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Abstract—The robust controllability (RC) of a complex system
tries to select a set of dominating entities for the functional
control of this entire system without uncertain disturbances,
and the research on RC will help to understand the system’s
underlying functions. In this paper, we introduce the control
cost in signed networks and present a cost-aware robust control
(CRC) problem in this scenario. The aim of CRC is to minimize
the cost to control a set of dominating nodes and transform a
set of unbalanced links into balanced ones, such that the signed
network can be robustly controlled without uncertain unbalanced
factors (like nodes and links). To solve this problem, we first
model CRC as a constrained combination optimization problem,
and then present a memetic algorithm with some problem-specific
knowledge (like the neighbors of nodes, the constraints of CRC,
and the fast computation of the cost under each optimization) to
solve this problem on signed networks. Extensive experiments on
both real social and biological networks assess that our algorithm
outperforms several state-of-the-art RC algorithms.

Index Terms—Memetic algorithm, controllability, minimum
dominating set, structural balance, signed networks.

I. INTRODUCTION

THE robust controllability (RC) in complex systems has

been attracting great attention in recent years due to its

availability on supervising the systems’ underlying functions

and behaviors [1]–[3]. RC tries to determine a set of entities

allowing the functional control of an entire system without

uncertain disturbances [4]. The study of RC is driven by a

deep understanding of the functionalities and behaviors of

systems in biology, information, communication and society

[3], [5]. For instance, RC governs undesirable behaviors (like

the outbreak of disease, economic collapse, cascading failure,

malicious attack and social unbalance) in social systems and

discovers the function and activity of bimolecules (like genes,

complexes and proteins) in biological systems [2].
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Advances in networking provide a significant boost on the

studies of the RC in complex systems, providing a quantitative

framework to model a complex system [6], [7]. Based on

the network model, this RC in complex systems can be well

shifted into the detection of modules or behaviors in networks.

One representative work is the shift of the RC into a maximum

matching problem which can be solved in polynomial time [1],

aiming to discover a maximum set of matched links without

sharing start or end nodes. However, this work is only applied

to some complex systems modeled as unsigned networks with

directed links. Following this work [7], Nacher and Akutsu

[8] proposed a general mapping work for unsigned systems

which transforms the RC into a minimum dominating set

(MDS) problem [9], trying to select a MDS such that each

non-dominating node is linked with at least one dominating

node. For each node i, let xi ∈ {0, 1} be its dominating

label and set xi = 1 to a dominating node. For an unsigned

network with n nodes, this MDS problem can be formulated

as the following 0-1 quadratic problem [4], [10].

min F (x) =
n∑

i=1

xi,

s.t. xi +
∑
j∈Ti

xj ≥ 1, i = 1, 2, . . . n,

x ∈ {0, 1}n.

(1)

where F (x) is the number of dominating nodes, and Ti
denotes the set of nodes linked with node i. The constraint

xi +
∑

j∈Ti
xj ≥ 1 ensures that i is either selected as a

dominating node or linked to at least one dominating node.

It has been proved that the MDS problem is a reduction of a

set covering problem and a graph partition problem, both of

which are nondeterministic polynomial (NP)-hard [11].

To solve the MDS problem in unsigned networks, many

algorithms have been proposed, including exact algorithms

(e.g., the approximation algorithms [9] and integer linear

programming [4]) and (meta)heuristic algorithms (e.g., the

genetic algorithms (GAs) [12], greedy algorithms [13]–[16],

ant colony optimizations [17] and memetic algorithms (MAs)

[10]). Systematic experiments have shown their performance,

especially regarding MAs. One representative MA for the MD-

S problem is HMA [10], which combines a GA with a tabu lo-

cal search to discover high-quality solutions. Generally, an MA

is a combination of global search (to facilitate exploration) and

local search (to promote exploitation) [18]–[20]. The global

search uses some heuristic algorithms to optimize a population

of solutions while the local search adopts a problem-specific
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greedy algorithm to refine a solution [18]–[20]. Moreover,

MAs usually incorporate some problem-specific knowledge

and learning techniques, which enables them to tackle large-

scale problems [21], [22]. By integrating the advantages of

exploration and exploitation, MAs have become a very promis-

ing alternative in artificial intelligence for solving discrete NP-

hard problems in networks and tasks [20], [23], e.g., the MDS

[10], balance transformation [21], big knapsack problem [22],

influence maximization [24], maximum cover set [25], data-

driven optimization [26], [27], influential nodes discovery [28],

[29], network dismantling [30], multitask optimization [31],

capacitated arc routing [32], balance transformation [21] and

community robustness improvement [33].
Although some progress of the RC in unsigned networks

has been made recently, the RC in signed networks is still

a challenging problem, due to the existence of a balance

constraint (i.e., the links between the dominating nodes and

the other ones should be balanced [34], [35]). The aim of

this RC is to find a minimum balanced dominating set which

follows the dominating constraint in (1) and the balance

constraint. A signed network has both positive and negative

links, which reflects the conflicting relationships in systems,

like cooperation/competition and support/oppose [36]. These

conflicting links will increase the unbalance of networks [37].

As known from structural balance theory [21], [38], [39], the

balance of links is determined by the most balanced clustering

of a network having the minimum imbalance. However, this

clustering is usually unknown a priori and its detection is

also complicated. None of the existing algorithms [4], [10],

[12]–[15], [17] can tackle the MDS problem together with the

clustering problem for the RC in signed networks.
In practical applications, the RC in signed networks is

generally solved by the construction of dominating nodes [4],

[10] and the transformation of unbalanced links into balanced

ones [21], [40], both of which will take some cost (e.g., money,

time, bandwidth, place, material, etc.) [40]. For instance,

constructing a financial regulatory agency takes some time and

effort in trade systems, while migrating virtual machines from

overloaded computers to low-loaded computers requires some

energy and bandwidth in data center networks. Moreover,

the scale of real signed systems (like the voting systems in

Wiki) is large with thousands of nodes and millions of links,

and it is challenging for (meta)heuristic algorithms to tackle

these systems. Motivated by these scenarios, in this paper,

we consider the control cost in signed networks, and present

a cost-aware robust control (CRC) problem. To better solve

this CRC problem in signed networks, we propose a memetic

algorithm (called as MCRC) with problem-specific knowledge.

Our main contributions are summarized as follows.

1) We present the CRC problem in signed networks which

considers the control cost. This problem aims to control

a signed network by constructing dominating nodes and

transforming unbalanced links into balanced ones at a

minimum cost.

2) We model the CRC problem as a constrained combina-

tion optimization problem, and then present the MCRC

algorithm for solving this problem. For the presented

MCRC algorithm to tackle large-scale networks, some

problem-specific knowledge (like the neighbors of n-

odes, the constraints of CRC, and the fast computation

of the cost under each optimization) are incorporated.

3) Extensive experiments on two small-scale social net-

works, four medium-scale biological networks and three

large-scale social networks show that MCRC has a better

performance than the state-of-the-art algorithms for the

control of signed networks.

The rest of the paper is organized as follows. Section II

provides the notation adopted in the paper as well as a

review of the previous related work on the MDS problem in

networks. In Section III, we provide the system model and the

formulation of the CRC problem. Section IV introduces the

details of our algorithm. Our experimental results are presented

in Section V, and we provide our concluding remarks and

some possible paths for future work in Section VI.

II. BACKGROUND

A. Notations and Definitions

1) Notations: We use italic lower-case letters, decorated

letters and block upper-case letters to denote scalars, sets

and matrixes, respectively. Bold italic lower-case letters are

adopted to denote variables with unknown values a priori, and

upper-case letters are used to represent criteria. Let S and |S|
be a set and the number of elements in this set, respectively.

Let G = {V, E+, E−} be a signed network with sets of

nodes V , positive links E+ and negative links E−. This G can

be formulated as an adjacent matrix A = [aij ]i,j∈V , and each

of its elements is represented as follows.

aij =

⎧⎪⎨
⎪⎩
+1 if eij ∈ E+,

−1 if eij ∈ E−,

0 if nodes i and j are not linked.

For each node i, its neighbor Ti = {j ∈ V|aij �= 0} is defined

as the set of nodes linked with i.
2) Definitions: Some definitions in signed networks, in-

cluding the balance theory and the balanced dominating set,

are given next.

Let the links marked with ‘+’ and ‘−’ denote a positive link

and a negative link, respectively. In a triad signed network,

the four possible types of relations are interpreted from the

perspective of social psychology as follows [41]:

• +++: “my friend’s friend is also my friend”;

• ++−: “my friend’s friend is my enemy”;

• −−+: “my enemy’s enemy is my friend”;

• −−−: “my enemy’s enemy is also my enemy”.

Definition 1: Balance theory of Heider [41] for a signed
triad: In signed triads, the relations +++, −−+ and −−−
are balanced whereas the relation ++− is unbalanced.

Definition 2: Balance theory of Easley [39] for an arbitrary
signed network: An arbitrary signed network is balanced if a

clustering can be found such that all positive links are in the

same cluster, whereas all negative links are located in different

clusters. In this case, all triads in the network are balanced.

In reality, most systems are imbalanced. To evaluate their

unbalance degree, the frustration H(y), which computes the
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number of unbalanced links, was proposed by Facchetti [40].

Let yi = q be the cluster label of node i with q, and let

y = {yi}i∈V . This frustration H(y) is computed as follows.

H(y) =
∑

eij∈E+
⋃ E−,i<j

hij(yi,yj),

where hij(yi,yj) denotes the balance of a link eij , and is

computed as follows.

hij(yi,yj) =

{
0 if aij = 1,yi = yj or aij = −1,yi �= yj ,

1 otherwise.

Here, an edge eij is referred as a balanced link when

hij(yi,yj) = 0.

Facchetti et al. [40] have also pointed out that i) the balanced

clustering of a signed network has the minimum H(y) and ii)

an unbalanced network can be transformed into a balanced

one by changing the label of its unbalanced links with a cost.

Definition 3: Balanced dominating set and RC in signed
networks: Given a signed network G = {V, E+, E−}, a subset

D ∈ V is a balanced dominating set if each node u ∈ V − D
is linked with at least one node in D, and meanwhile there

exists a balanced clustering y such that all edges between the

dominating nodes (D) and the other ones (V−D) are balanced.

The RC in signed networks aims to discover such a minimum

balanced dominating set [34], [35].

B. Related Work for the RC in Unsigned Networks

The RC problem in a system can be shifted into a maximum

matching problem and a MDS problem in unsigned networks

with directed links and undirected links, respectively. The un-

matched nodes in the maximum matching and the nodes in the

dominating set are chosen as driver nodes to control the system

through the external signals from controllers. Those models

are widely used in some real controllability problems, like

exact controllability [42] and target controllability [43]. Recent

studies have shown that the maximum matching problem can

be solved in polynomial time by a linear algorithm in [1],

whereas the MDS problem is NP-hard [1], [8], [42], [43]. To

solve this NP-hard problem, many algorithms, including the

centrality based greedy algorithms (C-Greedy), evolutionary

algorithms (EAs) and MAs, have been proposed.

1) C-Greedy: They normally begin with an empty set, and

then choose the node with the maximum centrality value into

the dominating set iteratively. Classical centralities include

betweenness [4], backbone cost [13], degree [14], permutation

[15], H-index [44], collective intelligence [45], etc. Generally,

these algorithms benefit exploitation but lack of exploration.

2) EAs: They begin with a combinational optimization

model with an objective (e.g., the minimum number of domi-

nating nodes), followed by evolving a population of solutions

using bio-inspired learning [46] iteratively to optimize the ob-

jective. The GAs and ant co-optimization algorithms are used

to solve the MDS problem in [12], [46] with the objective in

(1), which design novel genetic operators and ants’ cooperative

strategies to discover good solutions, respectively. Generally,

these algorithms benefit exploration but lack of exploitation.

(a) (b)

(c)

Fig. 1. Illustrations of the RC in (a) a toy signed network, (b) a toy unsigned
network with directed links and (c) a toy unsigned network with undirected
links. The nodes in an ellipse are divided into the same cluster, and the links
between the driver nodes and the others are balanced.

3) MAs: Similar to EAs, MAs optimize an objective by

evolving a population of solutions simultaneously, and benefit

exploration. Contrary to EAs, they also possess a local search

capability, thus benefiting exploitation [10], [20], [23].

Classical MAs for the MDS problem include HGA [12], A-

COLS [12] and HMA [10]. HGA and ACOLS adopt a GA and

ACO as the global search, respectively, and they use a greedy

algorithm as their local search engine. HGA and ACOLS

showed a better performance than their simplified versions

(GA and Raka-ACO) without the local search, respectively,

while HGA performs better than ACOLS. HMA first models

the MDS problem as an unconstrained 0-1 programming

problem with an adaptive penalty function, and then presents

a GA combined with a tabu search to solve this problem. In

HMA, a greedy rule in the tabu search is integrated to speed

up the convergence, while a population updating strategy is

adopted to maintain the diversity. The experiments in [10]

showed the superiority of HMA over HGA and ACOLS.

Although some progress of the RC in unsigned networks has

been made, the RC in signed networks is still a challenging

problem, due to the existence of balance constraints (as shown

in Definition 3). Fig. 1 provides schematic illustrations of the

RC in different network models with 5 nodes. As shown in Fig.

1(a), to control the toy signed network, a minimum number

of driver nodes (‘1’ and ‘4’) are found while the balanced

clustering ({{‘1’, ‘2’}, {‘3’, ‘4’, ‘5’}}) of the network is

detected. In this case, all nodes are controlled by at least

one driver node, and the edges between the driver nodes (‘1’

and ‘4’) and the other nodes (‘2’, ‘3’ and ‘5’) are balanced.

As shown in Fig. 1(b), to control the toy directed network, a

maximum number of matching links (e12, e23, e34 and e45) are

found, while the unmatched node ‘1’ is chosen as the driver

node. In this case, all nodes are controlled by the input signals

on node ‘1’ as there are directed control paths from node ‘1’

to all matched nodes. Fig. 1(c) shows that the toy undirected

network is fully controlled when a minimum number of driver
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Fig. 2. Schematic illustration of controlling a toy system with 5 nodes and 7
links. The solid lines and dotted lines denote the positive and negative links,
respectively. The nodes in an ellipse are divided into the same cluster and the
node surrounding by a dotted red circle is the chosen driver node. The line
marked with × is the unbalanced link. x∗ and y∗ are the optimal solution
of x and y, respectively. This system is fully controlled if we choose node
4 as the driver node and transform the unbalanced positive link e14 into a
negative one.

nodes (‘4’) are chosen. In this case, all nodes are controlled by

node ‘4’ as they directly link with node ‘4’. Fig. 1 presents that

the RC in the signed network is the most difficult as it needs

to simultaneously find a minimum number of driver nodes and

a balanced clustering.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model is first given, and then the

CRC problem in signed networks is formulated.

A. System Model
We consider a control system with a signed network G =

{V , E+, E−} and an outside controller. In this system, the

controller can control the signals of the dominating nodes and

their balanced neighbors, like the traffic light in transportation

networks, the concentration of transcription factor in gene

regulatory networks, etc [1]. This system aims to provide an

optimal solution or strategy by constructing dominating nodes

D and transforming unbalanced links Eu into balanced ones

for the functional control of a signed system.
In this system, each solution or strategy can be encoded into

a pair of variables (x,y), which is detailed as follows.

(x,y) = {x1,x2, . . . ,xn;y1,y2, . . . ,yn}
∀i ∈ {1, 2, . . . , n}, xi ∈ {0, 1}, yi ∈ {1, 2, . . . , n}.

Recall that xi and yi are the dominating label and the

clustering label of node i, respectively. Moreover, given a

solution (x,y), the sets of dominating nodes D and unbalanced

links Eu are determined as follows.

D ={i ∈ V|xi = 1}.
Eu ={eij ∈ E+|i ∈ D, j ∈ V − D,yi �= yj}

⋃
{eij ∈ E−|i ∈ D, j ∈ V − D,yi = yj}.

There are many ways for controlling a signed system.

For instance, all nodes in the system are selected as the

driver nodes, which is time consuming and expensive. Here,

we introduce the control cost (e.g., money, time, bandwidth,

place, material, etc.) of constructing the dominating nodes

and transforming unbalanced links, with the assumption that

a higher cost is taken to dominate a node. Fig. 2 provides a

schematic illustration to robustly control a toy system.

B. Problem Formulation

Given a signed system G = {V , E+, E−}, the cost of

constructing a driver node (we set its value as 1), and the cost c
of transforming an unbalanced link, our CRC problem tries to

simultaneously discover the optimal x and y, so as to minimize

the cost to robustly control the entire signed system by

constructing driver nodes and transforming unbalanced links

to balanced ones. This CRC problem can be formulated as the

following constrained combinational optimization problem.

min F (x,y) =
n∑

i=1

xi + c ·
∑
i∈D

∑
j∈V−D

hij(yi,yj),

=

n∑
i=1

xi + c ·
n∑

i=1

n∑
j=1

hij(yi,yj) · xi · (1− xj)

s.t. xi +
∑
j∈Ti

xj ≥ 1, i = 1, 2, . . . n,

x ∈ {0, 1}n,y ∈ {1, 2, . . . , n}n,
(2)

where F (x,y) is the control cost to construct dominating

nodes and transform unbalanced links. Recall that D = {i ∈
V|xi = 1}. Here, we mainly consider 0 ≤ c ≤ 1 as

a higher cost is taken to dominate a node generally. This

formulation enables a comprehensive understanding of the

effects of both conflicting links and their balance on the RC

of signed networks.

Proposition. The CRC problem is NP-hard.

Proof : See Appendix. �

IV. OUR SOLUTION

In this section, the MCRC algorithm is proposed for solving

the CRC problem in (2) which is NP-hard.

A. General Framework of MCRC

MCRC adopts a framework of MAs, including initializa-

tion, selection, genetic operation and local search, as shown

in Algorithm 1. MCRC begins with an initial population

P(0) generated by the operation Initialization() described

in Section IV-B, followed by evolving the population using

the operations Genetic Operator() and Local Search() de-

tailed in Section IV-C and Section IV-D, respectively. Genet-
ic Operator() executes the genetic operation for exploration,

while Local Search() performs the local search for exploita-

tion. The evolutionary operations in lines 4-7 will terminate

when the number of generations t reaches a maximum (pre-

defined) number gm.

Contrary to the MAs available [10], [21], MCRC enables to

optimize x and y simultaneously. In the following subsections,

the proposed MCRC are detailed.

B. Signed Label Propagation based Initialization

Initialization is used to generate a population of initial

solutions P(0) = {(xl(0),yl(0))}, l = 1, 2, . . . , nP , where

nP is the size of the population, which is essential to find the

search regions and promote the convergence of MAs [20].
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Algorithm 1 Framework of MCRC
1: Input: population size: nP ; parent population size: nO ; crossover prob-

ability: pc; mutation probability: pm; maximum number of generations:
gm.

2: P(0)← Initialization(nP ).
3: for (t = 1 to gm) do
4: PP (t) ← Select nO solutions from P(t − 1) using a tournament

selection.
5: PO(t) ← Genetic Operation

(PP (t), nO, pc, pm
)
, and find the

solution (xl(t),yl(t)) with the minimum F in PO(t).
6: (xl(t),yl(t))← Local Search

(
(xl(t),yl(t))

)
.

7: P(t + 1) ← Choose nP solutions with low F values from PP (t)
and PO(t).

8: end for

The label propagation algorithm (LPA) assigns the labels

of nodes as those of their neighbors, which is widely used to

detect the communities of networks due to its advantages with

the low computational complexity, fast convergence and little

prior knowledge about the structures required [47]. Following

the rules of LPA, we present a constrained signed LPA (SLPA)

(as shown in Algorithm 2), which uses the dominating label

propagation and clustering label propagation to generate the

x and y of the initial population P(0), respectively. For

each solution (xl,yl) ∈ P(0) with xl
i = 1 and yl

i = i,
i = 1, 2, . . . , n, the dominating label propagation and the

clustering label propagation work as follows.

1) Dominating Label Propagation: The dominating labels

in xl are propagated to each node i ∈ V as follows.

xl
i ←

⎧⎨
⎩
0 if

∑
j∈Ti

xl
j > 0, s.t. ∀j ∈ Ti,

∑
k∈Tj

xl
k > 0 with xl

i = 0,

1 otherwise.
(3)

As known from (3), the dominating label is oppositely propa-

gated from the nodes in Ti to node i. Specifically, if there is at

least one neighbor of node i with dominating label 1, xl
i ← 0,

and xl
i ← 1 otherwise. To satisfy the dominating constraint in

(2), SLPA subjects to the constraint ∀j ∈ Ti,
∑

k∈Tj
xl
k > 0

for each propagation xl
i ← 0.

2) Clustering Label Propagation: The clustering labels in

yl are propagated to each node i ∈ V as follows.

yl
i ← argmin

yl
j ,j∈Ti

∑
k∈Ti

hik(y
l
j ,y

l
k). (4)

In (4), the clustering label is propagated from the nodes in

Ti to node i, which is subject to the minimum number of

unbalanced links around node i.
Given an initial population P(0) = {(xl(0),yl(0))}, l =

1, 2, . . . , nP , SLPA in Algorithm 2 works as follows. For

each solution (xl(0),yl(0)), the xl
i(0) and yl

i(0) of each

node i following a random order are updated by (3) and (4),

respectively (in lines 7-10). Those steps are executed until

xl(0) and yl(0) remain unchanged or the number of iterations

reaches a maximum number gt (in line 6). Here, we set gt to

10 as the LPA algorithm can converge within 10 generations

generally [47].

C. Genetic Operators

The genetic operators, including crossover and mutation,

are used to guide MAs for exploration. Specifically, crossover

Algorithm 2 Initialization()
1: Input: Size of population: nP , and the maximum number

of iterations: gt.
2: Output: Initial solutions P(0).
3: Set P(0) = {(xl(0),yl(0))} with xl

i(0) = 1 and yl
i(0) =

i, i = 1, 2, . . . , n and l = 1, 2, . . . , nP .

4: for (l = 1 to nP ) do
5: t ← 1.

6: while [(xl(0), yl(0)) is not converged and t ≤ gt] do
7: for (each node i in a random order) do
8: Dominating label propagation: Update xl

i(0)
based on (3).

9: Clustering label propagation: Update yl
i(0)

based on (4).

10: end for
11: t ← t+ 1.

12: end while
13: end for

creates offspring solutions by recombing and inheriting the

features of parent solutions, while mutation encourages genetic

diversity by tuning the solutions’ structures.
1) Crossover: The two-way crossover [23] is widely used

for community detection in networks due to its simplicity

and good inheritance of clusters from parent solutions. Given

two parent solutions, a node v is first randomly chosen,

and then the nodes with the same cluster label as v in one

parent solution propagate their cluster labels to those in the

other parent solution. Here, a parallel two-way crossover is

presented for the CRC problem whose solution contains both

x(t) and y(t), and the nodes j with xj(t) = 1 are limited to

execute the crossover of dominating labels for satisfying the

dominating constraint. Specifically, given two parent solutions

((xa(t),ya(t)) and (xb(t),yb(t)), and a node v, the parallel

two-way crossover generates offspring solutions as follows.

xa
j (t) ← xb

v(t), {∀j|yb
j(t) = yb

v(t),x
a
j (t) �= 1},

ya
j (t) ← yb

v(t), {∀j|yb
j(t) = yb

v(t)},
xb
k(t) ← xa

v(t), {∀k|xa
k(t) = ya

v(t),x
b
k(t) �= 1},

yb
k(t) ← ya

v(t), {∀k|ya
k(t) = ya

v(t)}.

(5)

Fig. 3 gives a schematic illustration about the crossover.

As shown in Fig. 3, this crossover enables to simultaneously

exchange both the cluster labels and the dominating labels of

a cluster of nodes, while preserving both the dominating con-

straint in (2). Moreover, it generates new offspring solutions

which inherit some cluster and dominating labels from their

parent solutions, thus improving the exploration of MCRC.
2) Mutation: Similar to the crossover operator, the

neighbor-based mutation is also extended for solving the CRC

problem. It works on each solution (xl(t),yl(t)) generated by

the crossover. For each node i ∈ V , its labels (xl
i(t),y

l
i(t)) are

updated with those of its neighbors with a mutation probability

pm. Specifically,

xl
i(t) ← 1− xl

v(t), yl
i(t) ← yl

v(t),

s.t. ∀j ∈ Ti, xl
j(t) +

∑
k∈Tj

xl
k(t) > 0. (6)
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Fig. 3. Schematic illustration of the crossover on the parent solutions
(xa,ya) and (xb,yb). The nodes surrounding by a dotted red circle is the
chosen driver node while the line marked with × is the unbalanced link.
After the crossover, a new solution (xa,ya) with 1 dominating node and 0
unbalanced link is generated.

Algorithm 3 Genetic Operator()
1: Input: Parent solutions: PP (t), crossover probability: pc

and mutation probability pm.

2: Output: Offspring solutions: PO(t).
3: for [each pair of solutions in PP (t)] do
4: Choose a node v randomly.

5: if (A randomly generated value r ≤ pc) then
6: Generate two offspring solutions based on (5), and

put them into PO(t).
7: end if
8: end for // Crossover

9: for [each i of each solution (xl(t),yl(t)) in PO(t)] do
10: if (A randomly generated value r ≤ pm) then
11: Choose v from Ti randomly.

12: Update xl
i(t) and yl

i(t) based on (6).

13: end if
14: end for // Mutation

In (6), the constraint ∀j ∈ Ti, xl
j(t) +

∑
k∈Tj

xl
k(t) > 0

ensures that the generated solution follows the dominating

constraint in the CRC problem.

The procedures of the genetic operators are summarized in

Algorithm 3.

D. Local Search

In MAs, the local search is essential for exploitation and

convergence. For the CRC problem, the refinement of a

solution needs to optimize both x and y, which is intractable

due to their different search spaces and the correlation in the

optimization processes. To solve this intractable problem, a

serial optimization is first presented, and then a dominating

label refinement and a clustering label refinement are proposed

to optimize x and y, respectively.

Serial optimization. Serial optimization is the most com-

mon strategy for solving the optimization problems with

multiple variables [48]. In this way, one variable is first refined

to be the optimum, and then the other ones are further refined.

To accelerate the convergence of the local search, a greedy

strategy is used in the dominating and clustering label refine-

ments, in which the label of each node is updated with that of

∈

∈

∈

Fig. 4. Schematic illustration of the local search on the solution (xl,yl).

Algorithm 4 Dominating Refinement()/Node Refinement()/
Cluster Refinement()

1: Input: (xl(t),yl(t)).
2: g = 0;

3: while [(xl(t),yl(t)) is not converged and g < gt] do
4: for (each node i) do
5: Update xl

i(t)/y
l
i(t)/y

l
i(t) based on (7)/(8)/(9).

6: end for
7: g = g + 1;

8: end while

its neighbor having the minimum F . However, this strategy

has a high computational complexity as all the possible

solutions for each refinement need to be considered and each

refinement takes O(m+ n) time to compute F . To reduce its

computational complexity, MCRC incorporates the following

problem-specific knowledge into the local search for tackling

large-scale networks.

1) Constraint of CRC. The dominating label of each node

i is only updated with the one under the constraint of

CRC, which reduces the number of possible solutions

of xi from 2 to s ≤ 2.

2) Neighbors of nodes. The clustering label of each node i
is only updated with that of its neighbors, which reduces

the number of possible solutions of yi from n to ki,
where ki is the degree of node i.

3) Computation of F under each refinement. For each

refinement on a node i, the F value is only calculated

in its change part, i.e., xi and
∑

j∈Ti
hij(yi,yj) · (xi �

xj), where xi � xj = 1 if xi �= xj , and xi � xj = 0
otherwise, which reduces the complexity of computing

F from O(m+ n) to O(|Ti|).
The dominating label refinement and the cluster label refine-

ment optimize the labels of nodes from the first one to the

last one. Given a solution (xl(t),yl(t)) and a node vi, the

refinements work as follows.

Dominating label refinement. The refinement of xl
i(t)
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Algorithm 5 Local Search()
1: Input: Best solution in offspring solutions: (xl(t),yl(t)).
2: (xl(t),yl(t)) ← Dominating Refinement(xl(t),yl(t)).
3: (xl(t),yl(t)) ← Node Refinement(xl(t),yl(t)).
4: (xl(t),yl(t)) ← Cluster Refinement(xl(t),yl(t)).

would result in the changes of the numbers of dominating

nodes and unbalanced links (shown in Fig. 4). xl
i(t) is updated

by the label from {0, 1} such that F is minimized. Specifically,

xl
i(t) is refined as follows.

xl
i(t) ← argmin

xl
i(t)∈{0, 1}

[
xl
i(t) + c ·

( ∑
j∈Ti

hij(y
l
i(t),y

l
j(t))

· (xl
i(t)� xl

j(t))
)]

.

(7)

Clustering label refinement for each node. The refinement

of yl
i(t) would change the number of unbalanced links (shown

in Fig. 4). yl
i(t) is refined as the clustering label of vi’s

neighbors such that F is minimized. Specifically, yl
i(t) is

updated as follows.

yl
i(t) ← argmin

yl
u(t):u∈Ti

∑
j∈Ti

hij(y
l
u(t),y

l
j(t))·(xl

i(t)�xl
j(t)). (8)

Clustering label refinement for each cluster. As known

from [49], the greedy search only with a node refinement

can get easily trapped in a local optimum in the clustering

process. This is the reason for decreasing F by merging small

clusters into large ones. To solve this problem, the cluster label

refinement in [49] is further extended to optimize y. First, a

novel graph with a number k of super-nodes is constructed, in

which each super-node i is the set of nodes in cluster ci. Then,

for each super-node ci, its clustering label yl
ci(t) is refined as

follows (shown in Fig. 4).

yl
ci(t) ← argmin

yl
cj

(t):cj∈Tci

∑
u∈ci

∑
v∈Tci

huv(y
l
cj (t),y

l
v(t))

· (xl
u(t)� xl

v(t)).

(9)

All label refinements are executed until none of the labels

is updated or the number of iterations reaches a maximum

number gt (set to 10 in this paper). Algorithm 4 shows

the operations of all label refinements, in which Dominat-
ing Refinement() executes the dominating label refinement

while Node Refinement() and Cluster Refinement() perfor-

m the clustering label refinements for nodes and clusters,

respectively. Algorithm 5 provides the whole framework of

the local search.

E. Computational Complexity of MCRC

As shown in Algorithm 1, MCRC mainly consists of the

following operations.

Initialization(). As known from Algorithm 2, Initializa-

tion() executes the loop nP times in lines 4-13. Within this

loop, an inner loop in lines 6-12 is repeated during the

predefined gt times at most. In this inner loop, as known

from (3) and (4), the updates of xi and yi take the averaged

computational complexity as O(k̄2), where k̄ is the average

node degree of the network. Therefore, Initialization() has a

computational complexity O(nP · gt · n · k̄2).
Genetic Operator(). As shown in Algorithm 3, Genet-

ic Operator() executes the loops in lines 3-8 and lines 9-14

approximately nO/2 and nO · 2 · n times, respectively. The

first for loop takes n operations to execute the crossover on

two parent solutions (line 6), while the other one executes

k̄2 operations at most (lines 11 and 12). Moreover, it takes

nO · (n + m) operations to evaluate offspring solutions.

Generally, k̄ 	 m and k̄2 ≤ m. Therefore, the computational

complexity of Genetic Operator() is O(nO · (n+m)).
Local Search(). As known from Section IV-D, by incorpo-

rating some problem-specific information, the computational

complexity of the updates for each node’s label in (7-9) is

reduced to O(k̄2). Those updates for all nodes are iterated gt
times at most. Therefore, Local Search() has a computational

complexity O(gt · n · k̄2).
In Algorithm 1, MCRC executes Genetic Operator() and

Local Search() with gm times. Therefore, MCRC has a com-

putational complexity O
(
gm ·nO ·(n+m)+(gm+nP) ·gt ·n ·

k̄2
)

, which makes it possible to tackle large-scale networks.

V. EXPERIMENTAL RESULTS

In this section, we test MCRC on nine real-world networks,

and compare MCRC with respect to six classical algorithms

in three criteria. In the following, the experimental settings

are first listed, and then a comparison of MCRC with the six

algorithms on nine networks is given. Finally, the effects of

some parameters are discussed.

A. Experimental Settings

1) Experimental Networks: Two small-scale social net-

works, four medium-scale biological networks and three large-

scale social networks are chosen. The RC in social systems

can effectively supervise their undesirable behaviors (e.g.,

conflicts, cascading failures and malicious attacks [2]) while

that in biological systems can comprehensively understand the

function of biomolecules (e.g., genes, complexes, proteins,

etc.). The basic properties of those networks are shown in

Table I, and their detailed descriptions are given as follows.

Gahuku-Gama Subtribes Network (GGS): This network

represents the cultures (political unions/oppositions) of of

highland 16 Gahuku-Gama subtribes in New Guinea [50].

Illustrative Signed Network (ISN): This network constructed

by Yang et al. [51] consists of 28 nodes and 42 links, denoting

the cooperations and competitions among individuals.

EGFR Network: This network consists of 330 vertices and

779 links. The nodes and links represent the state of the

Epidermal growth factor in receptor pathway signaling systems

and the transition of the state of the systems, respectively [52].

Yeast Network: This network represents the gene regulatory

network of S.cerevisiae with 690 transcription factors and

1,082 binding site inter-actions [53].

Macrophage Network: This network models the interaction

between Macrophage’s molecules [54].
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TABLE I
BASIC PROPERTIES OF THE TEST NETWORKS. m+ AND m− ARE THE

NUMBERS OF POSITIVE AND NEGATIVE LINKS, RESPECTIVELY.

Networks n m m+ m− Fields
GGS 16 58 29 29 Social
ISN 28 42 30 12 Social

EGFR 329 779 515 264 Biological
Yeast 690 1,080 860 220 Biological

Macrophage 678 1,425 947 478 Biological
E.coli 1,461 3,215 1,879 1,336 Social
Wiki 7,114 10,0321 78,792 21,529 Social

Wiki-rfa 11,276 17,0973 132,988 37,985 Social
Slashdot 22,936 288,638 217,563 71,075 Social

E.coli Network: This network is the gene regulatory network

of Escherichia coli [55] with 1,476 operon and 3,215 transcrip-

tional interactions. It can be downloaded from RegulonDB

database (http://regulondb.ccg.unam.mx).

Wiki-ele Network: This network is composed of 7,114

electors and candidates. In this network, electors cast votes

to candidates with positive and negative elections. A detailed

description of this network is given in [40], [56].

Wiki-rfa Network: This network represents the votes of

Wikipedia members to editors who want to become an ad-

ministrator. The votes can be supporting, neutral or opposing.

Here, a symmetrical network (shown in http://snap.stanford.

edu/data/wiki-RfA.html and [21]) is used as the test network

by discarding the neutral votes and the same voter/votee pairs.

Slashdot network: This network collects the tags (including

friends or foes) among users in a news website entitled as

“Slashdot”. Its original version in website http://snap.stanford.

edu/data/#signnets contains 77,357 users and 516,575 tags.

Here, its largest connected component with dense links is used

as the test network, containing of 22,936 users, 217,563 tags

labelled as friends and 71,075 tags written as foes.

2) Comparison Algorithms: Due to the complexity of the

RC in signed networks, none of the algorithms available can

solve it well. Here, to verify the proposed MCRC, three

classical algorithms for the RC in unsigned networks and three

variants of MCRC are chosen as the comparison algorithms.

Hybrid memetic algorithm (HMA) [10]: It first formulates

the MDS problem as a constrained 0-1 programming problem,

and then designs an MA for solving this problem. The HMA

adopts a GA and a tabu search as the global search and the

local search, respectively.

Greedy algorithm (Greedy) [14]: It solves the MDS problem

by a greedy strategy in which the nodes are gradually selected

as dominating nodes based on their degrees.

Branch-and-bound algorithm (BBA) [4]: It models the con-

trollability of proteins in Yeast networks as a MDS problem

and uses the BBA to solve this problem. By solving a set of

linear programming relaxation problems, BBA can effectively

discover the best solution of MDS in its search tree based on

the relaxation of the binary constraint to variables.

GARC, MRC: They are the variants of MCRC without the

local search and the cluster label refinement, respectively.

GRC: It is the variant of MCRC without the global search.

The reason for choosing HMA, Greedy and BBA as the

comparison algorithms is to show the superiority of MCRC

TABLE II
PARAMETERS SETTINGS OF SOME ALGORITHMS USED IN OUR

COMPARATIVE STUDY.

Algorithm gm nP nO pc pm
MCRC 300 50 5 0.9 0.15
GARC 300 50 5 0.9 0.15
MRC 300 50 5 0.9 0.15
GRC 300 50 5 0.9 0.15
HMA 300 50 5 1 —

over the state-of-the-art algorithms (MAs, greedy algorithms

and linear programming) on the RC in signed networks. A

comparison of MCRC with GARC and MRC tries to show

the effectiveness of the devised local search engine in terms of

convergence and effectiveness, while a comparison of MCRC

with GRC aims to show the advantages of a memetic opti-

mization framework over a greedy optimization framework.

3) Criteria: To verify the performance of all algorithms,

the cost-aware objective F , the number of dominating nodes

D and a common index in statistical hypothesis testing (P -

value of tt-test [57]) are adopted. The F evaluates the overall

performance of all algorithms on controlling a signed network

with a minimum cost, while the D measures the performance

of some algorithms (like BBA, Greedy and HMA) without

balanced clustering techniques on solving the MDS problem.

The P -value is used to determine the difference of solutions

obtained by all algorithms. Specifically, if the P -value is larger

than a significance level 5%, there is no significant difference

between the solutions of the two algorithms. Here, each P -

value is computed based on a comparison of our MCRC and

other algorithms on the control cost F .

4) Simulation Settings: MCRC and its variants GARC,

MRC and GRC are simulated by Matlab on a PC with In-

tel(R), Core (TM), i7-6700 CPU and 3.41 GHZ, while HMA,

Greedy and BBA are coded with C++. For each network, all

algorithms, excepted for BBA and Greedy which are stable,

are run for 30 trials with the parameters shown in Table II.

B. Experiments on Real-world Networks

1) Experiments on Small-scale Social Networks: All algo-

rithms are tested on two small-scale social networks, i.e., GGS

and ISN, and the statistic values of criteria are summarized

in Table III, including the average F , average D and P -

values over 30 independent trials. The best statistic values are

highlighted in boldface for each network. The results illustrate

that MCRC has lower F values than the other algorithms, and

has similar D values as HMA, GARC and MRC. Moreover,

except for MRC, the P -values are smaller than 0.05, indicating

that MCRC significantly outperforms BBA, HMA, GARC and

GRC on the cost of controlling those two small-scale networks.

To verify the effectiveness of the presented MA optimization

framework and local refinements, comparisons of MCRC with

its variants are also made in Table III. The results show that

GARC and GRC have higher F and D values than MRC

and MCRC. This is reasonable as GARC (GRC) with a GA

(local refinement) optimization framework favors exploration

(exploitation) but lacks of exploitation (exploration), whereas

both MRC and MCRC with an MA optimization framework
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TABLE III
STATISTICAL RESULTS OF ALL ALGORITHMS USED IN OUR COMPARATIVE STUDY OVER 30 INDEPENDENT TRIALS ON TWO SMALL-SCALE SOCIAL

NETWORKS. THE RESULTS ARE AVERAGED OVER 30 INDEPENDENT TRIALS. ‘—’ DENOTES THAT THE ALGORITHM WAS INCOMPARABLE OR USELESS.

Networks Indexes BBA Greedy HMA GARC MRC GRC MCRC
GGS F 12.00 11.50 5.500 3.517 2.100 4.017 2.067

D 5.000 4.000 2.000 2.800 2.067 3.567 2.067
P -value 1.2E-32 1.9E-27 1.3E-34 1.1E-13 0.6453 2.1E-12 —

ISN F 18.50 15.50 10.77 9.925 8.447 10.19 8.350
D 15.00 11.00 8.000 7.878 7.575 10.19 8.144

P -value 6.195E-40 1.6E-35 6.0E-30 9.2E-19 0.5876 6.1E-13 —

Fig. 5. Solution for the robust control of the GGS network. The dominating
nodes are surrounded with the dotted oval. Nodes in different clusters are
drawn using different shapes.

are able to profit from the advantages of both exploration

and exploitation. Specifically, by incorporating the dominating

label refinement into GARC, MRC has a better performance

than GARC, especially in terms of D. This validates the

effectiveness of the presented dominating label refinement

on the minimization of the dominating nodes. Similarly, by

incorporating GRC into GARC, MCRC has a better perfor-

mance than GRC, GARC and MRC in terms of F and D,

which shows the superiority of the proposed MA optimization

framework as well as the effectiveness of the clustering label

refinement procedure.

As shown in Table III, the baseline MAs (HMA and MRC)

have similar D values as our MCRC, but they have higher F
values than MCRC. This is because they neglect the balance

properties of signed networks and have no optimal strategy for

discovering a balanced clustering with a minimum number of

unbalanced links.

To visualize the robust control of signed networks, we plot

the domination and balance divisions of the small-scale GGS

and ISN networks detected by MCRC with the minimum

F in Figs. 5 and 6, respectively. As shown in Fig. 5, the

GGS network can be dominated when the nodes marked as

“NAGAD” and “UKUDZ” are chosen as dominating ones,

and the links between the dominating nodes and the other ones

are balanced when the network is classified into three clusters.

In other words, the GGS network is robustly controlled with

the minimum F as 2 by constructing the “NAGAD” and

“UKUDZ” as dominating nodes. From Fig. 6, we can see that

for the ISN network, the optimal control strategy of MCRC

suggests that its nodes “1, 4, 11, 14, 18, 20, 22, 26” should

be chosen as dominating nodes, and meanwhile it should be

Fig. 6. Solution for the robust control of the ISN network. The dominating
nodes are surrounded with a dotted oval.

divided into 4 clusters.

2) Experiments on Medium-scale Biological Networks: To

further validate the superior performance of MCRC, we test

all the algorithms adopted in our comparative study on four

medium-scale biological networks and record the correspond-

ing statistical criteria values in Table IV. We can obtain similar

observations from the comparison results on the medium-

scale biological networks and the small-scale social networks.

Specifically, the best results are obtained by MCRC for all

biological networks (100%) in terms of F . Moreover, MRC

shows a better performance than GARC. In addition, with the

framework of memetic optimization and the dominating label

refinement, HMA, MRC and MCRC have a good performance

in terms of D. In addition, the P -values between MCRC and

the other algorithms are smaller than 0.05, indicating that

BBA, HMA, GARC, GRC and MRC are not so effective to

solve the RC in the medium-scale biological networks.

As shown in Table IV, for most networks, GARC and

MRC have lower D values than GRC, whereas they have

higher F values than GRC. This is because the population

based methods (GARC and MRC) favor exploration whereas

they have difficulties to converge to local optimal solutions

in a short time. Moreover, discovering dominating nodes has

smaller search spaces than detecting the balanced clustering in

a signed network. In addition, GRC has a local refinement to

the cluster label of signed networks, which makes it possible

to discover better solutions than the population based methods

(GARC, MRC and HMA) in terms of F .

It can be seen from Table IV that except for MCRC, all

algorithms have difficulties to find out good solutions due to

the complexity of the CRC problem in signed networks (i.e.,

the large search space with 2n · nn possible solutions for a



10

TABLE IV
STATISTICAL RESULTS OF ALL ALGORITHMS USED IN OUR COMPARATIVE STUDY OVER 30 INDEPENDENT TRIALS ON FOUR MEDIUM-SCALE BIOLOGICAL

NETWORKS.

Networks Indexes BBA Greedy HMA GARC MRC GRC MCRC
EGFR F 169.0 166.5 147.2 196.3 146.8 133.9 94.07

D 87.00 81.00 62.95 112.6 68.17 119.5 69.43
P -value 3.0E-19 1.0E-26 5.1E-38 3.9E-44 4.7E-33 1.1E-23 —

Yeast F 187.5 249.5 165.8 239.3 157.0 243.3 119.6
D 118.0 157.0 95.00 147.8 98.73 167.6 96.27

P -value 1.1E-45 7.4E-54 4.6E-37 1.6E-34 2.7E-34 1.4E-21 —
Macrophage F 325.0 326.0 261.0 404.0 302.8 267.1 206.2

D 197.0 186.0 148.5 244.4 187.3 160.2 159.5
P -value 3.5E-46 2.7E-46 2.5E-47 8.0E-40 1.2E-35 1.4E-23 —

E.coli F 641.5 729.5 618.5 742.7 540.4 355.0 287.7
D 140.0 282.0 109.0 264.1 141.7 275.2 135.6

P -value 4.1E-34 1.8E-37 1.1E-46 1.2E-40 1.0E-36 2.8E-17 —

TABLE V
STATISTICAL RESULTS OF ALL ALGORITHMS USED IN OUR COMPARATIVE STUDY OVER 30 INDEPENDENT TRIALS ON THREE LARGE-SCALE SOCIAL

NETWORKS.

Networks Indexes BBA Greedy HMA GARC MRC GRC MCRC
Wiki F 7,121 8,079 7,100 10,575 10,616 5,667 3,280

D 1,148 4,490 1,117 4,218 4,212 4,246 2,419
P -value 5.6E-33 9.1E-36 1.6E-33 1.9E-41 2.5E-40 2.8E-27 —

Wiki-rfa F 12,286 13,417 12,243 18,089 18,111 9,912 5,016
D 1,625 7,289 1,623 7,070 7,074 7,230 3,775

P -value 2.3E-64 3.5E-66 2.0E-41 6.1E-55 1.9E-52 2.5E-46 —
Slashdot F — 19,756 — 44,994 25,685 23,316 16,159

D — 9,936 — 15,059 6,425 14,605 6,693
P -value — 2.3E-40 — 1.9E-53 1.7E-7 7.6E-44 —
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Fig. 7. Different criteria VS. Cost parameter c for controlling the ISN network. (a) the total control cost F , (b) the number of dominating nodes D and (c)
the number of unbalanced links.

signed network with n nodes, the intractable optimization on

the dominating label and clustering label, and the dominating

constraints in the search of a feasible solution). MCRC can

achieve a high-quality solution as it designs a problem-specific

GA, a dominating refinement and a cluster refinement for

exploration and exploitation. Moreover, it devises an effective

strategy to solve the dominating constraints which avoids

searching for infeasible solutions in the initialization, and

when applying the genetic operators and the local search.

3) Experiments on Large-scale Social Networks: To discuss

their applicability to real systems with thousands of nodes and

links, all algorithms are tested on three large-scale social net-

works (Wiki, Wiki-rfa, and Slashdot), and the corresponding

statistical results are collected in Table V. From Table V, we

can get similar conclusions as those on the small-scale social

networks. For instance, MCRC has a superior performance

than the other algorithms in terms of the control cost F ; HMA

has the best performance on discovering dominating nodes

without considering the control cost; and the P -values between

MCRC and the other algorithms are smaller than 0.5.

The comparisons on large-scale social networks produce

results which are different from those obtained on the small-

scale social networks. For instance, MRC has obviously a

better performance than GARC in the small-scale social net-

works, while it has a performance similar to that of GARC

in the large-scale networks. In other words, for the large-

scale networks, the dominating refinement has difficulties

to improve the performance of GARC. This was somehow

expected since both the solution space and the number of local

optimal solutions increase exponentially with the node sizes

of the networks, making MRC to get easily trapped into local

optimal solutions after a predefined number of generations.
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Fig. 8. Different criteria VS. Cost parameter c for controlling the EGFR network. (a) F , (b) D and (c) the number of unbalanced links.
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Fig. 9. Different criteria VS. Cost parameter c for controlling the Wiki network. (a) F , (b) D and (c) the number of unbalanced links.
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Fig. 10. Convergence of the algorithms (GARC, GRC, MRC and MCRC) on the (a) ISN network, (b) EGFR network and (c) Wiki network.

C. Effects of Parameter Settings

In this part, MCRC and its variants are tested on the small-

scale ISN network, the medium-scale EGFR network and the

large-scale Wiki network with different parameters settings to

investigate the effects of these parameters.

In the devised optimization model shown in (2), there is

a key parameter (i.e., c), denoting the ratio of the cost of

transforming an unbalanced link to the cost of constructing a

dominating node. Generally, 0 ≤ c ≤ 1 as it takes less cost to

control an unbalanced link. Here, the c value is varied from

0 to 1 with the interval 0.1, and the results with different

c are recorded in Figs. 7-9. The results demonstrate that i)

MCRC has lower F values than the other algorithms for all c

values; ii) with the increase of c, the F values of all algorithms

increase, while the number of dominating nodes (unbalanced

links) increases (decreases); and iii) the difference of F values

between MCRC and the other algorithms becomes larger. This

is because with the increase of c, it has a higher cost to

control unbalanced links, and the other algorithms have no

effective strategies for discovering the balanced clustering with

a minimum number of unbalanced links.

Moreover, to investigate the convergence of MCRC, we

show the variation of F averaged over 30 independent trials

with the number of iterations in Fig. 10. The results illustrate

that for the small-scale and medium-scale networks, all al-

gorithms can quickly converge to good solutions. Regarding
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Fig. 11. Statistical running time of the algorithms used in our comparative
study VS. Number of nodes of the networks.

the large-scale Wiki network, MCRC can quickly converge,

whereas the other algorithms have difficulties to converge

within 300 generations to good solutions. These phenomena

demonstrate the superiority of MCRC in terms of convergence.

Finally, the average CPU running times taken by GARC,

MRC, GRC and MCRC simulated using Matlab are displayed

in Fig. 11 with different network sizes. Fig. 11 shows that the

running times of the algorithms compared have an increase

which is approximately linear with the number of nodes in

the networks, especially for the networks with less than 103

nodes. The comparison between GRC and MCRC illustrates

that it takes much time to execute the local search for large-

scale networks, and MCRC can effectively reduce the CPU

running time of GRC due to the exploration of the GA. To

conclude, MCRC takes a reasonably longer time than GARC

and MRC when solving the CRC problem in signed networks.

VI. CONCLUSIONS

In this paper, we presented a cost-aware robust control

problem in signed systems, which considers the control cost

and the functional control of an entire system by constructing

dominating nodes and transforming unbalanced links into

balanced ones. To solve this problem, we first modeled it

as a constrained optimization problem, which combines the

MDS problem with the balanced clustering problem in signed

networks, and then presented the MCRC algorithm with some

problem-specific knowledge (like the neighbors of nodes, the

constraints of CRC, and the fast computation of the cost

under each optimization). With these knowledge, MCRC can

effectively reduce the computational complexity and accelerate

the convergence towards good solutions for the RC problem in

large-scale signed networks. Systematical experiments on nine

real networks demonstrated the advantages of MCRC over the

state-of-the-art algorithms for the control of signed networks,

and the effectiveness of the designed memetic optimization

framework and local search mechanism.

This work was done under the assumption that all nodes

and edges of the network can be controlled, which may

Fig. 12. Schematic illustration of the graph construction processes
for a toy cover set problem with U = {1, 2, 3, 4, 5} and S =
{{1, 2, 3}, {1, 3, 4}, {4, 5}}. The nodes plotted with triangle and circle
denote the nodes inD andO, respectively. The solid and dotted lines represent
the positive links and the negative links, respectively.

be inconsistent in some applications. As part of our future

work, we will study the RC in signed networks with more

constraints, e.g., some nodes and links cannot be controlled,

adjacent nodes cannot be controlled simultaneously, etc. More-

over, we will study the robust control of multiplex networks.

Controlling a multiplex network is difficult as the control of

one platform cannot guarantee that of the other platforms.

Finally, inspired by the work in [22], we will study a novel

compressed representation of memes (solutions) on the RC

of signed networks, which enables the presented memetic

algorithm (MCRC) to quickly tackle large-scale networks.

APPENDIX

PROOF OF THE NP-HARD OF THE CRC PROBLEM

To prove the NP-hard of the CRC problem, a well-known

NP-hard problem, the set cover problem [11], [58], is reduced

to the special instance of CRC with c = 0.

1) Set cover: Let U = {1, 2, . . . ,m} be a universe, and let

S = {S1,S2, . . . ,Sq} be a family, in which Si ⊂ U ,

i = 1, 2, . . . , q and the union of S equals U . Given an

integer k, does the family have a set C ⊂ S with |C| ≤ k
such that the union of C equals U?

2) Special instance of CRC: Given a signed network G =
{V, E+, E−} and an integer k, does the network G have

a set D = {i ∈ V : xi = 1} with |D| ≤ k such that

each node is linked with one of nodes in D?

Given the universe U , family S and an integer k, the

reduction processes are shown as follows.

First, we construct a signed graph G = {V , E+, E−} as

follows: i) each element in U is modeled as a node; ii)

a number |S| of nodes O = {oi}, i = 1, 2, . . . , |S|, are

constructed, and iii) each node oi ∈ O is (positively or

negatively) linked with all the other nodes in O, and is linked

with all nodes in Si. Fig. 12 gives a schematic illustration of

the graph construction processes for a toy cover set problem

with U = {1, 2, 3, 4, 5}, S = {{1, 2, 3}, {1, 3, 4}, {4, 5}}, and

O = {6, 7, 8}.

Second, we prove that G contains a dominating set D with

|D| = k if and only if there is a set cover C ⊂ S with |C| = k
such that the union of C equals U . This proof consists of the

following two parts:

Step 1: Let’s assume that C = {Si1 ,Si2 , . . . ,Sik} with

|C| = k is a feasible solution for the set cover problem.

As known from the constructed graph, for each Sia , a =
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1, 2, . . . , k, its nodes are linked with the node oia ∈ O.

Moreover, as known from the definition of covering set, the

C contains all nodes in U , and a node in O is connected with

all the other nodes in O. Therefore, D = {oi1 , oi2 , . . . , oik}
is a dominating set with size k in G.

Step 2: Let’s assume that D = {i1, i2, . . . , ik}, ia ∈ V and

a = 1, 2, . . . , k, is a dominating set in G. As known from the

definition of dominating set, all nodes in both U and O of G
are linked with at least one node in D. When all nodes of D
are in O, C = {Si1 ,Si2 , . . . ,Sik} is a covering set with size k
in the universe U . When some nodes of D are not in O, e.g.,

ia, there exists a corresponding node oja in O such that ia is

linked with oja . In this case, C = {Si1 ,Si2 , . . . ,Sja , . . . ,Sik}
is a covering set in the universe U with size k.

It takes polynomial time to construct the G = {V , E+, E−},

which indicates that the special instance of CRC can be

reduced from the cover set problem in polynomial time.

Therefore, the CRC problem is also NP-hard.
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