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Abstract

In most existing studies on dynamic multimodal optimization (DMMO), nu-
merical simulations have been performed using the Moving Peaks Benchmark
(MPB), which is a two-decade-old test suite that cannot simulate some critical
aspects of DMMO problems. This study proposes the Deterministic Distortion
and Rotation Benchmark (DDRB), a method to generate deterministic DMMO
test problems that can simulate more diverse types of challenges when compared
to existing benchmark generators for DMMO. DDRB allows for controlling the
intensity of each type of challenge independently, enabling the user to pinpoint
the pros and cons of a DMMO method. DDRB first develops an existing ap-
proach for generation of static multimodal functions in which the difficulty of
global optimization can be controlled. Then, it proposes a scaling function to
dynamically change the relative distribution, shapes, and sizes of the basins. A
deterministic technique to control the regularity of the pattern in the change is
also proposed. Using these components, a parametric test suite consisting of ten
test problems is developed for DMMO. Mean Robust Peak Ratio for measuring
the performance of DMMO methods is formulated to overcome the sensitivity of

the conventional peak ratio indicator to the predefined threshold and niche ra-
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dius. Numerical results of a successful multimodal optimization method, when
augmented with a simple strategy to utilize previous information, are provided
on the proposed test problems in different scenarios with the aim of serving as
a reference for future studies.

Keywords: Evolutionary algorithm, dynamic problem, performance indicator,

robust peak ratio, niching, global optimization

1. Introduction

Dynamic optimization aims to find and track optimal solution(s) of prob-
lems that change over time. This change may originate from a variation in
the decision parameters, problem objectives or constraints [I]. An optimization
method that can efficiently deal with the dynamic nature of these problems
should be able to rapidly find the optimal solutions after the change. Since
many real-world problems are dynamic, the field of dynamic optimization has
gained much interest in the recent decade [I} 2] and many dynamic optimiza-
tion methods have been applied to practical problems, such as optimal control
of time-varying systems [3], 4], mission planning [5], vehicle routing [6] [7], and
scheduling [g].

Although most research in this field focuses on tracking only the best solu-
tion, the changes in the values of the optima requires tracking all the optima
at the same time because a local optimum before the change can become the
global one after the change [0 [I0]. This means that even if the changes are
small, there can be a drastic change in the global optimum [I1]. This challenge
can be tackled by dynamic multimodal optimization (DMMO), which aims to
detect and track multiple optima over time.

Some recent studies have defined the objective of DMMO as detecting and
tracking all the global optima in the problem [12] 3| 4], a definition that
aligns more closely with the concept of multimodal optimization. From this
perspective, DMMO is comparable to dynamic multiobjective optimization [15]:

both aim to find and track a set of diverse optimal solutions. DMMO focuses
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on diversity in the variable space whereas dynamic multiobjective optimization
focuses on diversity in the objective space.

Providing multiple best, or good, solutions is desired in many dynamic prob-
lems. An example is delivering supplies to multiple moving vehicles by a heli-
copter such that the total time for completing all the required deliveries or the
fuel cost is minimized. The problem is dynamic since the vehicles may move.
There could be multiple best solutions for this problem (sequences for deliv-
ery), all of which may result in similar fuel consumption. In this case, the pilot
may consider some preferences that were not considered in the simulation of the
original problem, e.g., the current wind direction and velocity, the weight of the
item(s) to be delivered to each vehicle, and the presence of potential risks in one
solution (e.g., passing by a mountain) to choose the best solution. Some other
examples of practical DMMO problems, which have been explained in other
publications, are finding the solutions to a time-dependent system of equations
[16], dynamic tracking of multiple targets, and the dynamic multi-path routing
problem [I4].

The field of dynamic optimization heavily relies on numerical evaluation
and comparison on test problems. For static optimization, test problems have
undergone drastic changes from simple separable classical functions to rotated,
skewed, ill-conditioned and composite functions in contemporary test suites for
global [I7] and multimodal [I8| [T9] optimization. A comprehensive test suite
for DMMO should be able to simulate all these challenges in addition to those
particular to dynamic problems since DMMO is an extension to multimodal
optimization.

Despite the importance of DMMO test problems for advancing this field,
recent studies on this topic are scarce, at least when compared with recent pub-
lications on developing test suites for dynamic multiobjective optimization (e.g.
[20, 21]), and dynamic constrained optimization (e.g. [22,[23]). For two decades,
the Moving Peaks Benchmark (MPB) [24] has been extensively employed by re-
searchers to evaluate DMMO methods [10]. Although the formulation of MPB

is simple, it relies on random numbers, which makes the generated test function
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dependent on the available platform and software. Furthermore, there are some
challenging aspects of DMMO that cannot be simulated by MPB, which are
discussed in the next section.

This study proposes a benchmark generator, called Deterministic Distortion
and Rotation Benchmark (DDRB), for generating deterministic parametric test
functions for DMMO, in which each parameter controls the difficulty of one
class of challenges associated with DMMO. Such a control allows the user to
intensify or moderate each type of challenge to pinpoint the pros and cons of

an algorithm. The contributions of this paper are the following:

e It improves the procedure used in [I9] such that a user-defined parameter

can control the difficulty of the resulting static multimodal problem.

e It proposes a time-dependent nonlinear scaling function to dynamically
modify the shapes, sizes and relative distribution of basins of a static

multimodal function.

e It introduces a simple technique to control the regularity of the change
pattern, a feature that may or may not exist in practical dynamic prob-

lems.

e It proposes the Robust Peak Ratio (RPR) indicator for multimodal opti-
mization as a robust alternative to the well-known Peak Ratio indicator.
RPR defines a non-binary success rule for basin detection and releases the

user from the burden of finding a proper value for the niche radius.

e [t provides numerical results of a sample DMMO method on the proposed

test suite in different scenarios as a reference for future research.

The rest of this article is organized as follows: Section [2] reviews previous
related studies on benchmark generators for DMMO. Section [3| discusses some
desirable properties of a comprehensive test suite for DMMO. Section [d] develops
a set of parametric static multimodal functions with controllable degree of diffi-

culty. Section [§] proposes a procedure to simulate the dynamic behavior in these



85

90

95

100

105

110

functions and generates ten parametric DMMO problems. Section [6] proposes
Mean Robust Peak Ratio to measure the performance of DMMO methods. Sec-
tion [7] provides numerical results of a sample method on these ten test problems

in different scenarios. Finally, conclusions are drawn in Section

2. Previous Related Work

As discussed earlier, a DMMO method should be able to detect and track
multiple optima over time. These methods employ a diversity preservation strat-
egy, generally referred to as niching, to make parallel detection and tracking of
optima possible. A popular strategy is the concept of multi-population, accord-
ing to which the population is divided into multiple subpopulations, and each
subpopulation is assigned a different task or should converge to a distinct op-
timum. Developed more than two decades ago (e.g. see [25] [I1]), this strategy
was later employed in many other methods by different groups of researchers
[26] 27, 28, 29| 30, B31]

The performance of these methods has been generally evaluated according to
the off-line error [32], which calculates the average fitness error over time. The
fitness error is the difference between the best value and the global optimum
value since the last change. This indicator thus favors methods with a fast
initial progress rate. Alternatively, accuracy [33], which is also known as best
error before change [1, considers the fitness error at the end of each time step
(the immediate time before occurrence of a change). This performance indicator
aligns more closely with practical situations, in which a period is allocated for
the optimization process, and the best solution found at the end of this period
is implemented within the implementing window [3] [34].

MPB, developed by Branke [24], is the most well-known benchmark gener-
ator for DMMO [35]. It defines a solution value as the maximum of several
moving peaks with spherical basins whose locations, heights and widths change
over time. The peak’s height and weight changes slightly by adding a Gaussian

random term to the previous values. The movement of a peak is determined
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by a weighted combination of a random location and the previous movement.
since its introduction in 1999 [24], this benchmark generator has been employed
for numerical evaluation and performance comparison by several dynamic opti-
mization methods based on metaheuristics such as particle swarm optimization
[36, 37, B8] and differential evolution [12} B9, [40]. A similar idea has been fol-
lowed in the DF1 generator [41] except for the valleys, which are cones whose
slope gradually increases over time. However, DF1 has not enjoyed the popu-
larity of MPB among researchers (see [42] for a comparison of the popularity of
these methods).

Some variants of MPB were later developed for benchmarking specific as-
pects of DMMO methods. For instance, Li and Yang [27] developed a variant
of MPB in which only a fraction of the peaks are allowed to change to bench-
mark efficacy of the change detection strategies. Modular variants of MPB
[43] [T0] were later developed for high-dimensional partially separable problems.
The concept of MPB was also employed in [22] to create a problem generator
for dynamic constrained optimization. Generalized Moving Peaks Benchmark
(GMPB) [42] formulates a more general case of MPB in which the basins may be
rotated ellipses, with non-symmetric basins and additional local minima. How-
ever, their formulation is much more complex than that of MPB and introduces
several control parameters and complex equations to pose these irregularities.

Luo et al. [13] proposed a modification to MPB to tailor it for the situation
in which the algorithms should find and track multiple equally good global
maxima. Global maxima have fixed values, whereas local maxima change their
values over time. A new rule was also defined so that the global maxima always
lie sufficiently far from each other. For performance evaluation, they calculated
the number of peaks identified at the end of each time step, and averaged it for
all time steps. Their method could provide a reasonable outcome for relatively
simple problems in low to moderate dimensionality.

The simplicity of the equations, scalability, and flexibility in the locations,
widths and movements of maxima may explain the popularity of MPB among

researchers; nevertheless, MPB has the following limitations:
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e The basins are all spherical and remain spherical during the optimization

process.

e The generated problems are random. This property results in further un-
certainty when comparing two methods over different platforms/software

and makes the reproducibility of results difficult.

e The global structure of the problem is always weak since the landscape

consists of isolated maxima.

e Each solution evaluation requires N axima independent evaluations; there-
fore, the solution evaluation cost is high and proportional to the number of
maxima (local and global). This may explain the low number of maxima

(ten) which is commonly adopted when using MPB.

The Real Rotation Dynamic Benchmark Generator (RRDBG) [44] changes
the peaks’ heights and widths dynamically, but it performs a time-dependent
rotation of the search space to relocate the peaks. Like MPB, the peaks are
formed using superposition of a convex function, although this function is ex-
ponential in RRDBG. In the Real Composition Dynamic Benchmark Generator
(RCDBG) [44], more complex basic functions taken from the global optimiza-
tion literature are used instead of only simple convex functions. Peaks move in
the search space using a time-dependent shift term. The computational time
is proportional to the number of global maxima, which makes it more efficient
than MPB and RRDBG, in which the computational cost is proportional to the
overall number of local and global maxima. However, the size and the shapes
of the minima remain unchanged. This benchmark generator was also used in
the CEC’2009 competition on dynamic optimization [45] , which has been used
in several subsequent studies for performance evaluation of dynamic optimiza-
tion methods [39]. The rotation flexibility of RRDBG and the arbitrary basic
function of RCDBG were combined in the benchmark generator developed in

[46].
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3. Desired Properties of a DMMO Test suite

There are already well-developed artificial test suites for simple classes of
optimization problems. These artificial test problems do not exactly represent
practical problems but aim to simulate the challenges commonly found in them.
It is expected that if a method can cope with these challenges, it will be able to
optimize relevant practical problems efficiently. For example, for unconstrained
single-objective global optimization, the BBOB’2009 test suite [I7] can simulate
the presence or absence of deceptive local minima, ill-conditioned landscapes,
absence of global structure, and so on. We argue that since DMMO can be
interpreted as the union of global optimization, multimodal optimization, and
dynamic optimization, a robust DMMO benchmark generator should be able
to simulate all, or at least most, of the well-known challenges associated with
each of them. Therefore, this study distinguishes three types of challenges that

a comprehensive DMMO test suite should be able to simulate:

e avoiding local optima and efficiently converging to the global optimum

(global optimization)
e detecting distinct global optima (niching/multimodal optimization)
e tracking global optima over time (dynamic optimization)

Each challenge contributes to the overall hardness of a DMMO test prob-
lem. Besides, there should be a reasonable intensity of each type of challenge
in the test problem. A test problem with many deceptive local optima might
be a reasonable benchmark for global optimization since finding the global op-
timum is the only goal. This is not the case for a dynamic problem because
a successful method should be able not only to detect the global optimum but
also to track it over time. Similarly, we argue that the underlying static multi-
modal function should not be too hard; otherwise, the difficulty of the DMMO
test problem predominantly originates from the static part. Such a problem
overlooks the importance of the dynamic aspects of the problem, a shortcom-

ing in some existing dynamic test problems [20]. Conversely, a test problem
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with overly simplified static function (e.g., a function having identically-sized
regularly-distributed global optima with low condition number and no local op-
tima) underestimates the importance of the properties of the underlying static
function.

Consequently, there should be a comparable intensity of each type of chal-
lenge in a meaningful benchmark for DMMO. Ideally, the significance of each
type should be controllable so that the researchers can quickly identify the pros
and cons of a method in coping with each type of challenge. For example,
by intensifying the niching difficulty (e.g., by increasing the dissimilarity among
global optima or their relative distances), one can reliably analyze the capability
of a method in dealing with this specific type of challenge.

The proposed benchmark generator in this study aims to achieve these goals.

It consists of two separate modules:

e a static multimodal problem with multiple global minima. The difficulty

of global optimization is controllable by one tunable parameter.

e a dynamic mechanism which simulates dynamic behavior in the static
problem. This mechanism can control the maximal change in the sizes,
shapes, and relative distribution of global minima by a single tunable
parameter. It also controls the dynamic aspects of the problem such as
change severity, change frequency, and unpredictability in the change pat-

tern.

Without loss of generality, the objective in this method is minimization. The
following notation is used: bold upright for matrices and tensors, bold italics

for vectors and italics for scalars.

4. Composite Multimodal Test Problem

The procedure adopted for the generation of static MMO test problems
builds upon the one proposed in [19], in which a parametric composite function

G is generated by a combination of three simple basic functions.
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4.1. General Formulation

The static multimodal composite function has the following form:
G :RP? > R;z=G(RoX, D1, hco), (1)

in which D is the problem’s dimensionality, X €} is a solution, € is the search
range, z is the function value, Ry is a rigid rotation matrix, and Dy is a parameter
that controls the number of global minima in the problem (see [19], for details).
hgo is introduced in this study to control the difficulty of finding each global
minimum.

To calculate the solution value, first, the solution X is divided into two

vectors, X1 and Xp:
T T
Xy = [x1,x1,....xp,| . Xu = [X14p. X24Dps - - XD (2)

These two vectors are further divided into sub-vectors of size d; and dj;, respec-
tively. Then, the basic functions gr: R4 —Rso and gi: R% —Rs( are applied to

these sub-vectors which return vectors yy of size n; and yyr of size ny;:

gr(xi1) g1 (*ii,1, hgo)
g1(xi2) g (xii2, hgo)

Y1 = . > Y = . . (3)
g1(xin,) g1t (Xsi,ny,» hco)

Function g; has multiple global minima whereas g1 has the single global
minimum x3, = 0 with grr(x¥;) = 0. In gy1, the parameter 0 <hgo <1 controls the
difficulty associated with the global optimization of this function (e.g., depths
of the local minima or the condition number of gr;, two of the main factors
that affect the difficulty of global optimization). Finally, gy functions on y =
[J’IT,)’HT]T

z=G(X; Dy, hgo) = gmi(y) + co, (4)
in which c¢g is a constant value. For Ry = Ip (Ip is the identity matrix of size

D), the number of global minima in the composite function is:
Ngrnin = (ngmin)ni B (5)

10
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in which ngmin is the number of global minima in gr (see [19] for the proof).
The sufficient condition that employing an arbitrary Ry does not change the
number of global minima is that all global minima are inside the hypersphere
inscribed in the search space whose center lies on the center of the search space

AND there is no other global minimum outside the search range. The global

minima (X;,i=1,..., Ngmin) can be calculated as follows:
* *
X X5
X x; X
* _ T I * _ i x i
X - RO X " s XI - . ] XII - . (6)

Xy : :
x; x5

1 dpix1 o dpixl

in which x and x}; are the global minima of g; and g1, respectively.

A proper design of gr1(x, hgo), such that a greater hgo makes the optimiza-
tion of g harder, lets the user easily control the difficulty of global optimization
of the composite function . This tunability substantially improves the utility
of the test problem because it allows to benchmark a method on test problems

with similar niching but different global optimization hardness.

4.2. Suggested Static multimodal test functions

Table [I|summarizes five parametric composite functions developed using the
improved procedure. The definitions of the basic functions used for generation
of these composite functions are provided in supplementary material S1. These
basic functions are formulated by modification of simple existing test problems
which can be found in [47], 48], [49].

The following procedure is employed in this study to generate a rotation
matrix. For two orthogonal unit vectors u and v, the rigid rotation matrix R
that rotates the span of # and v by an angle of @ can be calculated as follows
[50]:

R(@) =Ip +sin(a) (vu™ —uv™) + (cos(e@) - 1 ) (uu™ +vv™) (7)

Any Ry that is generated with 0 < @ < /2 can theoretically eliminate the

separability in the objective function. A value far from the limits is preferable;

11
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otherwise, the behavior of the rotated problem may still be close to a separable
problem. In this study, the rotation matrix Rg is generated with a = 7/6.

For the sake of reproducibility, an array of 2000 random numbers sampled
from a standard normal distribution are provided as a CSV-file in the supple-
mentary material S2. These random numbers were generated using the com-
mand randn(2000, 1) of MATLAB 2017b with the random seed #0 and a 10-digit
decimal precision. The first D numbers form uy, and u = uy/||ugl|. Similarly,
the subsequent D numbers form vg, vo < vo — (T vo)u, and v = vo/||voll.

The parameters of the suggested multimodal optimization test functions
should be selected considering the additional complexity imposed by their dy-
namic behavior. In particular, the parameter D; controls the number of global

minima. The recommended static test functions are presented in Table

4.3.  Effect of hgo

To illustrate the effect of hgo, we perform multimodal optimization of
the suggested static test problems (Table [2)) using the covariance matrix self-
adaption evolution strategy with repelling subpopulation (RS-CMSA-ES) [51],
which is one the most successful multimodal optimization methods currently
available [I9]. The number of subpopulations is set to 5, and the population
size increase factor is set to 1.1. Other parameters are set to default values
[51]. For this experiment, D = 10, the maximum evaluations budget (mazFFE) is

20000D Ngmin, and the acceptable tolerance for the objective value is e = 0.001.

Table 1: Parametric static multimodal optimization test problems (k, k' € Zx()

Function g1 |gm|gm| co |Dr|di|du| D | Ngmin
G (X,Dr,hco) | fr | fo | f15 |-49.2| 2k
G12(X, D1, heo) | fu1 | fs | fiz |-29.7 | 2k
G13(X, D1, hgo) | f3 | fiz| fo | 95.1 | 2k
G14(X, D1, hgo) | fro | fra| f2 | O | k
Gi5(X,Dr,hco) | fa | f1 | f5 | 65.5 | 2k

2 | 2k+2k" | 4*
2 | 2k+2k"| 2K
2 | 2k+2k’| 3k
k' | k+k’ | kx3k
2 | 2k+2k" | 4*

NxNNN

12



Table 2: Proposed static multimodal optimization test function to be used for the generation

of dynamic problems. For all functions, the search range is [-5, 5]
PID Function D1 | Ngmin
1 G11(X, D1, hgo) 2 4
2 G12(X, Dy, hgo) 2 2
3 G13(X, Dy, hgo) 2 3
4 G14(X, Dy, hgo) 1 3
5 G15(X, Dy, hgo) 2 4
6 G11(X,Dy1,hgo) | 4 16
7 Gi12(X,D1,hgo) | 6 8
8 G13(X, D1, hgo) | 4 9
9 G14(X, Dy, hgo) 2 18
10 | G15(X, D1, hgo) | 4 16

275 Figure[l]shows the Mean Peak Ratio (MPR) [I8], which is the fraction of the
identified global minima, versus the number of evaluations divided by mazFFE
for different values of hgo. The results are averaged over 20 independent runs

for each setting. As can be observed:

e Reaching MPR =~ 1 takes a longer time for a greater hgo. This means

280 that hgo can successfully control the difficulty of the global optimization.

e All global minima can be found after a reasonably large number of function
evaluations, which shows that for any value of 0 < hgo < 1, the static
multimodal optimization is not so hard that some of the global minima

are impossible to detect even when the evaluations budget is large.

25 5. Simulating Dynamic Behavior

This section presents the template for simulating the dynamic behavior in

static functions. This template exploits three distinct techniques, which are

13



MPR PID=1 PID=2 MPR PID=3 MPR PID=4 MPR PID=5

====hg=07

e hgo=1

FE/maxFE FE/maxFE FE/maxFE 0 FE/maxFE FE/maxFE
0 02 04 06 08 1 0 01 02 03 04 05 0 01 02 03 0 01 02 03 04 05 0 02 04 06 08 1

MPR PID=6 MPR PID=7 MPR PID=8 MPR PID=9 MPR PID=10

FE/maxFE FE/maxFE 4 FE/maxFE o FE/maxFE FE/maxFE
0 01 02 03 04 05 0 005 01 015 02 0 005 01 015 02 0 02 04 06 08 1 0 02 04 06 08 1

Figure 1: MPR as a function of the number of evaluations for 10 suggested multimodal

optimization problems (D = 10) for different values of hgo.

elaborated and formulated first. Subsequently, they are used in conjunction

with the suggested static multimodal test problems to form DMMO problems.

w0 5.1. General template

The general template of the proposed test problems is as follows:

ga(X,1) = go(R(2) s(X,1)) + (1), (8)
In this equation:
e g,4(X,1) is the dynamic multimodal function
e go(X) is a static multimodal function
e R(?) is a time-dependent rigid rotation matrix
205 e s(X,1) is a time-dependent scaling function in decision variable space.
e ¢(1) is a time-dependent constant

As observed, the dynamic behavior is simulated using three components:
R(?), s(x,t) are applied to the solution space whereas ¢(t) works on the objective
space. If the global minima of go(X) are known, the global minima of g4(X, 1)

w0 can be easily calculated using the following theorem:

14



Theorem: For any X €, there is the corresponding solution X = s 1 (R()T X, 1)
such that g4(X, 1) = go(X) + ¢(1)
Proof:

ga(X,1) = gd(sfl(R(t)Tx, t),t) +e(r)

= g0 (R(t) s(s‘l(R(t)TX, 1), t)) +c(1)
= g0 (R(OR(1)TX) + ¢ (1) = go(X) + (1)

Based on this theorem, if X* is a global minimum of gy (X), then X =5t (R()TX*,1)
is a global minimum of g4(X,1).

if @ = [~w,w]?, then for any R(t), all global minima will remain inside
the search space after rotation if after scaling, they remain inside the sphere
which is inscribed in the search space cube. If not, it is possible that some
global minima leave the search space at specific time-steps. However, since
after detection, tracking the global minima is the primary objective of DMMO,
this requirement is enforced for the developed test problems in this study, and

thus, the number of global minima remains unchanged.

5.2. Rigid Rotation

The time-dependent rotation matrix R(z) is generated using Eq. [7] with a
time-dependent rotation angle of @(f). Through a gradual increase in a(t), the
fitness landscape gradually rotates in the plane defined by u and v. This rotation
only changes the location of global minima without changing their sizes, shapes,

and relative distribution.

5.3. Time-dependent Nonlinear Scaling in Variable Space

Non-linear scaling of the search space distorts the shapes, sizes, locations,
and relative distances of the global minima. In our case, this scaling operates

on each dimension independently:

s(X, 1) = [sCer, 1), s(x2,0), ., s(eps0)] T (9)

15



320 in which s(x, #):RXN — R is a one-dimensional time-dependent scaling function.
For simplicity, we assume that X € [-1,1]? (if not, it can always be linearly

scaled). The function s(x, ) must satisfy the following conditions:

e s(x,t) must be strictly monotonic with respect to x; otherwise, it may

introduce new global minima into the problem.

35 e s(x,t) must be continuous to ensure that the number of global minima

does not decrease after scaling the search space.

e 5(1,1) =1 and s(-1,7) = —1, so that if X is inside/outside the search range,

s(X, 1) is also inside/outside the search range.

e For any x and ¢, we should have 0< %s(x, t) < co; otherwise, the basin of

330 a global minimum may become too small or too large.

The scaling function suggested in this study is formulated following these
requirements. First, two auxiliary functions s1(x) and s2(x) are defined to for-
mulate the nonlinear component of the scaling function. These two functions
are segments of two circles of radius R = €2 + (1 +e.)? whose centers lie on

3 [1+ec,—ec]™ and [—e., 1 +e.]T, respectively (see Figure [2)).

C‘l‘ec

€c

€c

€c +C

(a) s1(x) (b) s2(x)

Figure 2: Auxiliary functions used in this study to generate nonlinearity in the scaling func-
tions. The arcs in black solid lines represent the plots of these functions. The center of the

arc is denoted by C.

16
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The scaling function is now defined by performing time-dependent weighted

average of s1(x) or so(x) and x:

(1= |ws (D)) x + [ws ()] s1(Ix[) sgn(x) — if ws(r) >0
s(x,t) = (10)
(1= ws(D)]) x + |ws(1)] s2(x]|) sgn(x)  otherwise

Figure[3|shows the plots of s(x, t) for selected values of wy(z). It is remarkable
that the effect of the scaling function is the contraction of the fitness landscape
wherever d—‘is(x, t)>1 as well as the expansion of it wherever j—xs(x, 1 <1.

The suggested s(x, t) in this study has some interesting properties. Note that
the maximum expansion/contraction occurs at x = =1, 0, 1 when |wg(#)| = 1.

Furthermore, %s(—l,t) = %s(l,t), and besides:

d — 1 — l+ec
10 = 755 = (11)
L5y (0) = — = 5
dx>2 T(1)  Thec

This means that the maximum expansion is equal to the maximum contraction

and:

e when wy(f) = 1, the maximum expansion occurs at x = +1 while the

0.5

we(t) = —1
— — () = —07
= = sw,(t) = —03
—_— () = 0
eeecocecoe Ws(t)=03
_____ w(t) = 0.7
we(t) =1

-1 1

Figure 3: The suggested scaling function in this study (s(x,7)) for some selected values of

ws (1)

17
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maximum contraction occurs at x = 0;

e when wy(f) = —1, the maximum expansion occurs at x = 0 while the

maximum contraction occurs at x = +1;

e The non-linearity of the scaling function can easily be controlled by e..
For e, — oo, the non-linearity disappears, whereas for e, — 0 its effect

becomes maximal.

Figure[dillustrates the effect of the proposed scaling function, when e, = 0.5,
on the shapes, sizes, locations, and relative distribution of the global minima of
the following static function:

2

go(x) = —Zcos(ﬂxi) (12)

i=1

For wg(r) = 0 (Figure 4(a)), the scaling function has no effect on the land-
scape since s(x,t) = x. As observed, the global minima are regularly distributed
and have identically-sized spherical basins. For wg(¢) = 0.5, the scaling function
shrinks the center and expands the regions close to the boundaries (Figure 4(b)).
The impact of the scaling function intensifies for a greater w,(t) and it reaches
its extreme when wy(¢) = 1 (Figure 4(c)). Now, the global minima have different
shapes and sizes, and their relative distances have also reduced. An opposite
effect can be observed for a negative w(z). For example, for ws(f) = —1 (the
opposite extreme), the distance between the global minima has increased. Fur-
thermore, the minimum in the center, which had the smallest basin for w,(f) = 1,
has now the largest basin. The shapes and sizes of other minima have changed
as well. This figure clearly illustrates that the proposed scaling function dynam-
ically changes shapes, sizes, locations, and distribution of the global minima,

and thus, it can simulate some of the main features of DMMO.

5.4. Controllable Regularity of the Change Pattern

Change severity and change frequency are two features of dynamic test prob-

lems [52]. A comprehensive test suite for dynamic optimization should be able

18



s to simulate these two features. Another important feature is the regularity of
the pattern in the change, which can be interpreted as the presence of some pat-
terns according to which global minima change over time. The changes may or
may not show such a pattern [53], [54], [20]. Therefore, a dynamic test problem
should allow for controlling the irregularity /randomness in the pattern of the

s change.

In this study, we propose a deterministic method to control the regularity

of the change pattern. This method defines two distinct control parameters for

(c) ws(t) =1 (d) ws(t) =-1

Figure 4: Landscape of a simple problem subject to the proposed dynamic scaling function at
selected times when e, = 0.5. Darker lines represent a lower function value. The blue asterisks

represent the global minima.
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controlling the change severity: 0<n¢, determines the regular component of the
change pattern whereas the irregular part is controlled by 0 < n;. A greater
value for each of these parameters means a less severe change. Besides, the
intensity of each type of change is independent of the other type. For example,
the problem may show a severe irregular change but a moderate regular change
(alow ny; but a high ny, ), or it may show significant regular and irregular changes
at the same time (low values for both ny; and ny,). These two parameters are
involved in the calculation of a(t), w,(t) and c(¢) as follows:

sin(13) )
nti

a(r) =2r(; +

wy(t) = sin(z—t’:to + 2Zsin(12))

ti

(13)
c(t) =100 sin(fl—t’:to + Z_:Sm(t?)))
to =t mod ny,
in which ‘mod’ denotes the modulo operation. Ideally, a uniform random num-
ber in [-1,1] should have been used in Eq. instead of sin(z2). However, a
simple deterministic function is preferred to avoid randomness in the definition
of the function.

Figure [5] illustrates the effect of the severity of the irregular change on «@(f)
and w, () when ny = 30. It can be observed that for a high ng;, the change in
a(t) and wg(t) is gradual and smooth, whereas for a low n;, this smoothness
disappears and the change in their values is more chaotic. Since the change in
a(t) and wg(t) is proportional to the change in the fitness landscape, the value

of ny; controls the irregularity in the pattern of the change.

5.5. Pseudocode

Given ny;, ny;, and the change Frequency (7;), the pseudocode to evaluate a

solution X when FFE function evaluations have been used is as follows:

e Calculate the time step as follows:

{ [FE—FEOH
t =maxi{0, | — |},

Tt
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(a) (b)

Figure 5: Effect of the severity of irregular change ny; on the a) rotation angle and b) scaling

function weight when ng, = 30

in which FEj is the initial evaluation budget before the first change occurs.

Calculate a(t), ws(t), and c(t) using Eq.

Calculate R(7) using Eq. [7] with @ = a(7).

Calculate s(x,t) using Eq.

Calculate g4(X,t) using Eq.

Supplementary material S3 illustrates the effect of the proposed method
for simulating dynamic behavior on the landscape of a simple problem defined
in Eq. with different settings for e., ny;, and absence/presence of dynamic

rotation.

5.6. Comparison with Other Benchmark Generators

This subsection compares the properties of the DDRB with some well-known
or recently proposed benchmark generators.These benchmark generators were
selected for comparison since they are the most popular ones (see [42] for a com-

parison of the popularity of dynamic benchmark generators), and/or they have
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been recently published in high-quality venues. These benchmark generators

are as follows:

e M-MPB, a slightly modified variant of the well-known MPB which was
employed in [T3].

e Real Composite Dynamic Benchmark (RCDB) and Real Rotation Dy-
namic Benchmark (RRDB) generators developed in [44]

e The benchmark generator developed in [46] by a combination of RCDB
and RRDB. Therefore, it is denoted by Real Rotation Composite Dynamic
Benchmark (RRCDB) generator.

e GMPB, the generalized moving peaks benchmark formulated in [42]

Table [3| presents the comparison criteria. Table [4] makes a comparison
among the benchmark generators, which shows that DDRB enjoys several ad-
vantages. The generated test problems are deterministic and computationally
cheap. DDRB allows the user to control the non-uniformity in the distribution
of global minima, a major challenge associated with multimodal optimization.
Besides, its dynamic simulation mechanism can be easily combined with an ar-
bitrary static multimodal test problem. This important feature allows for the
generalization of existing widely-accepted static multimodal optimization test
problems (e.g., the CEC’2013 test problems for multimodal optimization [I8] )
to DMMO.

6. Mean Robust Peak Ratio

When tracking all global minima is desired, performance indicators based
on Peak Ratio (PR), one of the most commonly used performance indicators
for static multimodal optimization [I8], are a more reasonable choice than the
off-line error. For example, it is possible to average the PR values calculated at

the end of each time step, as employed in [I12] and [I6]. However, Calculation
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Table 3: Criteria for comparison of the dynamic multimodal benchmark generators

CID | Description of the Criterion

C1 | Can the generated test problem have multiple global minima?

C2 | Does the distance between basins change over time?

C3 | Is the dynamic non-uniformity in the relative distribution of minima controllable? In other
words, is it possible that the user makes sure that in some time steps, some minima are
closely packed while the rest are far from each other?

C4 | Can the sizes of basins of minima change over time?

C5 Can the basins of minima have different shapes?

C6 | Can the shapes of basins change over time?

C7 | Can the dynamic mechanism simulate complex (but not random or irregular) patterns in
the movement of a minimum? For example, moving along a straight line is a simple pattern.

C8 Can the dynamic mechanism simulate a controllable amount of irregularity /randomness in
the pattern of the change?

C9 Can the fitness landscape have an adequate global structure around each desired minimum?
A landscape that consists of several independent subparts lacks this structure.

C10 | Will a solution evaluation be cheap if the problem has several minima/basic functions?
Calculation of multiple basic functions or employing transformations for each basic function
(e.g., rotation) results in a substantial amount of extra computation.

C11 | Is the generated problem deterministic? Randomness in the objective function definition
introduces additional statistical uncertainty in the measured performance and makes an
exact reproducibility of results hard.

C12 | Can the dynamic mechanism in the benchmark generator be easily applied to existing test
problems for multimodal optimization? There are already well-developed test problem and
benchmark generators for static multimodal optimization.

C13 | How complex is the formulation of the benchmark generator? Having many equations,

complex equations, and extra user-tuned parameters increases the benchmark generator’s

complexity.
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Table 4: Comparison of the proposed test suite generator (DDRB) with other benchmark
generators using the criteria defined in Table

CID | M-MPB | RCDB | RRDB | RRCDB | GMPB | DDRB
C1 Yes No No No No Yes
C2 Yes Yes Yes Yes yes Yes
C3 No No No No No Yes
C4 Yes No Yes No Yes Yes
Ch No Yes No Yes Yes Yes
C6 No No No No Yes Yes
C7 No No Partially Yes” No Yes¢
C8 yes Yes Yes Yes yes Yes
C9 No Yes No Yes Yes Yes

C10 No No No No No Yes

C11 No No No No No Yes

C12 No No No No No Yes

C13 Low High High High High High

¢ Rotation only
b Combined rotation and translation

¢ Combined rotation and nonlinear scaling
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of PR requires the user to define a tolerance for the objective value () and
a preset niche radius Ryien. If these values are not set properly, the detected
global minima may be counted incorrectly. For example, if the basins are large,
a small Ry, may result in a calculated PR greater than the actual one.

Conversely, a large Rpicn can result in a PR which is lower than the actual
one if the global minima are close to each other. If the global minima are
drastically different in size, it might be even impossible to find a proper value
for Rpjcn. This becomes even more challenging for DMMO, since the relative
distances between global minima change over time.

Setting €7 to a small value can address the issues associated with Ryjep if
Ruich is set to a sufficiently small value. However, this may ignore the global
optima that had been approximately detected, e.g., the algorithm could get close
to the global minimum but could not converge to its exact location. This could
be problematic since PR uses a binary measure to check whether the algorithm
has found a global minimum or not. A small € can thus calculate a lower
PR than the actual one, whereas a large one may perceive two basin-sharing
solutions as distinct global minima.

It is also possible to utilize the hill-valley test [55] to check whether two
solutions share the same basin without the need to define the niche radius. This
test was used in [I3] to count the number of detected minima. However, the
hill-valley test is only a heuristic and may result in an incorrect outcome.

This study proposes Robust Peak Ratio (RPR) for measuring the perfor-
mance of a multimodal optimization method. In contrast to PR, it gives partial
credit for approximately identified global minima and besides, it automatically
sets the niche radius for each global minimum. Algorithm [I]presents the pseudo-
code for the calculation of RPR.

According to Algorithm [1] first, the niche radius for each global minimum
(Ruich, ) is calculated, which corresponds to half of the distance from that global
minimum to the closest one (lines 3-5). Then, the subset of candidate solutions
related to each global minimum is identified (line 7). If this subset is not empty,

the best solution in the subset is selected as the representative one (line 9).
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Algorithm 1: Calculation of RPR

Data: Set of candidate solutions X={X1, Xo,..., Xn} and the global
minima X* = {X7], X3, ..., X*Ngmm}’ minimum and maximum
threshold for global minimum value (0 < €g, . <e€f,. )

Result: RPR

initialization ;

=

2 count <« 0 ;
3 for k < 1 to Ngmin do

Ro; <—0.5( min  ||X - X* ) :
nichg X}‘EX*,]’#k ” k ]” )

5 end

6 for k < 1 to Ngmin do

7 Let S € X be the set of all solutions in X whose distance to X is
less than Ryich, ;

8 if S # 0 then

9 Let f* be the minimum value of the solutions in § ;
. 1 —In(f*-f*
10 count < count + min {1, max {0, fn((iffn:‘:)_ﬁf{eff)) H ;
11 end
12 end

13 RPR « count[Ngmin ;
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Then, the counted number of detected global minima is increased by a continu-
ous value between 0 and 1 (inclusive) based on the quality of the representative

solution, which is its value when compared to €y, and €, (line 10). At the

end, the counted number of minima is divided by the Ngmin to calculate RPR
(line 13).
RPR can be easily extended to dynamic problems as follows:

Imax

1
MRPR=————Y" RPR(1), (14)

1 max =0

in which RPR(t) is the calculated RPR at the end of time step ¢t and MRPR is
the Mean Robust Peak Ratio, which is our proposed performance indicator for

DMMO.

7. Numerical Results

This section provides numerical results of a simple DMMO method on the
set of dynamic test problems presented in Table [2] combined with the proposed
dynamic simulation procedure proposed in Section[5] The numerical results can

serve as a reference for future studies that use DDRB.

7.1. Dynamic Scenarios

Different scenarios are considered in this study. Starting from the base
scenario, each subsequent scenario emphasizes one specific type of challenge
associated with DMMO. Table [5] presents the scenarios considered in this study
and the challenge emphasized in each scenario. In all scenarios, the first change

occurs after 4000D Ng,in evaluations.

7.2.  Dynamic Multimodal Optimization Method

This section benchmarks a dynamic variant of Covariance Matrix Self-Adap-
tation Evolution Strategy with Repelling Subpopulations (DRS-CMSA-ES). It
combines RS-CMSA-ES [51] with a simple strategy to utilize previous informa-

tion. When a change occurs, a new restart of RS-CMSA-ES is run in which the
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Table 5: Scenarios considered in this study and their characteristic features.

Tt
DNgmin

I 0.3 10.5[30| o0 | 2000 | 40 |Base Scenario

11 0.6 [0.5|30 | c0| 2000 | 40 |Hard global optimization
II1 0.3 10.130|co| 2000 | 40 |Hard niching problem
v 0.3 10510 | co | 2000 | 40 |Severe changes

A% 0.3 10.5/30| 5| 2000 | 40 |Irregular changes
VI 0.3 10.5[30| 0| 500 | 40 |Fast-changing problem

Scenario | hgo | ec | ner | R tmax | Feature

center of the subpopulations is one of the archived solutions in the previous time
step, and the initial global step size is set to half of the default value. If all the
previously archived solutions have been tried, the center of a new population
is determined according to the default setting in RS-CMSA-ES. The number of
subpopulations and the subpopulation size increase factor are set to 1 and 1.05,

respectively.

7.8. Results and discussion

Table [6] presents the MRPR of DRS-CMSA-ES for each problem in each

scenario, calculated over 50 independent runs when ey =107°.

max

=0.1 and €g,,,

The average RMPR in each scenario, calculated over 10 problems, is also pro-

vided. It can be observed that:

e A considerable reduction in MRPR is observed in Scenario II since a higher
hco has increased the difficulty of the global optimization. Similarly, a
lower e, (Scenario III) has increased the difficulty of the DMMO problem
by intensifying the hardness of its niching aspects (e.g., severe changes
in shapes, sizes and relative distances of global minima). This shows
that these two parameters can reliably control the challenges associated
with both global optimization and multimodal optimization, allowing the
researcher to scrutinize pros and cons of a DMMO method in coping with

these two challenges in isolation.
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e A significant performance drop can be observed for the fast-changing prob-

lems (Scenario VI) as well, demonstrating an increase in the intensity of

challenges associated with dynamic aspects of the problems.

The change severity (Scenario IV) and irregularity of changes (Scenario
V) have little impact on the performance of DRS-CMSA-ES , which prac-
tically does not employ any prediction method. This may account for the
insensitivity of its performance to these two factors. Utilization of a pre-
diction method can improve the performance when the changes are more

regular and less severe, but it may deteriorate it otherwise.

For most problems, DRS-CMSA-ES can reach a high RPR in the base
scenario. It can be deduced that by increasing the change frequency, RS-
CMSA-ES can reach MRPR = 1 at least in the base scenario. This means
that there is at least one method that can detect and track all global

minima if the change frequency is reasonably high.

Since a robust DMMO method should be reliable in diverse scenarios,
researchers are encouraged to adopt the average MRPR when compar-
ing different methods. The average MRPR of DRS-CMSA-ES is 0.764
according to Table [6]

8. Summary and Conclusions

This study has proposed a method for generating tunable test problems
for evaluating dynamic multimodal optimization (DMMO) methods in the con-
tinuous domain. The method, called Deterministic Distortion and Rotation
Benchmark (DDRB), was employed to generate ten DMMO test problems in
which the user can control the intensity of each type of challenge associated with
DMMO problems. The proposed scaling function simulates dynamic behavior
by distorting the fitness landscape, which changes the shapes, sizes, locations,

and relative distribution of the global minima over time. Besides, this study
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formulated a simple deterministic way to control the regularity of the change
pattern and proposed the Robust Peak Ratio to overcome the sensitivity of the
well-known Peak Ratio indicator to the user-defined tolerance for the global
minimum value and niche radius by giving partial credit for the approzimately
identified global minima and determining the corresponding solutions for each
global minimum. Finally, it has provided the results of a simple DMMO method
for these ten test problems in six dynamic scenarios as a reference for future
studies.

When compared with existing benchmark generators, DDRB is determin-
istic, which allows for reproducible and reliable comparison of results across
different platforms and software. The user has control over dynamic variation
in the non-uniformity of the distribution of global minima, a well-known chal-
lenge associated with multimodal optimization. The resultant test problems are
computationally cheap. Finally, the dynamic mechanism of DDRB allows for
easy generalization of existing and well-developed static multimodal optimiza-
tion test problems to DMMO.

Tunability of the proposed test problems allows the user to have complete
control over the significance of each type of challenge associated with DMMO
problems (i.e., global optimization, niching, and dynamic optimization) with
only a few control parameters. Such a control allows for studying the pros and
cons of a DMMO method in coping with each type of challenge. For bench-
marking and comparing DMMO methods, it allows setting a reasonable balance
between different aspects of the DMMO problem. For example, in our case, more
challenging niching features have resulted in a significant drop in performance.

The employed methodology in this study can be generalized to other types of
problems involving distinct challenges. For example, a tunable benchmark gen-
erator for dynamic multiobjective optimization should be able to easily control
the difficulty of i) global optimization (finding a solution in the global efficient
set), ii) diversity preservation (ideal spread of population over the global efficient
set), and iii) dynamic optimization (tracking the global efficient set). Besides,

the change in the objective values may necessitate multimodal optimization as
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well because a local efficient set may become the global one after some time.
This challenge, which has not been adequately explored in the literature, high-
lights the importance of multimodal optimization for dynamic multiobjective

optimization.
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