platforms have their own community structures.
Finally, we will consider multiple classes of platforms (e.g.,
expert platforms with high reliability and malicious platforms
with low reliability), and jointly infer the true state of the links
of networks and the classes of platforms.
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