IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION , VOL. 14, NO. 8, AUGUST 2020 1

On the Effect of the Cooperation of Indicator-based
Multi-Objective Evolutionary Algorithms

Jesus Guillermo Falcon-Cardona, Student member, IEEE, Hisao Ishibuchi, Fellow, IEEE, Carlos A. Coello
Coello, Fellow, IEEE and Michael Emmerich

Abstract—For almost 20 years, quality indicators (QIs) have
promoted the design of new selection mechanisms of multi-
objective evolutionary algorithms (MOEAs). Each indicator-
based MOEA (IB-MOEA) has specific search preferences related
to its baseline QI, producing Pareto front approximations with
different properties. In consequence, an IB-MOEA based on a
single QI has a limited scope of multi-objective optimization
problems (MOPs) in which it is expected to have a good
performance. This issue is emphasized when the associated Pareto
front geometries are highly irregular. In order to overcome these
issues, we propose here an island-based multi-indicator algorithm
(IMIA) that takes advantage of the search biases of multiple IB-
MOEAs through a cooperative scheme. Our experimental results
show that the cooperation of multiple IB-MOEAs allows IMIA
to perform more robustly (considering several QIs) than the pan-
mictic versions of its baseline IB-MOEAs as well as several state-
of-the-art MOEAs. Additionally, IMIA shows a Pareto-front-
shape invariance property which makes it a remarkable optimizer
when tackling MOPs with complex Pareto front geometries.

Index Terms—Multi-objective optimization, quality indicators,
island model, selection mechanism.

I. INTRODUCTION

UALITY indicators (QIs) have been especially note-

worthy in the evolutionary multi-objective optimization
field [[1]. QIs evaluate the quality of Pareto front approxima-
tionsﬂ generated by multi-objective evolutionary algorithms
(MOEAs) [2], focusing on three specific aspects: (1) con-
vergence towards the Pareto front, (2) diversity of solutions,
and (3) the coverage of the Pareto front. Mathematically,
a QI is a set function that assigns a real value to one or
more approximation sets simultaneously. This implies that
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A Pareto front approximation, or approximation set, denoted as \A, is a set
of solutions in objective space (especially mutually non-dominated solutions)
that aims to approximate a Pareto front.

QIs impose a total order in the set ¥ of all approximation
sets, depending on their particular preferences [3]. From the
plethora of currently available QIs [1], the unary indicators
that measure convergence and coverage at the same time by
a single value, without requiring any knowledge of the true
Pareto front, have a preponderant position among them and
have been extensively used to compare MOEAs’ performance.
Remarkable examples of unary convergence indicators are the
hypervolume indicator (HV) [4], the R2 indicator [S]], the
inverted generational distance (IGD) [6], IGD plus (IGD™) [[7],
the additive ¢ indicator (¢™) [3], and the averaged Hausdorff
distance (A,) [8].

In addition to the assessment of approximation sets, QIs
have also promoted the design of selection mechanisms of
MOEAs, giving rise to the so-called indicator-based MOEAs
(IB-MOEAs) [9]. IB-MOEAs include the incorporation of QIs
into environmental selection, density estimation, and archive
update rules. The underlying idea of these indicator-based
mechanisms is to select from a set of /N solutions a subset
of size k < N such that the indicator value is optimized.
In the context of MOEA design, IB-MOEAs have remarkable
properties. The indicator-based mechanisms allow increasing
the selection pressure which impacts in solving multi-objective
optimization problems (MOPs) with more than three objec-
tive functions, i.e., the so-called many-objective optimization
problems (MaOPs). This is an important property since Pareto-
based MOEAs (i.e., MOEAs whose environmental selection
is based on the Pareto dominance relatiorﬂ) have poor per-
formance when solving MaOPs due to the dilution of the
selection pressure related to the exponential increase of mu-
tually nondominated solutions in high-dimensional objective
spaces. Additionally, due to the preferences of each indicator,
IB-MOEAs generate approximation sets with different distri-
butions for a specific Pareto front geometry [10]], [[1L1]]. In the
specialized literature, there is a wide range of IB-MOEAs,
each one having particular advantages and drawbacks [9]].

QIs have particular preferences that result in a different
order of the approximation sets in W [12]. For instance,
HV prefers solutions on the boundaries of concave Pareto
fronts (when the reference point is not close to the Nadir
point). In contrast, R2 tends to prefer solutions uniformly
distributed (more evidently for concave and linear Pareto front

2Given &, € R™, ¥ is said to Pareto dominate i (denoted as F() <
F(#)) if and only if f;(Z) < fi(§) for all i = 1,...,m and there is
at least an index j € {1,...,m} such that f;(Z) < f;(¥). In case that
fi(@) < fi(9) foralli=1,...,m, then & is said to weakly Pareto dominate

7 (denoted as F(¥) < 13(17))



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION , VOL. 14, NO. 8, AUGUST 2020 2

shapes) because of the regular use of a set of convex weight
vectorsﬂ for its calculation. Hence, if a QI is employed to
guide the selection process of a MOEA, the generated Pareto
front approximations will inherit characteristics related to it
[LO]. In consequence, an IB-MOEA using a single baseline
QI will have a good performance on some MOPs and bad
performance on some others. This situation resembles the No-
Free Lunch theorem [13]]. To overcome this issue, a possible
solution is to compensate for the weaknesses of an indicator
with the strengths of others, which motivates the creation of
multi-indicator-based MOEAs (MIB-MOEAs). Additionally,
the combination of QIs’ preferences in MIB-MOEAs could
bring collateral improvements in the design of MOEAs whose
performance does not depend on the Pareto front shapes as
stated in [14].

Currently, there are a few MIB-MOEAs in the specialized
literature [1S], [16], [170, 18], [190, [20], [14], [21], [22].
According to the available proposals, MIB-MOEAs have been
mainly designed in two ways: (1) using a single selection
mechanism that incorporates the search biases of multiple QIs
(LS, [06l, (170, [21], [22]], and (2) utilizing simultaneously
multiple selection mechanisms, each one based on a single QI
(L8], [19], [20], [14]. From these approaches, a remarkable
one is the cooperative multi-indicator-based MOEA (cMIB-
MOEA) [20]. The core idea of cMIB-MOEA is the coop-
eration of five steady-state IB-MOEA based on HV, R2,
IGD™, €', and A, under the master-slave paradigm to exploit
the search properties of the selected algorithms. All the IB-
MOEAs are connected bidirectionally to a master node that
maintains a global Pareto front approximation in an archive.
During fp,is iterations, the IB-MOEAs are independently
executed to evolve in isolation their populations. After this
period, each IB-MOEA sends its whole population to the
master node where the subpopulations are combined with
the current contents of the global archive to obtain the set
of nondominated solutions. If the maximum archive size is
exceeded, a pruning process is performed, aiming to get
the set of solutions that minimize the Riesz s-energy [25].
Finally, a migration procedure is performed to improve the
diversity of the IB-MOEAs. In each island, it is calculated
the individual contributions to the associated indicator of all
the solutions and the 7,,;, ones with the worst contribution
values are replaced by the same number of solutions randomly
selected from the global archive. The only restriction is that
the replacing solutions must had been generated by other
IB-MOEAs. cMIB-MOEA exhibited better performance than
its baseline IB-MOEAs and a Pareto front shape invariant
performance emerged from the cooperative scheme.

In this paper, we present an extension of cMIB-MOEA,
denoted as Island-based Multi-Indicator Algorithm (IMIA), to
study the effect of the cooperation of multiple IB-MOEAs.

3A vector @ € R™ is a convex weight vector if Vi = 1,...,m,w; > 0
and 37" w; = 1.

4The IB-MOEAs are based on the framework of the S-Metric Selection
Evolutionary Multi-Objective Algorithm (SMS-EMOA) [23]. Hence, they use
a steady-state selection where the nondominated sorting algorithm [24] and
an indicator-based density estimator are the primary and secondary selection
criteria, respectively.

Unlike cMIB-MOEA that uses a master-slave model and it
is not parallelized, IMIA is a parallel MOEA that strictly
follows the island model. Five steady-state IB-MOEAs, each
one using a density estimator based on HV, R2, IGD™T, €T,
and A,, evolve micro-populations in isolation and, after a
predefined number of iterations, they synchronously commu-
nicate through an improved migration process, adopting a
user-defined communication topology. Additionally, instead of
adopting a master node with a global archive to manage a cen-
tralized Pareto front approximation, IMIA uses a distributed
approach where each island maintains its own approximation
set. As a result, this allows IMIA to increase the selection
pressure when tackling MaOPs and increase the diversity of
solutions in comparison with cMIB-MOEA that has some
problems in MaOPs. Finally, IMIA improves the migration
method of cMIB-MOEA by iteratively replacing the worst-
contributing solutions to the given indicator by solutions com-
ing from IB-MOEAs indicated in the communication topology.
Overall, these improvements make IMIA a better optimizer
than cMIB-MOEA. Experimental results show that IMIA takes
advantage of the properties of each IB-MOEA to increase its
exploration ability, producing Pareto front approximations with
a high-quality degree of convergence, diversity, and coverage,
regardless of the Pareto front geometry of the MOP being
solved. The main contributions of this paper are the following:

1) We propose the first island-based IB-MOEA, called
IMIA, whose core idea is the cooperation of multiple
IB-MOEAs. Moreover, we implement IMIA using the
multi-core parallel scheme to reduce its computational
cost.

2) We show that due to the cooperation of multiple IB-
MOEAs, IMIA can perform more robustly (under seven
quality indicators: HV, R2, IGD™, €, A,, Riesz s-
energy, and the Solow-Polasky Diversity [26]) than the
panmictic versions of its baseline IB-MOEAs. In this
regard, we define a robust performance as the capacity
of a MOEA to consistently obtain the best results under
several QIs (measuring convergence and diversity) for
MOPs with different Pareto front shapes and scaling the
dimensionality of the objective space.

3) IMIA generates Pareto front approximations with high
diversity (especially for MOPs with highly irregular
Pareto front geometries) in comparison with its base-
line panmictic IB-MOEAs and several state-of-the-art
MOEAs specifically designed to tackle different Pareto
front shapes.

The remainder of this paper is organized as follows. Sec-
tion [lI] provides the mathematical definitions of the QIs em-
ployed in the proposal. An overview of the current multi-
indicator-based MOEAs is provided in Section Our pro-
posed approach is outlined in Section Section [V] presents
the experimental results. Finally, Section [VI] concludes the
paper and sketches the future research directions.

II. BACKGROUND

In this section, we formally define an MOP and the quality
indicators: HV, R2, IGD™, e*, A, Riesz s-energy (Fj), and
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the Solow Polasky Diversity (SPD). In all cases, let A be
an approximation set and Z be a reference set. m is the
dimensionality of the objective space.

Throughout this paper, we focus, without loss of generality,
on unconstrained multi-objective optimization problems for
minimization [2], which are defined as follows:

ggg(lﬁ(f): [[1(&), f2(&), -, (@) (1)
where ¥ = (21,22, . .. ,a:n)T is the n-dimensional vector of

decision variables and X' C R"; f;
are the objective functions.

Definition 1 (Unary Quality Indicator): A unary quality
indicator [ is a function [ : ¥ — R, which assigns a real
value to a Pareto front approximation. ¥ is the set of all
approximation sets.

Definition 2 (Hypervolume indicator [4|]): Given an anti-
optimal reference point 7 € R™, the hypervolume indicator is
defined as follows:

V(A,F’)zﬁ(U{56<5<F}>, 2)

acA

X =R, j5=1,....m

where L£(-) denotes the Lebesgue measure in R™.
Definition 3 (Unary R2 indicator [5|]): The unary R2
indicator is defined as follows:

R2(A, W) ‘W| Z  max{ua(d)} 3)

where W is a set of weight vectors and ug : R™ — R is a
scalarizing function defined by a weight vector «w € W that
assigns a real value to each m-dimensional vector.

Definition 4 (IGD™ indicator [[7]): The IGD™ for minimiza-
tion, is defined as follows:

+ +(
IGDY (A, Z) =17 Zggﬁd 4)

where d* (@, 2) \/zl | (max{a; — z;,0})°.

Definition 5 (Unary €t indicator [3l]): The unary e*
indicator gives the minimum distance by which a Pareto
front approximation needs to or can be translated in each
dimension in objective space such that a reference set is
weakly dominated. Mathematically, it is defined as follows:

(A, 2) =

wEgg sk O
To define the averaged Hausdorff distance (Ap), it is first
necessary to introduce a variant of the indicators Generational
Distance (GD) [27] and Inverted Generational Distance (IGD)
[28]], denoted as GD,, and 1GD,,, respectively.
Definition 6 (GD,, indicator [8]):

1 1/p

Z)= | D da@2r| ©6)
Al

2211(%‘ -

GD,(A

where d(@, Z) = minzcz zi)2.

Definition 7 (IGD,, indicator [8]):

1/p
IGD,(A, Z) = GD,(Z, > d(z ,
|Z| ZeZ
(7
Definition 8 (Averaged Hausdorff Distance indicator

(Ap) [8]): For a given p > 0, A, is defined as follows:

A, (A, Z) = max {GD,(A, Z),IGD,(A, Z)}.  (8)

As with IGD, the A, indicator requires an aspiration set.
A, was proposed to eliminate some shortcomings of IGD such
as its sensitivity to the cardinality of sets [8].

Definition 9 (Indicator contribution): Let Z be any indicator
in the set {HV, R2,IGD™, e+, A, }. The individual contribu-
tion C of a solution @ € A to the indicator value is given as
follows:

Cr(d, A) = —Z(A\{a})|- ©)

Definition 10 (Riesz s-energy [25]]): For a given s > 0, the
Riesz s-energy indicator is defined as follows:

IZ(A)

=> X fa-d (10
a€A e A\{a}
where ||-|| represents the Euclidean distance. As s — 0o, F

prefers more uniform solutions. This indicator measures the
even distribution of a set of points in d-dimensional manifolds.

Definition 11 (Riesz s-energy individual contribution): The
individual contribution C' of a solution @ € A to the Riesz
s-energy indicator is as follows:

1

Cp. (@A) = 5 [Es(A) — Es(A\{a})]-

Unlike Equatlon E], Cp, involves the term 1/2 since
a—bH —a‘ for all @,b € A.

Definition 12 (Solow Polasky Diversity [26]): Let C €
RY*N be a full-rank matrix. The (4, j)-element of C is de-
fined by ¢;; = 620 llas = “J”, i,j=1,...,N where d;,d; € A
and 0 > 0 is a user-defined parameter. Each c;; denotes the
correlation between @; and ;. If two points are of the same
species, the correlation is one. Let M = C~!. Hence, the
Solow Polasky diversity is given by

i=1 j=1

Y

SPD(A (12)

According to Basto-Fernandes er al. [26], SPD(.A) tends to
N if the distance between all species tends to be very large.
In contrast, SPD(.A) tends to one if species are very similar
with respect to each other. The parameter 6 indicates how fast
the population tends to N when the distances increase.

III. PREVIOUS RELATED WORK

In this section, we briefly review some multi-indicator-based
MOEAs and MOEAs that were designed to tackle MOPs with
different Pareto front shapes.
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A. Multi-Indicator-based MOEAs

To the authors best knowledge, the first MIB-MOEA was
proposed by Phan and Suzuki [15] in which multiple indicator-
based mating selection mechanisms were combined, using
the AdaBoost algorithm. The proposal, denoted as Boosting
Indicator-Based Evolutionary Algorithm (BIBEA), aimed to
select potential parents for crossover, avoiding the bias of a
single selection mechanism, increasing the convergence speed
of the algorithm and producing well-diversified Pareto fronts.
In further work, Phan et al. [[16] proposed BIBEA-P which
improves the previous multi-indicator mating selection scheme
by using PDI-Boosting instead of AdaBoost. The authors also
proposed a multi-indicator environmental selection mecha-
nism, ensembling HV and ™, among other QIs.

In 2016, Li et al. [17] introduced the Stochastic Ranking-
based Multi-Indicator Algorithm (SRA) that aims to balance
the search biases of the indicator et and the Shift-based
density estimator (SDE) [29]. SRA uses the stochastic ranking
algorithm as its environmental selection mechanism as well
as to balance the search biases of et and SDE. SRA exhib-
ited promising performance on different benchmark problems.
However, the authors stated that further studies are necessary.

In 2017, Herndndez Gémez and Coello [18] proposed to
use an environmental selection mechanism based on R2 in
conjunction with the Riesz s-energy as the backbone of a
density estimator to break the ties of the former mechanism
by promoting good diversity. The simultaneous utilization of
both schemes allow to improve the diversity of solutions due
to the properties of the Riesz s-energy, while keeping a high
selection pressure due to the R2 indicator.

Focusing on taking advantage of the search properties of
R2, IGD™, €*, and A,, Falcén-Cardona and Coello [19]
proposed a hyper-heuristic method that, according to the
current state of the evolutionary process, selects the best-
suited indicator-based density estimator (IB-DE), using a
Markov chain. The so-called Multi-Indicator Hyper Heuristic
(MIHPS), gave insights about the competition of IB-DEs
and the way in which each one is preferred according to
the state of the search. In 2019, Falcén-Cardona et al. [14]
proposed a density estimator that, depending on a statistical
analysis of convergence, switches between an IGD™-based
density estimator to increase diversity and a Riesz s-energy-
based density estimator to promote diversity in case that the
convergence behavior is stagnated. Due to the use of this
mechanism, a Pareto front shape invariance property emerges
in a MOEA. In 2020, Falc6n-Cardona et al. [21] proposed
a density estimator that ensembles five IB-DEs, using the
AdaBoost algorithm as in the case of BIBEA. Unlike BIBEA
that requires an offline learning process, the ensemble IB-
DE performs an online learning to adjust the weights of the
linear combination of IB-DEs. This proposal showed robust
performance under several QlIs, i.e., due to its use, a MOEA
is able to obtain the best results with respect to different
indicators.

B. MOEAs focused on Irregular Pareto Front Shapes

AR-MOEA [30] uses a density estimator based on the
enhanced IGD (IGD-NS) which, unlike the original IGD,
promotes in a better way the convergence and uniformity of
solutions. However, the main contribution of AR-MOEA is the
utilization of an adaptative technique that, at each generation,
creates a new reference set, based on the solutions stored
in an external archive, aiming to approximate the current
Pareto front shape. This reference set is employed to calculate
the IGD-NS contributions of all the solutions. This adaptive
reference set, in conjunction with IGD-NS, allows AR-MOEA
to effectively tackle MOPs with different Pareto front shapes.

Balancing convergence and diversity is the underlying idea
of GrEA [31]]. To this aim, GrEA exploits a grid-based scheme
to increase the selection pressure towards the Pareto front
while maintaining a good diversity of solutions. Compared to
other grid-based MOEAs, GrEA focuses on each individual
instead of the whole grid and it employs three grid-based
selection criteria. Moreover, an adaptive mechanism is applied
to shape the neighborhood of individuals, promoting a better
diversity. Finally, both the neighborhood structure and the
three grid-based selection criteria are used to adjust the fitness
values of the solutions.

SPEA2+SDE [29] combines SPEA2 [32] with the Shift-
Based Density Estimation (SDE) [29]. SDE is a general
method that can be embedded into any distance-based density
estimator to increase the selection pressure and to preserve a
good diversity of solutions which is desirable when solving
MaOPs. For this sake, SDE adjusts the position of solutions
according to their relative proximity to the Pareto front, by
using the dt distance of IGD™T instead of the Euclidean
distance. This slight modification allows a distance-based den-
sity estimator to take into account convergence and diversity
information in order to increase the selection pressure.

Two_Arch2 [33] is a hybrid MOEA that uses two subpop-
ulations: one dedicated to maintain convergence and the other
to preserve diversity. Two_Arch2 was especially designed to
tackle MaOPs. The convergence subpopulation is updated
based on the et indicator. The other subpopultion aims to
maintain diversity by using an update rule based on an Ly,
norm, where m is the number of objective functions. Both
subpopulations interact to produce a Pareto front approxima-
tion with both convergence and diversity properties regardless
of the Pareto front geometry.

C. State-of-the-art MOEAs

Currently, big data optimization problems are one important
research field. To deal with these problems Yi er al. [34]]
proposed an adaptive mutation operator, embedded into the
NSGA-III [35] since the variation operators importantly in-
fluence the performance of MOEAs on MOPs with many
decision variables. Following this attempt of solution where
the genetic operators have a decisive role, Yi er al. [36]
benchmarked the performance of three crossover operators,
using NSGA-III, on a human electroencephalogram signal
processing problem which is a large-scale MOP. The use
of different crossover operators allowed NSGA-III to present
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a better performance when solving large-scale MOPs. More
recently, Gu and Wang [37]] and Zhang et al. [|38] introduced
the information feedback models (which is the use of historical
information of individuals to update the process of the current
generation) to deal with large-scale MOPs. This methodology
was used to improve the performance of both NSGA-III
and MOEA/D [39], generating significant improvements. In
addition to large-scale MOPs, other important and demanding
problems are the interval MOPs (IMOPs) since to obtain a
reasonable good solution, a large number of function evalu-
ations are required. Sun er al. [40] incorporate several local
searches to increase the performance of a MOEA by improving
its exploration skills. These local search mechanisms are
activated only when the underlying MOEA reaches a specific
hypervolume value. In consequence, a significant performance
improvement is achieved. Another important technique to
solve large-scale MOPs is the use of multiple populations
since they allow to explore different regions of the search
space. Tian et al. [41] proposed a multi-population MOEA
to deal with large-scale multi-modal MOPs. The proposed
approach guides the multiple populations using adaptive search
directions to provide efficient convergence in the huge search
space, differentiating the plethora of regions. Last but not least,
dynamic MOPs are also challenging problems that deserve the
attention from the evolutionary multi-objective optimization
community. Under this direction, the use of multi-objective
particle swarm optimizers (MOPSOs) is a viable alternative.
Kouka et al. [42] designed a MOPSO to tackle dynamic MOPs
where the key contribution is the use of multiple populations
and cooperative agents that share knowledge to deal with
the changing search environment. Their experimental results
showed the effectiveness of this approach.

IV. ISLAND-BASED MULTI-INDICATOR ALGORITHM

The proposed IMIA algorithm is an island-based MOEA
where in each island an steady-state IB-MOEA (following the
framework of SMS-EMOA) evolves a micro—populatiorﬂ in
isolation during a given number of iterations (fy,;4 iterations).
After that, a synchronous migration process is performed
where each island sends n,,;, solutions to each island in-
dicated by a connection topology. Additionally, due to the
use of micro-populations, each island maintains an external
archive where the best-found solutions are stored to preserve
high diversity. In the following, we broadly describe the
general framework of IMIA, the generic steady-state IB-
MOEA employed in each island, the migration process and
the management of the external archives.

A. General Framework

The general framework of IMIA is presented in Algo-
rithm E} To execute IMIA, the user needs to provide the
indicator I; that each island j = 1,...,k will use; the size ;1
of the approximation set to be generated; and the migration
parameters, namely, fiig, mig, and the topology matrix M

3The decision of using micro-populations is because Hernandez et al. [43]
found that the computational cost of SMS-EMOA when solving MaOPs does
not considerably grow if populations of no more than 15 individuals are used.

(or adjacency matrix). In line 1, all the subpopulations P; are
randomly initialized and, then, each archive A; is set to have
the globally non-dominated solutions. The main loop of IMIA
(lines 4 to 8) consists of the parallel execution of the IB-
MOEASs (described in Algorithm [2)) where they communicate
synchronously to migrate solutions after being executed f,q
iterations. This process continues until the stopping criterion is
met. In line 9, all the subpopulations and archives are merged
in a single set .4 from which we obtain the non-dominated
solutions. If the cardinality of A is greater than y, the solutions
in A are normalized so that we iteratively reduce its cardinality
by deleting at each iteration the worst-contributing solution to
the Riesz s-energy until A has p individuals [44]). Finally, A
is returned as the approximation set.

Algorithm 1 IMIA general framework

Require: Set of indicators Z = {I4,...,Ix}; Population size u;
migration frequency fiiq; number of solutions to migrate nmig;
topology matrix M.

Ensure: Pareto front approximation .A.

1: Randomly initialize P;,j = 1,...,k with |P;| = u/k

2: A; = Non-dominated (Ule Pi) Jj=1,...,k

3: while stopping criterion is not fulfilled do

4 parallel for j =1 to k do

5: {Pijj}:IB'MOEA(Pj7Ij7Ajv,uvfmigvnmimM)
6 end parallel for

7: end while

8 A= U§:1 A]' U Pj

9: A = Non-dominated(.A)

10: if |A| > p then

11: Obtain Z* and 2™ from A and normalize it
12: end if

13: while |A| > p do

14: Aworst = arg maxgze 4 Cg, (d,.A)

15: A = A\ {5worsl}

16: end while

17: return A

B. Generic steady-state IB-MOEA

Algorithm [2] introduces the generic steady-state IB-MOEA
(following the SMS-EMOA framework [23]) that is executed
on every island. Each IB-MOEA requires seven inputs for
its execution: the population to be evolved, the baseline
indicator I employed in the density estimator, the local archive
with the given maximum size that is set to u, fimig, Tmigs
and M. This generic IB-MOEA does not have initialization
instructions since P and A were initialized in lines 1 and
2 from Algorithm [I] respectively. Hence, this allows the IB-
MOEAs to be executed iteratively in the main loop of IMIA.
The main loop of the IB-MOEA is executed in lines 2 to 17
for fy,iq iterations. First, a new offspring solution is generated
from P, using roulette-wheel parent selection, simulated bi-
nary crossover (SBX), and polynomial-based mutation (PBM)
[24]. This solution is added to P to generate the set ()
that is then normalized and processed by the non-dominated
sorting algorithm [24] to create a set of dominance layers
{R1,...,R:}. If the last layer R; contains more than one
solution, then the worst-contributing solution 7y € Ry to [
is identified. Otherwise, Tyorst 18 Set to be the sole solution in
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R;. In case that Ty 1S not the newly created solution, the
latter is inserted in the local archive A using Algorithm
Finally, 7o is removed from () to shape the next population
P and the iteration counter g is increased by one. Once the
main loop is broken, the migration process of Algorithm ] is
performed. Since the migration is a blocking process due to
its synchronous design, the IB-MOEA will wait until all the
immigrant solutions have arrived. Finally, the updated P and
A are returned.

Algorithm 2 Generic steady-state IB-MOEA

Require: Population P; indicator I; local archive .A; maximum
archive size p; migration frequency fmig; number of solutions
to migrate 7mig; topology matrix M.
Ensure: Updated population P and local archive A
1: g=0
2: while g < fy,i4 do

3: Generate offspring ¢ from population P

4: Q=PU{q}

5: Obtain z* and 2" from Q and normalize it
6: {Ry, ..., Rt} = Non-dominated-sorting(Q)
7: if |[R¢| > 1 then

8: Tworst = arg Mingzc g, Cr(7, Ry)

9: else

10: Tworst 18 the single solution in R

11: end if

12: if @ # Tyors then

13: A = Insert(A, 7, i)

14: end if

15: P = Q \ {Fworsl}

16: g=g+1

17: end while

18: {P, A} = Migration(P, I, A, i, fmig, Nmig, M)
19: return {P, A}

C. Archive Management

The external archive (Algorithm is managed by two
selection criteria: Pareto dominance and Riesz s-energy mini-
mization [44]. A solution 7" to be inserted is first tested using
the Pareto dominance relation against all the individuals in
A. Every time that 7 dominates a solution @ € A4, the latter
is removed from A. However, if at least one solution in the
archive weakly dominates 7, then the process is stopped and
A is returned without adding 7. Assuming that 7" is not weakly
dominated by any of the elements in A, the former is added to
the archive. If the cardinality of the archive is greater than its
maximum possible size pu, it is necessary to prune it following
an iterative process. At each iteration, the solution with the
worst contribution to the Riesz s-energy indicator is removed
until the desired size p is reached. Finally, A is returned.

D. Migration Process

The exchange of individuals via migration is crucial for the
overall performance of IMIA. It increases the diversity of both
the main population and the local archive in each island. In
Algorithm [4] the migration is performed in lines 1 to 6 where
the invoked island sends 7,,;, solutions (randomly selected
from the main population P) to each of its neighboring islands
that are determined by the topology matrix M. After sending

Algorithm 3 Insert

Require: Archive A; solution 7 to be inserted; maximum archive
size [u.
Ensure: Updated archive A
1: for all @ € A do

2 if 7 < @ then

3 A=A\ {a}

4 else if @ < 7 then

5: return A

6 end if

7: end for

8: A= AU{r}

9: while |A| > u do

10: Aworst = arg maxgze 4 Cg, (d,.A)

11: A = A\ {Gworst }
12: end while
13: return A

the solutions, the island is ready for receiving immigrant
solutions. Hence, it is first necessary to determine which
solutions from P will be replaced. In our case, we iteratively
delete from P the L - n,,;, worst-contributing solutions to the
given indicator [/ in lines 9 to 13, where L is the number of
source islands of the current island. The blocking reception
process is described in lines 15 to 21, where the algorithms
wait until receiving the total L - ny,;, of immigrant solutions.
Each time a solution is received, it is inserted in the archive
(using Algorithm [3)) and it is directly added to P in one of
the available places. Once all the immigrant solutions were
received, the updated P and A are returned.

Algorithm 4 Migration

Require: Population P; indicator I; archive .A; maximum archive
size p; migration frequency fn,ig; number of solutions to migrate
Nmig; topology matrix M.

Ensure: Updated population P and archive A

1: for all destination islands in M of the current island do

2 for j =1 to nmig do
3 Randomly select a solution 7 € P to migrate
4: Send solution 7
5: end for
6: end for

7: Let L denote the number of source islands of this island

8. t=1

9: while ¢t < L - nnig do

10: Tworst = arg minge p C1 (7, P)

11: P =P\ {7}

12: t=t+1

13: end while

14: t =1

15: while ¢ < L - nyiy do

16: if a solution 7 is received then
17: A = Insert(A, 7, u)

18: P=PU{r}

19: t=t+1

20: end if

21: end while
22: return {P, A}

E. Runtime Complexity

In this section, we provide the runtime complexity of a
single iteration of the parallel for in lines 4 to 6 in Algorithm|[I]
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Hence, it is necessary to first determine the runtime complex-
ity of the Insert and Migration operations, shown in
Algorithms |3| and 4] respectively. It is worth noting that the
cardinality of each A; is at most p and |P;| = p/k for all
7 = 1,... k. The complexity of the Insert operation is
dominated by the while loop in lines 9 to 12 since the for
loop takes O(m|A;|) = O(mu). The while loop requires
the selection of the worst-contributing solution to the Riesz
s-energy which is performed using the algorithm proposed
in [44]) that takes ©(mpu?). Hence, the overall complexity of
the Insert algorithm is ©(mpu?).

The Migration algorithm (see Algorithm @) is mainly
composed of three loops. The for loop in lines 1 to 6 takes
O((k — 1) - nynsg), where an island can send solutions to at
most k — 1 islands. The while loop in lines 15 to 21 invokes
the Insert algorithm a total number of L-n,,;, times, where
L is at most k£ — 1. Hence, this while loop is performed in
O((k —1) - nnig - mu?). The remaining while loop dominates
the complexity of the Migration because it involves the
selection of the worst-contributing solution to the I; indicator.
Let 7; (1) denote the complexity of determining the worst con-
tributing solution to 7;. In consequence, line 10 of Algorithm 4]
takes O(7;(p/k)) and this operation is repeated L-1,,;, times.
Thus, the overall complexity of the Migration algorithm is
O((k—1) -nmig - 7j(1/k)). Regarding 7; (1), in case of using
HV via the WFG algorithm [45], 7(¢) = O(2*). On the other
hand, in case of using IGD", R2, e*, and A, computing the
worst contributing solution takes 7(u) = ©(mpu?), according
to [46].

The runtime complexity of Algorithm [2] is dominated by
line 8 where it is determined the worst contributing solution to
the given indicator in O(7(u/k)). The remaining operations
are at most O(p?). For instance, the nondominated sorting

. . 2 .
is performed in O (m (4)”) and the Insert operation in

line 13 takes O(mpy?). Since the while loop is repeated fy,;q
times and in line 18, the Migration is executed, the overall
complexity of Algorithmis O(fimig- (T(/k)+mu?)+ (k—
1) - Nmig - T(p/k)). Since frig, Nmig, and k are constants,
the complexity can be written as O(7(u/k) + mp?), which
also corresponds with the complexity of the parallel for in
Algorithm [T]

V. EXPERIMENTAL RESULTS

This section is devoted to analyzing the performance of
IMIA, employing islands with SMS-EMOA [23], R2-EMOA
(3], IGD*-MaOEA [46], eT-MaOEA, and A,-MaOEA (the
last two algorithms are similar to IGD*-MaOEA). We decided
to utilize these five IB-MOEAs because according to Falcon-
Cardona and Coello [10]], they exhibit different convergence
and diversity properties that can be combined to compensate
for the weaknesses of a given IB-MOEA with the strengths of
the others. The islands are linked through a fully-connected
graph topology and each IB-MOEA uses a micro-population
of /5 individuals. IMIA is compared with panmictic ver-

TABLE I: Summary of Pareto front shapes related to the
selected MOPs.

MOP name Pareto front shape Simplex-like

DTLZ1 Linear Yes

DTLZ1~ T Inverted linear No

DTLZ2 - DTLZ4 Concave Yes

DTLZ2~ ! - DTLZ4™ T Convex No
Concave (m = 2)

DTLZ5 & DTLZ6 Degenerate (m = 3) No
Unknown (m > 3)

DTLZ5 ! & DTLZ6™ ! Convex No

DTLZ7 & DTLZ7 ! Disconnected No

WFG1 Mixed Yes

WFGI ! Mixed No

WEFG2 Disconnected Yes

WEFG2 Convex No

Linear (m = 2) Yes

WFG3 Degenerate (m > 3) No

WFG3~1 Inverted linear No

WFG4 - WFG9 Concave Yes

WFG4~1 - WFG9 ! Convex No

siong’] of its five baseline IB-MOEAs and five state-of-the-art
MOEA{} AR-MOEA [30], GrEA [31], SPEA2+SDE [29],
Two_Arch2 [33], and SRA [29] (which is a multi-indicator-
based MOEA). These five state-of-the-art MOEAs share one
property: they have been designed to tackle MOPs with
different Pareto front shapes.

For comparison purposes, we adopted the test suites Deb-
Thiele-Laumanns-Zitzler (DTLZ) [48]], Walking-Fish-Group
(WFG) [49], and their inverted versions DTLZ~! and WFG—!
[S0], using 2, 3, 4, 5, 6, and 7 objective functions. Table
[ presents an overview of the Pareto front shapes related to
the considered test problems, where it is emphasized if the
Pareto front geometry is correlated with the shape of a simplex
formed by a set of convex weight vectors. Regarding the
DTLZ and DTLZ ™! test problems, the number of variables
was set to n = m + K — 1, where m is the number of
objective functions, and K = 5 for DTLZ1, K = 10 for
DTLZ2-DTLZ6, and K = 20 for DTLZ7. Their inverted
counterparts share the same value of K. Concerning the WFG
and WFG™! problems, Table [ll| shows the number of variables
and position-related parameters together with the number of
objective functions. For each test instance, we performed 30
independent executions and, to have statistical confidence,
we employed the one-tailed Wilcoxon rank-sum test, using
a confidence level of o = 0.05.

IMIAE] was implemented using the C programming language
(compiler GCC 4.7.2 20121109) and we adopted the OpenMP
library to deal with the parallel execution of the islands (line
4 of Algorithm [T). The running environment is the following:
Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz (6 cores),
having 8 GB RAM and Red Hat 4.7.2-8 as the operating
system. It is worth noting that all the algorithms were executed
under the same running environment.

5They were implemented following Algorithm [2| adding an initialization
phase for the main population and not using the external archive nor the
migration process.

7We employed the algorithms implemented in the PlatEMO platform [47].

8The source code of IMIA is available at |http://computacion.cs.cinvestav.
mx:/~jtalcon/IMIA/
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TABLE II: Common parameter settings applicable to all the
1 values.

Num. objectives (m) 2 3 4 5 6 7
Max. function evaluations (x103) | 40 | 50 | 60 [ 70 | 80 | 90
Variables (n) 24 126 | 28 | 30 | 32 | 34

WFG Position-related

parameters
GrEA’s divisions of
objective space

45 | 15 | 10 | 9 9 8

A. Parameters Settings

For a fair comparison, IMIA and all the selected MOEAs
use the same population size p. On the one hand, when
comparing IMIA with the panmictic IB-MOEAs, we used
different values of p = 50,75,100,120,140. On the other
hand, we set ¢ = 140 for the comparison of IMIA with AR-
MOEA, GrEA, SPEA2+SDE, Two_Arch2, and SRA. IMIA
and all the selected MOEAs utilize simulated binary crossover
and polynomial-based mutation as their genetic operators [24]].
For two- and three-objective MOPs, we set the crossover
probability to 0.9, and the crossover distribution index to
20, while for MaOPs these values are set to 1.0 and 30,
respectively. For all test instances, the mutation probability
is set to 1/n (where n is the number of decision variables),
and the mutation distribution index is set to 20. We employed
a maximum number of function evaluations as the stopping
criterion (see Table . Regarding IMIA, fpiy = p /5,
Nmig = 1, and a fully-connected graph topology is employed
as M in all cases. The global and local archives of IMIA
have a cardinality equals to p. Due to the use of the island
model, IMIA was implemented adopting a multi-core parallel
approach via OpenMP. To generate the weight vectors that
R2-EMOA requires, Uniform Design, using the Hammersley
method (UDH) [51]] is employed. It is worth noting that UDH
can produce sets of weight vectors of any cardinality, unlike
the simplex-lattice design method. Additionally, we used the
achievement scalarizing function as the utility function for R2-
EMOA. {IGD™, ¢*, A,}-MaOEA uses the current set of non-
dominated solutions as reference set. Regarding the PlatEMO
implementations, AR-MOEA, SPEA2+SDE, and SRA do not
need special parameters settings while GrEA and Two_Arch2
do. The number of divisions of the objective space employed
by GrEA is shown in Table [[I} The size of the convergence
archive of Two_Arch?2 is equal to the population size and the
fractional distance is set to 1/m for all the test instances. These
parameter values are suggested by the authors of GrEA and
Two_Arch2 in [31] and [33], respectively.

To assess the Pareto front approximations, we decided to
utilize seven quality indicators: HV, R2, IGD™, et, A, Riesz
s-energy, and the Solow-Polasky Diversity (SPD). The reason
of this decision is that we aimed to determine if the MOEASs’
performance is robust under several quality measures, i.e., we
wanted to know if the MOEA’s performance was consistently
good or bad in the light of the selected convergence and
diversity indicators. Table [[TI] shows the reference points that
HV employs per each test problem. R2-EMOA uses UDH-
based weight vectors and the vector-angle distance scaling
function. For the calculation of IGDT, e*, and A, areference

TABLE III: Reference points for the hypervolume indicator
calculation.

MOP name Reference point

DTLZI (I1,1,...,0)
DTLZ2-DTLZ6 (2,2,...,2)
DTLZ7 (1,...,1,21)
DTLZ1~ T - DTLZ6~ T (1,1,...,1)

DTLZ7 ! (0.1,...,0.1,—10)

WFGI-WFG9 {2i+1=1,.m
WFG1~T-WFG9~T (1,1,...,1)

set is required. The reference sets are constructed by merging
the Pareto front approximations from the MOEAs, getting the
non-dominated solutions and, then, applying a Riesz s-energy-
based subset selection, with s = m — 1 [44]. According to
Harding and Saff [52], a uniform point set is favored if s is
greater or equal to the dimension of the manifold covered. The
cardinalities of the reference sets are equal to 100 - m. Finally,
the parameter 6 of SPD is set to 10 for all cases.

B. Comparing IMIA with Panmictic IB-MOEAs

In this section, we discuss the performance of IMIA in
comparison with the panmictic IB-MOEAs. Due to the high
computational cost of executing a panmictic SMS-EMOA on
MaOPs, we decided to compare IMIA with the IB-MOEAs
in MOPs with 2, 3, and 4 objective functions. However,
to allow an exhaustive experimentation, we used different
population sizes, i.e., p = 50, 75,100, 120, 140. Due to space
limtiations, Table summarizes all the numerical results,
showing the statistical ranks obtained by each MOEA per
quality indicator and population size. The complete numerical
results are available in the Supplementary Material.

For a population size of 50 individuals, Table [[V| shows that
SMS-EMOA is the best algorithm, getting the first place for all
the convergence indicators and the second place for diversity
indicators where IMIA has the best performance. In contrast,
IMIA is consistently the best-ranked algorithm for R2, A,,
E,, and SPD and it obtains the second and third places
regarding €™ and HV, respectively, for ;1 = 75,100,120, and
140 individuals. For these i values, SMS-EMOA is the best-
ranked algorithm for HV, IGD™, and e™. This is an expected
result since SMS-EMOA optimizes HV and the preferences
of this QI are highly correlated with those of IGD™ and e*
[12], [53]. A reason that explains why IMIA does not get
the first places for HV, IGDT, and et is that the Pareto
front approximations of our proposed approach have a high
degree of diversity as it is shown in Figure [T} For example,
for the three-objective DTLZ2 problem (see Fig. [I), SMS-
EMOA, IGDT-MaOEA, and ¢t-MaOEA are the three best-
ranked algorithms according to Table 34 in the Supplementary
Material and, from the figure, it is clear that their Pareto front
approximations are similar but lacking diversity. However,
IMIA, A,-MaOEA, and R2-EMOA, whose approximation
sets are remarkably more diversified, are ranked fourth, fifth,
and sixth, respectively. Hence, having well-diversified Pareto
fronts does not necessarily imply a large hypervolume value.
Under this direction, it is possible to observe that an important
advantage of IMIA over its baseline panmictic IB-MOEAs is
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TABLE IV: Mean related to the statistical ranks of the comparison between IMIA and the panmictic IB-MOEAs. A symbol
# is placed when IMIA’s rank is significantly better than the other IB-MOEAs based on a one-tailed Wilcoxon test, using a
significance level of o = 0.05. The two best values are shown in gray scale, where the darker tone corresponds to the best

value. The subindex is the rank of each MOEA.

[ Pop.size [ QI

[ IMIA | SMS-EMOA | R2-EMOA [ IGDT-MaOEA [ ¢"-MaOEA [ A,-MaOEA |

HV 3.8334 4.3545# 3.3962 3.4483 4.5626#
R2 2.8022 3.3544# 4.6885# 4.698¢# 2.9273
IGDT | 4.1045 4.0314 3.273 3.2502 4.812¢#
50 et 3.7293 4.0005 3.8654 3.6252 4.438¢6#
Ap 2.7192 3.3964# 4.4065# 4.583¢# 3.2813#
Es 2.2712# 5.792¢# 3.8964# 4.3335# 2.8753#
SPD 2.6352# 4.885¢# 4.3854# 4.6775# 2.7923#
HV 3.5313 4.5005# 3.2082 3.7504 4.6676#
R2 2.6042 3.5424# 4.4795# 4.885¢# 3.0423#
IGD 3.6463 4.1775# 3.0732 3.7294 4917¢#
75 € 3.1882 4.0542# 3.6773# 4.1255# 4.635¢#
p 2.8549# 3.542,4# 4.3545# 4.812¢# 3.2403#
B 2.5732# 5.8656# 3.6154# 4.4795# 2.9063#
SPD 2.9583# 4.948¢6# 4.2714# 4.8755# 2.6562#
4.4065# 3.3752 3.7504 4.635¢#
3.3654# 4.59%45# 4.885¢# 2.9483#
4.1355# 3.1042 3.6353 4.979¢#
100 3.8544# 3.7293# 4.1355# 4.667c#
2.979:# 3.4694# 4.4695# 4.708¢# 3.2503#
2.6982# 5.8756# 3.7504# 4.2295# 2.8443#
3.1353# 4.792¢# 4.3444# 4.7925# 2.4172#
HV 3.5523 4.4385# 3.2712 3.6884 4.667c#
R2 2.8022 3.542,# 4.5005# 4.667¢c# 2.8543#
IGD 3.7404 4.2715# 3.0732 3.5003 4.958¢#
120 € 3.229; 3.948,4# 3.6983# 4.0735# 4.698¢#
Ay 3.0622# 3.7404# 4.4065# 4.469¢# 3.2503#
b 2.9063# 5.802¢# 3.8234# 4.2605# 2.5732#
SPD 3.2293# 4.7716# 4.3654# 4.6675# 2.323:#
HV 3.5317 4.2605 3.5313# 3.7204# 4.615¢#
R2 27715 3.427,4# 4.6355# 4.719¢# 2.9383#
IGD 3.7604 4.1465 3.1882 3.5003 5.0106#
140 € 3.0732 3.8753# 3.9174# 3.9175# 4.802¢#
Ay 3.0312# 3.6774# 4.3755# 4.59%4¢# 3.3023#
L 2.9483# 5.8656# 3.7924# 4.2715# 2.5622#
SPD 3.3123# 4.7715# 4.3444# 4.781¢# 2.2602#

its ability to generate Pareto front approximations with high
diversity. This skill is due to a better exploration of the search
space as a result of the cooperation of the islands, where
different solutions are found, following the inner preferences
of the baseline QIs. In fact, IMIA is the best algorithm for both
Riesz s-energy and SPD for all the 1 values. This is supported
by Figure[T|where regardless of the Pareto front shape, IMIA is
able to produce approximation sets covering the whole Pareto
front with well-diversified solutions. Overall, IMIA is the most
robust algorithm according to Table [[V] since for all the seven
QIs and different population sizes, the performance of IMIA
is consistently good. This is a strong insight that supports the
fact that the cooperation of multiple IB-MOEAs through IMIA
is responsible for obtaining better performance than using
their panmictic implementations. In contrast, the panmictic
IB-MOEAs are restricted to their own search abilities, i.e.,
it is not possible for them to keep solutions out of the scope
of their QI preferences. In consequence, when assessing an
IB-MOEA with multiple QIs, including its baseline QI, it
is expected that it has a good performance on its baseline
QI (because by design, the IB-MOEA aims to optimize it).
However, regarding the other indicators, it is not very likely
for the IB-MOEA to present a good performance because it

does not fulfill the solutions rewarded by them. Hence, overall
the experimental results show that IMIA looks for a balance
between the preferences of its baseline IB-MOEA, gathering
solutions from different promising regions of the search space
which results in a more robust performance that its panmictic
baseline IB-MOEAs.

One may argue that SMS-EMOA is also a robust algorithm.
This is partially true, due to the following reasons:

1) HV, IGDT, and € systematically reward SMS-EMOA
due to their high correlation of preferences.

2) SMS-EMOA is not able to produce well-diversified
Pareto front approximations regardless of the associated
manifold geometry as shown in Figure [I]

3) It requires a high computational effort even for MOPs
with 2, 3, and 4 objective functions (we refer the reader
to Section 3 of the Supplementary Material).

Regarding the last point, Tables 49 to 53 of the Sup-
plementary Material show the speedups that IMIA obtains.
Even though SMS-EMOA is a remarkable well-performing
algorithm, its computational cost is too high in comparison
with IMIA and the remaining IB-MOEAs. For instance, IMIA
gets speedups of up to 189.136x for the DTLZ2 problem with
a population size of 140 individuals (see Table 53 of the Sup-
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plementary material) as we increase the number of objective
functions with respect to SMS-EMOA. The advantage of IMIA
with respect to the panmictic SMS-EMOA is the use of a
micro-population as stated by Herndndez Gémez and Coello
[43]. Hence, this observation strengthens our claim that IMIA
is better than panmictic IB-MOEAs since their high-quality
results are obtained in lower computational time.

In the following, we describe the MOPs on which IMIA
systematically attains a good performance. These claims are
based on the heat maps presented in Section 1 of the Sup-
plementary Material. For all the p values, IMIA always
present a robust performance (being ranked first, second, or
third on all the QIs) on problems DTLZ2~!, DTLZ57!,
DTLZ6, DTLZ6!, WFG3~!, WFG4~!, WFG5~!, WFG6~!,
WFG7-!, WFG8~!, and WFG9~!. For p > 75, IMIA is
very good for problems DTLZ1~!, DTLZ2, DTLZ4~!, and
DTLZ7. Under this light, it is possible to see the superiority
of IMIA on the inverted DTLZ and WFG test instances, due
to the combination of the strengths of its baseline IB-MOEAs.
In addition, IMIA has always a competitive performance for
problems WFG4, WFG6, WFG7, WFG8, and WFGY. For
WFGI1, WFG2, and WFG3, IMIA has a good performance as
long as p increases. Hence, it is possible to see that IMIA is a
good optimizer under MOPs with different search difficulties
and Pareto front shapes. Finally, the heat maps show that IMIA
is not a good option for problems similar to DTLZ3 (which has
a highly multifrontal MOP) and DTLZ7~!. A possible reason
for the bad performance on DTLZ3 is that due to the use of
micro-populations, the islands get stuck on local optima since
there is not enough genetic material to exploit. In comparison,
the panmictic IB-MOEAs have better performance on this
problem. Concerning DTLZ7~!, we observed that IMIA has
some difficulties to generate all the disconnected regions of the
Pareto front, especially for two objective functions. However,
for DTLZ7 and WFG2, which also have a disconnected Pareto
front, IMIA presents a competitive performance.

C. Pareto-front-shape Invariance

A few years ago, Ishibuchi er al. [50]] pointed out that some
MOEAs are overspecialized on benchmark problems whose
Pareto front shapes are correlated to the form of a simplex.
In other words, the performance of these MOEAs depends
on the Pareto front geometries. To effectively overcome this
issue, IMIA 1is designed to take advantage of the search
skills of different IB-MOEAs throughout their cooperation. To
show that IMIA is a Pareto-front-shape invariant optimizer, we
first need to analyze how its Pareto front approximations are
generated. The final approximation set generated by IMIA is
constructed by merging all the subpopulations and archives of
all the islands (see lines 8 to 16 of Algorithm [I). It is worth
analyzing how each island contributes to the final Pareto front
approximations. The underlying intuition is that the percentage
of contribution of each island will change depending on the
Pareto front shapes due to the specific preferences of its
baseline QI. Figure [2| presents the percentage of solutions
contributed by each island for the problems DTLZ2, WFGS,
DTLZ2~!, and WFG8~! with p = 140. We should mention

that both DTLZ2 and WFGS8 have a concave Pareto front
geometry correlated with the shape of a simplex. In contrast,
both DTLZ2~! and WFG8~! have a non-simplex-like convex
Pareto front geometry. From the figure, it is interesting to see
some patterns. For both DTLZ2 and WFGS, it is clear that
as the number of objective functions increases from 2 to 7,
the contribution of solutions of the A, island increases as
well while the contribution of the HV, IGD*, and ¢t islands
decreases and the contribution of the R2 island varies a little
without being significant. In contrast, for both DTLZ2~! and
WFG8~!, the contribution of the R2 island is the dominant
as the dimension of the objective space increases while the
impact of the A, island is relatively constant and the decrease
of the contribution of the HV, IGD*, and €' islands is more
significant. These contribution patterns are also exhibited for
different p values. In general, we found that for groups of test
problems, sharing similar Pareto front shapes, a specific con-
tribution pattern appeared (the complete results are available at
http://computacion.cs.cinvestav.mx/~jfalcon/IMIA/). The ex-
istence of a contribution pattern for similar problems and
the difference of contributions when the Pareto front shape
changes, is a clear insight into the efficacy of each island
on specific problems and how IMIA can compensate for the
weaknesses of an IB-MOEA with the strengths of others.
Additionally, this is the main reason for the Pareto-front-shape
invariance of IMIA.

To support the above mentioned results, it is necessary to
analyze the indicator results of IMIA when it is compared
with panmictic IB-MOEAs and state-of-the-art MOEAs. First,
Table shows that for all the population sizes, IMIA is the
best-ranked algorithm for B2 and A, (which are convergence-
diversity indicators) and, more importantly, it is the best
algorithm for Riesz s-energy and SPD which are diversity
QIs. These indicator values exhibit the superiority of IMIA
to produce Pareto front approximations with high diversity.
Figure |1| compares the approximation sets generated by IMIA
and the panmictic IB-MOEAs, where IMIA generates the best
ones regardless of the geometry of the manifold.

Table [V] presents the statistical ranks obtained by IMIA and
the selected state-of-the-art MOEAs. These comparisons are
based on test problems with 2 to 7 objective functions. The
complete comparison is available in Section 2 of the Supple-
mentary Material. The statistical ranks show that IMIA obtains
once again the first place in the comparison regarding A, E,
and SPD and the second place with respect to R2. This is a
direct consequence of its generation of well-diversified Pareto
fronts. On the other hand, Two_Arch2 is the best for R2 and
et and it achieves the second place for HV, IGD™', A, and
SPD. The obtention of the first place on €™ is expected since
Two_Arch2 optimizes this QI and its good performance on
the other mentioned QIs is due to the interaction between its
subpopulations. SPEA2+SDE is the third-best algorithm. This
MOEA is the best-ranked for HV and IGD™ and the second-
best for et which is explained by the use of the SDE method
that shifts the position of solutions using the d* distance of
IGD™. IMIA outperformed the remaining MOEAs, i.e., AR-
MOEA, GrEA, and SRA. The wide variety of problems em-
ployed in the comparison showed that the adaptation method
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for the weight vectors of AR-MOEA cannot perfectly match
the shape of the underlying Pareto front which causes the loss
of some portions of it (see Figure [3). For both GrEA and
SRA, their poor performance is due to the loss of some parts
of the Pareto fronts. Figure [3] compares some five- and seven-
objective approximation sets produced by IMIA and the state-
of-the-art MOEAs for problems DTLZ2, DTLZ2~!, WFGO,
and WFG™!. It is clear that both IMIA and Two_Arch? are
the only algorithms that completely cover all the Pareto fronts,
having a high diversity degree. For DTLZ2~!, AR-MOEA,
SPEA2+SDE, and SRA are not able to cover all the Pareto
front. Hence, this supports our claim that one of the clear
advantages of IMIA is its invariance with respect to the Pareto
front shape and the generation of approximation sets with high
coverage and diversity.

D. Parallel Performance

In this section, we analyze in depth the overall computa-
tional time of IMIA and the computational time during which
each island is executed. Due to the high amount of data
generated from this study, the complete results are available
at http://computacion.cs.cinvestav.mx/~jfalcon/IMIA/.

IMIA is a parallel MOEA where islands (IB-MOEAs) are
executed simultaneously, and every f,;, iterations they com-
municate with each other following a synchronous scheme. A
critical factor related to the execution time of IMIA is the size
of the subpopulations on each island. Figure 4 compares the
execution time of IMIA when solving the DTLZ2 problem
with 2 to 7 objective functions and total population sizes of
50 and 140 individuals which implies subpopulations of 10
and 28 individuals on each island, respectively. In Figure [da]
related to 50 individuals, the execution time follows a linear
behavior while in Figure {4c|a nonlinear behavior is shown for
140 individuals. This is a consequence of the subpopulation
size and the cost of the HV island. The boxplots in Figures ]
and show for how much time is each island executed.
For 140 individuals and as we increase the dimensionality of
objective space, the HV island controls the execution time of
IMIA, while the execution time of the remaining IB-MOEAs is
very low. In contrast, for 50 individuals, the execution times of
all the islands are similar regardless of the number of objective
functions. However, from the results in Section we know
that the performance of IMIA increases as the population size
does. Consequently, there is a trade-off between execution time
and performance.

An important point to emphasize is the idle times on each
island. Since the HV island controls the overall execution time
of IMIA, as we increase the population size and the number of
objective functions, the remaining islands have too much idle
time due to the synchronous migration (see Figures 4b]and fid).
In a future improvement of IMIA, an asynchronous migration
scheme could be considered to tackle this issue. However, from
the parallel MOEAs we know that there is also a trade-off
between performance quality and the communication scheme
adopted.

E. Comparing IMIA with cMIB-MOEA

This subsection is devoted to briefly show that IMIA is
better than cMIB-MOEA. In a similar fashion to IMIA, cMIB-
MOEA is set to use five islands based on HV, R2, IGDT,
et, and A, adopting micro-populations of size /5, where
p# = 140 and it uses the same n,,;, and fp,;; values. We
compared both algorithms using the DTLZ, DTLZ ™!, WFG,
and WFG™! test suites with 2 to 7 objective functions. We
employed HV, R2, IGD !, et, Ap, E, and SPD to compare
the performances. The parameters settings stated in Table
are utilized for the experimentation. Due to the large amount
of data, Table [VI| shows the statistical ranks obtained by both
algorithms. Similarly to the comparisons between IMIA and
the panmictic IB-MOEAs and the state-of-the-art MOEAs,
IMIA is the best algorithm regarding R2, A,, E, and SPD.
As stated before, this implies that IMIA generates Pareto
front approximations with higher diversity in comparison with
cMIB-MOEA.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the cooperation of multiple IB-
MOEAs as the key idea to generate an optimizer with a
robust performance. Our proposed approach, called IMIA, is
an island-based MOEA in which multiple IB-MOEAs, using
micro-populations, cooperate to combine their search prefer-
ences for producing high-quality Pareto front approximations.
Our experimental results based on a plethora of MOPs with
different search difficulties and Pareto front geometries showed
that IMIA has a more robust performance than the panmictic
versions of its baseline IB-MOEAs. Furthermore, due to the
Pareto front shape invariance of IMIA, our proposal is able to
generate approximation sets with higher diversity in compari-
son with several state-of-the-art MOEAs especifically designed
to tackle MOPs with irregular Pareto front geometries. As part
of our future work, we aim to study the impact of the migration
parameters and the connection topology of the islands. Finally,
we aim to design an asynchronous migration mechanism that
allows IMIA to reduce the idle times in its islands.
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