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Abstract—Decomposition-based evolutionary algorithms using
pre-defined reference points have shown good performance in
many-objective optimization. Unfortunately, almost all experi-
mental studies have focused on problems having regular PFs
(Pareto Fronts). Recently, it has been shown that the performance
of such algorithms is deteriorated when facing irregular PFs such
as degenerate, discontinuous, inverted, strongly convex, and/or
strongly concave fronts. The main issue is that the pre-defined
reference points may not all intersect with the PF. Therefore,
many researchers proposed to update the reference points with
the aim of adapting them to the discovered Pareto shape.
Unfortunately, the adaptive update does not really solve the issue
for two main reasons. On the one hand, there is a considerable
difficulty to set the time and the frequency of updates. On
the other hand, it is not easy to define how to update the
search directions for an unknown PF shape. This paper proposes
to approximate irregular PFs using a set of pre-defined NBI
(Normal-Boundary Intersection) directions. The main motivation
behind our work is that when using a set of well-distributed NBI
directions, all these directions intersect with the PF regardless of
its shape, except for the case of discontinuous and/or degenerate
fronts. To handle the latter cases, a simple interaction mechanism
between the Decision Maker (DM) and the algorithm is used. In
fact, the DM is asked if the number of NBI directions needs
to be increased in some stages of the evolutionary process. If
so, the resolution of the NBI directions that intersect the PF is
increased to properly cover discontinuous and/or degenerate PFs.
Our experimental results on benchmark problems with regular
and irregular PFs, having up to fifteen objectives, show the merits
of our algorithm when compared to five of the most representative
state-of-the-art algorithms including two adaptive approaches.

Index Terms—Irregular Pareto fronts, decomposition, normal-
boundary intersection directions, evolutionary many-objective
optimization

I. INTRODUCTION

RECENTLY, Multi-objective Optimization Problems
(MOPs) characterized with more than three conflicting

objectives known as Many-objective Optimization Problems
(MaOPs) have gained a wide interest [1], [2], [3]. A variety of
real-world applications involving a high number of objectives
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are also available, e.g., in airfoil design [4], water distribu-
tion system design [5], and engineering design [6]. Hence,
much effort needs to be devoted in order to design effective
optimizers to solve MaOPs. Moreover, the classical existing
Pareto-dominance based Multi-Objective Evolutionary Algo-
rithms (MOEAs)[7], [8] have encountered many difficulties
in solving MaOPs. In spite of their popularity, Pareto-based
MOEAs are known to suffer from some drawbacks when
dealing with MaOPs [9], [10]. Thus, commendable efforts have
been made by the Evolutionary Multi-objective Optimization
(EMO) community to design new Many-Objective Evolution-
ary Algorithms (MaOEAs) for solving problems having more
than three objectives [11], [12], [13], [14], [15], [16], [17].

Recently, a number of MaOEAs have shown good perfor-
mance on benchmark problems with regular Pareto Fronts
(PFs). Note that evolutionary many-objective optimization is
a new avenue of research. Hence, great improvements in
dealing with irregular PFs are still needed to design effec-
tive MaOEAs. Besides, problems characterized with irregular
PFs pose an additional challenges for decomposition-based
MaOEAs that employ a pre-defined set of reference points
since their performance strongly depend on the shape of
the PF [18]. In fact, when facing a problem with highly
irregular PF, the pre-defined reference points may not all
intersect the PF. Hence, we cannot guarantee that the reference
points uniformly intersect the PF. In addition, although various
decomposition-based MaOEAs have been proposed, most of
them employ the Penalty-based Boundary Intersection (PBI)
scalarizing function [12] with a penalty parameter θ = 5.0 .
Ishibuchi et al. [19] have shown that using PBI with θ = 0.1
outperforms the results obtained with θ = 5.0 when solving
multi-objective knapsack problems. Hence, the value of the θ
parameter is problem dependent [20], [21].

Those observations greatly motivated us to introduce a
Mirror Point-based Relation (MPR). In MPR, two sets of
directions are employed. The PBI directions are used to ensure
the diversity of the population, while the NBI directions
guarantee the uniformity since they intersect the PF regardless
of its shape [22]. An environmental selection strategy based
on the MPR is conducted to select the solutions, referred
to as MPR-based Selection Strategy (MPRSS). The MPRSS
is incorporated into the framework of θ-DEA to give rise
to MP-DEA (Mirror Point Decomposition-based Evolutionary
Algorithm). The final contribution of this paper is that we con-
duct extensive comparative experiments against five recently
proposed decomposition-based MaOEAs on the DTLZ1-4
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[23], inverted DTLZ1-4 [9], WFG1-9 [24], and six MaF [25]
benchmark suites with up to fifteen objectives.

The rest of this paper is organized as follows. Section II
introduces the background knowledge of this paper. Section III
describes the motivations behind our proposal. Section IV is
devoted to detail MP-DEA, including its basic algorithmic
framework, the adopted MPRSS, and the analysis of the
algorithm’s computational complexity. Experimental settings
and extensive experimental results together with their cor-
responding discussions are provided in Section V. Finally,
Section VI draws the conclusions of the paper.

II. BACKGROUND

A. Preliminaries: Basic Definitions

Generally, a MOP with only box constraints can be stated
as follows [26]:

Minimize F(x) = (f1(x), . . . , fM (x))T

Subject to x ∈ Ω (1)

where M is the number of objective functions, Ω =∏n
i=1[ai, bi] ⊆ Rn is the decision (variable) space, x =

(x1, . . . , xn)T ∈ Ω is a candidate solution. F: Ω→ RM is a
vector of M conflicting objective functions, and RM is called
the objective space.

Definition 1. (Pareto dominance). x is said to dominate y,
denoted as x ≺ y if and only if fi(x) ≤ fi(y) for every
i ∈ {1, . . . ,M} and fj(x) < fj(y) for at least one index
j ∈ {1, . . . ,M}.

Definition 2. (Pareto optimality). A solution x∗ is Pareto-
optimal if there is no other solution x ∈ Ω such that x ≺ x∗.

Definition 3. (Pareto optimal set). The Pareto-optimal Set (PS)
is the set of all Pareto-optimal solutions and it is defined as
follows:

PS = {x ∈ Ω|x is Pareto optimal} (2)

Definition 4. (Pareto optimal front). The Pareto-optimal front
(PF) is the set of all Pareto-optimal solutions and it is defined
as follows:

PF = {F (x) ∈ RM |x ∈ PS} (3)

Definition 5. (Ideal point). The ideal point z∗ is a vector
z∗ = (z∗1 , z

∗
2 , . . . , z

∗
M )T , where z∗i is the infimum of fi for

each i ∈ {1, 2, . . . ,M}.

Definition 6. (Nadir point). The nadir point znad is a vector
znad = (znad1 , znad2 , . . . , znadM )T , where znadi is the supremum
of fi over the PS for each i ∈ {1, 2, . . . ,M}.

Definition 7. (Reference point). A reference point RP is
an M -dimensional vector RP = (rp1, rp2, . . . , rpM )T that
satisfies the two following conditions:

rp1 + rp2 + · · ·+ rpM = 1 (4)

rpi ∈ {0,
1

p
,

2

p
, . . . ,

p

p
} i = 1, . . . ,M (5)

where p is a user-definable positive integer.
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Fig. 1: Illustration of the reference point, mirror point, PBI
direction, and NBI direction concepts.

Definition 8. (Mirror point). The M -dimensional vector
RP

′
= (rp

′

1, rp
′

2, . . . , rp
′

M )T is the mirror point of the
reference point RP = (rp1, rp2, . . . , rpM )T if it satisfies the
following condition:

rp
′

i = rpi − 1 i = {1, 2, . . . ,M} (6)

Definition 9. (PBI direction). A PBI direction is a line passing
through the origin to a reference point RP with a direction−−−→
ORP .

Definition 10. (Normal-Boundary Intersection (NBI) direc-
tion). A NBI direction is a line passing through a mirror point

RP
′

to a reference point RP with a direction
−−−−−→
RP

′
RP .

Fig. 1 illustrates the decomposition concepts of Definitions
7-10.

B. Related Works

Recently, Ishibuchi et al. [9] have demonstrated that the
performance of decomposition-based algorithms strongly de-
pends on the shape of the PF. In fact, decomposition-based
algorithms that use a predefined set of uniformly distributed
reference points have shown good performance on problems
with regular PFs. However, their performance deteriorates
when solving problems that are characterized with: (1) de-
generate, (2) discontinuous, (3) inverted, and (4) non-linear
PFs, since most of the reference points may not have a
solution along the PF. Moreover, the uniform distribution on
a hyperplane does not translate into a uniform distribution on
a non-linear PF [27].

In the literature, several works have been proposed to
improve the performance of decomposition-based MaOEAs
on problems with irregular PFs [27]. Qi et al. [28] proposed
a new version of MOEA/D called MOEA/D-AWA to solve
MOPs with complex PFs. The authors proposed a weight
vector initialization method and an Adaptive Weight vector
Adjustment (AWA) strategy that regulates the distribution
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of the weight vectors periodically according to the current
population. The main advantage of MOEA/D-AWA is that it
can obtain good uniformity on problems that have a shape
with a sharp peak and a low tail. Nevertheless, the per-
formance of MOEA/D-AWA has been investigated only on
degenerate problems. A-NSGA-III [29] is a modified version
of NSGA-III. It identifies non-useful reference points and re-
allocates them based on the distribution and association of
the solutions. A-NSGA-III outperforms NSGA-III on irregular
problems, but this technique can often lead to a redundancy of
some reference points. Liu et al. [30] introduced an adaptive
region decomposition algorithm called MOEA/D-AM2M to
solve degenerate problems. The authors proposed to adaptively
adjust to the objective space by dynamic direction vectors
design. An adaptive region decomposition and weight vectors
design were employed to extract useful information from the
evolving population. MOEA/D-AM2M shows better perfor-
mance than MOEA/D. However, all the considered problems
are degenerate. RVEA uses a scalarization approach, termed
the Angle Penalized Distance (APD). This approach assesses
convergence by calculating the distance between candidate
solutions and the ideal point, while diversity is maintained by
measuring the angle between the candidate solutions and the
reference vectors. A reference vector regeneration strategy is
also employed in order to enhance the performance of RVEA
on irregular PFs. The main advantage of this approach is that
the angle-based strategy is able to adapt the directions to deal
with different scales of objectives. RVEA faces difficulties
when handling problems with steep sections [27]. Xiang et al.
[18] introduced the VaEA algorithm that uses a worse elim-
ination selection to dynamically adjust the search directions.
Moreover, it employs the maximum vector angle-first principle
to maintain the uniformity of the solution set. The performance
of VaEA has been investigated on the DTLZ1-4 and WFG
test suites with up to fifteen objectives. The obtained results
have shown that VaEA does not obtain the best performance
on the DTLZ1-4 test problems. In PICEA-w [31], weights
and the solutions are co-evolved during the search process.
New weights are generated randomly at each generation.
Moreover, the weight vectors with the highest contribution to
non-dominated solutions are maintained. PICEA-w has shown
a good performance on MaOPs with irregular PFs. However,
the random generation of weight vectors may affect its per-
formance on MaOPs with degenerate PFs. Asafuddoula et al.
[27] proposed a generalized version of the DBEA (g-DBEA)
algorithm. This algorithm uses a reference vector adaptation
mechanism to solve problems with regular and irregular PFs.
g-DBEA uses two sets of reference vectors, termed active and
inactive sets. Based on the association and non-dominance
information during the search process, new reference vectors
are generated and some reference points are removed to the
inactive set. g-DBEA shows its effectiveness on MaOPs with
regular and irregular PFs. However, the effect of the learning
period (i.e., the τ parameter) requires further investigation.
CA-MOEA [32] is a clustering-based algorithm that selects
individuals according to a set of cluster centers in the last
non-dominated front. CA-MOEA has proven his strength on
problems with regular and irregular PFs, but the employed

clustering-based adaptation may slow down the convergence
in the early stage of the search. Besides, the performance of
CA-MOEA needs to be investigated on MaOPs. CLIA [33] is
a reference vector-based MaOEA that adopts an incremental
learning of the PF via component interactions. It uses two
interacting processes that are the cascade clustering and the
reference point incremental learning. The first process guides
the evolution of the individuals using the reference vectors
of the second process, while the second process is employed
to generate reference vectors using the feedback from the
selection operator. MOEA/D-TPN [34] is an improved ver-
sion of MOEA/D that handles MaOPs with complex PFs.
A two-phase strategy that divides the optimization process
into two phases and a niche-guided strategy that increases
the population diversity are employed. The main limitation
of this algorithm is that it employs some parameters that it is
not easy for users to set in advance without any knowledge
about the problem and that may vary with the difficulty of the
considered problem. MOEA/D–LTD [35] traces the PF shape,
in which the learning module predicts the PF shape and the
decomposition function is adaptively adjusted to fit the PF
shape. It proposes to use Gaussian process to fit the current
PF.

III. MOTIVATIONS

In spite of the popularity of decomposition-based algorithms
in solving MaOPs, they face many challenges that consider-
ably affect their performance. First, one of the main issues
when using a pre-defined set of reference points is how to
maintain the uniformity of the intersection points between
the search directions and the PF. In fact, when facing a
problem with complex PF (e.g., discontinuous and degenerate
fronts) some reference directions cannot intersect the PF. Thus,
generating a set of reference points/weight vectors beforehand
cannot guarantee the uniformity of the approximated PF [18].
Second, the adaptation of the reference points is a challenging
task for the following reasons. It is difficult to identify the
timing and frequency to invoke the adaptive strategy. In fact,
at the early stages of the search process, there may exist some
inactive reference points (i.e., reference points with no solu-
tions associated to them). If the adaptation is too frequent, the
solutions may require a long traversal to reach the PF, while
if it is not frequent, the reference points may not conform
with the shape of the PF within an adequate computational
budget [36]. Third, the generation of new reference points
requires additional parameters and there is no ideal strategy
to add/delete the reference points [27]. Finally, most existing
decomposition-based algorithms employ the PBI scalarizing
function in order to compare pairs of solutions. Nevertheless,
the PBI scalarizing function employs the penalty parameter θ.
Mohammadi et al. [20] have shown that there is no unique
θ value that works well on problems that have different PF
characteristics with a different number of objectives.

In general, decomposition-based algorithms that use PBI
directions are well-suited to solve MaOPs with regular PFs.
Fig. 2 (a) gives an example where a set of uniformly dis-
tributed reference points (i.e., a set of PBI directions) corre-



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

Min f1 

 

Min f2 

 

Reference point 

PBI direction 

PF 

Optimal solution to the PBI          

direction 

S1 S2 
S3 

S4 

S6 

S7 

S8 

S9 

S10 

 

S5 

(a) Concave PF

S10 

Min f1 

 

Min f2 

 

Reference point 

PBI direction 

PF 

Optimal solution to the PBI          

direction 

S1 

S2 

S3 

S4 

S5 

S8 

 S9 

 

S7 
S6 

 

(b) Strongly Convex PF

Min f1 

 

Min f2 

 

Reference point 

PBI direction 

PF 

Optimal solution to the PBI          

direction 

S5 

S1 

S2 

S3 

S4 

S6 

S9 

S7 

S8 

(c) Disconnected, convex PF (d) Degenerate PF

Fig. 2: An example illustrating that using the PBI directions may lead to a distribution of optimal solutions that depends on
the shape of the PF.
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spond to a set of uniformly distributed optimal solutions. How-
ever, when the shape of the PF is irregular, decomposition-
based algorithms appear to struggle due to the inconsistency
between the shape of the PF and the distribution of the PBI
directions. Figs. 2 (b)-(d) show three examples where a set of
optimal solutions are obtained by a set of PBI directions. In
Fig. 2 (b), one can notice that the distances between (S1, S2)
and (S9, S10) are larger than the distances between the other
adjacent solutions. Figs. 2 (c) and (d) show that the solutions
are not uniformly distributed along the PF and some parts of
the PF do not have intersection points with the PBI directions.
These observations demonstrate the difficulties encountered
when using the PBI directions, specifically when solving real
world problems where the information about their PFs is
unknown.

The NBI method [37] has been widely employed to find
a uniformly spread Pareto optimal solutions using a set of
NBI directions that are able to cover the PF regardless of its
geometry. Figs. 3 (a)-(d) illustrate that the equidistant NBI
directions lead to a uniformly distribution of the solutions on
concave, convex, disconnected, and degenerate PFs.

The previously described problems of the PBI method are
precisely the underlying motivations of our work. In this
paper, we propose a new decomposition-based approach that
combines the PBI and the NBI directions in order to use their
strength. Hence, solutions associated to the same subregion are
compared based on the acute angle and the Euclidean distance
metrics. The acute angle metric is a PBI direction-based metric
that measures diversity and in some cases convergence, while
the Euclidean distance metric is a NBI direction-based metric
that measures the convergence and the uniformity.

Since some reference points may have no intersection in the
case of discontinuous and/or degenerate PF, we suggest to not
remove the inactive reference points, but to ask the Decision
Maker (DM) to interact with the algorithm by increasing the
number of reference points after a number of generations.
We simply add a set of reference points centering around the
crowded reference points [29]. This strategy guarantees the
uniformity, since it increases the number of points intersecting
the PF. It is described in Appendix A. In the next section, we
describe our proposed MPR and MP-DEA algorithm.

IV. THE PROPOSED ALGORITHM: MP-DEA

In this section, we first describe the general framework
of MP-DEA. Thereafter, we detail its different components.
Finally, we present the MPR and the complexity of MP-DEA.

A. General Framework and Pseudocode

Fig. 4 provides the overall framework of MP-DEA. The
pseudocode of MP-DEA can be described in Algorithm 1
and Algorithm 2. First, an RPSet of W reference points
is generated using Das and Dennis’s systematic approach
[37] (line 3 of Algorithm 1). Then, a set of mirror points
MSet is generated so that each reference point in RPSet
has its mirror point in MSet (line 4 of Algorithm 1). After
that, a population with N individuals is randomly generated
(line 5 of Algorithm 1). Next, we initialize the ideal point

Algorithm 1 MP-DEA pseudocode
Input: Number of objectives M, number of divisions p, population size N,
maximum number of generations Gmax, generations of DM interactions
tabinter

Output: Population Pt+1

01: Begin
02: t← 0;
03: RPSet ← generate reference points (M, p);
04: MSet ← generate mirror points (RPSet);
05: P0 ← generate initial population (N);
06: z∗ ← initialize ideal point (P0);
07: znad ← initialize nadir point (P0);
08: While (t < Gmax) do
09: If ((t ∈ tabinter) and (DM decision = 0)) /* DM decision is set

to 0 if the DM decides to interact; otherwise, it is set to 1 */
10: RPSet ← update reference points (RPSet); /* The update of the

reference points is performed using the method described in Appen-
dix A */

11: MSet ← update mirror points (RPSet);
12: End If
13: Pt+1 ←MP-DEA basic iteration (Pt, N,RPSet,MSet, z∗, znad);
14: t ← t+ 1;
15: End While
16: Return Pt+1

17: End

Algorithm 2 MP-DEA basic iteration pseudocode
Input: Current population Pt, population size N, reference point set RPSet,
mirror point set MSet, z∗ ideal point, , znad nadir point
Output: Population Pt+1

01: Begin
02: Qt ← create offspring population (Pt);
03: Rt ← create union population (Pt, Qt);
04: St ← non dominated sorting (Rt);
05: z∗ ← update ideal point (St);
06: St ← normalize (St, z∗, znad);
07: St ← associate population members (St, RPSet);
08: S

′
t ← non MPR-dominated sorting (St, RPSet,MSet);

09: Pt+1 ← ∅;
10: i ← 1;
11: While ((size (Pt+1) + size (S

′
t(i))) < N) do /* S

′
t(i) is the

ith front of the ranked population S
′
t */

12: Pt+1 ← Pt+1∪ S
′
t(i);

13: i ← i+ 1;
14: End While
15: For j = 1 to (N - size (Pt+1)) do
16: Pt+1 ←random select individual (j, S

′
t (i));

17: End For
18: Return Pt+1

19: End

z∗ with the minimum value found so far for each objec-
tive fi in P0, since it is time consuming to compute the
exact z∗i (line 6 of Algorithm 1). The Nadir point znad is
also initialized with the maximum value found so far for
each objective fi in Step 7 of Algorithm 1. Steps 8-15 of
Algorithm 1 are executed while the number of generations
does not exceed Gmax. Steps 9-12 are executed only if the
process of interacting with the DM is reached and the DM
decides to perform an interaction. In this case, we increase
the number of reference points (line 10 of Algorithm 1) and
the number of mirror points (line 11 of Algorithm 1). The
mirror points are updated by generating a set of mirror points
that correspond to the new set of reference points. In Step
13 of Algorithm 1, the MP-DEA basic iteration procedure
is performed, whose pseudocode is given in Algorithm 2.
The MP-DEA basic iteration procedure can be described as
follows. An offspring population Qt is created by using the
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Fig. 4: Overall framework of the MP-DEA algorithm.

recombination operator (line 2 of Algorithm 2). Next, Pt and
Qt are merged together to form the union population Rt
with 2N individuals (line 3 of Algorithm 2). In line 4 of
Algorithm 2, we perform the non-dominated sorting to classify
the population Rt into several fronts and a population St
formed with the best Pareto non-domination levels is created.
The population St = ∪τi=1Fi, where Fi is the ith Pareto
non-dominated front of the population Rt and τ satisfies∑τ−1
i=1 |Fi|< N and

∑τ
i=1|Fi|≥ N . We then update the ideal

point z∗ using the population St (lines 5 of Algorithm 2).
Thereafter, we normalize the St population members (line
6 of Algorithm 2). We note that the nadir point znad is
updated in the normalization procedure. After performing
the normalization, we associate the members in St to the
reference points in RPSet (line 7 of Algorithm 2). After
that, a non-dominated sorting based on MPR is performed
to form a new population S

′

t classified into different MPR
non-domination levels (F

′

1, F
′

2, etc) (line 8 of Algorithm 2).
Once the S

′

t population is constructed, we fill the population
Pt+1 using the MPR non-domination levels (lines 11-14 of
Algorithm 2). However, similarly to θ-DEA, we randomly
select the individuals from the last accepted front F

′

l (lines
15-17 of Algorithm 2).

B. Reference and Mirror Points Generation Methods

The generation of the reference points in MP-DEA is done
using Das and Dennis’s systematic approach [37]. The number
of reference points depends on the number of objectives M
and the number of divisions considered along each objective
axis p. The number of reference points is calculated using the
following equation [38]:

W =

(
M + p− 1

p

)
(7)

If p < M there are no intermediate reference points that are
created using this method. In order to generate intermediate
reference points within the simplex, we should set M ≥ p.
For the sake of diversity and computational cost, we use a
two-layer reference point generation method as suggested in
[13]. Thus, the number of reference points can be expressed
as follows [13]:

W =

(
M + p1 − 1

p1

)
+

(
M + p2 − 1

p2

)
(8)

where p1 and p2 represent the divisions of boundary and inside
layers, respectively.

After the generation of the RPSet, we then create the
MSet of W mirror points by decreasing the coordinates of the
reference points by 1. Note that there is no one unique method
to generate the mirror points. In this paper, we have employed
the simplest one. Fig. 5 illustrates the two-layer reference and
mirror points generation methods.

C. Creation of the Offspring Population

In MaOPs, the usual recombination operator may be less
effective in producing offspring solutions that are close to their
parents. In order to address this issue, we propose to use the
same special recombination scheme employed in NSGA-III
and θ-DEA, since our algorithm is inspired by the two above
algorithms. This approach consists in using a large distribution
index for the Simulated Binary Crossover (SBX) operator [39].
The recombination operator starts by randomly selecting two
parent solutions from the current population Pt. Then, a child
solution is created by applying the SBX operator with a large
distribution index and polynomial-based mutation [40].
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Fig. 5: Illustration of the reference and mirror points generation methods.

D. Normalization Procedure

After the creation of the St population, we normalize the
objective values of its individuals. This step is important when
solving problems characterized by PFs whose objective values
are badly scaled. Thus, the objective fi(x), i = 1, 2, . . . ,M ,
is normalized as follows:

f̃i(x) =
fi(x)− z∗i
znadi − z∗i

(9)

where z∗i is estimated by the best value found so far for
objective fi. However, the estimation of znadi is similar to
that in θ-DEA. We first start by identifying the extreme point
Ej in the objective axis fj . Thus, we have to find the solution
x ∈ St that minimizes the following Achievement Scalarizing
Function (ASF) [38]:

ASF (x, aj) =
M

max
i=1

{
1

aj

∣∣∣∣fi(x)− z∗i
znadi − z∗i

∣∣∣∣} (10)

where aj = (aj,1, aj,2, . . . , aj,M )T is the axis direction of the
objective axis fj . We note that aj,i = 10−6 if i 6= j and aj,i =
1, otherwise. The extreme point Ej is assigned the objective
vector of the solution x that minimizes the above described
ASF (i.e., Ej = x). After finding the M extreme points for all
the objectives, we construct an M -dimensional linear hyper-
plane. Let the matrix D = (E1− z∗, E2− z∗, . . . , EM − z∗)T
and u = (1, 1, . . . , 1)T , the intercepts are calculated using the
following equation [38]:

(c1 − z∗1)
(c2 − z∗2)

. . .
(cM − z∗M )

 = D−1u (11)

where c1, c2, . . . , cM represent the intercepts of the hyperplane
with the directions (1, z∗2 , . . . , z

∗
M )T , (z∗1 , 1, . . . , z

∗
M )T , . . . ,

(z∗1 , z
∗
2 , . . . , 1)T , respectively. Finally, the value of znadi is set

as ci. For more details of the hyperplane construction and the
intercepts formation, please refer to [38].

E. Association Procedure

The association procedure of MP-DEA is performed in the
normalized objective space, where the ideal point z∗ is the
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Fig. 6: Illustration of the association operation using acute
angle.

origin. At each generation, the individuals of the St population
are associated to the reference points in the RPSet. For
the association operator, the norm of each solution in St is
computed. The norm of a solution x is defined as shown below
[18]:

norm(x) ,

√√√√ M∑
i=1

f̃i(x)2 (12)

The norm is used to calculate vector angles between a solution
and a reference point. The vector (acute) angle between a
solution x and a reference point RPj is defined as follows:

angle(x,RPj) , arccos

∣∣∣∣∣ F̃ (x) •RPj
norm(x).norm(RPj)

∣∣∣∣∣ (13)

where F̃ (x) = (f̃1(x), f̃2(x), . . . , f̃M (x))T , RPj =
(rpj1, rpj2, . . . , rpjM )T , F̃ (x)•RPj returns the inner product
between F̃ (x) and RPj , and it is defined as follows:

F̃ (x) •RPj =

M∑
i=1

f̃i(x).rpji (14)

It is worth mentioning that using this association procedure
each solution will be assigned to its closest reference point in
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Fig. 7: Illustration of the angle and Euclidean distance metrics.

the normalized objective space. Fig. 6 illustrates the associa-
tion operation in a two-dimensional objective space. According
to the vector angle, x1 is associated to RP1, both x2 and x3
are associated to RP4, x4 is associated to RP5, and x5 is
associated to RP6.

F. MPR-based Selection Strategy (MPRSS)

The proposed MPR is defined on the population St. After
the association of the solutions to the reference points, we use
the MPR to sort the solutions associated to the same reference
point.

Definition 11. (Mirror Point-based Relation (MPR)). Given
two solutions x and y ∈ St and associated to the same
reference point RPj , x is preferred to y iff:
angle(x,RPj) + Eucl(x,RP ′j) < angle(y,RPj) +
Eucl(y,RP ′j)

where j ∈ {1, 2, . . . ,W}, RP ′j is the mirror point assigned to
x, angle(x,RPj) is the acute angle between the solution x and
the reference point RPj , and Eucl(x,RP ′j) is the Euclidean
distance between the solution x and the mirror point RP ′j .
Before evaluating the solutions, we perform a normalization of
the angle values and the Euclidean distances so that they have
the same range by identifying the minimum and maximum
angle values and Euclidean distances found so far in the pop-
ulation St. Fig. 7 illustrates the angle and Euclidean distance
metrics of the MPR. The angle metric measures diversity
and in some cases convergence, while the Euclidean distance
metric measures uniformity and convergence. The MPR states
that when x is better than y in terms of diversity, convergence,
and uniformity, x is preferred over y. Hence, the solutions are

compared using the PBI (acute angle) and the NBI (Euclidean
distance) metrics. In addition, the combination of the acute
angle value and the Euclidean distance makes this relation
able to control the balance between diversity, convergence, and
uniformity without using a penalty parameter. Fig. 8 illustrates
the execution of the MPRSS environmental selection on a
population containing ten individuals and six subregions (i.e.,
six reference points). Fig. 8 (a) shows the execution of the non-
MPR-dominated sorting. One can notice that using our non-
MPR-dominated sorting the solutions with the same order have
the same rank. One can notice from Fig. 8 (a) that the solution
x2 is preferred to x3 using MPR, since x2 has lower acute
angle and Euclidean distance values. After executing the MPR,
we adapt the fast non-dominated sorting [7] by partitioning
the St population into different MPR non-domination levels.
Fig. 8 (b) highlights the third region and shows the directions
that are employed in the comparison of the solutions.

G. Computational Complexity Analysis

The basic framework of MP-DEA remains similar to
θ-DEA. Hence, we can follow the same principle used in
[38] to compute the complexity of MP-DEA. The computa-
tional cost of a generation of MP-DEA can be detailed as
follows. The initialization procedures of z∗ and znad require
O(N) computations (lines 6 and 7 in Algorithm 1). The
update of the reference points requires O(N) computations
(line 10 in Algorithm 1). The non-dominated sorting (line 4
in Algorithm 2) of the population Rt with 2N individuals
having M -dimensional objective vectors requires O(MN2)
computations. The normalization of the St population with
2N solutions having M objectives requires O(MN) (line 6
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Fig. 8: An illustration of the execution of the MPRSS envi-
ronmental selection.

in Algorithm 2). In order to associate the solutions, we have to
compute the W acute angle values for each solution in St and
each one of them is computed in O(M) computations. Thus,
the association procedure requires O(MN2) computations,
since W ' N in our simulations (line 7 in Algorithm 2).
The non-MPR-dominated sorting of the St population having
M objectives also needs O(MN2) computations in the worst
case (line 8 in Algorithm 2). Similarly to θ-DEA, the overall
complexity of one generation of MP-DEA is approximately
equal to O(MN2).

V. EXPERIMENTAL STUDY

This section is structured as follows. First, we present the
test problems, the performance measures, and the statistical
testing that are used in our experiments. Second, we introduce
the algorithms under comparison and we provide the experi-

TABLE I: Properties of the test problems [38], [9], [25].

Problem Properties
Regular PF
DTLZ1 Linear, Multi-modal
DTLZ2 Concave
DTLZ3 Concave, Multi-modal
DTLZ4 Concave, Biased
WFG4 Concave, Multi-modal, Scaled
WFG5 Concave, Deceptive, Scaled
WFG6 Concave, Non-separable, Scaled
WFG7 Concave, Biased, Scaled
WFG8 Concave, Biased, Non-separable, Scaled
WFG9 Concave, Biased, Multi-modal, Deceptive, Non-separable,

Scaled
Irregular PF
WFG1 Mixed, Biased, Scaled
WFG2 Convex, Disconnected, Multi-modal, Non-separable, Scaled
WFG3 Linear, Degenerate, Non-separable, Scaled
DTLZ1−1 Rotated
DTLZ2−1 Convex
DTLZ3−1 Convex
DTLZ4−1 Convex
MaF4 Concave, Multi-modal, Badly-scaled, No single optimal

solution in any subset of objectives
MaF5 Convex, Biased, Badly-scaled
MaF6 Concave, Degenerate
MaF7 Mixed, disconnected, Multi-modal
MaF9 Linear, Degenerate
MaF12 Concave, Non-separable, Biased Deceptive

mental settings adopted in this paper. Finally, we discuss the
obtained results.

A. Test Problems

For the purposes of our comparison, four test problems
from the well-known DTLZ test suite (DTLZ1-4) [23], four
inverted (DTLZ1-4) test problems [9], nine WFG test problems
(WFG1-9) [24], and six MaF benchmark problems (MaF4-
7, MaF9, and MaF12) [25] have been employed to conduct
our experiments. In our experimental study, we considered
instances having M ∈ {3, 5, 8, 10, 15} objectives.

For the DTLZ, inverted DTLZ, and MaF4-7 test instances,
the number of decision variables is set to n = M + r − 1,
where r = 5 for DTLZ1 and DTLZ−1, r = 10 for DTLZ2-4,
DTLZ2-4−1, MaF4-6, and MaF12, while r = 20 for MaF7.
The number of decision variables is set to n = 2 for MaF9.
According to the recommendations in [24], the number of
decision variables is set to n = k + l for the WFG test
problems, where the position-related variable k = 2×(M−1),
and the distance-related variable l = 20. The PFs of the above
test suites have different characteristics and they present a
significant challenge for an algorithm to find a well-converged
and well-distributed solution set. The main properties of all
test instances are summarized in Table I.

B. Performance Measures

We adopted the Inverted Generational Distance (IGD) [41]
and the HyperVolume (HV) [42] to assess the performance
of each algorithm. The IGD and HV provide complementary
information about convergence and diversity. Let F ∗ be a set
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of uniformly distributed points over the PF and S, the obtained
solution set.
• IGD: The IGD indicator assesses both convergence and

diversity. This indicator computes the average Euclidean
distance from each solution composing the PF to its
closest solution in S. The IGD indicator is defined as
follows [41]:

IGD(S) =

∑
x∗∈F∗ dist(x

∗, S)

|F ∗|
(15)

where dist(x∗, S) is the Euclidean distance between a
point x∗ ∈ F ∗ and its nearest solution in S. A smaller
value of the IGD is better.

• HV: This indicator measures the volume of the objective
space between S and a specified reference point zr. The
HV indicator can be defined as follows [13]:

HV (S) = V OL(∪x∈S [f1(x), zr1 ]× [fM (x), zrM ]) (16)

where V OL(∆) indicates the Lebesgue measure. A larger
value of the HV indicator is better. In this study, we first
normalize the solutions using the ideal point and the nadir
point of the PF. Then, the HV is calculated using the
reference point (1.1, 1.1, . . . , 1.1)T [9], [38]. The HV is
calculated using the WFG algorithm [43] when M < 10
and a Monte Carlo simulation [44] when M ≥ 10.

In the calculation of the IGD metric, a set of Pareto-
optimal solutions is required. For DTLZ1-4, we use the same
method reported in [13] to form the reference Pareto-optimal
points. This method is able to identify the intersecting points
between the set of reference points generated using Das and
Dennis’s systematic approach and the Pareto-optimal surface
of the DTLZ1-4 test problems, since the exact Pareto-optimal
surfaces of the above test problems are known. The number
of reference points for calculating the above described perfor-
mance measures should be large enough so as to cover the
PF. Thus, we use a larger number of divisions in the reference
points’ generation method. For DTLZ1-4−1, the reference PF
is obtained by scaling the points of the DTLZ problems.

For the WFG test problems, we use the same methods em-
ployed in [18] to generate the reference Pareto-optimal points.
The range of the ith objective of the WFG problems is [0, 2i],
where (i = 1, 2, 3, . . . ,M). Moreover, the PF of WFG4-9 is a
hypersphere. Thus, we generate the reference Pareto-optimal
points of WFG4-9 by multiplying the ith objective of the
reference points of DTLZ2-4 by 2i. Therefore, the number of
reference points is the same as in the DTLZ test problems.
For WFG1-2, their PFs are irregular. Thus, we sample a
large number of points in the underlying space [0, 1]M−1 and
then we calculate the objective values according to analytical
expressions of the shape functions. After that, we remove
all dominated points to constitute the final reference set. For
WFG3, it was originally designed to have a degenerate PF but
for more than three objectives it also has a non-degenerated
PF. Thus, we constructed the reference point set by selecting
all the non-dominated solutions from all the returned solutions
obtained from 31 independent runs of each algorithm.

The reference PFs for MaF4-7, MaF9, and MaF12 problems
are generated using the open source software jMetal [45].

TABLE II: Settings of the number of divisions and population
size for different numbers of objectives.

M Divisions (p) MP-DEA MOEA/D-AWA
VaEA MOEA/DD
RVEA
θ-DEA

3 12 92 91
5 6 212 210
8 3, 2 156 156
10 3, 2 276 275
15 2, 1 136 135

C. Statistical Testing

In this experimental study, the Wilcoxon rank sum test [46]
was applied in a pairwise fashion at a 0.05 significance level
to evaluate the statistical significance of the obtained results.
This is a statistical test that is used to compare the performance
of two stochastic algorithms. In fact, it is important to use
statistical tests, since each algorithm can behave differently
using the same input parameters from one run to another. In
our study, we performed 31 runs for each pair (algorithm,
problem) to facilitate the median extraction. The results of the
Wilcoxon rank sum test are presented in the form of (-: no
significance) and (+: significance).

D. Algorithms under Comparison

In this study, we compare MP-DEA with respect to five
decomposition-based algorithms which are: VaEA [18], RVEA
[47], MOEA/D-AWA [28], θ-DEA [38], and MOEA/DD [13].
In the following, we summarize the working principles of the
considered peer algorithms.
• VaEA [18]: VaEA is a vector angle-based algorithm. It

uses the maximum-vector-angle-first principle to maintain
the diversity, while the convergence is maintained using
the worst elimination principle.

• RVEA [47]: RVEA uses an angle penalized distance to
balance convergence and diversity. An adaptation strategy
is employed to dynamically adjust the distribution of the
reference vectors.

• MOEA/D-AWA [28]: MOEA/D-AWA employs an adap-
tive weight vector adjustment strategy to solve MOPs
with complex PFs.

• θ-DEA [38]: θ-DEA uses a θ-dominance, which is based
on the PBI scalarizing function. The θ-dominance has the
ability to maintain the balance between convergence and
diversity.

• MOEA/DD [13]: MOEA/DD combines dominance and
decomposition to achieve a balance between convergence
and diversity. It uses niching scenarios to preserve solu-
tions associated to isolated subregions.

E. Experimental Settings

The parameters settings of the considered algorithms in this
study can be summarized as follows:

1) Parameters settings for operators: The SBX and
polynomial-based mutation operators were used to per-
form the variation. The crossover probability pc was set
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TABLE III: Settings of MFE for different test instances.

XXXXXXXXProblem
M 3 5 8 10 15

DTLZ1 36800 127200 117000 276000 204000
DTLZ1−1

DTLZ2 23000 74200 78000 207000 136000
DTLZ2−1

DTLZ3 92000 212000 156000 414000 272000
DTLZ3−1

DTLZ4 55200 212000 195000 552000 408000
DTLZ4−1

WFG1-9 - 159000 - 552000 408000
MaF4-6 - 140000 - 190000 240000
MaF7 - 240000 - 290000 340000
MaF9 - 100000 - 100000 100000
MaF12 - 140000 - 190000 240000

TABLE IV: Settings of the DM’s interactions for different test
problems with discontinuous and degenerate PFs.

XXXXXXXXProblem
M 3 5 8 10 15

- 127200 - 276000 136000
WFG2 414000 238000

306000
- 127200 - 276000 136000

WFG3 414000 238000
306000

- 95400 - 96600 102000
MaF6 138000 136000

170000
- 169600 - 124200 170000

MaF7 207000 238000
272000

- 74200 - 41400 34000
MaF9 69000 61200

81600

to 1.0, while the mutation probability pm was set to 1/n,
where n is the number of variables in the decision space.
For the SBX operator, the distribution index ηc was set
to 30 except for MOEA/D-AWA, for which it was set to
20 and the distribution index of the mutation operator
ηm was set to 20.

2) Population size: The population size N of MP-DEA,
VaEA, RVEA, and θ-DEA was set as in [29]. For
MOEA/DD and MOEA/D-AWA, the population size
was set as in MOEA/D. Table II summarizes the value
of N for different numbers of objectives.

3) Stopping condition: The stopping condition of an algo-
rithm is the Maximum number of Function Evaluations
(MFE). Table III shows the settings of MFE for different
number of objectives. For MP-DEA the maximum num-
ber of generations (termination condition) can be easily
determined by Gmax = MFE/N .

4) DM interactions: The DM may needs to interact after
performing a number of function evaluations . Table IV
shows the function evaluations in which the DM decides
whether he increments the number of reference or not.

5) Specific parameters settings: For RVEA, the index
α which is adopted to control the rate of change of
the penalty function was set to 2 and the frequency

fr was set to 0.1. For MOEA/DD, the neighborhood
size T was set to 20, the penalty parameter θ was
set to 5 and the neighborhood selection probability δ
was set to 0.9. FOR θ-DEA the penalty parameter θ
in PBI was set to 5. In MOEA/D-AWA, the maximal
number of adjusting subproblems was set as 0.05N , the
computational resources for the weight adaptation was
set as 0.8, and the size of the external elite was set as
1.5N .

F. Results and Discussion

In this section, we describe the obtained experimental results
to validate the performance and the effectiveness of MP-DEA.
The conducted experiments can be divided into three parts
based on the employed test suite.

1) Performance Comparisons on the DTLZ Test Suite:
In this category, we consider four problems: DTLZ1,
DTLZ2, DTLZ3, and DTLZ4. Table V presents the median
IGD and HV values obtained by MP-DEA, VaEA, RVEA,
MOEA/D-AWA, θ-DEA, and MOEA/DD on the DTLZ1-4
test problems. MP-DEA shows a clear advantage over its
competitors on the majority of the test instances.

For DTLZ1, MP-DEA clearly outperforms VaEA, RVEA,
MOEA/D-AWA, and θ-DEA in all three- to fifteen-objective
problem instances. MOEA/DD performs better than MP-DEA
in three- and five-objective cases.

For DTLZ2, both MP-DEA and VaEA have a similar
performance in terms of IGD, while MP-DEA has the best
performance in terms of HV as it wins in almost all problem
instances except for the eight-objective case. θ-DEA obtains
the best median IGD value on the five-objective case.

For DTLZ3, MP-DEA has the best performance in terms of
IGD and HV. VaEA and RVEA have a similar performance,
while MOEA/DD have the worst performance.

MOEA/D-AWA performs significantly worse than
MP-DEA, VaEA, RVEA, and θ-DEA on DTLZ4. The
best optimizer is MP-DEA since its median IGD values are
much smaller than those of its competitors and its HV values
are much larger. It is also worth noting that the performance
of θ-DEA is rather robust, as it is ranked second in almost
all the DTLZ4 instances.

2) Performance Comparisons on the Inverted DTLZ Test
Suite: Table VI shows the median IGD and HV values on
the inverted DTLZ test problems: DTLZ1−1, DTLZ2−1,
DTLZ3−1, and DTLZ4−1.

For DTLZ1−1, we find that MP-DEA shows better
performance than the five algorithms in three- to eight-
objective test instances. θ-DEA obtains the best median IGD
and HV values in the ten-objective case, while VaEA has the
best performance in the fifteen-objective case.

For DTLZ2−1, MP-DEA is ranked first, while
MOEA/D-AWA has the worst overall performance.

For DTLZ3−1, MP-DEA has the best performance in five-
to ten-objective problem instances in terms of IGD. MP-DEA
is the best optimizer, since it achieves the best HV values
in five- and eight-objective test instances. θ-DEA performs
slightly worse than MP-DEA. In contrast, the performance of
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TABLE V: Median obtained values of IGD and HV on the DTLZ1-4 test instances. The best and the second best results for
each test instance are shown in boldface and underlined, respectively. The sign “+” indicates that the difference of the results
is statistically significant, while the sign “-” means the opposite.

Problem M MP-DEA VaEA RVEA MOEA/D-AWA θ-DEA MOEA/DD

3
4.111E-2 (+ + + + +) 4.233E-2 (+ + + +) 4.116E-2 (+ + +) 5.603E-2 (+ +) 5.302E-2 (+) 4.107E-2
9.87E-1 (+ + + + +) 9.73E-1 (+ + + +) 9.83E-1 (+ + +) 9.44E-1 (+ +) 9.56E-1 (+) 9.92E-1

5
2.093E-1 (+ + + - +) 2.445E-1 (+ + + +) 2.332E-1 (+ + +) 3.389E-1 (+ +) 2.110E-1 (+) 2.003E-1
1.00E+0 (+ + + + +) 9.89E-1 (+ + + +) 9.98E-1 (+ - +) 9.78E-1 (+ +) 9.99E-1 (+) 1.02E+0

DTLZ1
8

1.822E-1 (+ + + + +) 2.196E-1 (+ + + +) 2.182E-1 (+ + +) 2.384E-1 (+ +) 1.830E-1 (+) 2.183E-1
9.99E-1 (+ + + + +) 9.89E-1 (+ + + +) 9.92E-1 (+ + +) 9.84E-1 (+ +) 9.97E-1 (+) 9.94E-1

10
1.891E-1 (+ + - + +) 2.041E-1 (+ + + +) 1.919E-1 (+ + +) 1.893E-1 (+ +) 1.904E-1 (+) 2.866E-1
1.11E+0 (+ + + + +) 9.95E-1 (+ + + +) 1.00E+0 (+ + +) 1.09E+0 (+ +) 1.00E+0 (+) 9.26E-1

15
1.754E-1 (+ + + + +) 2.186E-1 (+ + + +) 2.088E-1 (+ + +) 1.762E-1 (+ +) 2.199E-1 (+) 1.834E-1
1.20E+0 (+ + - + +) 9.99E-1 (+ + + +) 1.00E+0 (+ + +) 1.20E+0 (+ +) 9.82E-1 (+) 1.29E-1

3
5.742E-2 (+ + + + +) 5.891E-2 (+ + + +) 5.813E-2 (+ + +) 5.933E-1 (+ +) 5.982E-2 (+) 5.764E-2
9.42E-1 (+ + + + +) 9.23E-1 (+ + + +) 9.29E-1 (+ + +) 9.13E-1 (+ +) 9.02E-1 (+) 9.36E-1

5
2.293E-1 (+ + + + +) 2.393E-1 (+ + + +) 2.310E-1 (+ + +) 2.301E-1 (+ +) 2.264E-1 (+) 2.384E-1
9.99E-1 (+ + + + +) 9.90E-1 (+ + + -) 9.91E-1 (+ + +) 9.95E-1 (+ +) 9.97E-1 (+) 9.90E-1

DTLZ2
8

3.628E-1 (+ + + + +) 3.498E-1 (+ + + +) 3.512E-1 (+ + +) 4.714E-1 (+ +) 4.106E-1 (+) 3.812E-1
9.90E-1 (+ - + + +) 9.94E-1 (+ + + +) 9.91E-1 (+ + +) 9.77E-1 (+ +) 9.79E-1 (+) 9.88E-1

10
4.813E-1 (+ + + + +) 4.715E-1 (+ + + +) 5.189E-1 (+ + +) 5.709E-1 (+ +) 5.201E-1 (+) 5.111E-1
1.00E+0 (+ + + + +) 9.99E-1 (+ + - +) 9.71E-1 (+ + +) 9.76E-1 (+ +) 9.98E-1 (+) 9.84E-1

15
5.810E-1 (+ + + + +) 5.993E-1 (+ + + +) 6.198E-1 (+ + +) 7.512E-1 (+ +) 6.286E-1 (+) 6.126E-1
9.77E-1 (+ + + + +) 9.74E-1 (+ + + +) 9.55E-1 (+ + +) 9.43E-1 (+ +) 9.61E-1 (+) 9.64E-1

3
5.516E-2 (+ + + + +) 5.814E-2 (+ + + +) 5.663E-2 (+ + +) 1.297E-1 (+ +) 5.786E-2 (+) 5.536E-2
9.48E-1 (+ + + + +) 9.38E-1 (+ + + +) 9.29E-1 (+ + +) 9.15E-1 (+ +) 9.33E-1 (+) 9.44E-1

5
1.718E-1 (+ + + + +) 1.987E-1 (+ + + +) 2.816E-1 (+ + +) 1.814E-1 (+ +) 2.334E-1 (+) 3.896E-1
1.02E+0 (+ + + + +) 9.97E-1 (+ + + +) 9.76E-1 (+ + +) 9.99E-1 (+ +) 9.79E-1 (+) 9.25E-1

DTLZ3
8

3.792E-1 (+ + + + +) 4.003E-1 (+ + + +) 3.819E-1 (+ + +) 3.912E-1 (+ +) 4.286E-1 (+) 5.810E-1
9.18E-1 (+ + + + +) 9.05E-1 (+ + + +) 9.16E-1 (+ + +) 9.11E-1 (+ +) 9.03E-1 (+) 8.98E-1

10
4.613E-1 (+ + + + +) 4.786E-1 (+ + + +) 4.698E-1 (+ + +) 4.720E-1 (+ +) 4.791E-1 (+) 5.220E-1
1.13E+0 (+ + + + +) 9.93E-1 (+ + + +) 1.00E+0 (+ + +) 9.96E-1 (+ +) 9.82E-1 (+) 9.72E-1

15
6.128E-1 (+ + + + +) 6.930E-1 (+ + + +) 6.885E-1 (+ + +) 7.106E-1 (+ +) 6.106E-1 (+) 6.230E-1
9.92E-1 (+ + + + +) 9.73E-1 (+ + + +) 9.23E-1 (- + +) 9.23E-1 (+ +) 9.99E-1 (+) 9.88E-1

3
5.288E-2 (+ + + + +) 1.044E-1 (+ + + +) 1.846E-1 (+ + +) 1.182E-1 (+ +) 5.340E-2 (+) 2.068E-1
9.71E-1 (+ + + + +) 9.25E-1 (+ + + +) 9.03E-1 (+ + +) 9.13E-1 (+ +) 9.63E-1 (+) 8.98E-1

5
1.693E-1 (+ + + + +) 1.722E-1 (+ + - +) 1.793E-1 (+ + +) 2.382E-1 (+ +) 1.714E-1 (+) 2.528E-1
1.15E+0 (+ + + + +) 9.92E-1 (+ + + +) 9.84E-1 (+ + +) 9.61E-1 (+ +) 1.08E+0 (+) 9.66E-1

DTLZ4
8

3.937E-1 (+ + + + +) 4.034E-1 (+ + + +) 3.975E-1 (+ + +) 4.962E-1 (+ +) 3.919E-1 (+) 4.826E-1
1.00E+0 (+ + + + +) 9.93E-1 (- + + +) 9.91E-1 (+ + +) 9.88E-1 (+ +) 9.98E-1 (+) 9.90E-1

10
4.291E-1 (+ + + + +) 4.618E-1 (+ + + +) 4.280E-1 (+ + +) 4.601E-1 (+ +) 4.327E-1 (+) 5.692E-1
9.98E-1 (+ - + + +) 9.93E-1 (+ + + +) 9.97E-1 (+ + +) 9.83E-1 (+ +) 1.00E+0 (+) 9.79E-1

15
4.219E-1 (+ + + + +) 4.903E-1 (+ + + +) 4.383E-1 (+ + +) 5.119E-1 (+ +) 6.214E-1 (+) 5.394E-1
1.09E+0 (+ + + + +) 9.91E-1 (+ + + +) 1.01E+0 (+ + +) 9.76E-1 (+ +) 9.62E-1 (+) 9.73E-1

RVEA and MOEA/D-AWA is not promising.
For DTLZ4−1, MP-DEA and VaEA show strong

competitiveness on most of the problem instances. θ-DEA
succeeds to have the best performance on the three- and
five-objective cases.

3) Performance Comparisons on the WFG Test Suite: The
WFG test suite is one of the most popular in the area. By
testing the algorithms on the WFG test problems, we evaluate
their ability in obtaining a well-converged and well-distributed
set of solutions since they are characterized for presenting
several complexities. Table VII presents the comparison
results of MP-DEA with the other five algorithms in terms of
IGD and HV values on the WFG1-9 test problems. One can
notice that MP-DEA had the best performance in most cases.

The WFG1 test problem is characterized for having a

mixed, biased, and scaled PF. From the empirical results
presented in Table VII, it is clear that MP-DEA shows the
best IGD values in the five- and fifteen-objective problem
instances. VaEA obtains the best IGD value on the ten-
objective instance. VaEA shows the best HV values in
almost all problem instances, except for the case with five
objectives. In contrast, the performance of MOEA/D-AWA is
not promising.

The PF of the WFG2 test problem consists of several
disconnected convex segments. MP-DEA obtains the best
median IGD and HV values in the ten- and fifteen-objective
WFG2 instances, while θ-DEA had the best performance on
the five objective case. VaEA and MOEA/D-AWA have a
similar performance in most cases.

Differently to WFG2, the PF of the WFG3 problem is
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TABLE VI: Median obtained values of IGD and HV on the inverted DTLZ1-4 test instances. The best and the second best
results for each test instance are shown in boldface and underlined, respectively. The sign “+” indicates that the difference of
the results is statistically significant, while the sign “-” means the opposite.

Problem M MP-DEA VaEA RVEA MOEA/D-AWA θ-DEA MOEA/DD

3
6.368E-2 (+ + + + +) 7.352E-2 (+ + + +) 6.486E-2 (+ + +) 8.260E-2 (+ +) 8.138E-2 (+) 6.993E-2
3.46E-1 (+ + + + +) 2.15E-1 (+ + + +) 3.22E-1 (+ + +) 1.11E-1 (+ +) 1.21E-1 (+) 2.38E-1

5
1.720E-2 (+ + + + +) 2.430E-1 (+ + + +) 2.186E-1 (+ - +) 1.815E-1 (+ +) 2.250E-1 (+) 3.116E-1
3.51E-3 (+ + + + +) 9.16E-3 (+ + + +) 2.86E-3 (+ + +) 3.22E-3 (+ +) 2.12E-3 (+) 1.79E-3

DTLZ1−1

8
2.518E-1 (+ + + + +) 2.782E-1 (+ - + +) 2.779E-1 (+ + +) 2.787E-1 (+ +) 2.613E-1 (+) 2.984E-1
8.63E-5 (+ + + + +) 7.02E-5 (+ + + +) 6.82E-6 (+ + +) 3.86E-6 (+ +) 8.22E-5 (+) 8.12E-5

10
2.668E-1 (+ + + + +) 3.350E-1 (+ + + +) 3.124E-1 (+ + +) 2.819E-1 (+ +) 2.309E-1 (+) 3.981E-1
2.89E-6 (+ + + + +) 1.98E-7 (+ + + +) 9.98E-6 (+ + +) 2.29E-6 (+ +) 3.48E-6 (+) 2.83E-7

15
4.633E-1 (+ + + + +) 3.823E-1 (+ + + +) 9.901E-1 (+ + +) 5.863E-1 (+ +) 5.843E-1 (+) 9.913E-1
1.13E-6 (+ + + + +) 2.86E-6 (+ + + +) 6.34E-11 (+ + +) 3.67E-8 (+ +) 3.81E-7 (+) 2.66E-11

3
7.352E-2 (+ + + + +) 7.458E-2 (+ + - +) 7.432E-2 (+ + +) 9.121E-2 (+ +) 7.460E-2 (+) 7.362E-2
7.92E-1 (+ + + + +) 3.86E-1 (+ + + +) 4.20E-1 (+ + +) 1.28E-2 (+ +) 6.84E-1 (+) 6.91E-1

5
2.118E-1 (+ + + + +) 3.518E-1 (+ + + +) 3.180E-1 (+ + +) 3.236E-1 (+ +) 2.378E-1 (+) 2.980E-1
2.46E-1 (+ + + + +) 8.23E-2 (+ + + +) 2.10E-2 (+ + +) 1.29E-1 (+ -) 1.93E-1 (+) 1.33E-1

DTLZ2−1

8
4.608E-1 (+ + + + +) 4.218E-1 (+ + + +) 4.350E-1 (+ + +) 5.114E-1 (+ +) 5.018E-1 (+) 4.913E-1
2.86E-3 (+ + + + -) 3.48E-3 (+ + + +) 2.95E-3 (+ + +) 3.86E-4 (+ +) 2.23E-3 (+) 2.78E-3

10
3.998E-1 (- + + + +) 3.962E-1 (+ + + +) 4.337E-1 (+ + +) 4.320E-1 (+ +) 4.782E-1 (+) 4.635E-1
1.99E-3 (+ - + + +) 2.10E-3 (+ + + +) 1.98E-3 (+ + +) 1.83E-3 (+ +) 9.99E-4 (+) 1.61E-3

15
6.068E-1 (+ + + + +) 6.729E-1 (+ + + +) 6.238E-1 (+ + +) 6.523E-1 (+ +) 6.298E-1 (+) 6.114E-1
2.95E-7 (+ + + + +) 2.14E-8 (+ + + +) 2.42E-7 (+ + +) 2.23E-8 (+ +) 1.18E-8 (+) 2.81E-7

3
6.912E-1 (+ + + + +) 7.230E-1 (+ + + +) 6.895E-1 (+ - +) 8.200E-1 (+ +) 6.881E-1 (+) 7.196E-1
4.36E-1 (+ + + + +) 5.27E-1 (+ + + +) 5.23E-1 (+ + +) 2.49E-2 (+ +) 6.29E-1 (+) 6.11E-1

5
1.613E-1 (+ + + + +) 2.484E-1 (+ + - +) 2.627E-1 (+ + +) 2.923E-1 (+ +) 2.448E-1 (+) 2.620E-1
3.16E-1 (+ + + + +) 1.02E-1 (+ + + +) 4.23E-2 (+ + +) 6.82E-2 (+ +) 1.13E-1 (+) 5.92E-2

DTLZ3−1

8
3.910E-1 (+ + + + +) 6.968E-1 (- + + +) 6.978E-1 (+ + +) 4.277E-1 (+ +) 4.421E-1 (+) 4.813E-1
4.64E-3 (+ + + + +) 1.38E-3 (+ + + +) 2.85E-3 (+ + +) 4.35E-3 (+ +) 4.23E-3 (+) 4.18E-3

10
4.027E-1 (+ + + + +) 4.088E-1 (+ + + +) 4.616E-1 (+ - +) 4.520E-1 (+ +) 4.619E-1 (+) 5.963E-1
1.20E-4 (+ + + + +) 1.23E-4 (+ + + +) 1.16E-4 (+ + +) 1.06E-4 (- +) 1.10E-4 (+) 9.96E-5

15
5.203E-1 (+ + + + +) 5.106E-1 (+ + + +) 5.119E-1 (+ + +) 6.216E-1 (+ +) 4.336E-1 (+) 4.838E-1
5.63E-8 (+ + + + +) 6.38E-8 (+ + + +) 5.78E-8 (+ + +) 1.23E-8 (+ +) 2.85E-7 (+) 1.72E-7

3
6.622E-2 (+ + + + +) 6.625E-1 (+ + + +) 7.230E-2 (+ + +) 7.282E-2 (+ +) 6.518E-2 (+) 7.188E-2
6.03E-1 (+ + + + +) 5.32E-1 (+ + + +) 5.13E-1 (+ + +) 4.433E-1 (+ +) 6.32E-1(+) 5.29E-1

5
3.213E-1 (+ + + + +) 2.973E-1 (+ + - +) 3.998E-1 (+ + +) 3.110E-1 (+ +) 2.971E-1 (+) 3.123E-1
3.56E-2 (+ + + + +) 1.10E-1 (+ + + +) 4.34E-2 (+ + +) 3.84E-2 (+ +) 1.18E-1 (+) 3.62E-2

DTLZ4−1

8
4.241E-1 (+ + + - +) 4.223E-1 (+ + + +) 4.232E-1 (+ + +) 4.918E-1 (+ +) 4.240E-1 (+) 4.623E-1
2.93E-3 (+ + + + +) 3.36E-3 (+ + + +) 2.98E-3 (+ + +) 9.80E-4 (+ +) 3.13E-3 (+) 2.22E-3

10
1.380E-1 (+ + + + +) 1.480E-1 (+ + + +) 4.918E-1 (+ + +) 5.460E-1 (+ +) 3.328E-1 (+) 3.826E-1
3.87E-4 (+ + + + +) 3.66E-4 (+ + - +) 2.89E-5 (+ + +) 1.23E-5 (+ +) 3.62E-4 (+) 2.49E-4

15
2.389E-1 (+ + + + +) 2.610E-1 (+ + + +) 6.350E-1 (+ + +) 3.274E-1 (+ +) 3.548E-1 (+) 7.278E-1
4.13E-2 (+ + + + +) 3.79E-2 (+ + + +) 3.66E-9 (+ + +) 2.10E-2 (+ +) 1.25E-2 (+) 6.17E-10

connected. VaEA has a good overall performance on this
problem, while MP-DEA succeeds to obtain the best median
IGD and HV values on the ten-objective WFG3 problem
instance. MOEA/D-AWA had the best median IGD and HV
values on the five-objective case and the best median HV
value on the fifteen-objective case.

WFG4 to WFG9 share the same PF shape in objective
space, but their characteristics are different in decision space.
WFG4 is known for its multi-modality, which makes an
algorithm to get easily trapped in local optima. MP-DEA
is ranked first since it succeeds to obtain the best overall
performance in terms of HV and IGD. Both VaEA and
θ-DEA have their own strong points.

For WFG5, the performance of VaEA, RVEA,
MOEA/D-AWA, and MOEA/DD is worse than that of

MP-DEA in the five-, ten-, and fifteen-objective cases.
However, θ-DEA obtains the best median HV value on the
fifteen-objective case.

The WFG6 problem is featured with a non-separable,
concave, and scaled PF. MP-DEA is the best optimizer in this
case. VaEA and RVEA have a similar performance on this
problem. θ-DEA had the best median IGD and HV values on
the five-objective case.

WFG7 is a separable and uni-modal problem. The
performance of MP-DEA is significantly better than the
other five algorithms. VaEA had the best performance on
the ten-objective case, while MOEA/DD had the worst
performance on this problem.

Similar to WFG6, WFG8 is non-separable. MP-DEA,
VaEA, and θ-DEA had their own strong points on this
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TABLE VII: Median obtained values of IGD and HV on the WFG1-9 test instances. The best and the second best results for
each test instance are shown in boldface and underlined, respectively. The sign “+” indicates that the difference of the results
is statistically significant, while the sign “-” means the opposite.

Problem M MP-DEA VaEA RVEA MOEA/D-AWA θ-DEA MOEA/DD

5
1.289E-1 (+ + + + +) 2.110E+0 (+ + + +) 1.566E-1 (+ + +) 3.118E+0 (+ +) 2.631E-1 (+) 1.314E-1
9.78E-1 (+ + + + +) 8.23E-1 (+ + + +) 9.23E-1 (+ + +) 8.00E-1 (+ +) 8.06E-1 (+) 9.67E-1

WFG1
10

1.228E-1 (- + + + +) 1.122E-1 (+ + + +) 2.264E-1 (+ + +) 7.306E+0 (+ +) 2.141E-1 (+) 1.233E-1
1.12E-1 (+ + + + +) 1.17E+0 (+ + + +) 9.99E-1 (+ - +) 8.613E-1 (+ +) 9.98E-1 (+) 1.02E+0

15
8.293E+0 (+ + + + +) 8.230E+0 (+ + + +) 9.816E+0 (+ + +) 9.282E+0 (+ +) 1.211E+1 (+) 1.015E+1

9.99E-1 (- + + + +) 1.00E+0 (+ + + +) 9.96E-1 (+ + +) 9.92E-1 (+ +) 7.019E-1 (+) 7.213E-1

5
7.409E-1 (+ + + + +) 8.112E-1 (+ + + +) 3.212E+0 (+ + +) 7.993E-1 (+ +) 6.391E-1 (+) 8.348E-1
9.96E-1 (+ + + + +) 9.85E-1 (+ + + -) 9.64E-1 (+ + +) 9.91E-1 (+ +) 1.06E+0 (+) 9.81E-1

WFG2
10

1.282E-1 (+ + + + +) 1.310E-1 (+ + + +) 1.619E+0 (+ + +) 1.349E-1(+ +) 1.296E-1 (+) 1.346E-1
1.00E+0 (+ + + + +) 9.93E-1 (+ + + +) 7.89E-1 (+ + +) 9.78E-1 (+ +) 9.98E-1 (+) 9.82E-1

15
1.219E-1 (+ + + + +) 1.320E-1 (+ + + +) 1.615E-1 (+ + +) 1.642E+0 (+ +) 1.230E-1 (+) 1.648E-1
9.87E-1 (+ + + + +) 9.75E-1 (+ + + +) 9.68E-1 (+ + +) 9.38E-1 (+ +) 9.83E-1 (+) 9.58E-1

5
5.098E-1 (+ + + + +) 5.218E-1 (+ + + +) 5.118E-1 (+ + +) 4.871E-1 (+ +) 7.620E-1 (+) 7.709E-1
7.42E-1 (+ + + + +) 7.29E-1 (+ + + +) 7.33E-1 (+ + +) 7.48E-1 (+ +) 6.82E-1 (+) 6.49E-1

WFG3
10

1.118E-1 (+ + + + +) 1.120E-1 (+ + + +) 1.230E-1 (+ + +) 1.173E-1 (+ +) 2.386E-1 (+) 1.309E+0
8.34E-1 (+ + + + +) 8.30E-1 (+ + + +) 8.21E-1 (+ + +) 8.24E-1 (+ +) 8.16E-1 (+) 6.82E-1

15
3.228E+0 (- + + + +) 3.230E+0 (+ + + +) 4.102E+0 (+ + +) 3.489E+0 (+ +) 3.560E+0 (+) 3.846E+0
5.75E-1 (+ + + + +) 5.72E-1 (+ + + +) 5.13E-1 (+ + +) 5.91E-1 (+ +) 5.69E-1 (+) 5.66E-1

5
8.364E-1 (+ + + + +) 8.320E-1 (+ + + +) 8.385E-1 (+ + +) 1.809E+0 (+ +) 8.613E-1 (+) 8.506E-1
8.81E-1 (+ + + + +) 8.75E-1 (- + + +) 8.77E-1 (+ + +) 6.89E-1 (+ +) 8.64E-1 (-) 8.60E-1

WFG4
10

7.208E-1 (+ + + + +) 7.219E-1 (+ + + +) 8.690E-1 (+ + +) 3.862E+0 (+ +) 6.558E-1 (+) 8.882E-1
7.46E-1 (+ + + + +) 7.31E-1 (+ + + +) 7.24E-1 (+ + +) 6.24E-1 (+ +) 8.03E-1 (+) 6.99E-1

15
6.123E-1 (+ + + + +) 6.226E-1 (+ + + +) 6.130E-1 (+ + +) 9.633E-1 (+ +) 6.320E-1 (+) 9.830E-1
7.49E-1 (+ + + + +) 7.41E-1 (+ + + +) 7.32E-1 (+ + +) 5.42E-1 (+ +) 7.18E-1 (+) 5.27E-1

5
6.469E-1 (+ + + + +) 7.189E-1 (+ + + +) 9.906E-1 (+ + +) 7.227E-1 (+ -) 6.987E-1 (+) 7.230E-1
8.53E-1 (+ + + + +) 8.26E-1 (+ + + +) 7.56E-1 (+ + +) 8.20E-1 (+ -) 8.46E-1 (+) 8.19E-1

WFG5
10

5.928E-1 (+ + + + +) 1.613E+0 (+ + + +) 1.213E+0 (+ + +) 7.829E-1 (+ +) 5.987E-1 (+) 3.911E+0
1.24E+0 (+ + + + +) 5.66E-1 (+ + + +) 5.23E-1 (+ + +) 1.04E+0 (+ +) 1.18E+0 (+) 4.72E-1

15
1.072E-1 (+ + + + +) 2.213E+0 (+ + + +) 2.110E+0 (+ + +) 4.688E+0 (+ +) 1.102E-1 (+) 1.281E+0
5.31E-1 (+ + + + +) 4.71E-1 (+ + + +) 4.13E-1 (+ + +) 2.36E-1 (+ +) 5.33E-1 (+) 4.56E-1

5
7.788E-1 (+ + + + +) 9.802E-1 (+ + + +) 9.98E-1 (+ + +) 1.172E+0 (+ +) 7.413E-1 (+) 7.641E-1
9.73E-1 (+ + + + +) 9.26E-1 (+ + + +) 9.31E-1 (+ + +) 5.48E-1 (+ +) 9.87E-1 (+) 9.85E-1

WFG6
10

6.311E-1 (+ + + + +) 6.326E-1 (+ + + +) 6.403E-1 (+ + +) 6.938E-1 (+ +) 7.118E-1 (+) 7.286E-1
8.89E-1 (+ + + + +) 8.83E-1 (+ + + +) 8.79E-1 (+ + +) 9.71E-1 (+ +) 8.56E-1 (+) 9.39E-1

15
8.793E+0 (+ + + + +) 8.986E+0 (+ + + +) 8.810E+0 (+ + +) 3.681E+1 (+ +) 9.386E+0 (+) 9.600E+0
4.57E-1 (+ + + + +) 4.63E-1 (+ + + +) 4.51E-1 (+ + +) 2.75E-1 (+ +) 3.86E-1 (+) 3.59E-1

5
2.260E-1 (+ + + + +) 6.829E-1 (+ + + +) 5.538E-1 (+ + +) 2.639E-1 (+ +) 2.389E-1 (+) 1.033E+0
8.87E-1 (+ + + + +) 6.43E-1 (+ + + +) 6.64E-1 (+ + +) 8.84E-1 (+ +) 8.74E-1 (+) 2.98E-1

WFG7
10

3.512E-1 (+ + + + +) 3.498E-1 (+ + + +) 4.118E-1 (+ + +) 6.935E-1 (+ +) 5.563E-1 (+) 2.910E+0
9.21E-1 (- + + + +) 9.23E-1 (+ + + +) 9.11E-1 (+ + +) 7.33E-1 (+ +) 8.86E-1 (+) 3.65E-1

15
8.918E+0 (- + + + +) 8.920E+0 (+ + + +) 8.936E+0 (+ + +) 9.118E+0 (+ +) 8.986E+0 (+) 1.686E+1
3.98E-1 (- + + + +) 3.95E-1 (+ + + +) 3.81E-1 (+ + +) 3.64E-1 (+ +) 3.78E-1 (+) 2.20E-1

5
8.890E-1 (+ + + + +) 8.970E-1 (+ + + +) 9.310E-1 (+ + +) 1.213E+0 (+ +) 8.871E-1 (+) 9.160E-1
7.92E-1 (+ + + - +) 7.88E-1 (+ + + +) 7.37E-1 (+ + +) 6.60E-1 (+ +) 7.95E-1 (+) 7.42E-1

WFG8
10

7.420E-1 (+ + + + +) 7.320E-1 (+ + + +) 7.627E-1 (+ + +) 7.784E-1 (+ +) 1.921E+0 (+) 7.864E-1
8.41E-1 (+ + + + +) 8.44E-1 (+ + + +) 8.38E-1 (+ + +) 8.21E-1 (+ -) 2.58E-1 (+) 8.20E-1

15
9.113E-1 (+ + + + +) 9.184E-1 (+ + + +) 9.326E-1 (+ + +) 5.613E+0 (+ +) 3.630E+0 (+) 6.902E-1
9.02E-1 (+ + + + +) 8.87E-1 (+ + + +) 8.46E-1 (+ + +) 4.36E-1 (+ +) 4.62E-1 (+) 4.99E-1

5
3.386E-1 (+ + + + +) 4.620E-1 (+ + + +) 4.133E-1 (+ + +) 9.107E-1 (+ +) 3.337E-1 (+) 3.490E-1
9.87E-1 (+ + + + +) 9.52E-1 (- + + +) 9.51E-1 (+ + +) 7.59E-1 (+ +) 9.91E-1 (+) 9.79E-1

WFG9
10

6.217E-1 (+ + + + +) 6.228E-1 (+ + + +) 6.589E-1 (+ + +) 6.920E-1 (+ +) 6.586E-1 (+) 6.789E-1
9.27E-1 (+ + + + +) 9.14E-1 (+ + + +) 8.83E-1 (+ + +) 8.93E-1 (+ +) 8.89E-1 (+) 8.84E-1

15
8.123E+0 (+ + + + +) 8.389E+0 (+ + + +) 8.213E+0 (+ + +) 1.118E+1 (+ +) 3.630E+0 (+) 1.384E+1
3.61E-1 (+ + + + +) 3.51E-1 (+ + + +) 3.58E-1 (+ + +) 2.69E-1 (+ +) 3.42E-1 (+) 2.65E-1

problem. However, MP-DEA had the best overall performance.
The performance of θ-DEA was the best on the five-objective
case, but it declined as the number of objectives increased.

For WFG9, MP-DEA had the best performance, while
MOEA/D-AWA had the worst performance on this test
problem. The empirical results on the WFG test suite show
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TABLE VIII: Median obtained values of IGD and HV on MaF4-7, MaF9, and MaF12 test instances. The best and the second
best results for each test instance are shown in boldface and underlined, respectively. The sign “+” indicates that the difference
of the results is statistically significant, while the sign “-” means the opposite.

Problem M MP-DEA VaEA RVEA MOEA/D-AWA θ-DEA MOEA/DD

5
2.588E+0 (+ + + + +) 2.749E+0 (+ + + +) 4.684E+0 (+ + +) 2.610E+0 (+ +) 3.813E+0 (+) 3.996E+0
1.10E-1 (+ + + + +) 1.06E-1 (+ + + +) 9.96E-2 (+ + +) 1.01E-1 (+ +) 9.99E-2 (+) 9.98E-2

MaF4
10

5.186E+1 (+ + + + +) 6.203E+1 (+ + + +) 7.473E+1 (+ + +) 7.886E+1 (+ +) 6.219E-1 (+) 2.393E+2
2.06E-4 (+ + + + +) 1.54E-4 (+ + + +) 1.37E-6 (+ + +) 1.02E-6 (+ +) 9.67E-5 (+) 1.58E-7

15
2.314E+2 (+ + + + +) 4.486E+3 (+ + + +) 4.325E+3 (+ + +) 5.814E+3 (+ +) 5.361E+3 (+) 5.616E+3
4.77E-7 (+ + + + +) 3.28E-7 (+ + + +) 3.48E-7 (+ + +) 1.29E-8 (+ +) 1.35E-8 (-) 1.35E-8

5
2.256E+0 (+ + + + +) 2.402E+0 (+ + + +) 2.394E+0 (+ + +) 2.513E+0 (+ +) 2.213E+0 (+) 2.483E+0
7.75E-1 (+ + + + +) 7.64E-1 (+ + + +) 7.73E-1 (+ + +) 7.51E-1 (+ +) 7.86E-1 (+) 7.58E-1

MaF5
10

4.829E+1 (+ + + + +) 7.982E+1 (+ + + +) 8.586E+1 (+ + +) 8.089E+1 (+ +) 6.534E+1 (+) 1.014E+2
9.64E-1 (+ + + + +) 9.51E-1 (+ + + +) 9.48E-1 (+ + +) 9.50E-1 (+ +) 9.53E-1 (+) 8.74E-1

15
1.081E+3 (+ + + + +) 3.217E+3 (+ + + +) 3.483E+3 (+ + +) 3.811E+3 (+ +) 2.533E+3 (+) 3.791E+3
9.84E-1 (+ + + + +) 9.78E-1 (+ + + +) 9.74E-1 (+ + +) 9.56E-1 (+ +) 9.80E-1 (+) 9.68E-1

5
4.107E-3 (+ + + + +) 8.310E-2 (+ + + +) 9.733E-3 (+ + +) 9.314E-3 (+ +) 8.930E-2 (+) 1.964E-1
1.28E-1 (+ + + + +) 1.24E-1 (+ + + +) 1.25E-1 (+ + +) 1.26E-1 (+ +) 1.23E-1 (-) 1.14E-1

MaF6
10

3.183E-3 (+ + + + +) 3.213E-3 (+ + + +) 1.016E-1 (+ + +) 4.118E-3 (+ +) 5.170E-1 (+) 7.918E-1
1.01E-1 (+ + + + +) 1.02E-1 (+ + + +) 7.99E-2 (+ + +) 9.98E-2 (+ +) 4.32E-2 (+) 4.26E-2

15
9.312E-2 (+ + + + +) 9.989E-2 (+ + + +) 1.826E-1 (+ + +) 9.993E-2 (+ +) 2.063E-1 (+) 3.153E-1
9.56E-2 (+ + + + +) 9.54E-2 (+ + + +) 8.74E-2 (+ + +) 9.36E-2 (+ +) 8.13E-2 (+) 8.54E-2

5
3.329E-1 (+ + + + +) 4.612E-1 (+ + + +) 4.562E-1 (+ + +) 2.934E-1 (+ +) 4.712E-1 (+) 5.320E-1
2.52E-1 (+ + - + +) 2.50E-1 (+ + + +) 2.45E-1 (+ + +) 2.53 E-1 (+ +) 2.37E-12 (+) 2.15E-1

MaF7
10

8.693E-1 (+ + + + +) 8.586E-1 (+ + + +) 2.133E+0 (+ + +) 8.662E-1 (+ +) 2.818E+0 (+) 1.917E+0
1.69E-1 (+ + + + +) 1.86E-1 (+ + + +) 1.49E-1 (+ + +) 1.91 E-1 (+ +) 1.38E-1 (+) 1.53E-1

15
2.386E+0 (+ + + + +) 2.627E+0 (+ + + +) 4.031E+0 (+ + +) 6.571E+0 (+ +) 3.266E+0 (+) 2.343E+0
1.63E-1 (+ + + + +) 1.53E-1 (+ + + -) 6.19E-2 (+ + +) 3.19E-2 (+ +) 6.14E-2 (+) 1.54E-1

5
1.213E-1 (+ + + + +) 1.503E-1 (+ + + +) 3.624E-1 (+ + +) 3.217E-1 (+ +) 4.010E-1 (+) 4.657E-1
3.08E-1 (+ + + + +) 2.92E-1 (+ + + +) 1.84E-1 (+ + +) 1.90E-1 (+ +) 1.86E-1 (+) 1.81E-1

MaF9
10

1.239E-1 (+ + + + +) 1.113E-1 (+ + + +) 1.423E-1 (+ + +) 1.214E-1 (+ +) 1.448E-1 (+) 5.936E-1
1.67E-2 (+ + + + +) 1.65E-2 (+ + + +) 9.39E-3 (+ - +) 1.56E-2 (+ +) 9.38E-3 (+) 8.83E-3

15
1.276E-1 (+ + + + +) 1.477E-1 (+ + + +) 1.639E+0 (+ + +) 2.978E-1 (+ +) 1.287E+0 (+) 1.484E+0
1.37E-3 (+ + + + +) 1.33E-3 (+ + + +) 7.34E-4 (+ + +) 1.08E-3 7 (+ +) 7.98E-4 (-) 7.98E-4

5
1.119E+0 (+ + - + +) 1.264E+0 (+ + + +) 1.230E+0 (+ + +) 1.122E+0 (+ +) 1.106E+0 (+) 1.284E+0
7.33E-1 (+ + + + +) 6.92E-1 (+ + + +) 6.85E-1 (+ + +) 7.30E-1 (+ +) 7.43E-1 (+) 6.58E-1

MaF12
10

4.189E+0 (+ + + + +) 4.347E+0 (+ + + +) 4.574E+0 (+ + +) 4.494E+0 (+ +) 4.481E+0 (+) 4.513E+0
8.91E-1 (+ + + + +) 8.83E-1 (+ + + +) 8.28E-1 (+ + +) 8.71E-1 (+ +) 8.72E-1 (+) 8.54E-1

15
6.438E+0 (+ + + + +) 6.938E+0 (+ + + +) 6.522E+0 (+ + +) 8.138E+0 (+ +) 7.013E+0 (+) 8.178E+0
9.32E-1 (+ + + + +) 8.65E-1 (+ + + +) 9.31E-1 (+ + +) 8.51E-1 (+ +) 8.59E-1 (+) 8.52E-1

that the promising performance of MP-DEA is attributed to
the MPR for balancing convergence and diversity.

4) Performance Comparisons on the MaF Test Suite:
Table VIII shows the performance of the six compared algo-
rithms in terms of median IGD and HV on the MaF4-7, MaF9,
and MaF12. It can be observed that MP-DEA is ranked first
among all the compared algorithms.

MaF4 is a multi-model problem with the convex PF and
it is badly-scaled. It can be observed from Table VIII that
MP-DEA performs best on all MaF4 test problem instances in
terms of IGD and HV. VaEA and RVEA have the second best
performance, while MOEA/D-AWA has the best performance
in terms of IGD on the five-objective MaF4 test problem.

The Pareto-optimal set of the MaF5 test problem has
a highly biased distribution, where the majority of Pareto
optimal solutions are crowded in a small subregion. Besides,
this test problem has a badly-scaled PF. For MaF5, one can
see that MP-DEA has the best performance on the ten- and
fifteen-objective MaF5 problem instances in terms of IGD and

HV, while θ-DEA is ranked second.
MaF6 is designed to assess the performance of MOEAs in

dealing with degenerate PFs. MP-DEA is the best optimizer,
except for the ten-objective case. VaEA obtains the best
median HV value in the ten-objective MaF6 instance, while
MOEA/D-AWA performs better than VaEA, RVEA, θ-DEA,
and MOEA/DD in the five-objective MaF6 problem instance.

MaF7 has a disconnected PF, where the number of discon-
nected segments is 2M − 1. MOEA/D-AWA shows the best
IGD and HV values in the five-objective case, while MP-DEA
wins in the fifteen-objective case. VaEA obtains the best IGD
value in the ten-objective case.

MaF9 has a two-dimensional decision space. From the
empirical results shown in Table VIII, it is clear that MP-DEA
is the best optimizer where it achieves the best HV median
values in all five- to fifteen-objective test instances. It also
obtains the best IGD median values in the five-and fifteen-
objective cases. VaEA performs slightly worse than MP-DEA.

For MaF12, its decision variables are non-separably re-
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Fig. 9: The update of the set of reference points.

duced, and its fitness landscape is highly multi-modal.
MP-DEA shows the best performance in MaF12, while
θ-DEA outperforms in the five-objective MaF12 instance.
MOEA/D-AWA and MOEA/DD show a similar performance
on the MaF12 test problem.

VI. CONCLUSIONS

In this paper, we have proposed a decomposition-based
algorithm for solving MaOPs with complex PFs. The envi-
ronmental selection mechanism of MP-DEA is based on the
MPR selection strategy. This relation employs the NBI method
and the acute angle to encourage diversity, convergence, and
uniformity. It also eliminates the penalty parameter θ em-
ployed in the PBI approach which varies from one problem to
another [19]. The MPR is employed to compare the solutions
in the same subregion. In our experimental study, we have
shown that MP-DEA provides better and competitive results
when compared to five recently proposed decomposition-based
algorithms. In our empirical studies, we have adopted the IGD
and the HV indicators to evaluate the performance of our algo-
rithm and its counterparts on the DTLZ1-4, inverted DTLZ1-
4, WFG1-9, and six MaF test problems presenting various
types of difficulties involving up to fifteen objectives. The
obtained results of this study indicate that our MPR is effective
in solving unconstrained MaOPs with various PF shapes.
However, it would be interesting to extend our proposal to
solve unconstrained problems with other PF shapes [48] and
constrained MaOPs by incorporating constraint-handling tech-
niques adapted for MaOPs [29]. Moreover, applying MP-DEA
to real-world problems is one of our main interests in the
future [49]. In addition, it is worthwhile to investigate the
performance of MP-DEA in finding only the parts of the PF
that best match the DM preferences [50].

APPENDIX A
UPDATE OF THE REFERENCE POINT SET

The description of the method that we have used to update
the set of reference points is described below [29]. We first
identify the crowded reference points. Then, for each one of
them, we introduce a simplex of M points by setting p = 1.

The new generated points have the same distance between two
consecutive reference points on the original set of reference
points. Fig. 9 illustrates an example where we have a crowded
reference point in a three-objective space. In this example,
three new reference points are added to the original ones.
Before adding a reference point, we have to verify that it does
not exist in the set of reference points and that it lies on the
first quadrant.
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