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Abstract 

The challenges of Portfolio Optimization have led to an increasing interest from the multi-

objective evolutionary algorithms research community; however, little attention has been 

paid to the particular preferences of the investor in order to select the most preferred portfolio 

from a set of mathematically equivalent alternatives in presence of many criteria. The main 

goal of this work is thus modeling the preferences of the investor in order to find the most 

satisfactory portfolio from the investor’s perspective when many objective functions are 

considered. Here, the investor’s behavior facing risk, the estimations of the portfolios’ future 

returns, and the risk of not attaining those returns are all represented by means of probabilistic 

confidence intervals. The imperfect knowledge related to the subjectivity of the investor is 

modeled on the basis of Interval Theory and the outranking method. The proposed approach 

aggregates the many criteria on the basis of the investor’s particular system of preferences 

producing a selective pressure towards the most preferred portfolio while the investor’s 

cognitive effort in the final selection is reduced. 

An illustrative example in the context of stock portfolio optimization is provided, where 

several investors interested in many criteria are simulated. The considered criteria are 

confidence intervals around the portfolios’ expected returns, and indicators from the so-

called fundamental and technical analyses. Our approach is compared, using real historical 

data, with an outstanding multi-objective evolutionary algorithm, MOEA/D, and some well-

known benchmarks in Modern Portfolio Theory and Finance Theory, namely, the Mean-

Variance approach and the Dow Jones Industrial Average index. The results show an evident 

superiority of the proposed approach in both the context of the underlying criteria (confidence 
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intervals and financial indicators) and the context of the actual returns. Thus, we conclude 

that the proposed approach was able to find satisfactory portfolios in the context of the 

experiments.  

Keywords: Evolutionary multi-objective optimization; portfolio optimization; preferences 

modeling; uncertainty management. 

1 Introduction 

In modern society, many objectives are commonly contemplated when allocating resources, 

that is, generating portfolios (see Steuer et al., 2008; Zopounidis and Doumpos, 2013a and 

2013b; and Aouni et al, 2014). Some of the objectives most commonly mentioned in the 

related literature are: 

 Maximization of the portfolio’s return (e.g., Markowitz, 1952; Solares et al., 2018). 

 Maximization of social responsibility and ethical considerations (e.g.., Gonzalez et 

al., 2013; Utz et al., 2014; and Gupta et al., 2014). 

 Maximization of liquidity (e.g., Allen and Allen, 2013; Kinlaw et al., 2013). 

 Maximization of return with respect to some benchmarks (see Steuer et al., 2008). 

 Maximization of the amount invested in R&D (see Steuer et al., 2008). 

 Minimization of transaction costs (e.g., Mansini et al., 2015, Zhang et al., 2012). 

From all these objectives, the most outstanding one is maximization of the portfolio’s 

return/profit (Solares et al., 2018). This is sometimes the only objective optimized during the 

allocation of resources; however, given the high complexity involved in the return’s 

forecasting procedure, many criteria (e.g., expected return, risk, so-called fundamental and 

technical analyses) usually underly such objective. Here, we will address, without loss of 

generality, the latter situation. 

Investors frequently use decision-aiding tools in order to obtain a set of portfolios 

representing, to a certain extent, the best feasible allocations of resources. But this does not 

solve the problem; the investor still must choose from among all these portfolios the one that 

represents the best compromise among the considered criteria. But, as reported by Miller 

(1956), this is not a trivial task since the cognitive limitations make it very difficult for the 

investor to consistently select the best compromise in the presence of many criteria. This 



becomes more complicated when she/he needs to make trade-offs between risk and return. 

Consequently, a more convenient approach must be followed; the goal of such an approach 

must be to provide a minimal set of portfolios satisfying the investor’s preferences. The main 

objective of this work is thus to propose an approach able to deal with many criteria in order 

to create a portfolio that satisfies the preferences of the investor. That is, our approach is 

intended to find the most preferred portfolio. 

Since the groundbreaking work of Markowitz (1952), many authors have presented 

interesting methods to create portfolios with the goal of maximizing the portfolio return (see 

e.g., Jorion, 2007; Kolm et al., 2014; Fabozzi et al., 2007; Greco et al., 2013). Beyond the 

use of Probability Theory, many other types of criteria are considered by real investors 

(decision makers, DMs). These criteria range, for example, from the financial information of 

the investment objects to the behavior of their returns through time. There are two main 

perspectives that consider these criteria in the context of stocks: one, the so-called 

fundamental analysis, mainly uses ratios to express the real (and probably hidden) value of 

the companies underlying the stocks (see e.g., Xidonas et al., 2009); whereas the other, the 

so-called technical analysis, principally uses signalizations that indicate the goodness of time 

to execute transactions of stocks by analyzing their serial returns over time (see e.g., Armano 

et al., 2005). These two types of indicators together with the approximation to the probability 

distribution of the returns constitute the most mentioned criteria in the literature of portfolio 

optimization. The necessity of considering all these aspects during the allocation of resources 

come from the high volatility of the stocks’ returns and from the complexity to estimate them. 

Furthermore, sometimes the DMs face the problem of a too short performance history of 

some stocks to obtain a reliable approximation to their probability distribution, and/or 

insufficiency of the available financial information. Hence, solving a many-criteria 

optimization problem describing all these perspectives can be required. However, published 

papers considering all these aspects in a multi-criteria optimization problem to select the best 

portfolio according to the decision maker’s perspective are scarce. We believe that the lack 

of popularity of such an approach is mainly due to its high computational cost, caused by an 

overwhelming number of points in the optimization’s search space. Indeed, considering 

many (more than three) criteria makes the search space grow to a size that makes the portfolio 

optimization not solvable by exhaustive methods. Furthermore, the number of alternative 



solutions in the Pareto front for such problems tend to be also overwhelming, making it very 

hard for the investor to reach a final decision about what he/she considers the best portfolio. 

In order to find the best portfolio, the solution that offers the best compromise among the 

criteria must be found using the decision maker’s particular system of preferences (decision 

policy). That is, since all the solutions within the Pareto front are mathematically equivalent, 

the DM should provide additional information for choosing the most preferred one (cf. 

Hakanen et al., 2008). This implies that it is necessary to consider the subjectivity of the 

decision maker in aspects such as her/his attitude facing risk, the importance that she/he 

assesses to each criterion, and certain thresholds that dictate when the decision maker 

considers that a portfolio is at least as good as another. If these aspects are considered during 

the search process, then a selective pressure is performed and a portfolio that is preferred 

over other portfolios can be found. Nonetheless, incorporating the DM’s subjectivity could 

be a hard task, mainly due to the imperfect knowledge about the true values of the parameters 

representing the DM’s subjectivity and the cognitive effort required from the DM to reduce 

this source of imprecision. Such imperfect knowledge must necessarily be taken into account 

when modeling preferences in decision aiding (Roy et al., 2014). However, to the best of our 

knowledge, there are not published papers that deal with this type of difficulty when the 

subjectivity of the decision maker is incorporated in the portfolio optimization considering 

many criteria.  

Evolutionary multi-criteria optimization algorithms (whose performance analyzing data have 

been validated in different fields, e.g., in Refs. Pławiak, 2018a and 2018b) work with a 

population of solutions and can approximate a set of trade-off alternatives simultaneously. 

They have been widely accepted as a major tool for addressing the problem of finding “good” 

portfolios. The main goal of this type of algorithms is finding a set of efficient solutions that 

approximate the true Pareto front in terms of convergence and diversity. The intervention of 

the DM is thus not traditionally used in the process. So, rather little interest has been paid in 

the literature to choosing one of the efficient solutions as the final one in contrast to the 

interest paid in approximating the whole Pareto front.  

In this work, we assume that the situation where the DM is not willing/capable to provide 

preference information in an interactive way holds and propose an a priori approach based 



on the outranking method. Unlike  other ways of modeling preferences, the outranking 

method is able to deal with  i) ordinal and qualitative information, ii) zones of uncertainty in 

the investor’s mind, iii) intransitive preferences, iv) non-compensatory effects and veto 

situations, and v) incomparability between solutions. The main argument against the 

outranking approach is its requirement for many preference parameters and the difficulty of 

eliciting them. Thus, we use here the recent generalization of the outranking method proposed 

in (Fernandez et al., 2018) that defines the preference parameters as ranges of values instead 

of defining them as punctual values. So, the DM is now capable to directly provide the 

parameters values that are most representative of his/her preferences. Therefore, a well-suited 

portfolio might be found according to the DM’s decision policy.  

An illustrative example in the context of stock portfolio optimization is provided. The dataset 

used in the validation consists in the actual monthly returns of the stocks within the Dow 

Jones Industrial Average (DJIA) index during the period April 2011-March 2016. The results 

are evaluated in both the context of the original criteria and in the context of the actual returns. 

With respect to the former, we demonstrate that the portfolios constructed by the approach 

are satisfactory from the decision maker’s perspective. With respect to the latter, comparisons 

with the actual returns of the DJIA index and other benchmarks show that the performance 

of the proposed approach’s results is evidently better. 

The paper is structured as follows. In Section 2, a description of the background used by this 

work is presented. The main proposal is detailed in Section 3. Section 4 provides the 

validation process and shows the results obtained. Finally, Section 5 concludes the document. 

2 Some background 

2.1 Portfolio optimization 

Selecting the best portfolios from the investor’s perspective is very difficult in practice. 

Particularly, estimating future returns from time series of historical return data is so 

challenging, that for some authors it is considered as practically impossible (cf. Merton, 

1980; Breen et al., 1989; and Brandt and Kang, 2004). One of the most outstanding 

arguments in this sense is the one stated by Merton (1980), who indicated that “attempting 

to estimate the expected return on the market is to embark on a fool’s errand”. Conversely, 

many authors have found empirical evidence of a positive risk-return trade-off relation 



supporting the development of methods to construct portfolios (see e.g., Fabozzi et al., 2007; 

Xidonas et al., 2009; Gorgulho et al., 2011; Greco et al., 2013; Solares et al., 2018). In any 

case, the high relevance of the stock market at a global level makes the scientific research 

about the construction of stock portfolios a required activity. Let us now provide a brief 

background of the so-called stock portfolio problem. 

Let 𝑝 , 𝑝 , 𝑝 , ⋯ , 𝑝  be the historical prices of the 𝑖th stock (investment object) in 𝑇 1 

periods of time. The 𝑇  historical rate of returns (only returns in the following) of the stock 

are given by 𝑟   𝑝 𝑝 /𝑝 ;  𝑡  1, 2, ⋯ , 𝑇 . Here, a portfolio is a vector 𝑥 

 𝑥 , 𝑥 , … , 𝑥  in decision space that specifies the proportions of money to invest in 𝑛 

investment objects, such that 𝑥  is the proportion to invest in the 𝑖th object. The image of a 

portfolio in objective space is a real number that states the return produced by the portfolio, 

𝑅 𝑥 . It is widely accepted in the literature that the return produced by the portfolio 𝑥 can be 

obtained as (cf. Fabozzi et al., 2007): 

𝑅 𝑥 𝑥 𝑟 . 

The issue that investors (Decision Makers) face with the previous definition is that it depends 

on the future returns of the stocks, 𝑟 , whose values are unknown. Thus, underlying 

criteria are used with the purpose of estimating such returns, creating the criteria space. The 

image of a portfolio in the criteria space is a vector that represents the impact of the portfolio 

on 𝑘 criteria. The portfolio problem is then to select the feasible portfolio that maximizes the 

impact on the criteria. Formally: 

 maximize
∈ 

𝐼 𝑥 𝐼 , 𝐼 , ⋯ , 𝐼 , (1) 

where 𝐼 𝑥  is the impact of portfolio 𝑥 on criterion 𝑗 and Ω is the set of feasible portfolios 

(the set of portfolios that fulfill the decision maker’s constraints). 

The approximation to reality reached by the model becomes a crucial aspect in portfolio 

problems. In this sense, several works have used many criteria to describe the portfolio’s 

performance in a realistic way (cf. Agarwal, 2017). The need for many criteria originates 

from the decision maker (DM) being unwilling to accept that the uncertainty of future returns 



can be fully encompassed by a few criteria; not even through a common way of estimating 

the return such as the expected value. Hence, besides the commonly used Probability Theory, 

there are approaches that pursuit to describe the quality of the allocation from other 

perspectives. For example, the stock evaluation is often carried out through the analysis of 

financial indicators. The two kinds of financial analyses most mentioned in the literature are 

the fundamental and technical analyses. The former is often used in the stock selection 

process as a preliminary step to the creation of portfolios. That is, before allocating a 

proportion of resources to each stock, investors use this analysis to determine which stocks 

will be considered in the resource allocation process (see e.g., Xidonas et al., 2009). On the 

other hand, the technical analysis is used to specify goodness of the moment in which the 

resources will be assigned (Macedo et al., 2017; Gorgulho et al., 2011). 

We now present a brief description of these methodologies. 

2.1.1     Describing the probability distribution of the returns 

Perhaps the best well-known approaches among the scholars to deal with portfolio 

optimization rely on Probability Theory. For example, Modern Portfolio Theory bases its 

principal hypothesis in the assumption that the probability distribution of the returns can be 

approximated. Through this approximation, not just the portfolio’s future return is estimated 

but also the risk involved in the estimation. Particularly, Markowitz (1952, 1968) proposed 

the variance and semi-variance as measures of risk. In those works, an important assumption 

is that the returns follow a Gaussian distribution and/or that the decision maker’s utility 

function is quadratic. Such assumptions, together with the high sensitivity to errors, have led 

this model to be not widely used in practice (Kolm et al., 2014). 

Many other authors have also assumed that this approximation can be obtained and seek to 

represent it using better descriptions. For example, Harvey and Siddique (2000) present 

evidence that supports the intuition that “if returns have systematic skewness, expected 

returns should include rewards for accepting this risk”. Dittmar (2002) uses similar premises 

and shows that asset returns are affected by covariance, coskewness, and cokurtosis with the 

return on aggregate wealth. The paper presented by Saranya and Prasanna (2014) follows 

these results and uses high statistical moments to extend the classical Modern Portfolio 

Theory and deal with situations where the returns do not follow a Gaussian distribution nor 



the decision maker’s utility function is quadratic. Greco et al. (2013) recently proposed a 

novel approach where the quantiles of the distribution are used as the underlying criteria and 

several issues related to the Modern Portfolio Theory are overcome. 

All these are interesting ideas to construct portfolios in practice, however they all suffer of at 

least one of the following limitations: i) it is not possible to explicitly consider the behavior 

of the DM facing risk; ii) they lack of representativeness of the probability distribution; iii) 

the quantity of underlying criteria is overwhelming; iv) they do not deal with the increasing 

of the DM’s cognitive difficulty caused by the necessity of considering many criteria; v) they 

do not allow the incorporation of the DM’s system of preferences.  

2.1.2     Fundamental analysis 

The information provided by the fundamental analysis is mainly used in the literature to 

select competitive stocks. Although this information may be qualitative, it is often generated 

in the form of ratios of numerical values taken from the financial statements of the 

companies. Many works in the literature usually aggregate these indicators in a global 

evaluation index through a subjective process that may depend on the DM decision policy 

(see e.g., Xidonas et al., 2009). Such aggregation is a problem per se.  

It is well known that the fundamental analysis can be different for companies with different 

business activities (Marasović et al. 2011). Therefore, the most convenient indicators should 

be used when the fundamental analysis is exploited (e.g., Xidonas et al., 2009). Some 

fundamental indicators that can be used for trans-business companies are shown in Table 1 

(cf. Xidonas et al., 2009, Marasović et al. 2011). 

Table 1. Fundamental indicators that can be used for companies with different business 

activities. 

Indicator Name Definition 

𝑖𝑓  Return on assets Earnings before interest and taxes divided by total assets.

𝑖𝑓  Return on equity Net income divided by shareholders equity. 

𝑖𝑓  Earnings Per Share Net income minus dividends on preferred stocks all 
divided by average outstanding shares. 

𝑖𝑓  Dividend yield Annual dividends per share divided by price per share. 

𝑖𝑓  Price on earnings Market value per share divided by earnings per share 



𝑖𝑓  Price on book Stock price divided by all total assets minus intangible 
assets and liabilities.

𝑖𝑓  Price on sales Share price divided by revenue per share. 

𝑖𝑓  Price on cash Flow Share price divided by cash flow per share 

2.1.3     Technical analysis 

The technical analysis studies the market patterns, demand and supply of stocks (Achelis, 

2000). It consists of using price data to create rules and exploit them financially by selecting 

stocks in accordance with them. If the rule associated with a technical indicator shows that 

the price of a stock is likely to rise, the DM should buy now expecting to sell later at a higher 

price, thus increasing the return of the portfolio. 

Some of the most frequently mentioned technical indicators reported in the literature are (cf. 

e.g., Armano et al., 2005; Macedo et al., 2017; and Gorgulho et al., 2011): Exponential 

Moving Average (EMA), Double Crossover (DC), Rate of change (ROC), Relative Strength 

Index (RSI), Moving average convergence/divergence (MACD), On Balance Volume 

(OBV), Bollinger Band (BB), and True Strength Index (TSI). Let us now describe the rule 

associated with each of these indicators. 

The EMA is one of the simplest technical indicators, where higher weights are assigned to 

the most recent data. The EMA for the 𝑖th stock in period 𝑡, 𝐸𝑀𝐴 , is defined as (cf., Macedo 

et al., 2017): 

𝐸𝑀𝐴 𝑤𝑠 𝑝 𝐸𝑀𝐴 𝑤𝑠 𝑤 𝐸𝑀𝐴 𝑤𝑠 , 

where 𝑤𝑠 is the length of the sliding window of the exponential moving average, 𝑤 , 

and the initial 𝐸𝑀𝐴 (i.e., when 𝑡 𝑤𝑠) is calculated as the average of the previous 𝑤𝑠 

periods. A value of 𝑤𝑠 12 is commonly used (e.g., Gorgulho et al., 2011). The rule 

associated with this indicator states that if the price line crosses above the EMA line, then 

the stock should be supported. Formally (cf. Gorgulho et al., 2011): 

𝑖𝑡 1 𝐸𝑀𝐴 12 𝑝 ∧ 𝐸𝑀𝐴 12 𝑝 ,
0 otherwise.

 

Where ∧ is the conjunction operator. 



The DC uses two moving averages (normally, a short one and a large one) and produces a 

signal when the shorter crosses above the larger. Normally, a window size of five periods is 

used for the short line while the large line uses a window size of 20 periods. Hence, the 

signalization rule for this indicator is as follows: 

𝑖𝑡 1 𝐸𝑀𝐴 5 𝐸𝑀𝐴 20 ∧ 𝐸𝑀𝐴 5 𝐸𝑀𝐴 20 ,
0 otherwise.

 

The ROC represents the proportional difference between the current price of the 𝑖th stock 

and the price ℎ periods ago (cf., Armano et al., 2005): 𝑅𝑂𝐶 . Positive values in 

this indicator are desirable. A value ℎ 13 is commonly accepted (see Gorgulho et al., 

2011): 

𝑖𝑡 1 𝑅𝑂𝐶 13 0,
0 otherwise.

 

The RSI is a momentum oscillator conceived to measure the relative conditions of the stock 

in the market with respect to its overbought/oversold condition. The RSI value for the 𝑖th 

stock in period 𝑡 is defined as (cf. Wilder, 1978; Macedo et al., 2017): 

𝑅𝑆𝐼 𝑑 1
1

1 𝑅𝑆 𝑑
, 

where 𝑅𝑆 𝑑
∑

/
∑

; ∑ 𝑈  is the sum of the positive returns of 

stock 𝑖 during 𝑑 periods before the period 𝑡, and ∑ 𝐷  is the same sum but with 

negative returns. It is widely accepted that 𝑑 14 (e.g., Wilder, 1978; and Gorgulho et al., 

2011). This indicator suggests that the 𝑖th stock should be supported in period 𝑡 if the 𝑅𝑆𝐼  

value crosses above 30% and the current price is higher than the price of the previous period 

(see Gorgulho et al., 2011; and Macedo et al., 2017). Formally: 

𝑖𝑡 1 𝑅𝑆𝐼 𝑑 0.3 ∧ 𝑅𝑆𝐼 𝑑 0.3 ∧ 𝑝 𝑝 ,
0 otherwise.

 

The MACD is a combination of EMAs that validates the “convenience” of acquiring a stock 

through the comparison with a signaling function. The most common configuration of this 

indicator uses two EMAs with 12 and 26 historical periods, 𝐸𝑀𝐴 12  and 𝐸𝑀𝐴 26 , to 

create the 𝑀𝐴𝐶𝐷 12,26  (Armano et al., 2005; Macedo et al., 2017; and Gorgulho et al., 



2011). The MACD for the stock 𝑖 in the period 𝑡 is defined as 𝑀𝐴𝐶𝐷 12,26

𝐸𝑀𝐴 12 𝐸𝑀𝐴 26 . The literature usually traces another moving average that does not 

depend on the price of the stocks but depends on the 𝑀𝐴𝐶𝐷  indicator. This new moving 

average, 𝑀𝑀 , is used to create a signal line of momentum about the movement of the prices. 

The signal line is created as a nine-period EMA of the 𝑀𝐴𝐶𝐷 . The common strategy 

associated with this indicator states that when the value of 𝑀𝐴𝐶𝐷 12,26  crosses above 

𝑀𝑀 9 , then there is evidence that the stock will increase in price and that it is advisable to 

invest in it in the current period. Thus, we will consider that this indicator suggests support 

for the 𝑖th stock if (cf., Armano et al., 2005; and Gorgulho et al., 2011): 

𝑖𝑡 1 𝑀𝐴𝐶𝐷 12,26 𝑀𝑀 9 ∧ 𝑀𝐴𝐶𝐷 12,26 𝑀𝑀 9 ,
0 otherwise.

 

The OBV assumes that a rising volume might precede a rise on the stock’s price and is 

calculated as (Gorgulho et al., 2011): 

𝑂𝐵𝑉
𝑂𝐵𝑉 𝑣𝑜𝑙 𝑝 𝑝 ,
𝑂𝐵𝑉 𝑣𝑜𝑙 𝑝 𝑝 ,

𝑂𝐵𝑉 otherwise.
 

Where 𝑣𝑜𝑙  is the volume (number of shares/stocks traded) in period 𝑡. 

The OBV indicates that the 𝑖th stock should be supported if the value 𝑂𝐵𝑉  is rising 

simultaneously with price (indicating a clear up trend). Formally: 

𝑖𝑡 1 𝑂𝐵𝑉 𝑂𝐵𝑉 ∧ 𝑝 𝑝 ,
0 otherwise.

 

The BB is a strategy of election with strong positive net results (Macedo et al., 2017). It is a 

volatility indicator represented by the bands generated from an 𝑙-day price moving average 

minus 2 standard deviations of price changes over the same 𝑙-periods time span: 

𝑀𝐴 𝑙
∑ 𝑝

𝑙
. 

𝐿𝐵 𝑙 𝑀𝐴 𝑙 2𝜎 𝑙 . 



Where 𝜎 𝑙  is the standard deviation of price changes of stock 𝑖 for the period 𝑡 and its 

previous 𝑙 1 periods. 

The rule associated with the BB states that the 𝑖th stock should be supported if in period 𝑡 its 

price is simultaneously above 𝐿𝐵 𝑙  and below 𝑀𝐴 𝑙  (to avoid false triggering; cf. 

Macedo et al., 2017): 

𝑖𝑡 1 𝑀𝐴 𝑙 𝑝 𝐿𝐵 𝑙 ,
0 otherwise.

 

The TSI is double smoothed with two moving averages to show the trend and specifying, at 

the same time, the overbought and oversold conditions (Gorgulho et al., 2011). It can be 

defined as: 

𝑇𝑆𝐼 𝑟, 𝑠 100
𝐸𝑀𝐴 𝑆  of 𝐸𝑀𝐴 𝑟  of 𝑑𝑖𝑓𝑓

𝐸𝑀𝐴 𝑆  of 𝐸𝑀𝐴 𝑟  of |𝑑𝑖𝑓𝑓 |
, 

Where 𝑑𝑖𝑓𝑓  is the momentum line which calculates the difference between the current price 

and the price observed on the previous period, that is 𝑑𝑖𝑓𝑓 𝑝 𝑝  for a given period 

𝑗. 

The literature often uses an 𝐸𝑀𝐴 of the TSI as trigger: 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 𝑚 𝐸𝑀𝐴 𝑚  of 𝑇𝑆𝐼  

and an oversold region. Such region indicates that the stock’s price is lower than it should 

be, and normally is located in the value -25 of 𝑇𝑆𝐼 . The rule associated with the TSI states 

that the 𝑖th stock should be supported if the 𝑇𝑆𝐼  crosses above 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 𝑚  on the oversold 

region, that is: 

𝑖𝑡

1 𝑇𝑆𝐼 𝑟, 𝑠 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 𝑚 ∧ 𝑇𝑆𝐼 𝑟, 𝑠 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 𝑚 ∧ 𝑇𝑟𝑖𝑔𝑔𝑒𝑟 𝑚 0.25,
0 otherwise.

 

2.2 Interval-based outranking approach 

Fernandez et al. (2018) recently proposed a novel approach called interval-based outranking 

that generalizes the classic outranking method. The interval-based outranking assumes that 

the implicit parameters used by the DM to make decisions are imperfectly known. Imperfect 

knowledge is modeled in that approach through the representation of parameters as interval 



numbers, the principal concept within the so-called interval theory. Let us present here this 

interval-based outranking method in the context of the portfolio construction. 

Suppose a set of portfolios 𝐴 where each 𝑥 ∈ 𝐴 is evaluated on a family of 𝑘 criteria ℐ

𝑔  , 𝑔  , ⋯ , 𝑔  defined on 𝐴; in a way that 𝑔 𝑥  represents the evaluation of portfolio 𝑥 

from the 𝑗th perspective. Without loss of generality, we assume that increasing the 

performance of 𝑔 𝑥  improves the performance of portfolio 𝑥, for any 𝑗 1,2, ⋯ 𝑘. Some 

of the parameters used by the interval-based outranking approach are the following. (Note 

the definition of the parameters as interval numbers.) 

 𝑔 𝑥   𝑔 𝑥 , 𝑔 𝑥 , the performance of portfolio 𝑥 ∈ 𝐴 in the 𝑗th perspective; 

 𝑤   𝑤 , 𝑤 , the weight of criterion 𝑔 ;  

 𝑣   𝑣 , 𝑣 , the veto threshold of criterion 𝑔 ; and 

 𝜆  𝜆 , 𝜆   reflects a threshold for a sufficient strength of the concordance 

coalition. 

Where 𝑥 ∈ 𝐴 and  𝑔  ∈  ℐ. 

Since the imperfect knowledge on the criterion performances is represented through 

intervals, no preference and indifference thresholds are used in (Fernandez et al., 2018).  

Through the previous parameters, the interval-based outranking approach builds a likelihood 

index between pairs 𝑥, 𝑦 ∈ 𝐴 𝐴, 𝛽 𝑥, 𝑦 ∈ 0,1 , of the assertion “𝑥 is at least as good as 

𝑦”, 𝑥𝑆𝑦. This approach also uses a cutting level, 𝛽 , such that 𝑥𝑆𝑦 ⇔ 𝛽 𝑥, 𝑦 𝛽 . 

The marginal likelihood index, 𝛼 𝑥, 𝑦 , on portfolio 𝑥 being at least as good as portfolio 𝑦 

on criterion 𝑔  is calculated as follows: 

𝛼 𝑥, 𝑦 𝑝 𝑔 𝑥 𝑔 𝑦 . 

Where 𝑝 ⋅  is the possibility function described by: 

 
𝑝 𝐼  𝐽  

1 if 𝑝 1,
𝑝 if 0 𝑝 1,
0 if 𝑝 0.

 
 

Where 𝐼  𝑖 , 𝑖  and 𝐽  𝑗 , 𝑗  are interval numbers and 𝑝  
 

  
. 



Furthermore, if 𝑖 𝑖   and 𝑗 𝑗 , then 𝑝 𝐼  𝐽 1       if 𝐼 𝐽,
     0      otherwise.

 

If we assume the existence of a likelihood threshold 𝛿  for each criterion 𝑔 , then the set of 

all criteria for which 𝛼 𝛿  is called concordance coalition with the assertion 𝑥𝑆𝑦 and is 

denoted by 𝐶 𝑥𝑆 𝑦 . This concordance coalition is associated with an index 𝛿 min 𝛼 , 

𝑗 ∈ 𝐶 𝑥𝑆 𝑦 . 𝛿 is the likelihood that all criteria within the concordance coalition are actually 

in agreement with 𝑥𝑆𝑦. (Recall that the performance of the portfolios and the values in the 

set of preference parameters are imperfectly known, so it is not possible to guarantee a total 

concordance of the criteria.) Criteria that are not in 𝐶 𝑥𝑆 𝑦  compose the discordance 

coalition, 𝐷 𝑥𝑆 𝑦 . All this is formalized as 

𝑔 ∈ 𝐶 𝑥𝑆 𝑦  iff 𝛼 𝛿, and 

𝐷 𝑥𝑆 𝑦 ℐ 𝐶 𝑥𝑆 𝑦 . 

The imprecision in the definition of the parameters makes it impossible to guarantee 

∑ 𝑤  1, as in the classic outranking model. Any realization of the weights is valid only if 

that condition is fulfilled. So, we must ensure that it can be fulfilled. The following two 

feasibility restrictions are established with this purpose. 

 
𝑤 1, 

(2) 

 

 
𝑤 1. 

(3) 

The concordance index of the statement “𝑥 is at least as good as 𝑦”, 𝑐 𝑥, 𝑦

𝑐 𝑥, 𝑦 , 𝑐 𝑥, 𝑦 , is defined as follows. First, it is intuitive to assume that 𝑐

∑ 𝑤∈  and 𝑐 ∑ 𝑤∈ . Nevertheless, this is valid only if constraints (2) 

and (7) are fulfilled. To ensure these constraints fulfill the definition of 𝑐 𝑥, 𝑦 , it is necessary 

to consider the complete set of criteria, ℐ. By definition, this involves contemplating 𝐶 𝑥𝑆 𝑦  

and 𝐷 𝑥𝑆 𝑦 . Thus, considering (2) and (7) in the definition of 𝑐 𝑥, 𝑦

𝑐 𝑥, 𝑦 , 𝑐 𝑥, 𝑦 , Fernandez et al. (2018) define 



 𝑐 𝑥, 𝑦 𝑤
∈

,  

only if it is true that 

𝑤
∈ 

 𝑤 1
∈

, and 

𝑤
∈ 

 𝑤 1
∈

. 

Otherwise, 𝑐 𝑥, 𝑦  is defined as  

1  𝑤
∈

. 

Similarly,   

 𝑐 𝑥, 𝑦 𝑤
∈

,  

only if it is true that 

𝑤
∈ 

 𝑤 1
∈

, and 

𝑤
∈ 

 𝑤 1
∈

. 

Otherwise, 𝑐 𝑥, 𝑦  is taken as 

1  𝑤
∈

. 

Fernandez et al. (2018) show that 𝑐 𝑥, 𝑦 𝑐 𝑥, 𝑦 , and that if 𝐶 𝑥𝑆 𝑦 ∅ then 

𝑐 𝑥, 𝑦 0, 0  and if 𝐶 𝑥𝑆 𝑦 ℐ then 𝑐 𝑥, 𝑦 1, 1 . 

Let Δ be the set 𝛼 ∈ ℝ: 𝑝 𝑔 𝑥 𝑔 𝑦 𝛼 , 𝑗 1, ⋯ , 𝑘 . For each 𝛿 ∈ Δ Fernandez 

et al. (2018) state that x outranks y with marginal likelihood index 𝛽  and majority strength 

= -
, + (𝜆 0.5 , if and only if 



i. 𝑝 𝑐 𝑥, 𝑦 𝜆 𝜉; 

ii. 1 max
 ∈

𝑝 𝑔 𝑦 𝑔 𝑥 𝑣 𝜉; and 

iii. 𝛽 max 𝜉  fulfilling i and ii. 

Where 𝛿 𝜉 ∈ ℝ. With the above notation, it is said that 𝑥 outranks 𝑦 with likelihood index 

𝛽 𝑥, 𝑦 ∈  0,1 𝑚𝑎𝑥 𝐵  𝛿 ∈ Δ) and majority strength 𝜆 𝜆 , 𝜆  (𝜆 0.5). If Δ is 

empty, 𝛽 𝑥, 𝑦  is set to zero. Moreover, it is assumed that the DM uses an implicit likelihood 

threshold 𝛽  0.5 such that if  𝛽 𝑥, 𝑦 𝛽  then the assertion “𝑥 is at least as good as 𝑦” 

is accepted. 

Finally, the concept of dominance is also extended in (Fernandez et al., 2018). In that work, 

dominance is not crisp, but there is a “degree of likelihood”, 𝛼, of the dominance. Let 𝑥 and 

𝑦 be two solutions and  a real number; 𝑦 is 𝛼-dominated by 𝑥, denoted by 𝑥𝐷  𝑦, if and 

only if min 𝑝 𝐼 𝑥  𝐼 𝑦 𝛼 0.5. 

2.3 Handling uncertainty through confidence intervals 

Recently, Solares et al., (2018) presented a proposal in which the portfolios are evaluated by 

means of significant confidence intervals around the portfolios’ expected returns. It is stated 

in that work that the model can capture the attitude of the DM when facing risk by letting 

her/him to define the probability with which the confidence intervals contain the expected 

return. That is, if 𝐸 𝑅 𝑥  is a random variable that represents the expected return of portfolio 

𝑥 and 𝑃 𝜔  is the likelihood that event 𝜔 will occur, then 𝜃 𝑥 𝛼, 𝛽 : 𝑃 𝛼 𝐸 𝑅 𝑥

𝛽 𝛾 is the confidence interval around the expected return and, by letting the DM to select 

𝛾, we can have an idea of the DM’s conservatism in presence of risk. For example, if we 

assume that the DM is highly risk-averse, then she/he “would feel more satisfied of making 

a decision based on intervals with a high probability of containing the actual return”. On the 

other hand, if the DM is lowly risk-averse, then she/he “would prefer to make a decision 

based on intervals that tend to the expected return”. Furthermore, it is assumed that several 

confidence intervals can be used as criteria to find the best portfolio. 

The basic idea is that the rightmost intervals are the preferred ones. Therefore, that work 

proposes using Interval Theory to address the following problem as a specification of 



Problem (1) (see Interval Theory’s definition of possibility function in Subsection 2.2 that 

determines when an interval number is not less than another): 

 maximize
∈

𝜃 𝑥 𝜃 𝑥 , ⋯ , 𝜃 𝑥 . (4) 

Such proposal is an interesting idea given that i) it allows to work with virtually any kind of 

probability distribution followed by the returns; ii) the confidence intervals are easily 

understandable for the DMs; iii) each criterion encompasses multiple points within the 

probability distribution, hence offering more information to the DM per criterion; iv) it 

allows to incorporate the DM’s behavior in the presence of risk. 

However, that approach does not allow to consider other types of criteria (e.g., the financial 

indicators), and does not intend to reflect the DM’s system of preferences. 

2.4 Managing preferences in multi-objective Optimization 

Recently, the interest in incorporating the DM’s preferences during the multi-objective 

optimization process has increased. Fonseca and Fleming (1993) probably suggested the 

earliest attempt to incorporate preferences; their proposal was to use MOGA together with 

goal information as an additional criterion to assign ranks to the members of a population. 

More recently, the idea of measuring the preference-based distance of the potential solutions 

with respect to a reference point has gained much interest (see e.g., Li et al., 2017; 

Wickramasinghe, 2010; and Mohammadi, 2013). Nevertheless, some of them are ad-hoc 

methodologies and/or treat points outside the preferred region as equally redundant. 

Particularly, the so-called R-metric (Li et al., 2017) is a very recent and interesting idea. 

Three classes of multi-objective optimization methods can be identified according to the role 

of the DM in the solution process when he/she is available (cf. Hwang and Masud, 1979; and 

Miettinen, 1999). In a priori methods, the DM articulates her/his preference information and 

hopes before the solution process. The difficulty here is that the DM does not necessarily 

know the limitations and possibilities of the problem and may have too optimistic or 

pessimistic hopes. Alternatively, a set of Pareto optimal solutions can be generated first and 

then the DM is supposed to select the most preferred one among them. Typically, 

evolutionary multi-objective optimization algorithms do this in an a posteriori way. 

However, it may not be suitable for the portfolio optimization problem addressed in this work 



given that if there are more than three criteria defined as interval numbers in the problem, it 

may be difficult for the DM to analyze a large amount of information. On the other hand, 

generating the set of efficient solutions may be computationally expensive. Furthermore, 

supplying the DM with a large number of trade-off points provides many irrelevant or even 

noisy information to the decision-making procedure. Another alternative is that, after each 

iteration, the DM is provided with one or more efficient solutions that obey the preferences 

expressed as well as possible and he/she can specify his/her preference information on them 

in such a way that this information is considered for the next iteration. This seems to be the 

ideal way to incorporate the DM’s preferences into the search process. However, there might 

be situations where the DM is not willing/capable to get involved in the procedure. Hence, 

one of the other two ways to incorporate the preferences must be implemented.  

Besides using different methods to provide preference information, multi-objective 

optimization algorithms also differ from each other in the type of information that is utilized 

in generating new, improved solutions and what is assumed about the behavior of the DM. 

Perhaps the most intuitive one is the weighting method, which assigns a relative importance 

to each objective: the larger the weight is, the more important the objective is. Zitzler et al. 

(2007) used this method combined with the hyper-volume indicator (Zitzler et al., 2003) in 

order to guide the search based on the DM’s preferences expressed by weighting coefficients 

or a reference point. Deb (2003) developed a modified fitness-sharing mechanism, by using 

a weighted Euclidean distance, to bias the population distribution. In  (Branke and Deb, 

2005), Branke and Deb modified the crowding distance calculation in NSGA-II by using a 

weighted mapping method in order to focus the search on the preferred part of the Pareto 

front. Another method to use the DM’s preferences modifies the original Pareto dominance 

by classifying objectives into different levels and priorities (e.g., Fonseca and Fleming, 1998; 

Branke et al., 2001; and Jin and Sendhoff, 2002); thus, creating a ranking of the objectives. 

A convenient way to perform such ranking is by providing the DM with pairs of objectives 

and asking her/him to provide a decision about which one is the most important. A relevant 

limitation with this method is that there might be situations where incomparability exists and 

creating the whole ranking may become a difficult problem to solve. The third approach 

combines the classical reference point-based method (Wierzbicki, 1980) with evolutionary 

multi-objective optimization (e.g., Li et al., 2017; Deb et al., 2006; and Said et al., 2010). In 



such methodology, the DM supplies for each objective the level that should be achieved 

according to her/his preferences. The reservation level corresponds to the worst value for 

which the DM is still satisfied (Bechikh et al., 2015). This method is the most commonly 

used in the related literature (Bechikh et al., 2015). Another methodology to incorporate the 

DM’s preferences is exploiting the outranking concept (Roy, 1996), which states the 

credibility index of the statement “solution 𝑥 is at least as good as solution 𝑦” (see e.g. 

Fernandez et al., 2010, 2011). This is a very convenient way to incorporate the DM’s 

preferences since she/he usually considers more information than just the relative importance 

of the objectives in order to make decisions. The outranking methods can handle intransitive 

preferences, incomparability, veto effects, and even qualitative and ordinal information for 

some criteria. Furthermore, through an adequate way of preference parameters elicitation, 

the DM’s decision policy can be reproduced during the optimization procedure in such a way 

that the most preferred solution can be found and an arduous work by the DM can be avoided.  

3 Our proposal 

Here, we present an approach that looks for selecting the best portfolio from the decision 

maker’s perspective. To achieve this, we assume that the DM’s implicit decision policy can 

be represented by means of the interval-based outranking approach (Fernandez et al., 2018), 

whose parameters allow to encompass the imperfect knowledge in the DM’s preferences. 

Moreover, to represent the DM’s conservatism in the presence of risk, we use confidence 

intervals around the expected returns that also consider both the portfolios’ most probable 

returns and the risk of not attaining those returns (see Subsection 2.3). Additionally, the 

proposed approach aggregates all the original criteria in only one underlying criterion. Such 

aggregation is on the basis of the DM’s particular system of preferences. Therefore, the 

search process performs a selective pressure towards the DM’s most preferred portfolio. 

3.1 Incorporating the DM’s preferences 
First, we assume that the DM’s implicit system of preferences can be represented by the set 

of parameters 𝒫 𝑤 , ⋯ , 𝑤 , 𝑣 , ⋯ , 𝑣 , 𝜆, 𝛽  that allows to build an interval-based 

outranking relation between pairs of portfolios (see Subsection 2.2). The elicitation of these 

parameters can be achieved in two ways. The first is a direct technique based on interactive 

communication between the decision analyst (entity that facilitates the decision making) and 

the DM. Helped by the analyst, the DM is in charge to provide the values of the involved 



parameters. Alternatively, the indirect procedures, like the so-called preference-

disaggregation analysis, use regression-like methods for inferring the set of parameters from 

a battery of decision examples (Doumpos et al., 2009). Although the preference-

disaggregation analysis has recently gained much acceptance in the related literature, it rests 

on two underlying assumptions: i) the DM feels more comfortable making decisions than 

explaining the arguments that support them; and ii) a sufficient size set of decision examples 

from the DM is available or can be obtained. On the other hand, the success of the direct 

elicitation depends, above all, on the DM’s willingness to effectively participate in the 

elicitation procedure. This kind of approach is widely used in situations involving decisions 

of strategic character (Doumpos and Zopounidis, 2011). The direct elicitation’s principal 

limitation is that we cannot expect the parameters’ values provided by the DM to be 

completely appropriate, according to the DM’s system of preferences (cf. Mousseau and 

Slowinski, 1998). 

3.2 A bi-criteria formulation based on Fuzzy Logic 
Following (Fernandez et al., 2010, 2011), a portfolio 𝑥 is said to be strictly-non-outranked if 

and only if there is not a portfolio 𝑦 such that 𝑦 dominates 𝑥, or if 𝑦 outranks 𝑥 and 𝑥 does 

not outrank 𝑦. Formally: 

𝑥 is non-outranked ⇔ ∃𝑦: 𝑦𝐷𝑥 ∨ 𝑦𝑆𝑥 ∧ 𝑥𝑆𝑦  

≡ ∀𝑦: 𝑦𝐷𝑥 ∧ 𝑦𝑆𝑥 ∨ 𝑥𝑆𝑦 . 

Using 𝜇 to denote “truth degree” and the strict negation operator, we can formulate the 

previous definition in terms of multivalent logic: 

𝜇 𝑥 is strictly non-outranked 𝜇 ∀𝑦: 1 𝜇 𝑦𝐷𝑥 ∧ 1 𝜇 𝑦𝑆𝑥 ∨ 𝜇 𝑥𝑆𝑦 . 

Among different logic approaches, we use the so-called Compensatory Fuzzy Logic (Espin 

et al., 2006, 2011), which has several desirable properties for rational decision-making (see 

Espin et al., 2014, 2015, 2016). The compensatory logic operators for conjunction have as 

limits the minimum operator (Zimmermann, 1996). Other compensatory logic operators are 

the arithmetic mean and the geometric mean. The latter is considered as the simplest among 

the quasi-arithmetic means (cf. Espin et al., 2006, 2011). Unlike the minimum operator, the 



geometric mean satisfies the strict growth axiom of the compensatory fuzzy logic (see Espin 

et al., 2014). In this work, the conjunction and disjunction operators from the compensatory 

fuzzy logic based on the geometric mean are taken to obtain a non-outranked degree as 

follows. 

Let 𝑈 be the universe of portfolios within the Pareto front of Problem (1). For each pair 

𝑥, 𝑦 ∈ 𝐴 𝐴, 𝐴 ⊆ 𝑈, it is possible to obtain through the interval-based outranking 

approach (see Subsection 2.2): i) a likelihood degree of the assertion “𝑥 outranks 𝑦”, denoted 

by 𝛽 𝑥𝑆𝑦 ; ii) a likelihood degree of the assertion “𝑦 outranks 𝑥”, denoted by 𝛽 𝑦𝑆𝑥 ; and 

iii) a likelihood degree of the assertion “𝑥 dominates 𝑦”, denoted by 𝑥𝐷  𝑦. Now, let us 

make 𝜇 𝑥𝑆𝑦 𝛽 𝑥𝑆𝑦 , 𝜇 𝑦𝑆𝑥 𝛽 𝑦𝑆𝑥 , 𝜇 𝑥𝐷𝑦 𝑥𝐷  𝑦, 𝐴 𝐴 𝑥  and 𝑛

𝑐𝑎𝑟𝑑 𝐴 ; then we define the non-outranked truth degree of 𝑥 in 𝐴 by means of the 

compensatory fuzzy logic based on the geometric mean as (cf. Espin et al., 2014): 

 
𝑁𝑆 𝑥 𝑁𝑆 𝑥, 𝐴 . 

 

Where 

 
𝑁𝑆 𝑥, 𝐴 1 𝜇 𝑦𝐷𝑥 1 1 1 𝜇 𝑦𝑆𝑥 1 𝜇 𝑥𝑆𝑦 .

∈

 
 

A high non-outranked degree indicates the lack of arguments to believe that there are better 

solutions than 𝑥. On the other hand, a high non-outranked degree is a necessary condition to 

be the best compromise, but it is not sufficient. A solution may have a high non-outranked 

degree and be incomparable with all or many of the solutions in the known Pareto front. 

Positive arguments are required to affirm the superiority of 𝑥 over the other optimal solutions 

under consideration. 

In order to enhance the preference information, here we suggest to use the outranking net 

flow score. This is a very popular measure to rank a set of alternatives on which a fuzzy 

preference relation is defined (cf. Fodor and Roubens, 1994). If 𝛽 𝑥𝑆𝑦  is an outranking 

likelihood on the set 𝐴, then the net flow score associated to 𝑥 ∈ 𝐴 is defined as 𝐹 𝑥

∑ 𝛽 𝑥𝑆𝑦 𝛽 𝑦𝑆𝑥∈ . Note that 𝐹 𝑥 𝐹 𝑦  is an asymmetric and transitive 

binary relation on 𝐴, indicating to some extent preference of 𝑥 over 𝑦. So, the net flow score 



may be used to select the most satisfactory solution between 𝑥 and 𝑦 when 𝑁𝑆 𝑥

𝑁𝑆 𝑦 . Nonetheless, always that 𝑁𝑆 𝑥 𝑁𝑆 𝑦 , the DM can be confident that portfolio 

𝑥 provides her/him more satisfaction than portfolio 𝑦, regardless of the values of 𝐹 𝑥  and 

𝐹 𝑦 . Therefore, a best compromise solution can be found through a lexicographic search. 

Taking into account the non-outranking truth degree and the net flow score information, we 

propose to select the best solutions for Problem (1) as the non-dominated set obtained from: 

 maximize
∈

𝑁𝑆 𝑥 , 𝐹 𝑥 , (5) 

with preemptive priority favoring 𝑁𝑆 𝑥 . 

By incorporating the DM’s preferences this way, a selective pressure towards the most 

preferred portfolio is produced. Furthermore, the decision maker’s cognitive effort in the 

final selection is reduced since he/she no longer considers the 𝑘 criteria in Problem (1) but 

just two criteria in Problem (5). 

4 An illustrative example: a highly risk-averse investor interested in many criteria 
We present in this section a study case where the proposed model is used to create portfolios 

on the basis of many criteria. We assume that the investor is interested in using confidence 

intervals (Subsection 2.3), fundamental indicators (Subsection 2.1.2), and technical 

indicators (Subsection 2.1.3) as underlying criteria with the objective of maximizing the 

portfolio’s return. This assumption reflects that there are some scenarios where the DM is 

not fully satisfied with the information provided by the statistical analysis nor by the financial 

analyses. Of course, the assumption made in this illustrative example can be adjusted 

according to the specific context and requirements from the DM. 

4.1 Problem definition 
Although the fundamental and technical analyses are widely used by investors in the real 

world, the combination of both types of analyses is not common in the academic literature 

(see Section 1). Even less common is the combination of fundamental analysis, technical 

analysis and decisions on proportions in which the resources should be allocated. 

Nevertheless, the statistical information might not be available/reliable, and/or the financial 

information might not be enough to involve the risk caused by volatility. Hence, the DM 

would consider valuable to perform a portfolio optimization where all the criteria are 

combined in a multi-criteria optimization problem following her/his own decision policy. To 



the best of our knowledge, there are no published works in the literature that consider the 

three analyses in a multi-criteria optimization problem, and that is also capable of 

representing the DM’s attitude facing risk as well as her/his decision policy in the context of 

portfolio optimization with many criteria.  

There are papers in which some of these analyses are used consecutively (e.g., Xidonas et 

al., 2009; and Flotynski, 2016). Typically, the fundamental analysis is performed first in 

order to select the stocks that will be in the portfolio; the technical analysis is performed 

secondly to determine the time convenience of investing in each stock; finally, the portfolio 

creation analysis is carried out afterwards to define the allocation proportions to be assigned. 

Thus, the value of each financial indicator is evaluated individually for each stock. Since our 

purpose is to select the approximation to the best portfolio, our solution alternatives are not 

individual stocks, but portfolios. Hence, we use here a way of evaluating portfolios through 

financial indicators; such way is on the basis of fuzzy logic. Particularly, Fuzzy Logic is used 

to define the truth degree of each stock being “good” according to the financial indicators. 

Let us now present our proposed method to determine if a stock is good, first from the 

fundamental analysis’ viewpoint and later from the technical analysis’ viewpoint. 

4.1.1 Fundamental analysis as a criterion to evaluate portfolios 

In order to determine a comprehensive quality index of a portfolio with respect to the 

fundamental indicators, we first need to assess each of the stocks within the portfolio. We 

assume that a stock is good from the fundamental analysis’ viewpoint if the following two 

conditions are fulfilled: 

i. In a significant majority of the fundamental indicators considered, the value of 

each indicator reaches a sufficiently high level. 

ii. No indicator has a value significantly lower than certain threshold 𝑛 . 

To model the truth degree of condition i, it is only necessary to define what the DM 

understands for “an important majority” (represented by a relative value 𝛿) and “a 

sufficiently high level” (represented by a relative number 𝑛 ). A piecewise linear function 𝐻 

can be used here, where the independent variable is the proportion 𝑝 of indicators that reach 

the level 𝑛 , and fulfills: a) 𝐻 0 if 𝑝 is not greater than 0.5, b) 𝐻 linearly increases to 1 



when 𝑝 grows from 0.5 to 𝛿, and c) 𝐻 is 1 for values of 𝑝 not lower than 𝛿. Thus, 𝐻 can be 

defined as follows: 

𝐻
0 if 𝑝 0.5,

𝑝 0.5 / 𝛿 0.5 if 0.5 𝑝 𝛿,
1 if 𝑝 𝛿.

 

The truth degree of condition ii can be modeled by a piecewise linear function 𝑓  where the 

value of the 𝑗th fundamental indicator when analyzing the 𝑖𝑡h stock, 𝑣𝑎𝑙𝑢𝑒 , is the 

independent variable and 𝑓  has the following characteristics: a) 𝑓  is zero when the value of 

the indicator is not greater than the level 𝑛 , b) 𝑓  linearly increases to 1 when the value 

of the indicator moves from 𝑛  to 𝑛 , and c) 𝑓  is 1 when the value of the indicator is not 

less than 𝑛 . Thus, 𝑓  can be defined as follows: 

𝑓

0 if 𝑣𝑎𝑙𝑢𝑒 𝑛 ,

𝑣 𝑛 / 𝑛 𝑛 if 𝑛 𝑣𝑎𝑙𝑢𝑒 𝑛 ,

1 if 𝑣𝑎𝑙𝑢𝑒 𝑛 .

 

The truth degree which, for every indicator, should have a value greater than or equal to 𝑛  

when evaluating the 𝑖th stock, is obtained by the conjunction of the values of all 𝑓 . An 

evident compensation exists among such values. Hence, we propose to use the conjunction 

of the compensatory fuzzy logic based on the geometric mean (cf. Espin et al., 2006, 2011, 

2014) following the reasons exposed in Section 3.2. 

Finally, the truth degree of the 𝑖th stock being good from the fundamental analysis’ 

viewpoint, 𝐹 , is obtained by the conjunction of the truth values of conditions i and ii. There 

is no compensation in such conjunction. Hence, we propose to use here the product norm as 

the conjunction operator.  

The aggregation to evaluate the portfolio from this viewpoint then becomes: 

𝐹 𝑥 𝐹 𝑥 . 



4.1.2 Technical analysis as a criterion to evaluate portfolios 

The evaluation of individual stocks using the technical analysis described in Section 2.1.3 

consists in finding the convenience of investing in the stocks. Particularly, if the rule 

associated to the 𝑗th technical indicator states that the 𝑖th stock is good, then such indicator 

takes a value of 1 (𝑖𝑡 1), otherwise its value is 0 (𝑖𝑡 0). Therefore, the aggregation 

𝑇 𝑥
∑ 𝑥 𝑖𝑡

𝑛
, 

represents the desirable momentum proportion of the stocks supported by the portfolio 𝑥 

from the 𝑗th technical indicator perspective. A final aggregation of the technical indicators 

can be performed to obtain the goodness of portfolio 𝑥 in the technical analysis’ viewpoint: 

𝑇 𝑥
∑ 𝑇

𝑚
, 

where 𝑚 is the number of technical indicators considered. 

4.1.3 Multi-criteria optimization problem 

Of course, there is some uncertainty involved in the definitions of 𝐹 𝑥  and 𝑇 𝑥  originated 

in the finite-precision arithmetic provided by computers. Hence, we take advantage of 

Interval Theory and redefine the financial indicators as interval numbers: 

 𝐹 𝑥 𝐹 𝑥 , 𝐹 𝑥 . (6) 

Where 𝐹 𝑥  is 𝐹 𝑥  rounded down to four digits, and 𝐹 𝑥  is 𝐹 𝑥  rounded up to four 

digits. The same procedure is followed with the technical indicators to create 𝑇 𝑥 : 

 𝑇 𝑥 𝑇 𝑥 , 𝑇 𝑥 . (7) 

Both 𝐹 𝑥  and 𝑇 𝑥  can be seen as quality indexes indicating the convenience of investing 

in portfolio 𝑥. 

On the other hand, a highly risk-averse DM can be simulated as the one who requires 

information about two confidence intervals: one containing the expected return with a 70% 

of probability, 𝜃 𝑥 , and another containing it with the 99% of probability, 𝜃 𝑥  (see 

Subsection 2.3). Here, three constraints are used: budget, non-negativity, and bounds on 

individual stocks constraints. 



Therefore, we validate the proposal presented in Section 3 through its solutions’ performance 

when solving the following multi-criteria problem on the basis of confidence intervals and 

financial indicators: 

 max
∈

𝜃 𝑥 , 𝜃 𝑥 , 𝐹 𝑥 , 𝑇 𝑥 . (8) 

Subject to 

∑𝑥 1 ⟶ Budget constraint; 

𝑥 0 ⟶ Non-negativity conditions; 

𝑥 0.4 ⟶ Bounds on individual stocks. 

Where 

𝑥  is the proportion of resources allocated to the 𝑗th stock, 

𝜃 𝑥 𝛼 , 𝛽 : 𝑃 𝛼 𝑅 𝑥 𝛽 0.70 ,  

𝜃 𝑥 𝛼 , 𝛽 : 𝑃 𝛼 𝑅 𝑥 𝛽 0.99 ,  

𝑅 𝑥  is a random variable representing the actual return of portfolio 𝑥,  

𝐹 𝑥  is the evaluation of portfolio 𝑥 from the fundamental analysis’ viewpoint, 

𝑇 𝑥  is the evaluation of portfolio 𝑥 from the technical analysis’ viewpoint, and 

𝑗 1, ⋯ , 𝑛. 

Given the exponential increase in the number of solutions required for approximating the 

entire Pareto front of Problem (8), an incorporation of the DM’s preferences is convenient 

(Ishibuchi et al., 2008). Several authors (e.g., Deb et al., 2006; Deb and Sundar, 2006; and 

Ishibuchi et al., 2008) argue that it is frequent for evolutionary multi-criteria optimization 

methodologies to suffer serious difficulties when dealing with four or more criteria. One of 

these difficulties is the need of a larger number of points to represent a higher-dimensional 

Pareto optimal front. Such difficulty is worsened when the criteria in the optimization 

problem are defined as interval numbers. Therefore, finding a preferred and smaller set of 

Pareto-optimal solutions, instead of the entire frontier, tends to be beneficial for the search 



process (Deb and Sundar, 2006) and it can be achieved by incorporating preference 

information (Fleming et al., 2005; Thiele et al., 2007). 

4.2 Experimental design 
In order to address Problem (8), we use the interval-based outranking approach (Subsection 

2.2) to model the DM’s preferences and to build the aggregation described in Section 3.2. 

Since that approach allows the DM to provide imprecise values for its parameters, it is 

relatively easy to obtain such values directly from the DM. However, in general terms the 

elicitation of a preference model’s parameters comprises some part of arbitrariness, 

imprecision, and ill-determination (Fernandez et al., 2018). According to Fernandez et al. 

(2018), this is particularly true when “the entity in charge of the decision is a group where its 

members disagree concerning the parameter values, or when the decision-maker is a mythical 

or an inaccessible person”. Consequently, in the experiments described below we assume 

that although the values of the interval-based outranking’s parameters are directly elicited, 

there exists some deviation from the most appropriate parameters’ values according to the 

DM’s actual system of preferences (see Subsection 3.1 for a further rationalization).  

During the experiments, we first generate 20 decision models at random that represent 20 

decision makers’ decision policies. That is, we create 20 sets of parameters 𝒫

𝑤 , 𝑣 , 𝜆 , 𝛽  𝑖 1, ⋯ ,20;   𝑗 1, ⋯ ,4 . The values of the parameters to create each 𝒫  

are uniformly randomly taken from ranges of numbers that work as sources. Such sources 

are shown in Table 2. Recall that 𝛽  is the only real number of the interval-based outranking 

model’s parameters, whereas the rest of parameters are defined as interval numbers. Thus, 

the sources in the rows 𝜆 , 𝑤  and 𝑣  are actually used for each of these parameters’ bounds. 

Of course, it is satisfied for the lower bounds of these parameters to be not greater than their 

respective upper bounds. Particularly, we calculate the weight of criterion 𝑔  as 𝑤

 1 𝜔  𝑤, 𝑤  1 𝜔  𝑤, where 𝜔  is randomly generated in [0,0.3] and 𝑤 . In 

Table 2, the value 𝑣  is used to represent the maximum impact in the 𝑗th criterion of a set 

of 2000 randomly created portfolios. Constraints (2) and (3) settled by the interval-based 

outranking are also fulfilled in the creation of each 𝒫 . 



Table 2. Sources used to uniformly randomly assign values to the parameters of the interval-
based outranking 

Parameter Source 

𝛽  (0.5,0.6) 

𝜆  (0.5,0.6) 

𝑤  (0,1) 

𝑣  (0.3,0.5)𝑣  

Subsequently, we randomly deviate each parameter (bound in the case of the interval 

numbers) in the simulated decision models between 0.1 and 0.3 to obtain 20 new sets 𝒫

𝑤 , 𝑣 , 𝜆 , 𝛽  𝑖 1, ⋯ ,20, 𝑗 1, ⋯ ,4 . These sets simulate the values directly elicited 

from the DMs and they are used as the actual decision policies in the experiments below. It 

is plausible to assume that the DM has to be satisfied with 𝒫 . Thus, we assume that she/he 

requires i) the importance of the confidence intervals to be greater than the importance 

assigned to the rest of criteria, since she/he is considered to be highly risk-averse; and ii) the 

order of importance assigned to the criteria in 𝒫  must be respected in 𝒫 . 

For each new set 𝒫 we obtain the best compromise portfolio in the following way. First, the 

approximation to the returns’ probability distribution in the form of confidence intervals is 

obtained by Montecarlo simulation; this simulation uses the stocks’ historical monthly 

returns of 36 periods as input and runs 200 statistical points using a pseudo-random numbers 

generator known as Mersenne Twister (see Matsumoto and Nishimura, 1998 and 2004). 

Later, the evaluation of the financial indicators for the portfolio is obtained using Eqs. (6) 

and (7). Once the portfolios’ fitness of a subset of candidate solutions has been achieved with 

respect to Problem (8), each portfolio’s fitness is aggregated using the DM’s parameters, 𝒫 , 

and the procedure described in Subsection 3.2. Finally, the set of best compromise solutions 

to Problem (8) is composed with the nondominated solutions to the underlying Problem (5).  

4.3 Dataset 

We use the historical monthly returns of the stocks in the DJIA index for the period April 

2011-March 2016 to perform a back-testing strategy (cf. Ni and Zhang, 2005); the evaluation 

of the approach is in the period April 2014-March 2016 (3 years of data are used as the 

training period for the statistical simulation of returns). That time span is recent, it has several 



upward, downward, and horizontal market’s movements, so it is interesting to analyze it. We 

use here a sliding time window of 36 months/1 month, similarly to (Lim et al., 2014) and 

(Gorgulho et al., 2011) to perform the back-testing. That is, we use three years for training 

the statistical model (e.g., we obtain metrics of the data set April 2011 to March 2014) and 

one month for validation (we will use the metrics obtained to create a portfolio in April 2014). 

The process is then repeated for each period of one month (in a sliding window manner) until 

the end of the evaluation period. In other words, we select the best stock portfolio of the 

current month by using the historical metrics of the previous three years, solving Problem 

(8), and maintaining the portfolio over a one-month investment horizon. Each time we start 

a new investment horizon, we review the stock portfolio (i.e., we select a new distribution of 

resources among the stocks) according to the corresponding horizon’s valuation. 

As done by many authors (e.g., Lwin et al., 2017; Almahdi and Yang, 2017; Cesarone et al., 

2013; Gorgulho et al., 2011; Zhu et al., 2011), the historical prices used to estimate the 

returns’ probability distribution and to calculate the technical indicators, as well as the returns 

of the index are obtained from (Yahoo, 2018). And, as done by other works (e.g., Falkenstein, 

1996; and Moneta, 2015), the financial data to calculate the fundamental ratios is obtained 

from (Morningstar, 2018). All the data used, together with all the results obtained, are 

available for consultation upon request. 

4.4 Algorithm 
We now present the algorithm used during the assessment of our approach to address 

Problem (5). Without loss of generality, we assume here that i) the DM’s preferences can be 

represented through the interval-based outranking, ii) the optimization method used to exploit 

the idea implicit in Problem (5) is Differential Evolution, and iii) the concrete Portfolio 

Optimization Problem that the decision maker wants to address is the one presented in the 

illustrative example and formulated in Problem (8). Furthermore, we present the algorithm 

used to address Problem (5), not the one to assess our approach. Thus, we consider only one 

of the 20 instances mentioned in Section 4.2 and only one of the 24 periods of time mentioned 

in Section 4.3.  

Since Problem (5) was raised as a lexicographic non-linear optimization problem, we use 

here differential evolution to address it. Such metaheuristic generally has good performance 



in non-linear single-objective optimizations (see e.g., Krink and Paterlini, 2011; and Krink 

et al., 2009). The differential evolution algorithm applied here uses 𝑝𝑠 100 individuals as 

its population size, its stopping criterion is the achievement of 𝑔𝑛 100 generations, and it 

uses an 𝑛-dimensional real-valued vector to encode the individuals. Recall that differential 

evolution requires the settlement of four additional control parameters (cf. Li and Zhang, 

2009): the crossover probability, 𝐶𝑅; the mutation rate, 𝑝 ; the differential weight, 𝐹; and 

the distribution index, 𝜂. As done in the mentioned work, here we set these parameters as 

𝐶𝑅 1, 𝑝 1/𝑝𝑠, 𝐹 0.5, and 𝜂 20. Algorithm 1 presents the pseudocode of our 

algorithm. 

Require: DM’s preferences (described through the interval-based outranking method; that 
is, 𝒫 𝑤 , 𝑣 , 𝜆 , 𝛽  𝑗 1, ⋯ ,4 ), Problem context (Probability distributions of the 
stocks returns, Fundamental indicators for each stock, Technical indicators for each stock) 

Ensure: Set of portfolios recommended by our approach as the best portfolios, 𝜌 . 

1. 𝑖 ← 1 

2. For 𝑖 𝑝𝑠 do 

3.    𝑔 ← 0 

4.    𝑃 ← CreateInitialPropulation() 

5.    For 𝑔 𝑔𝑛 do 

6.       For 𝑗 𝑝𝑠 do 

7.          𝐻 ← CreateOffspringIndividual(𝑃 , 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟, 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛) 

8.          𝑃 ← SelectBestIndividual(𝑃 , 𝐻 ) 

9.          𝑗 ← 𝑗 1 

10.       End for 

11.       𝑔 ← 𝑔 1 

12.    End for 

13.    𝜌 ← SelectBestSet(𝑃 ) 

14.    𝑖 ← 𝑖 1 

15.  End for 

16. 𝑔 ← 0 



17. 𝑃 ← 𝜌 , 𝜌 , ⋯ , 𝜌   

18. For 𝑔 𝑔𝑛 do 

19.    For 𝑗 𝑝𝑠 do 

20.       𝐻 ← CreateOffspringIndividual(𝑃 , 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟, 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛) 

21.       𝑃 ← SelectBestIndividual(𝑃 , 𝐻 ) 

22.       𝑗 ← 𝑗 1 

23.    End for 

24.    𝑔 ← 𝑔 1 

25. End for 

26. 𝜌 ← SelectBestSet(𝑃 ) 

Algorithm 1 first creates an initial population by randomly sampling from Ω. Always that we 

create an individual, we calculate its fitness in the sense of Problem (8). That is, we estimate 

its confidence intervals using the probability distributions of the stock returns and its quality 

indexes according to the financial analyses. Then, for each generation 𝑗 and for each 

individual 𝑃  of 𝑃 , the individual creates an individual 𝐻  by applying the Selection, 

Crossover and Mutation operators of  Differential Evolution. After that, 𝑃  and 𝐻  are 

compared on the basis of Problem (5). The best individual is now 𝑃 . These steps constitute 

one generation; we perform 𝑔𝑛 100 generations. After performing this number of 

generations, we obtain the set of individuals 𝜌  (likely with cardinality of one) within 𝑃  

whose fitness is the best in the sense of Problem (5). All the previous is considered as the 𝑖th 

run. Several runs (up to 𝑝𝑠) are performed to obtain a “seed population” of size 𝑝𝑠 whose 

individuals are the solutions found in the previous runs. A final run is performed using the 

seed population as the initial population. The set of best compromise solutions (likely with 

cardinality of one) to Problem (5) in this final run is presented to the DM as the best 

portfolios. 

The main difference between Algorithm 1 and other approaches is the exploitation of the 

non-outranked truth degree, 𝑁𝑆 , to select the best portfolio according to the decision 

maker’s preferences. 𝑁𝑆  is used as the representative value that reflects the overall 



satisfaction of 𝑥 with respect to a set of portfolios according to the decision maker supplied 

preference information. Such preference information is in terms of the interval-based 

outranking method; that is, we consider the weights assigned by the decision maker to each 

criterion, his/her veto values and his/her thresholds about when a solution is at least as good 

as another. 

4.5 Results 

In order to evaluate the performance of our approach, we analyze its recommended solutions 

to Problem (8) and assess them with respect to some benchmarks in two contexts: the criteria 

space and the objective space. In the former, we make a comparison in terms of the criteria 

considered in Problem (8). In the latter, the comparison is in terms of the actual returns of 

the solutions. 

4.5.1    Performance in the criteria space 

Here, we compare our portfolios with the ones constructed by MOEA/D, which is a state-of-

the-art multi-objective evolutionary algorithm based on decomposition (see Zhang and Li, 

2007; and Li and Zhang, 2009). The goal of such comparison is to provide a reference to the 

capacity of the approach proposed in Section 3 to deal with many criteria and obtain 

satisfactory solutions. 

During the exploitation process of MOEA/D, the individuals are represented as real vectors 

and three randomly selected individuals are used for the crossover operator. The crossover 

operator works as follows. Let 𝑞𝐺 , 𝑞𝐺 , 𝑞𝐺  be the quantity of genes satisfying 𝑥 0 in 

parent 1, parent 2 and parent 3, respectively. The idea is that the parents provide similar 

proportions of genetic material to the offspring. So, the number of genes satisfying 𝑥 0 in 

the child solution is up to 𝑞𝐺   and each parent gives  randomly chosen 

genes to the offspring solution. The mutation operator simply consists in swapping two 

randomly chosen genes of the offspring solution. The probability of mutation is 𝑝 0.01. 

In preliminary experiments, we found that discarding the infeasible solutions is the most 

suitable method to obtain solutions with good performance. The Tchebycheff method is used 

to aggregate the criteria (cf. Zhang and Li, 2007). The dataset described in Subsection 4.2 

and the constraints defined in Problem (8) are used here to create the benchmark portfolios.  



Both approaches achieve a good approximation to the Pareto front with respect to each other, 

since they produce a high number of non-dominated solutions (see Subsection 2.2 for the 

definition of interval-based dominance). From the approximations achieved by the 

approaches in each of the 24 periods of the dataset, roughly 0.7% of the solutions found by 

MOEA/D are dominated by at least one of our solutions, and roughly 0.3% of our solutions 

are dominated by at least one of the solutions from MOEA/D. 

It is now interesting to know how “good” the constructed portfolios are from the DM’s 

perspective. Thus, we use the actual system of preferences of the DMs, 𝒫  𝑖 1, ⋯ ,20 , to 

compare the solutions built by both approaches. Given that each 𝒫  already has all the 

parameters needed by the interval-based outranking approach, the comparison of the 

solutions is on the basis of such method. Our intention is to find the proportion of times that 

the strict outranking relation is met between the portfolios created by the proposed approach 

and the benchmark portfolios, according to the discussion of Subsection 2.2. Just to provide 

an example, Table 3 shows one (arbitrarily chosen) portfolio from MOEA/D’s Pareto front 

and a portfolio built by the proposed approach for one (also arbitrarily chosen) DM in the 

period April 2014. As it was specified in Section 2.1, the unit used in Table 3 is the proportion 

of money to invest in each of the 𝑛 investment objects. Table 4 shows their respective 

performances in the criteria, and Table 5 shows the chosen DM’s system of preferences. 

Table 3. Arbitrarily chosen portfolios built in the period April 2014 using MOEA/D and our 
approach. 

Stock MOEA/D 
Our 

Approach 

American Express Company (AXP) 0 0
Boeing Co. (BA) 0 0 
Caterpillar Inc. (CAT) 0 0 
Cisco Systems, Inc. (CSCO) 0 0 
Chevron Corporation (CVX) 0 0 
EI du Pont de Nemours and Co (DWDP) 0 0 
Walt Disney Company (DIS) 0 0 
General Electric Company (GE) 0 0 
Goldman Sachs Group Inc. (GS) 0 0 
Home Depot, Inc. (HD) 0.08 0 



International Business Machines 
Corporation (IBM) 

0 0.256 
Intel Corporation (INTC) 0.34 0.03 
Johnson and Johnson (JNJ) 0 0 
JPMorgan Chase and Co. (JPM) 0 0 
Coca-Cola Company (KO) 0.24 0 
McDonald’s Corporation (MCD) 0.03 0.349 
3M Co. (MMM) 0 0 
Merck and Co., Inc. (MRK) 0.30 0 
Microsoft Corporation (MSFT) 0 0 
Nike Inc. (NKE) 0 0 
Pfizer Inc. (PFE) 0 0 
Procter and Gamble Co. (PG) 0 0 
ATandT Inc. (T) 0 0.365 
Travelers Companies Inc. (TRV) 0 0 
UnitedHealth Group Inc. (UNH) 0 0 
United Technologies Corporation (UTX) 0 0 
Visa Inc. (V) 0 0 
Verizon Communications Inc. (VZ) 0 0 
Wal-Mart Stores Inc. (WMT) 0 0 
Exxon Mobil Corporation (XOM) 0 0 

 

Table 4. Evaluation in the criteria space of the portfolios built by the approaches 
Criterion MOEA/D Our Approach 

70 percent confidence interval [-0.0108, 0.0293] [-0.0046, 0.0270] 

99 percent confidence interval [-0.0372,0.0469] [-0.1747, 0.0452] 

Fundamental analysis’ quality index [0.3537,0.3538] [0.8268,0.8269] 

Technical analysis’ quality index [0.3414,0.3415] [0.2244,0.2245] 

 

Table 5. System of preferences of the arbitrarily chosen DM 
𝜷𝟎 𝝀 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 

0.55 [0.51,0.56] [0.18,0.24] [0.56,0.78] [0.05,0.07] [0.05,0.06] [0.03,0.04] [0.10,0.12] [0.27,0.32] [0.10,0.13] 

Now, let 𝑦 and 𝑥 be the portfolios shown in Table 3, which were built using MOEA/D and 

the approach proposed here, respectively. According to the interval-based outranking method 

described in Subsection 2.2, the likelihood indexes that the DM (in Table 5) assigned to these 

portfolios are shown in Table 6. 



Table 6. Evaluation of the strinct outranking relation between the solutions shown in Table 
3. 𝑦: portfolio created by MOEA/D, 𝑥: portfolio created by the proposed approach. 

Comparison Value Strictly 

outranks 

𝛽 𝑥, 𝑦  0.56 Yes 

𝛽 𝑦, 𝑥  0.0 No 

From Table 6 we can deduce that, although there is no dominance between the portfolios, the 

DM is more satisfied with the portfolio created by the proposed approach than with the 

benchmark portfolio. 

We now perform the same analysis for every simulated DM and for every period in the 

dataset to have an idea of how satisfied the DM would be on average with the solutions 

provided by the proposed approach relative to the benchmark. The results are presented in 

Table 7. This table presents the proportion of times that the solutions of the proposed 

approach were at least as good as the benchmark’s solutions according to the DM’s actual 

system of preferences, 𝒫 , for the 20 simulated DMs, and for the 24 periods of the dataset. 

In each period, the performance of the solution created by our proposal for each DM is 

compared to that of each solution in the Pareto front approximated by MOEA/D. In this table, 

𝑥 represents the solutions provided by the proposed approach and 𝑦 represents the solutions 

provided by MOEA/D. 

Table 7. Comparing the solutions 𝑥 provided by the proposed approach and the solutions 𝑦 
provided by MOEA/D. 

Proportion of 
times that 
𝒙𝑺𝒚 is met 

Proportion of 
times that 
𝒚𝑺𝒙 is met 

0.1242 0.0904 

The paired Wilcoxon test performed indicated that the difference of these means is considered 

to be statistically significant. 

From Table 7 we can state that the proposed approach was able to find more satisfactory 

solutions than the benchmark algorithm. Of course, this comparison is on the basis of the 

criteria contemplated in Problem (8). However, we can expect similar results of comparisons 

on the basis of alternative criteria and defer the validation of such hypothesis for future work. 



Finally, it is important to note here that the criteria contemplated in Problem (8) can be easily 

adjusted to the DM’s specific requirements. 

4.5.2    Performance in the objective space 

In this subsection, we contrast the actual returns of the portfolios constructed by the proposed 

approach with those of three benchmarks: the Dow Jones Industrial Average (DJIA) index, 

the mean-variance approach (Markowitz, 1958), and the portfolios built using MOEA/D 

(Zhang and Li, 2007). The problem addressed by the optimization methods (i.e., the mean-

variance approach, MOEA/D and the approach proposed here) is provided in (8). The results 

are presented in Figure 1. This figure shows the accumulative monthly returns of the 

portfolios in the 24 periods span between April 2014 and March 2016. In the case of the 

mean-variance approach and MOEA/D, the accumulative return shown in Figure 1 

corresponds to the average returns of the portfolios in their specific Pareto front. For the 

accumulative return of the DJIA index, we used the monthly returns published in (Yahoo, 

2018). In the case of our approach, the accumulative return is formed with the average returns 

of the portfolios obtained for the 20 DMs. 

Figure 1. Actual accumulative returns of the benchmark portfolios and the portfolios built 
by the proposed approach. 
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Clearly, the proposed approach outperforms both the mean-variance approach and the DJIA 

index in these experiments. Specifically, the average return of the portfolios created for the 

20 DMs is higher than the return of the DJIA index in 18 of the 24 periods; and it is higher 

than the average return of the portfolios in the Pareto front found by the mean-variance 

approach in 14 of the 24 periods. The accumulative return of our approach after the 24 periods 

was 0.2105, while the accumulative returns of the DJIA index and the Mean-Variance 

approach were 0.0858 and 0.0791, respectively. 

In other comparison, we can see similar average performances between MOEA/D and the 

proposed approach. Such similarity is originated in both approaches using the same criteria. 

However, the proposed approach generated the best accumulative return in the whole-time 

span (the average accumulative returns produced by MOEA/D was 0.1857); this indicates 

that the results with incorporation of DM’s preferences have been, on average, more effective 

than the optimization without including preferences. It would be interesting to determine the 

DM’s decision policies that generate the best returns. For example, a preliminary analysis 

suggests that when the simulated DMs fulfill a specific pattern in their systems of preferences 

the returns tend to grow. Some characteristics of the systems of preferences with such pattern 

are i) a greater importance assigned to the confidence intervals than to the financial 

indicators; ii) a greater importance assigned to the interval with the lower probability of 

containing the actual return; iii) a greater importance assigned to the fundamental analysis’ 

quality index than to the technical analysis’ one; and iv) higher relative values for the vetoes 

assigned to the financial indicators. Given that the main goal of this Section is to provide an 

illustrative example of the proposed methodology (Section 3), we defer the analysis of the 

previous and similar assertions for future work. 

In the context of the comparison of MOEA/D with our approach for a given period of time, 

it is important to highlight that the performance of the first is the average return of the 

portfolios in its Pareto front approximation. Thus, the performance of MOEA/D shown in 

Figure 1 could be seen as the average performance of several attitudes facing risk, while the 

performance of our approach is the only portfolio representing a highly risk-averse investor. 

It is plausible to assume that if the market presents an uptrend (as slightly seen in the 



considered time span) then the return of the solutions created by MOEA/D should be, in 

average, better to the solution of our approach.  

Finally, the proposed approach has good behavior in the presence of losses, specifically in 

the periods of August and September 2015 where the steepest fall of the market occurred. 

This indicates us a satisfactory protection against risk. Moreover, the approach is taking 

evident advantage of the market upturns, what indicates that it is also capable of finding 

uptrend opportunities. 

5 Conclusions 

We presented in this paper a method that aims to build portfolios whose evaluations in the 

considered criteria satisfy the investor’s preferences. The methodology allows the investor 

to specify as many criteria as she/he requires, by aggregating all the criteria through fuzzy 

logic in a bi-criterion optimization problem. Such problem incorporates the investor’s 

preferences to perform a guided search to the most preferred portfolio, thus reducing the 

investor’s cognitive difficulty to select the final portfolio. Finally, the uncertainty involved 

in the investor’s preferences as well as in the actual return of the portfolio are both 

encompassed as ranges of numbers through the so-called interval theory. 

An illustrative use case was provided in the context of stock portfolio optimization. The 

proposed method was assessed considering the investor’s own system of preferences and the 

actual returns of the solutions provided. A comparison with some well-known benchmarks, 

the Dow Jones Industrial Average index, the mean-variance method, and an approach based 

on MOEA/D, was performed. We conclude from Tables 6 and 7 that, for the illustrative 

example, the proposed approach was able to deal with many criteria and, at the same time, 

find solutions that satisfy the investor’s preferences better than the solutions provided by the 

corresponding benchmark. From Figure 1, we conclude that the proposed approach was able 

to outperform the benchmarks in the objective space; that is, it found portfolios with greater 

actual returns. It can also be seen from this figure that our proposal suffered less aggressive 

falls than the benchmarks (showing good handling of the involved risk) and that it had better 

exploitation of the rises (showing a good identification of opportunities). 

The above remarks indicate us that the proposed approach i) allows the DM to deal with as 

many criteria as she/he considers necessary to satisfy her/his requirements of information (of 



course, the method allows the hypothesis used in the illustrative example to be specifically 

suited to the actual DM’s necessities); and ii) uses appropriate elements to construct 

portfolios that maximize the impact on both the underlying criteria and the final objective in 

risky and non-risky environments. 

Future lines of work are related to i) the analysis of the specific characteristics of the 

investor’s system of preferences that allow to obtain greater returns; ii) the assessment of the 

proposed approach in different contexts with respect to the number and/or kind of criteria, 

the nature of investment objects within the portfolios, and the number of elements in the 

investment objects universe; iii) the consideration of specific useful characteristics of the 

portfolio problem, such as multi-period optimization and a higher number of constraints. 

Perhaps the most important limitation of the proposed approach is the setting of parameter 

values for the interval-based outranking approach. It might be difficult for the investor to 

provide the most appropriate values even when they can be defined as interval numbers. 

Thus, it is necessary to infer the preference model’s parameters from a set of decision 

examples in order to fulfill the requirements of the proposed approach without imposing an 

arduous work to the investor. 

We emphasize that although the main proposal was applied in the context of resource 

allocation, there is a wide range of problems where the proposal can be applied. The general 

characteristics of such problems are: i) requirement of the preferences of a decision maker to 

make the final decision, ii) consideration of many criteria, iii) uncertainty in the preferences 

of the decision maker and/or the impact of the solution alternatives in the criteria. 
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