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Abstract

Prediction methods are useful tools for dynamic multiobjective optimization
(DMO), especially if the changes roughly follow some patterns. Multi-model
prediction methods, in particular, may capture di�erent types of change pat-
terns; however, they should address two issues. First, they should de�ne a
similarity measure that can correctly �nd the corresponding Pareto-optimal
solutions in two successive time steps. Second, they should be reasonably
robust to input errors. This study introduces a new information-sharing
strategy to improve the robustness of multi-model prediction methods in
which each prediction model utilizes some information from the individual
models of adjacent solutions. An adaptive scheme based on the relative dis-
tribution of population members is also proposed to utilize this information
properly. The e�cacy of this strategy in improving the robustness of the
multi-model prediction method is demonstrated. Furthermore, this study
introduces a similarity metric and thoroughly analyzes it alongside some of
the commonly used similarity metrics for DMO. A weighted pointwise pre-
diction method (WPPM) for DMO is then developed using the formulated
information-sharing strategy and the proposed variable-based similarity met-
ric. WPPM is compared with other well-known prediction methods on the
CEC2018 test suite for DMO, with the numerical results revealing the supe-
riority of WPPM.
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1. Introduction

Dynamic multiobjective optimization (DMO) problems refer to a class
of problems in which multiple objectives are optimized when a problem's
landscape changes over time. This change may originate from a change in
the formulation or the number of objective functions [8], variables [26] or5

constraints [2]. DMO methods have gained increasing popularity in the last
decade since many practical problems are subject to dynamic changes and
con�icting objectives. Several previous studies have investigated the merits of
DMO in varied applications, such as: design of control systems [21], mission
planning [5], wastewater treatment [18], and vehicle routing [17].10

Dynamic optimization is motivated by the fact that in many practical dy-
namic problems, changes are generally not radical [6], and thus, the problem
landscape after a change is correlated to the previous landscape. Further-
more, the changes in a problem may follow a pattern which can be exploited
[41, 19]. One example is a steadily changing environment in which for sim-15

plicity, the actual problem is simulated as a series of periodically stationary
problems [30] that undergo small but frequent (a closer approximation to the
real scenario) or larger but less frequent changes [12]. Solving such problems
by performing an independent static optimization after each change overlooks
valuable previous information. This information is particularly important20

since the change may happen frequently, providing only a few generations
for the method before the next change occurs. The superiority of DMO
methods over restarts of static methods diminishes as changes become more
radical. If the changes are chaotic and do not follow any distinguishable pat-
tern, a random initialization of a static optimization method can be as good25

as [19], or even better, than any DMO method.
DMO methods can be classi�ed based on how they handle the dynamic

nature of a problem. One class modi�es the operators of the employed SMO
method to tailor it for dynamic problems, e.g. by keeping a high diversity
during the optimization [36] so that the algorithm can react promptly to any30

changes [15] and the loss of previously gathered information. Nevertheless,
keeping a high diversity hinders convergence. This can be problematic for dy-
namic problems since the limited evaluation budget per time step necessitates
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a fast convergence. Furthermore, enforcing high diversity could be detrimen-
tal if the problem is multiobjective. The reason for this is that some diversity35

is already automatically preserved, because for a problem with " objectives,
population members should generally be spread over an (" − 1)-dimensional
manifold in the search space, so adding even more diversity on top of this,
can extremely limit the computational budget used for optimisation

The other class of DMO methods does not interfere with the operators40

of SMO but introduces additional operators that function independently.
Methods in this class generally consist of three modules: (1) A static multi-
objective optimization (SMO) method that optimizes a stationary problem
between two consecutive changes, (2) a change detection mechanism which
detects change occurrence, and (3) a change response strategy, which is acti-45

vated immediately after the change � mainly to provide the population seed
for the new time step. The modularity of this class of DMO methods allows
for the exploration of each component in isolation, as well as drawing more
solid conclusions about the advantages of individual methods. Because of
this advantage, this study focuses on this class of DMO methods.50

For the SMO module, many studies have employed evolutionary algo-
rithms (EAs) and swarm intelligence (SI) methods [36, 35]. The �exibility
of these methods [3] makes them ideal tools to deal with the complexity of
DMO problems. EAs and SI methods enjoy another advantage: dealing with
a population of solutions provides a diversity of information which is crucial,55

not only for multiobjective optimization, but also for dynamic optimization.
The change detection module is an essential part of a DMO method if

the change is not informed. Re-evaluation-based strategies are the most
common strategy for change detection [36], which re-evaluate a fraction of
the existing solutions in each iteration, called the detectors [37]. A change is60

concluded to have occurred if the new value is di�erent from the old one. The
detectors need extra evaluations and this strategy can result in false positives
in noisy environments and false negatives in problems where only a part of
the search space changes. Strategies based on an algorithm's behavior form
a set of alternative change detection methods, which saves some evaluations65

but may still result in false predictions [36]. Furthermore, they cannot be
treated as a DMO module, since their reliability depends on the employed
SMO method.

The change response module reinitializes the population for each new time
step. It uses the history of the optimization process to discover a pattern in70

the previous changes. This pattern can be exploited to estimate the Pareto
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optimal set (POS) at the new time step, and thus, to expedite convergence
to POS by reinitializing the population close to the new POS. Therefore, the
history of the population up to the change can be interpreted as information

on the behavior of the dynamic problem. This information is generally avail-75

able from the stored population at speci�c intervals, especially at the end of
each time step. For example, memory methods use old solutions and are ad-
vantageous for periodical or recurrent changes [37, 36]. Prediction methods
are more robust tools that can learn existing patterns in a group of changes
to properly reinitialize the population; however, the majority of the existing80

prediction methods are single-model methods, which means they employ a
single prediction model for the whole population. Although such methods
are simple, they have limited �exibility for capturing di�erent aspects of a
change pattern.

More sophisticated prediction methods are multi-model, in which di�erent85

models are allocated to di�erent parts of the population. This enables them
to potentially capture more diverse aspects of possible patterns in a sequence
of landscape changes. Multi-model prediction methods, however, face two
extra challenges. First, they are more sensitive to input error, caused by the
absence of perfect convergence of the SMO in previous time steps. Second,90

they should de�ne a similarity metric that can correctly identify the relevant
solution in the previous time step for each solution in the current time step.
This study intends to develop a multi-model prediction method that can
capture complex patterns in changes while remaining robust against input
errors. The main contributions of this work are as follows:95

• Introduction of a novel information-sharing strategy for multi-point
prediction models to improve their robustness. The strategy allows each
point to exploit information from its adjacent solutions. The extent of
this information sharing is adapted based on the relative distribution
of solutions.100

• Development of a similarity metric for multi-model prediction methods
and analyzing it alongside other conventionally used similarity metrics.
This analysis discovers a critical shortcoming in the objective-base sim-
ilarity metrics, and thus, favors variable-based similarity metrics.

• Introduction of a new weighted pointwise prediction method (WPPM)105

which combines the proposed information-sharing strategy, the selected
similarity metric, and directional variation.
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• Introduction of Mean Inverse Generational Distance Plus (MIGD+) as
a weakly Pareto-compliant computationally cheap performance indica-
tor, to overcome the limitations of existing conventional measures for110

DMO.

The rest of this article is organized as follows: Section 2 reviews ex-
isting single-model and multi-model prediction methods for DMO. Section
3 performs an in-depth analysis of the introduced and existing similarity
metrics. Section 4 elaborates the proposed information-sharing strategy for115

DMO. WPPM is formulated and analyzed in Section 5. Section 6 de�nes the
MIGD+ indicator for performance evaluation of DMO methods, and some de-
scriptive experiments are performed in Section 7 to highlight the importance
of di�erent components of WPPM. Section 8 compares WPPM with some of
the most well-known and successful existing prediction/reinitialization meth-120

ods on the CEC2018 test suite for DMO [29]. Finally, conclusions are drawn
in Section 9, and a few paths for future research on DMO are also provided.

2. Previous Related Work

This study considers dynamic problems that match the following mathe-
matical formulation:

min f (x, C) = ( 51(x, C), 52(x, C), . . . , 5" (x, C))T

s.t. x ∈ Ω
(1)

in which f (x, C) ∈R" is the vector of objective values for solution x at time
step #C, and Ω⊆R� is the search space for solution x, which is a box with125

de�ned upper-right (XU) and lower-left (XL) corners. � and " are the
problem dimensions in decision variable and objective space, respectively.

The POS at time step #C is denoted by S(C). The �nal population at the

end of time step #C is denoted by X(C)
FP
= {x (C)

FP1
, x (C)

FP2
, . . . , x (C)

FP#
}, in which # is

the population size. X(C)
FP

is considered as an inexact approximate of S(C). The130

situation in which the time step #C has just concluded is considered, when
the prediction method aims at generating the initial population for time step

#C+1, which is denoted by X(C+1)
IP

= {x (C+1)
IP1

, x (C+1)
IP2

, . . . , x (C+1)
IP#
}.

The prediction error is the di�erence between the predicted and the true
S(C+1), which originates from two main sources [19]: the �rst one is the model135

error, which is the inability of the prediction model to fully capture the
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change pattern, whereas the second source of error, called the input error [6],
originates from the inaccuracy of the data provided for the model because the
prediction method in practice accesses an inexact approximation of S( 9) , 9 =
0, 1, . . ., C.140

Prediction methods employ one or two diversity enhancement compo-
nents, such as random immigrants [12] and hypermutation [9], to increase
diversity immediately after a change. Hypermutation methods [9] dramati-
cally increase the mutation rate for one generation after a change and have
been found to be helpful for DMO [12]. This increased diversity, which comes145

at the price of a partial loss of existing information, often improves overall
performance. Excluding the e�ect of random variation, prediction methods
can be classi�ed into two groups, based on the number of models that they
employ, i.e. single-model and multi-model methods.

2.1. Single-Model Prediction Methods150

Many existing prediction methods employ a single model for the whole
population. At the end of time step #t, this model calculates a translation
vector (v (C)) by tracking the centroids of either the non-dominated solutions

or all the solutions in X
( 9)
FP
, 9 = 1, 2, . . . , C, and then relocates solutions in X(C)

FP

using the predicted v (C+1), which is denoted by ṽ (C+1), to generate the seed155

population for time step #(t+1). The Hybrid Immigrants Strategy (HIS)
[43], for example, exploits the translation vector to calculate the moving di-
rection and the standard deviation for random variation. Hybrid of Memory
and Prediction Strategies (HMPS) [32] calculates the predicted translation

vector as the di�erence between the centroids of X(C)
IP

and X(C−1)
IP

or the di�er-160

ence between the centroids of X(C)
IP

and an archived population. The choice
depends on whether the recent time step is similar to one of the old ones.

The predictive gradient strategy [30] predicts v (C+1) as the weighted aver-
age of v (C) and v (C−1). The di�erential prediction model [7] and decomposition-
based di�erence model (DDM) [6] also de�ne ṽ (C+1) as the weighted average165

of v (C) and v (C−1) but they use a negative weight for v (C−1). The directed
search strategy [44] translates and perturbs solutions along v (C) or performs
local search in the region orthogonal to v (C). Prediction and Memory Strate-
gies (PMS) [40] selects a number of uniformly distributed non-dominated
solutions and copies them along v (C) at speci�c distances.170

Zhou et al. [46] divided the prediction model into two parts, the center

point c(C) and the manifold C̃
(C)

that stores the locations of solutions in
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X
(C)
FP

relative to c(C). They employed an autoregression (AR) model that was

suggested in [19] to predict c(C+1) and predicted C̃
(C+1)

by applying a Gaussian

variation to C̃
(C)
. This method was also employed in [33]. The di�erence of175

this method with previous ones is that the strength of variation is calculated
over the di�erence between the latest manifolds. Nevertheless, it still uses a
single translation vector for all the solutions, which means it can only capture
the translation of POS.

Steady-State and Generational EA (SGEA) [28] uses a single model to180

calculate the length of the translation vector and the strength of random
variation. To predict the moving direction, it re-evaluates a subset of the
population and calculates the centroid of the nondominated solutions. The
di�erence between the centroids of the nondominated solutions, before and
after re-evaluation, provides the moving direction.185

The prediction method based on controlled translation and directional
variation [1] adjusts the length of the translation vector v (C+1) by measur-
ing the success of the model in previous time steps. The employed direc-
tional variation formulation, which only increases diversity along the pre-
dicted translation vector, could improve the quality of reinitialized solutions,190

whereas Isotropic variation turned out to be detrimental.

2.2. Multi-Model Prediction Methods

Although a single prediction model based on the movement of the centroid

of X(C)
FP

can be helpful, it can only capture limited aspects of the pattern
in the changes, which is generally only the translation of the POS. A few195

studies have developed more sophisticated models to develop more �exible
prediction methods. These methods employ an independent model for each

speci�c point, which can be each solution in X(C)
FP

[24], [47], a representative
solution of a cluster of solutions [41], or an extreme solution [31, 19, 42].

Multi-model prediction methods, however, face a critical challenge that200

should be addressed: How to �nd the corresponding speci�c point in X(C−1)
FP

for each speci�c point in X(C)
FP
. An incorrect correspondence can result in

substantial prediction error since the model perceives two or more irrelevant
solutions as variations of one particular solution over time.

To identify the corresponding speci�c solutions, a multi-model prediction205

method de�nes a heuristic which identi�es the most similar solution in X(C−1)
FP

for each solution in X(C)
FP
. Therefore, this study refers to such a heuristic as
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a similarity metric. A similarity metric may be de�ned in decision variable
space [41, 47] or in objective function space [31, 24, 19, 34]. For example,
PRE [47], one of the earliest prediction methods for DMO, allocates an in-210

dependent model for each solution, an ultimate case which is referred to as a
pointwise model in this study. The similarity metric of PRE is variable-based
because it employs the minimal Euclidean distance in decision variable space
to �nd the correspondence. This method, however, was only tested on two
test problems in which all or most aspects of the change in POS could be215

captured by a pure translation. The same pointwise model has recently been
used in the Pareto-based evolutionary algorithm using decomposition and
truncation (PDTEA) [38].

The feed-forward prediction strategy (FPS) [19] trains two independent
models for each boundary point (two points in the case of the bi-objective220

problems that were considered), hoping that these two speci�c points show
the way for the population in the new time step. Since the boundary
points are de�ned in objective space, the similarity metric of this method
is objective-based.

The prediction method proposed in [42] tracks minimum and maximum225

points, in addition to the center point, to predict the limits of the region in
which S(C+1) lies (variable-based similarity measure). In the multidirectional
prediction approach [41], the speci�c points are representative solutions of
several clusters. The Euclidean distance in decision variable space is used for
determining the corresponding solutions, and thus, their employed similarity230

measure is in decision variable space. One additional challenge associated
with this method is that there is no guarantee that solutions in a speci�c
cluster will remain in the same cluster in the next time step.

Tr-DMOEA [24] exploits a transfer learning framework [39] to compensate
for dissimilar distributions of non-dominated solutions in two successive time235

steps. It calculates a transformation matrix to relocate objective values to
a latent space and then speci�es the new solutions such that their distances
to the existing solutions are minimal. A similar method was employed in
another study [25]. This method has two disadvantages: It requires a pre-
de�ned number of extra evaluations (order of population size) to estimate240

the distribution of objective values, as well as a time-consuming process for
calculation of the transformation matrix.

The predictive strategy based on special points (SPPS) [31] determines
speci�c points, such as the knee point and boundary points, based on a
similarity measure in objective space. These points are directly transferred245
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to the next time step. Besides, non-dominated solutions are translated using
an additional center-based model.

In summary, multi-model prediction methods have great potential for
capturing complex patterns in a series of changes. To achieve this potential,
a multi-model prediction method must address two main challenges:250

• How to de�ne a similarity metric to correctly identify the corresponding
speci�c point in the previous time step.

• How to improve the robustness of the multi-model prediction methods
against input error.

Unless these two challenges are met e�ectively, it remains unclear whether255

the potentials of multi-model prediction methods can pay-o� given their sen-
sitivity to input error.

3. Similarity Metrics

As discussed in Section 2.2, a multi-model prediction method needs to

�nd the corresponding solution in X(C−1)
FP

for each x (C)
FP8
∈X(C−1)

FP
. This section260

analyzes commonly employed similarity metrics and suggests a new similarity
metric in decision variable space. A detailed comparison of these similarity
metrics is performed in Section 7.

3.1. Similarity Metrics in Decision Variable Space

The �rst similarity measure follows the one suggested in [47], which is265

based on Euclidean distances in decision variable space. For each x (C)
FP8
∈ X(C)

FP
,

the corresponding solution in X(C−1)
FP

, denoted by x (C−1)
FP8

, is identi�ed as follows:

x (C−1)
FP8

= argmin
x (C−1)
FP 9

(


x (C)FP8
− x (C−1)

FP 9





2

)
, 8 = 1, 2, . . . , #. (2)

Although this measure is intuitive, we noticed that it has one major

drawback. It may be misled when centroids of X(C)
FP

and X(C−1)
FP

do not coincide.
An exemplary case is illustrated in Fig. 1 for t=3 and three sample solutions270

x (3)
FP1
, x (3)

FP2
, x (3)

FP6
∈ X(3)

FP
. Fig. 1a illustrates that X(3)

FP
can be obtained by a

rotation and a translation of X(2)
FP

. Accordingly, the correct correspondence
for these sample solutions is depicted in Fig. 1b. Using the least Euclidean
distance results in the erroneous correspondence depicted in Fig. 1c.

9



                    

          

x1 

x2 

x1 

x2 

x1 

x2 

x1 

x2 

(a)

                    

          

x1 

x2 

x1 

x2 

x1 

x2 

x1 

x2 

(b)                    

          

x1 

x2 

x1 

x2 

x1 

x2 

x1 

x2 

(c)

                    

          

x1 

x2 

x1 

x2 

x1 

x2 

x1 

x2 

(d)

Figure 1: Finding the corresponding solution in X(2)FP for three sample solutions in X(3)FP
at the end of the third time step. a) The change in POS consists of a translation and a

rotation. b) The actual corresponding solution in X(C−1)FP for each sample solution in X(C)FP
(delineated by black double-arrow line segments). c) Finding the corresponding solutions
using the minimum Euclidean distance in decision variable space can result in an incorrect

correspondence. d) Using a set of auxiliary solutions (X̂(C−1)FP ), delineated by red triangles
with dashed edges, we can address this issue. These auxiliary solutions are determined

by a translation of X(C−1)FP along the vector c (C) − c (C−1) . Note that the centroid of X̂(C−1)FP

coincides with the centroid of X(C)FP .

To overcome this shortcoming, we propose the following procedure: First,275

a set of auxiliary solutions X̂(C−1)
FP

= {x̂ (C−1)
FP1

, x̂ (C−1)
FP1

, . . . , x̂ (C−1)
FP#
} is de�ned by

the translation of X(C−1)
FP

, such that the centroid of X̂(C−1)
FP

coincides with the

centroid of X(C)
FP
:

x̂ (C−1)
FP8

= x (C−1)
FP8

+
(
c(C) − c(C−1)

)
, 8 = 1, 2, . . . , #, (3)

in which c(C) is the centroid of the solutions in X(C)
FP
. These auxiliary

solutions (x̂ (C−1)
FP8

's) are then used instead of x (C−1)
FP8

's to calculate the Euclidean280

distance in Equation 2, and subsequently, to determine the corresponding

solution in X(C−1)
FP

for each x (C)
FP8

. After that, these auxiliary solutions are
discarded. Fig. 1d illustrates that this modi�cation can address this issue
and determine the correct correspondence.
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3.2. Similarity Metrics in Objective Space285

The most intuitive similarity measure in objective space minimizes the
Euclidean distance in the normalized objective space. The solution corre-

sponding to x (C)
FP8

is identi�ed as follows:

x (C−1)
FP8

= argmin
x (C−1)
FP 9

(


 f̃ (C)FP8
− f̃

(C−1)
FP 9





2

)
, 8 = 1, 2, . . . , #, (4)

in which f̃
(C)
FP8

and f̃
(C−1)
FP 9

are the normalized objective values of x (C)
FP8

and x (C−1)
FP 9

,

respectively.
It is also possible to de�ne a similarity metric based on reference directions

[13], according to which the similarity metric is the planar angle between the

line segments connecting the origin to f̃
(C)
FP8

and f̃
(C−1)
FP 9

. The planar angle can
be easily calculated using the dot product:

V8 9 = cos−1
©­­«




 f̃ (C)FP8
. f̃
(C−1)
FP 9





2


 f̃ (C)FP8





2




 f̃ (C−1)FP 9





2

ª®®¬; 8, 9 = 1, 2, . . . , #, (5)

in which V8 9 is the planar angle. According to this metric, the x̃ (C−1)
FP 9

that

corresponds to x̃ (C)
FP8

is the one that minimizes V89 . An equivalent of this metric

has recently been used in the reference-point-based prediction strategy (RP)290

[34] to �nd the correspondence between archived solutions of two successive
time steps.

These two objective-based similarity metrics are illustrated in Fig. 2a.

The objective is to �nd the corresponding solution in F̃(3)
FP

for the speci�ed

solution in F̃(4)
FP

(solid circle) given F̃(3)
FP

(red triangles) and F̃(4)
FP

(green cir-295

cles). Fig. 2b illustrates how the corresponding solution is determined using
the minimum Euclidean distance in objective function space: the Euclidean
distance between the green solid circle and all triangles is calculated (red
dashed line segments). The corresponding triangle is the one with minimum
distance. Fig. 2c illustrates the corresponding solution determined using the300

minimum planar angle similarity metric. The planar angles are the angles
between the line segment connecting the solid circle to the origin (green solid
line segment) and each of the line segments that connect one of the trian-
gles to the origin (red dashed lines). As can be observed, the corresponding
solutions using this similarity metric is di�erent from the previous one.305
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Figure 2: Finding the corresponding solution in F̃(3)FP (red triangles) for a speci�c solution

in F̃(4)FP (green solid circle) using two similarity measures in objective space a) minimum Eu-
clidean distance, b) minimum planar angle. The solid triangle denotes the corresponding
solutions according to the employed similarity metric.

Using a similarity measure in objective space does not require the trans-
lation of the POS; however, there is an inherent caveat: the similarity of
two solutions in objective space does not necessarily require their similarity
in decision variable space. For example, there could be multiple dissimilar
points in POS, which have similar normalized values. If so, any of them may310

be selected, depending on which one exists in X(C−1)
FP

.
There is another major challenge associated with the similarity measures

de�ned in objective space: as they are calculated in normalized objective
space, they may overlook one or more objectives with small values. There-
fore, the outcome of an objective-based similarity measure strongly depends315

on the estimated ideal and nadir points, which have a major impact on the
normalized values. Determining these points during the optimization process
is not a trivial task since it should ful�ll several requirements, as discussed
in [4]. This can be problematic if the SMO method cannot provide a good
approximation of the true Pareto optimal front (POF) in the available eval-320

uation budget.

4. Proposed Information-Sharing Strategy

Single-model prediction methods analyze the movement of the X(C)
FP

cen-
troid, which is not sensitive to input errors. In multi-model prediction meth-
ods, each model analyzes the movement of a (small) fraction of X3

FP. Since the
data size for each model is small, each model, and subsequently the whole
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multi-model method, is sensitive to input errors. In the ultimate case of
pointwise prediction methods, only one solution is provided for each model.
For example, the pointwise prediction method of PRE, excluding the random

variation, calculates the predicted translation vector (ṽ (C+1)
8

) as follows:

v (C)
8
= x (C)

FP8
− x (C−1)

FP8

ṽ (C+1)
8

= v (C)
8
, 8 = 1, 2, . . . , #,

(6)

in which the similarity metric is the Euclidean distance in decision variable
space. The seed solutions for the time step #C+1 are generated as follows:

x (C+1)
IP8

= x (C)
FP8
+ ṽ (C+1)

8
+, 8 = 1, 2, . . . , # (7)

Fig. 3 depicts an exemplary case in which the PRE prediction model,
excluding the random variation, is used to initialize the seed population for
time step #C +1. The change in this POS consists of a translation and a325

rotation. When there is no input error (�awless convergence of the SMO
method in time steps #C and #C−1), the prediction method can initialize

X
(C+1)
IP

on S(C+1) (Fig. 3a); nonetheless, when there is even a minor input error

(Fig. 3b), x (C+1)
IP8

's are initialized far from S(C+1), resulting in a considerable
prediction error.330

To improve the robustness of the pointwise prediction model to input
errors, this section proposes an information-sharing strategy, according to

which each predicted translation vector (ṽ (C+1)
8

) utilizes some information
from the translations of all other solutions:

v (C)
8
= x (C)

FP8
− x (C−1)

FP8

ṽ (C+1)
8

=

∑#
9=1F89v

(C)
9∑#

9=1F89
, 8 = 1, 2, . . . , #,

(8)

in which F89 ≥ 0 speci�es the contribution of information provided by x (C)
FP 9

,

which is v (C)
9

in our case, to the predicted translation vector of x (C)
FP8

. Logically,

the weights should be de�ned such that solutions closer to x (C)
FP8

contribute

more to ṽ (C+1)
8

.
Fig. 3c illustrates how the utilization of information from adjacent solu-335

tions can improve the robustness of pointwise prediction to input errors. For

this case, ṽ (C+1)1 = (2/3)v (C)1 + (1/3)v
(C)
2 , ṽ (C+1)2 = 0.25v (C)1 + 0.5v (C)2 + 0.25v (C)3 , and

ṽ (C+1)3 = (1/3)v (C)2 + (2/3)v
(C)
3 .
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Figure 3: Sensitivity of PRE [47] prediction method (excluding its random variation) to
input error. The prediction method should initialize the population for time step #C+1
a) If there is no input error, this pointwise prediction method may initialize x (C+1)IP8

's on or

very close to S(C+1) . b) Even a relatively small input error can result in major prediction
error when using this method. c) The e�ect of input error can be mitigated if each solution
utilizes some information from its adjacent solutions (v (C) of other solutions).

4.1. Selection of Weights

The weights in Equation (8) should be selected such that solutions closer340

to x (C)
FP8

play a more in�uential role in the calculation of ṽ (C+1)
8

. The reason
for this is that two solutions closer to each other are more likely to have
similar translation vectors. Therefore, the weights should be assigned using

a descending function of distance to x (C)
FP8

. A rapidly decreasing function gives

less importance to farther solutions (emphasis on local information), whereas345

a slowly decreasing function relies more on global information. This de�nes
two extreme cases:

• Maximum use of global information: in this extreme case, F81 = F82 =

· · · = F8# = 1
#
. In this case, the predicted translation vector ṽ (C+1)

8

utilizes information from each solution equally, regardless of how far350

they are from x (C)
FP8

.

• Maximum use of local information: in this extreme case, F89 = X89 (X89
is the Kronecker delta), which results in ṽ (C+1)

8
= v (C)

8
. In this case, the

predicted translation vector ṽ (C+1)
8

only utilizes information from the
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recent translation vector of x (C)
FP8

since other solutions are deemed too355

far away to provide any useful information. This case is equivalent to
the prediction model employed in PRE [47].

Ideally, the weight function should be a parametric function such that by
controlling a single parameter, any trade-o� between these two extreme cases
can be achieved. This study favors weight functions that implicitly de�ne360

a neighborhood. The information of solutions outside such a neighborhood
is practically ignored. Any light-tail distribution function can be borrowed
from probability theory for this purpose. The weight function suggested in
this study follows the shape of the density function of a normal distribution:

F̂89 = exp

(
−
(
389

3

)2)
, F89 =

F̂89∑#
9=1 F̂89

,

389 =




x (C)FP8
− x (C)

FP 9





2
, 8, 9 = 1, 2, . . . , #.

(9)

In this equation 3 > 0 is a benchmark distance, which is used to normalize365

pairwise distances between solutions. This function has three interesting
features:

• A greater 3 results in more utilization of global information.

• For the extreme case of 3→0, the method makes maximum use of local
information.370

• For the extreme case of 3→∞, the method makes maximum use of
global information.

It is reasonable to set 3 proportional to the search range of the decision
parameters. However, it is possible that the POS lies in a small region of
the search space. Ideally, the weights should not change if solutions are375

linearly scaled. To achieve this goal, an adaptive approach is proposed in
this study. At the end of each time step, all pairwise distances between

x (C)
FP8

's are calculated and 3 is set equal to @F-percentile (0 ≤ @F ≤ 100) of all
these pairwise distances, in which @F is a control parameter set by the user.
If 3 = 0, we set 3 = 10−10 to prevent division by zero.380
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5. Weighted Pointwise Prediction Method

The prediction method proposed in this study employs a pointwise model
and reinforces it with the information-sharing strategy and a directional vari-
ation. The information-sharing strategy calculates the predicted translation
vector using Equation 8 and then applies a directional variation [1] to improve
the diversity of the reinitialized population along the predicted translation
vector:

x (C+1)
IP8

= x (C)
FP8
+ N(1, f2

d ) × ṽ
(C+1)
8

, 8 = 1, 2, . . . , # (10)

in which N(1, f2
d
) is a random number sampled from a normal distribution

with mean one and standard deviation of fd with a recommended value of
fd=1. If x (C+1)

IP8
∉ Ω, then it is relocated to the closest point in Ω.

Algorithm 1 presents the proposed prediction method, called weighted385

pointwise prediction method (WPPM). The time when time step #C has

just concluded is considered and, therefore, WPPM initializes X(C+1)
IP

. The
MATLAB code of WPPM is provided as a supplementary material.

The time complexity of WPPM in Algorithm 1 can be calculated as fol-
lows:390

• Calculation of the pairwise Euclidean distances (line 1) requires$ (�#2)
computations.

• Calculation of planar angles (line 4) or pairwise distances in the nor-
malized objective space (line 6) requires $ ("#2) computations.

• For each x (C)
FP8

, �nding the corresponding solution (line 10) requires$ (#)395

computations. Since an independent model is used for each solution,
the overall computations for the population will be $ (#2).

• Given pairwise Euclidean distances, calculation of the information-
sharing weights (line 12) requires $ (#2) computations.

• For each x (C)
FP8

, calculation of the predicted translation vector (line 14)400

requires $ (#�) calculations. Generation of x (C+1)
IP8

(lines 15 and 17)

requires $ (�) computations. Doing all these for all solutions (lines
13-18) requires $ (�#2) computations.

Consequently, the time complexity of the proposed prediction method is
$ (�#2). If the similarity measure is in objective function space and ">�,405

which is an exceptional case, then the time complexity will be $ ("#2).
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Algorithm 1: WPPM

Data: similarity measure, @F, the search space Ω,

F̃
(C−1)
FP

, F̃
(C)
FP
, X
(C−1)
FP

, X
(C)
FP
, # = |X(C)

FP
|

Result: x (C+1)
FP8

, 8 = 1, 2, . . . , # (Population seed for time step

#(t+1))

1 Calculate pairwise Euclidean distances between each x (C−1)
FP 9
∈ X(C−1)

FP

and each x (C)
FP8
∈ X(C)

FP

2 if similarity measure is in objective space then

3 if similarity measure is reference directions then

4 Calculate pairwise planar angles (V89 's) according to (5)
5 else

6 Calculate pairwise distance between each f̃
(C−1)
FP 9

∈ F̃(C−1)
FP

and

f̃
(C)
FP8
∈ F̃(C−1)

FP
according to (4)

7 end

8 end

9 for i← 1 to # do

10 Find x (C−1)
FP8

, the solution in X(C−1)
FP

that corresponds to x (C)
FP8

using
the de�ned similarity measure.

11 end

12 Calculate the information-sharing weights according to (9)
13 for i← 1 to # do

14 Calculate the predicted translation vector v̂ (C+1)
8

according to (8)

15 Generate x (C+1)
IP8

according to (10)

16 if x (C+1)
IP8

∉ Ω then

17 Relocate it to the closest point in Ω
18 end

19 end

6. Experimental Setup

This section presents the experimental setup employed for our numerical
simulations. To concentrate on the e�ect of prediction methods:

• An identical SMO method is used for testing all prediction methods to410

suppress the e�ect of the employed SMO method.
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• The optimization process is informed whenever a change occurs (in-
formed changes) to suppress the e�ect of the change detection strategy.

Therefore, the di�erence in the performance of the tested DMO methods
can con�dently be attributed to the di�erence in the employed prediction415

methods.

6.1. Test Problems

DMO test problems play a critical role in developing prediction methods,
since conclusions on the superiority or inferiority of a method is drawn from
numerical results. DMO test problems have conventionally been classi�ed420

into four categories, based on whether the POS or the POF changes [30,
16]. Some more recent studies have focused on other properties of changes,
such as time-dependent convexity/concavity and connectivity of the POF,
variable linkage, scalability, shape and degeneracy of the POF [27, 26, 16];
however, for developing prediction methods, the most critical feature of a425

DMO test problem is the aspect of change in POS. The reason for this is
that some prediction methods may be e�ective when the changes follow a
simple pattern, e.g., a pure translation. These methods would lose their
e�cacy when the pattern in the change is complex.

Conventional mathematically de�ned test problems for DMO only involve430

translation of the POS, or at least a pure translation can describe most
aspects of the pattern in the change. This includes the FDA test suite [15],
one of the earliest and the most commonly used test suite in the realm of
DMO studies [27, 16]. For such problems, prediction methods that employ
a single model can practically beat multi-model prediction methods, owing435

to their robustness. Some more recent test suites include test problems with
more diverse changes in the POS [27], [26], [16]. The CEC2018 test suite
on DMO [29] integrates test problems with simple and complex changes in
the POS. This test suite is employed in this study for numerical analysis and
comparison.440

6.2. Static Multiobjective Optimization Method

This study employs a slightly modi�ed version of the non-dominated sort-
ing genetic algorithm-III (NSGA-III) [11], the successor of the well-known
NSGA-II [14]. For continuous problems, NSGA-III employs simulated bi-
nary crossover (SBX) which takes place with a probability of %cross. The445

spread of o�spring is controlled by the crossover index ([cross). Mutation is
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performed with a probability of %mut using polynomial-based mutation with
a mutation index [mut. Selection is performed over the union of parents and
o�spring using reference directions [13]. NSGA-III estimates the ideal and
nadir point during the optimization to normalize the objective values using450

a hyperplane-based heuristic.
A di�erent heuristic for estimating the ideal and nadir points is followed

in this study, according to which these points are the minimum and max-
imum of all objective values of solutions whose rank is equal to or smaller
than the critical rank. The critical rank is de�ned as the rank of the #th

455

solution in the rank-based sorted union of parents and o�spring, in which
# is the population size. The reason for this modi�cation is that the orig-
inal hyperplane normalization method in NSGA-III may result in negative
intersects [4]. Other parameters of the modi�ed NSGA-III are selected as
follows:460

• # = 100

• SBX with %cross = 0.9 and [cross = 5

• Polynomial-based mutation with %mut=1/� and [mut =5

Most of these settings are part of the recommended settings for muta-
tion and recombination in both NSGA-II [14] and NSGA-III [11] except that465

smaller indexes were preferred in this study because they improve exploration
by generating o�spring farther from their parents. Based on our preliminary
observations, this can be helpful in DMO problems since it helps the popula-
tion to diversify quickly after each change. The value of # is roughly equal to
the desired number of trade-o� solutions [11]. The latter is not an algorith-470

mic parameter [11] but a parameter determined by the decision-maker or the
problem setting. The selected value of # = 100 follows the prescribed exper-
imental settings in the CEC2018 Competition on DMO [29], which suggests
that the number of trade-o� solutions should be 100.

6.3. Performance Measure475

Commonly employed performance indicators for DMO calculate the per-
formance of the SMO method during or at the end of each time step. For
example, the CEC2018 experimental setup [29] and many other studies em-
ploy mean hypervolume (MHV) and/or mean inverted generational distance
(MIGD) (e.g. [7, 46]), which were de�ned based on the conventional HV480
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[48] and IGD [10] indicators developed for SMO. These two measures have
some disadvantages. Calculation of an exact HV becomes computationally
expensive for a high number of objectives [22], and the theoretical HV might
be hard or even impossible to calculate because of discontinuity in a POF.
IGD is computationally e�cient, but it has a fundamental shortcoming: it485

is not Pareto-compliant [22, 23]. This means that a dominated set can have
a better IGD than a set that dominates it. This can result in analytically
wrong conclusions when comparing two or more multiobjective optimization
methods.

As an alternative, this study suggests mean IGD+ for performance eval-490

uation of DMO methods, which is de�ned using the IGD+ indicator [23].
IGD+ is similar to IGD, except that a new distance metric replaces the Eu-
clidean distance. Let P =

{
p1, p2, . . . , p |P|

}
be a set of reference points

uniformly distributed on the POF, in which the sign |.| calculates the car-
dinality of a set. IGD+ of a non-dominated set of solutions with objective495

values F=
{
f 1, f 2, . . . , f |F|

}
for a minimization problem is de�ned as follows

[23]:

���+ (F, P) = 1

|P|

|P|∑
8=1

min
f9∈F

3

(
f9 , p8

)

3

(
f9 , p8

)
=

√√√
"∑
:=1

(
max

{
5 9 : − ?8: , 0

})2
,

(11)

in which 5 9 : refers to the value of the :-th objective for solution 9 . Similarly,
?8: is the :-th coordinate of the 8-th reference point.

This small modi�cation makes IGD+ a weakly Pareto-compliant indicator
while keeping it computationally e�cient [23]. Based on the advantages of
IGD+, we suggest mean IGD+ for performance evaluation of DMO methods:

"���+ =
#TS∑
C=1

���+
(
F(C) , P(C)

)
. (12)

In this equation, P(C) is a subset of uniformly distributed points on F(C), which500

were selected using the method developed in [45] and #TS is the number of
time steps. When calculating IGD+, normalization is performed using the
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true ideal and nadir points. We exclude the outcome of the zeroth time
step in (12) because the prediction method does not a�ect the optimization
process until the �rst change. Unlike conventional MIGD, MIGD+ is weakly505

Pareto-compliant, while both indicators are computationally e�cient. This
indicator is used in this study for performance evaluation and comparison of
DMO methods.

7. Descriptive Experiments

This section conducts a preliminary evaluation of di�erent variants of510

WPPM, to better explore the e�ects of each component. Two scenarios are
considered:

• Ideal scenario, which assumes that the SMO algorithm could accurately
identify the POS in the previous time steps. This means that for the
reinitialization of solutions for the time steps #(t+1), S(0) , S(1) , . . . , S(C),515

POS is provided for the prediction method.

• Real scenario, in which the population at the end of each time step

(X(C)
FP
) is used as an approximate for the actual POS.

The ideal scenario suppresses the impacts of input error by providing the
actual POS for the model. Although it is not the case in practice, it can520

reveal the potential of a prediction method for coping with complex patterns
in a problem's changes. It is remarkable that even in the ideal scenario, the
distribution of the provided POS is not uniform in the variable space, since
SMO methods aim at maximizing diversity in the objective function space.

7.1. E�ect of the Similarity Measure525

To explore the e�ects of the previously discussed similarity measures, four
variants of WPPM were tested:

• WPPM-X, which employs the Euclidean distance in decision variable
space as the similarity measure

• WPPM-X\R, which is similar to WPPM-X, but does not relocate X(C−1)
�%

530

before �nding the corresponding solution

• WPPM-F-R, which employs the reference direction in the normalized
objective space as the similarity measure

21



 

DF7 

 

DF8 

    

0.002

0.004

0.008

0.016

0.032

0.064

0.128

0 5 10 15 20 25 30

IGD+

Probem

Instance

WPPM-X

WPPM-X\R

WPPM-F-R

WPPM-F-E

0.001

0.002

0.004

0.008

0.016

0.032

0.064

0 5 10 15 20 25 30

IGD+

Probem

Instance

WPPM-X

WPPM-X\R

WPPM-F-R

WPPM-F-E

(a) DF7

 

DF7 

 

DF8 

    

0.002

0.004

0.008

0.016

0.032

0.064

0.128

0 5 10 15 20 25 30

IGD+

Probem

Instance

WPPM-X

WPPM-X\R

WPPM-F-R

WPPM-F-E

0.001

0.002

0.004

0.008

0.016

0.032

0.064

0 5 10 15 20 25 30

IGD+

Probem

Instance

WPPM-X

WPPM-X\R

WPPM-F-R

WPPM-F-E

(b) DF8

Figure 4: IGD+ averaged over 20 independent runs for DF7 and DF8 (� = 10)

• WPPM-F-E, which employs the Euclidean distance in the normalized
objective space as the similarity measure535

All these variants were tested when @F =0 (no averaging) to exclude the
e�ect of the information-sharing strategy. Two test problems, DF7 and DF8
(see the CEC2018 test suite for DMO [29]), were considered in 10-D space.
In both problems, POS forms a curved line. The main di�erence is that for
DF7, the shape of POF does not change severely, whereas the change in the540

POF of DF8, especially in its curvature, is severe.
Fig. 4 illustrates the calculated IGD+ at the end of each time step for

DF7 and DF8, averaged over 20 independent runs. For DF7, all four variants
show similar performance for some time steps, but the detectable superiority
of objective-based similarity measures can be observed for a few time steps.545

In contrast, such similarity measures are the worst choice for DF8.
WPPM-X\R shows some superiority over WPPM-X for DF8. For this

problem, the centroid of the POS manifold does not change, but WPPM-

X would calculate a non-zero translation of the centroids of X(C)
FP

because

the distribution of the solutions in X(C)
FP

change. In this speci�c case, the550

relocation strategy turns out to be detrimental, although, as illustrated in
Fig. 1, this strategy will be helpful in general.

We speculate that the main reason for the failure of the objective-based
similarity measures for DF8 is the considerable change of the curvature and
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shape of the POF. To explore this issue in depth, we further analyze the cor-555

respondence for time step #5 of 2-D DF8. Fig. 5 illustrates the correspon-
dence determined using the objective-based similarity measures when t=5.
The black double-arrow line segments indicates the corresponding solution in

X
(C−1)
FP

, for a selected solution in X(C)
FP
, using their normalized values. Check-

ing these solutions in decision variable space discloses that both WPPM-F-E560

and WPPM-F-R have corresponding solutions that are very dissimilar in de-
cision variable space. This is a fundamental shortcoming of objective-based
similarity metrics: Similarity of two solutions in objective space does not
guarantee their relative similarity in variable space; however, the prediction
model is applied to the solutions, and not to their values.565
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Figure 5: Determination of correspondence for one sample solution in F̃(C) using a) WPPM-
F-E and b) WPPM-F-R for the �fth time step of DF8 (� = 2). The outcome of this
correspondence in decision variable space is illustrated at the right.
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Figure 6: MIGD+ as a function of @F in the ideal and real scenarios for DF3, DF10 and
DF12, using WPPM-X

7.2. E�ect of Sharing Information

In order to show the bene�ts of utilizing information from adjacent so-
lutions, WPPM was tested with di�erent values of @F. Fig. 6 illustrates
MIGD+ as a function of @F, in the ideal and real scenarios for DF3, DF10
and DF12, using WPPM-X. This �gure reveals that:570

• In the ideal scenario, increasing @F may negligibly deteriorate perfor-
mance. In contrast, increasing @F considerably improves MIGD+ up
to @F =10 in the real scenario, although the rate of improvement sub-
sides quickly after @F = 5. This shows that the proposed information-
sharing strategy could e�ectively improve the robustness of the point-575

wise method to input errors.

• The di�erence between MIGD+ in the ideal and real scenarios illustrates
the e�ect of input error on prediction error.
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8. Comparison with Existing Prediction Methods

This section compares WPPM-X with some of the recent, successful pre-580

diction methods in the literature. The objective-based similarity measures
are not followed, owing to their disclosed theoretical shortcomings in �nd-
ing the correct correspondences. No problem-dependent parameter tuning
is used in this section. Based on the results of Section 7, we set @F = 10
for all the problems. The following prediction methods were selected for585

comparison1:

• HM, the hypermutation-based reinitialization strategy employed in D-
NSGA-II-B [12]

• P-SGEA, the prediction method of SGEA proposed in [28]

• DDM, the decomposition-based di�erence model proposed in [6]590

• PRE, the prediction method developed in [47]

• MDP, the multidirectional prediction approach developed in [41]

8.1. Performance Comparison

For the reasons discussed in Section 6.1, this study employs the CEC2018
test suite for DMO [29], as it is one of the most recent test suites for DMO.595

The experimental setup for the CEC2018 test suite for DMO [29] uses two
values of 10 and 30 for change frequency (gC) while the change severity pa-
rameter (=C), which is inversely proportional to the signi�cance of the change,
is �xed at 10. Since a less severe change should be expected from more fre-
quent changes [12], we �x gC × =C = 200 and try di�erent values for gC . All600

problems are 10-D in decision variable space. Table 1 presents the three lev-
els for change severity which are considered in this study. The �rst change
occurs immediately after the 50th generation. Each simulation is repeated
30 times with di�erent random seeds and MIGD+ is calculated for each run.
Fig. 7 illustrates the averaged MIGD+ of these 30 runs.605

We employ a score-based indicator based on the win-loss approach [20]
to compare the overall performance of each method. First, the Wilcoxon

1These methods were coded by the �rst author from the descriptions provided in the
corresponding publications.
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Figure 7: MIGD+ of each reinitialization strategy for each method and each change severity

rank-sum test with a signi�cance level of 0.01 is used to check whether a
method outperforms another one on a speci�c problem. It is considered a
win for method M1 and a loss for method M2 if method M1 statistically610

outperformed method M2 on problem P1. If none of these methods outper-
formed the other one, it is considered a draw. For each problem, the score
of a method is the number of wins plus half of the number of draws. This
score is illustrated in Fig. 8 for each method and each level of change severity.
Finally, the average score for each method is calculated by averaging its score615

on all 14 test problems, which is presented in Table 2.
Table 2 shows that when the overall performance on all these 14 test prob-

lems is considered, WPPM-X outperforms other methods for every change
severity. Of course, for a few problems, such as DF2 and DF6, other meth-
ods excel. The second best method is DDM. The common feature of these620

two methods is that they employ random variation conservatively. WPPM-X

Table 1: Levels of change severity considered in this study. The �rst change always occurs
after 50 generations.

Change Severity gC =C #change #generations

Severe 40 5 15 650
Moderate 20 10 30 650
Minor 10 20 60 650
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Figure 8: Heatmaps of the scores of each prediction method for each problem and each
change severity

Table 2: Average score of each method for each change severity

Change Severity
Method Severe Moderate Minor Overall
WPPM-X 3.71 4.04 4.18 3.98

P-SGEA 2.68 2.54 2.64 2.62
DDM 3.07 3.07 3.39 3.18
PRE 2.46 2.46 2.32 2.42
MDP 1.43 1.07 0.36 0.95
HM 1.64 1.82 2.11 1.86

limits random variation to a speci�c direction, and DDM completely excludes
random variation. The promising results of these two methods suggest that a
high random variation could be detrimental for dynamic problems that have
some patterns in their changes. In contrast, MDP, which employs a strong625

Isotropic random variation, is the least successful method, even though it is
a multi-model prediction method. It is remarkable that although the random
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variation of some solutions turned out to be bene�cial in DNSGA [12], which
is one of the earliest reinitialization methods for DMO, this method does not
make any prediction but applies some random variation to �nal solutions of630

the already concluded time step. This is not the case with most of the other
methods tested in this study.

Interestingly, for a few cases, such as DF2 and DF9 with severe and
moderate changes, MDP is the most successful method (8). The change
pattern of these two test problems is too hard to be captured by the tested635

methods. Therefore, for these problems with severe and moderate changes,
the high random variation of MDP turned out to be bene�cial.

The superiority of WPPM-X over other tested methods is more consid-
erable when the changes are less severe and more frequent. This observation
suggests that a prediction method that highly exploits the pattern in the640

change can be more bene�cial in problems that undergo minor changes, even
if the changes occur more frequently. An opposite trend can be observed
for MDP, which is relatively more successful when changes are severe and
less frequent. When compared with other tested methods, MDP applies a
stronger random variation which reduces the bene�ts of available information645

on the change pattern in favor of more diverse reinitialized solutions.
Fig. 7 shows that the gap between the MIGD+ values is not spectacu-

lar even if this gap is statistically signi�cant. The reason for this, is that
the employed SMO method and the change detection mechanism (informed
changes in our case) are identical for all methods. Therefore, only the predic-650

tion component can cause a di�erence. The advantage of this methodology is
that the performance di�erence can con�dently be attributed to the predic-
tion methods. Besides, the di�erence between the performance of the tested
methods becomes less considerable when changes become more intense and a
higher evaluation budget is allocated for each time step. The reason for this655

is that a more severe change diminishes the accuracy of prediction meth-
ods. At the same time, a larger evaluation budget per time step provides
more opportunity for the DMO method to compensate for a badly initialized
population.

8.2. Time Complexity Comparison660

This section runs a numerical simulation to compare the computational
time required by the tested prediction methods with emphasis on the actual
time, not the big O methodology that ignores any proportionality constants.
This simulation is performed for reasonable ranges of � and # in the context
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of evolutionary DMO. For example, the experimental setup of the CEC'2018665

competition on DMO [29] suggests using a problem dimensionality of 10,
and even for static single objective optimization, the problem dimensionality
is generally less than 100. Therefore, our range of interest is restricted to
problems with � ≤ 100 and # ≤ 1000 with two or three objectives.

We employ the tested prediction methods to reinitialize the population for670

30 changes for two-objective DF3 and three-objective DF10, and calculate the
average time for reinitialization of the population for all changes excluding
the �rst two changes. This simulation is performed with MATLAB 2017b
on a desktop computer with an Intel(R) Core(TM) i7-3770 CPU and 16 GB
RAM. Figure 9 demonstrates the actual time complexity of the compared675

prediction methods. It can be observed:

• The required time for reinitialization is fairly small for all of the tested
methods. For instance, for � = 10 and # = 100, the required time for
reinitialization is less than 0.04 seconds for all of the tested methods.
This includes the time required to store the reinitialized solutions.680

• The time complexity of MP, PRE, and HM is proportional to # whereas
it is roughly proportional to #2 for DB, P_SGEA, and WPPM-X.

• The problem dimensionality does not have much e�ect on the reinitial-
ization time. The reason for this is that the problem dimensionality
only a�ects the required time to calculate the distances of the solutions.685

Based on the numerical analysis, the computational cost of all the tested
methods is small for the commonly used ranges of � and #.

9. Summary and Conclusions

This study has proposed theWeighted Pointwise Prediction Method (WPPM)
for dynamic multiobjective optimization (DMO). WPPM employs a weighted690

pointwise prediction model to predict the Pareto optimal set in the new time
step and to initialize the population close to that with proper diversity. The
pointwise nature of WPPM maximized its potential for capturing diverse
types of possible patterns in the change. At the same time, the introduced
information sharing strategy has substantially improved the robustness of695

WPPM against input errors. According to this strategy, each solution uti-
lizes not only its own history but also the history of adjacent solutions to
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Figure 9: Time complexity of the compared reinitialization methods for two-objective DF3
and three-objective DF10 problems versus a) population size when problem dimension is
10, and b) problem dimension (�) when population size is 100

increase the size of the available data for prediction. The e�ect of this strat-
egy on the robustness of WPPM has been demonstrated by some controlled
experiments. Mean Inverted Generational Distance Plus (MIGD+) has been700

formulated as a performance indicator for DMO, which is weakly Pareto-
compliant and computationally e�cient. WPPM has been assessed on the
CEC2018 test suite with di�erent change severities and has been compared
with some recent and popular prediction methods reported in the specialized
literature. Our comparison of results revealed the superiority of WPPM,705

regardless of the severity of the changes.
When compared with existing prediction methods, WPPM and PRE have

much more �exibility in capturing diverse types of change patterns since they
employ a separate model for each solution. However, unlike PRE, WPPM
allows these models to utilize information from each other to improve the710

robustness of the method to input error. The additional control parameter
of WPPM (0 ≤ @F) allows for arbitrary trade-o�s between the �exibility of
pointwise prediction methods and the robustness of single-model prediction
methods. A smaller @, emphasizes on �exibility, whereas a greater one im-
proves robustness to input error. @F = 10 turned out to be a reasonable choice715

which considerably improves robustness while slightly deteriorating �exibil-
ity. The time complexity of WPPM is slightly higher than that of the other
tested methods; however, it is almost independent of the problem's dimen-
sionality and the required computational time to reinitialize 1000 solutions is
less than one second. Therefore, the time complexity of WPPM is still negli-720

gible when compared with the time complexity of the evolutionary operators
of the static multi-objective optimization method, such as non-dominated
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sorting.
The highlighted challenge of �nding the correct corresponding solutions

emerges for any multi-model prediction method. In this study, it has been725

interpreted as de�ning a similarity metric, which can be in objective or in
decision variable space. This study has suggested a modi�cation to the com-
monly used �minimum Euclidean distance in decision variable space� simi-
larity metric. Our descriptive experiments revealed a critical shortcoming in
similarity metrics de�ned in objective space since their outcome is a�ected730

by a change in the shape of the Pareto optimal front, particularly its convex-
ity/concavity. Even when the Pareto optimal set does not change, a change
in the Pareto optimal front may result in an erroneous correspondence if the
similarity measure is de�ned in objective space. Furthermore, a prediction
method always functions in decision variable space and any similarity of two735

solutions in decision variable space is not necessarily substantiated by their
similarity in objective space.

The �ndings in this study highlight a need for research on similarity
metrics, which are an indispensable component of multi-model prediction
methods. If the correct correspondence is known, there are several existing740

methods to predict the next point. To the best of the authors' knowledge,
there is no study that concentrates on the analysis of similarity metrics. Our
results also suggest a reconsideration of the random variation operator as a
prediction method, since in our case the prediction methods with no or small
random variation turned out to be more successful, at least when evaluated745

on the CEC2018 test suite for DMO.
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