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Abstract—Traditional reproduction operators in many-
objective evolutionary algorithms (MaOEAs) seem not so effective
to tackle many-objective optimization problems (MaOPs). This is
mainly because the population size cannot be set to an arbitrarily
large value if the computational efficiency is concerned. In such
case, the distance between parents becomes remarkably large
and, consequently, it is not easy to reproduce a superior offspring
in high dimensional objective space. To alleviate this problem, an
elite gene guided (EGG) reproduction operator is proposed for
tackling MaOPs in this paper. In this operator, an elite gene
pool is built by collecting the knee points from the current
population. Then, the offspring is produced by exchanging genes
with this elite gene pool under an exchange rate, aiming to
reserve more promising genes into the next generation. In order
to provide new genes for the population, other genes will be
disturbed under a disturbance rate. The settings and functional
analysis of exchange rate and disturbance rate are studied
using several experiments. The proposed EGG operator is easy
for implementation and can be embedded to any MaOEA. As
examples, we show the embedding of the proposed EGG operator
into four competitive MaOEAs, i.e., MOEA/D, NSGA-III, θ-
DEA and SPEA2-SDE, provides some advantages over simulated
binary crossover, differential evolution and an evolutionary path
based reproduction operator on solving a number of benchmark
problems with 3 to 15 objectives.

Index Terms—Evolutionary operator, Recombination operator,
Crossover operator, Many-objective optimization, Evolutionary
algorithm.

I. INTRODUCTION

MULTI-OBJECTIVE optimization problems (MOPs)

contain several objectives to be optimized simultane-

ously. As the objectives often conflict with each other in MOP-

s, there exists a set of equally optimal solutions termed Pareto-

optimal solutions (PS), rather than a single optimal solution.
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Due to the powerful population-based search nature in multi-

objective evolutionary algorithms (MOEAs), they are effective

and efficient to tackle MOPs with two or three objectives.

However, when encountering MOPs with more than three

objectives (often called many-objective optimization problems

(MaOPs)), the performance of MOEAs quickly deteriorates

due to the curse of dimensionality [1]. To better solve MaOPs,

some research efforts have been conducted to develop new

algorithms and technologies.

When tackling MaOPs, three main challenges are often

faced. First, the effect of Pareto-based ranking becomes in-

significant for MaOPs, as the ratio of non-dominated in-

dividuals in the population raises rapidly with the number

of objectives. Second, under the above case, the diversity

maintenance mechanism begins to play a key role for MaOPs.

However, the existing diversity criteria, such as the crowding

distance [2], tend to favor some dominance resistant solutions

[3] (i.e., solutions with superior performance on at least one of

the objectives but with especially poor performance on the rest

objectives). Third, the search capabilities of evolutionary oper-

ators are considerably weakened for MaOPs, as the parents are

usually far away from each other in a high dimensional search

space. As observed from the empirical studies reported in [1],

an offspring obtained from two nearly converged parents is

contrarily far away from the true Pareto-optimal front (PF).

To overcome the first challenge, some relationships modified

from the original Pareto dominance have been proposed,

such as grid dominance [4], fuzzy Pareto dominance [5], θ-

dominance [6], reference point dominance [7] and strength-

ened dominance relation [8], to make them more effective to

solve MaOPs. Other performance indicators, such as hypervol-

umn [9], Iε [10], and S-metric [11], were reported to substitute

Pareto optimality when tackling MaOPs. However, the com-

putation of these indicators is often costly and aggravated with

the increase of objectives. To solve the low efficiency problem,

computationally efficient indicators such as R2 [12], IGD [13],

IGD-NS [14], and ISDE+ [15] have been studied and used in

indicator-based MaOEAs. Other kind of MOEAs [16] [17]

based on decomposition seems more effective for MaOPs, by

decomposing an MaOP into a set of sub-problems and then

optimizing them on a cooperative manner. Some enhanced

strategies have been reported for this kind of MOEAs to better

solve MaOPs, such as DrEA [18], and PAEA [19]. In order to

effectively solve problems with irregular Pareto-optimal fronts

in decomposition-based MaOEAs, some adaptive adjustment

methods for search directions were proposed [20] [21].

In order to address the second challenge, an extra selec-
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tion criterion has been often introduced to maintain diversity

when tackling MaOPs. For example, a set of reference points

was introduced into NSGA-II [2] with an efficient niching

methodology to ensure diversity in NSGA-III [1]. To balance

convergence and diversity, a Pareto-based dominance and a

decomposition method were combined in MOEA/DD [22],

a reference points-based selection strategy was proposed in

PREA [23], an angle-penalized distance was proposed in

RVEA [24], an one-by-one selection strategy was designed

in 1by1EA [25], a balanceable fitness estimation method was

designed in NMPSO [26], and a meta-objective approach was

introduced in MeO [27]. Similar to the use of reference points,

the incorporation of preferences into MOEAs was adopted to

maintain diversity in [28] [29]. Moreover, an adaptive sorting-

based selection strategy was developed in SAEA [30] in order

to balance convergence and diversity when handling problems

with irregular PF.

On the third challenge, there are very few studies available

in the specialized literature. In most many-objective evolu-

tionary algorithms (MaOEAs) [1]-[4], [22]-[31], simulated

binary crossover (SBX) [32] has been often used with a large

distribution index, leading to a high probability of sampling

offspring close to their parents. The reason for this setting

of SBX is not fully studied in these MaOEAs and there are

few research studies that show the behavior of crossover when

tackling MaOPs. To fill this research gap, a novel elite gene

guided reproduction operator (EGG) is proposed in this paper.

In this approach, an elite gene pool will be built by only

including the knee point solutions selected from the current

population, showing promising properties on convergence and

diversity. Such that, the child solution will be produced by

exchanging genes of parents selected from this pool under a

high probability (i.e., the exchange rate (Er)). Moreover, some

new genes will be produced by disturbing the allel genes of

parents with a disturbance rate (Dr). In summary, the main

contributions of this paper are listed as follows.

• A generalized pattern of real-coded crossover is summa-

rized. Most of the existing real-coded crossover operators

can be realized using this generalized pattern. This ap-

proach uses Dr to manage the disturbance in order to

generate new genes for offspring. Otherwise, it retains

the original genes from the basic parent.

• An exchanged gene model is introduced and embedded

into the above generalized pattern of real-coded crossover.

Different from the existing real-coded crossover, this

model will contain a recombination between the basic

parent and the mating parent based on an Er probability.

That is to say, the child solution will inherit from both

the basic parent and mating parents.

• Based on the new pattern, an elite gene guided repro-

duction operator (EGG) is proposed. In EGG, the mating

parents are only selected from the knee points, which

can be a better representative for the current population.

This mechanism will reserve more elite genes to the next

generation. To implement EGG, the disturbance method

and the setting of parameters are studied in this paper.

The rest of this paper is organized as follows. Section

II provides the related background of existing real-coded

crossover used in most MOEAs and the motivations. The

proposed EGG and its details are introduced in Section III.

In Section IV, the experimental setup of EGG is clarified

and the experimental results are provided in Section V on

solving a large number of benchmark problems. Finally, our

conclusions are drawn in Section VI along with some pertinent

observations.

II. BACKGROUND AND MOTIVATIONS

In this section, some commonly used crossover operators

for real-coded MOEAs are introduced and analyzed. Then

the related crossover operators for solving MaOPs and the

motivations for this paper are given.

A. Reproduction Operators in MOEAs

Crossover and mutation are two commonly used reproduc-

tion operators in MOEAs. The mutation operator is normally

run after the crossover operator. Generally, mutation is applied

on a single parent. Some examples are: polynomial-based

mutation (PM) [33], Gaussian mutation [34], and Cauchy

mutation [35]. In contrast, crossover involves the use of more

than one parent. Some examples are: blend crossover (BLX)

[36], SBX [32], differential evolution (DE) [37], simplex

crossover (SPX) [38], and parent centric crossover (PCX)

[39]. A detail survey on crossover operators can be found in

[40][41]. When running crossover, the currently evolved parent

is often treated as the basic parent, while the other selected

parents are regarded as the mating parents in this paper. Two

widely used real-coded crossover operators (SBX and DE) are

introduced below.

1) SBX: Simulated binary crossover was designed by Deb

and Agrawal [32], with the aim of mimicking the behavior

of one-point crossover in binary representation. In a classical

implementation of SBX in NSGA-II, the basic parent is

denoted by xbsc = (xbsc
1 , · · · , xbsc

n ), and the mating parent

is selected as denoted by xmat = (xmat
1 , · · · , xmat

n ) (here, n
is the number of variables). The disturbed genes (or variables)

dSBX
i (i = 1, 2, · · · , n) are then generated based on the genes

of xbsc and xmat, by

dSBX
i =

{
0.5[(1 + β)xbsc

i + (1− β)xmat
i ]; if r < 0.5

0.5[(1− β)xbsc
i + (1 + β)xmat

i ]; otherwise
(1)

where β follows a polynomial probability distribution and is

calculated as follows.

β =

⎧⎨
⎩
(2× r)1/(1+η); if r ≤ 0.5

(
1

2− 2× r
)1/(1+η); otherwise

(2)

where r is a uniformly generated real number in [0,1], and the

distribution index η is a predefined non-negative real number.

A larger value of η will have a higher probability to sample

the disturbed genes closer to those of its parents, e.g., in (1),

dSBX
i is close to xbsc

i or xmat
i . Then, after the disturbance

gene is generated, an offspring is reproduced by inheriting the
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gene xbsc
i from the basic parent or selecting the disturbed gene

dSBX
i controlled by Dr, as follows.

yi =

{
dSBX
i ; if r ≤ Dr

xbsc
i ; otherwise

(3)

where yi is the i-th gene of the offspring.

2) DE: Differential evolution is a direct search algorithm

originally proposed by Storn and Price [37]. “DE/rand/1/bin”

is one classical realization of DE. The disturbed gene dDE
i

is produced by the gene xbsc
i from one basic parent and the

genes xmat1
i , xmat2

i from two mating parents, by

dDE
i = xbsc

i + F × (xmat1
i − xmat2

i ) (4)

where F is the scaling factor. Generally, (4) is regarded as

a mutation method in DE [42]. In a more general sense,

(4) is called a disturbance method in this paper in order to

distinguish it from a mutation method (e.g., polynomial-based

mutation [33]). Then, an offspring is reproduced by inheriting

the gene xbsc
i from the basic parent or selecting the disturbed

gene dDE
i controlled by Dr, as follows.

yi =

{
dDE
i ; if r ≤ Dr or i = irand

xbsc
i ; otherwise

(5)

where irand is a randomly generated integer in [1, n] to

guarantee that at least one gene is different from the parent.

B. Related Works and Motivations

Generally, most of MaOEAs use traditional crossover oper-

ators, like SBX and DE for reproducing child solutions. When

tackling real-coded MaOPs, to the best of our knowledge, there

have been few research efforts that attempt to study the be-

havior and the performance of crossover in a high dimensional

objective space. Here, two reproduction operators for solving

binary-coded MaOPs are reviewed. Then, motivated by their

ideas, the design principle for the proposed EGG method is

introduced.

In [43], the genetic diversity of PS was analyzed and

the effectiveness of the crossover operator was studied when

solving many-objective knapsack problems (MaOKPs). The

authors showed that the genes in PS become noticeably diverse

when the number of objectives is increased [43]. A strategy

controlling on the maximum number of crossed genes (CCG)

was designed to solve MaOKPs, using two-point crossover

and uniform crossover [43]. The experiments showed that

this CCG strategy significantly enhanced the performance for

MaOKPs. Another crossover for MaOKPs, i.e., a distance-

based crossover, was reported by Ishibuchi [44], also showing

a clear performance enhancement when the distances between

parents and offspring are close.

Due to the consideration of computational cost, the popu-

lation size cannot be set arbitrarily large as we increase the

number of objectives, so that the average distance between

each pair of parents is significantly enlarged. These far-away

parents will consequently lower the effectiveness of crossover

operators. In [45], an evolution path based reproduction op-

erator (EP) was proposed for solving MaOPs. However, EP

is designed only based on DE and is unable to embed other

crossover operators, such as SBX, BLX, and PCX. Moreover,

EP depends on the reference vectors so that it is unavailable

for MaOEAs without using reference vectors, such as SPEA2-

SDE [46] and MaOEA/C [47]. To fill the research gap, an

EGG operator is designed for real-coded MaOPs in this paper.

The proposed EGG is easy for implementation and can be

embedded into any MaOEA. The design principle for EGG is

based on the local search and elite gene guided strategies, as

follows.

• The elite gene guided strategy. Elite solutions are selected

from the union of parent population and child population

during the environmental selection based on the principle

of survival of the fittest. In EGG, the mating parents are

selected from knee points in the current population, which

can provide elite genes for reproducing child solutions.

• The local search strategy. A small gene exchange prob-

ability in [43] and a small parent-offspring distance

crossover in [44] showed a clear performance improve-

ment for solving binary-coded MaOKPs. In this paper,

the local search strategy is also use in EGG for solving

real-coded MaOPs.

The properties and details of this EGG operator are intro-

duced in the following section.

III. THE PROPOSED METHOD

A. Generalized Crossover Pattern

Considering the SBX and DE operators, two models in them

are generally used to construct the offspring’s genes. One is

disturbance, which combines the genes from the basic parent

and the mating parents to produce new genes for the offspring

(e.g., (1) and (4)). The other is inheritance, which gets the

original genes from the basic parent with a preset probability.

For example, for the i-th gene of offspring, there is a Dr
probability to select the disturbed gene dSBX

i and otherwise

to inherit the gene xbsc
i from the basic parent xbsc in SBX;

Similarly, there is a Dr probability to select the disturbed gene

dDE
i and otherwise to inherit the gene xbsc

i from the basic

parent xbsc in DE. Therefore, the currently used crossover

operators can be generalized by a common pattern, as follows.

yi =

{
Disturb(xbsc

i , xmat
i ); if r ≤ Dr

xbsc
i ; otherwise

(6)

where yi is the i-th gene of the offspring, r is a uniformly

generated real number in [0, 1], xbsc
i indicates the i-th gene

of the basic parent, and xmat
i (i = 1, 2, · · · , n) denote the i-

th gene from the mating parents. Disturb(xbsc
i , xmat

i ) means

to generate a new gene by disturbance methods, such as (1)

and (4); Dr is the probability to control the ratio of disturbed

genes in the offspring. This pattern will be biased towards the

basic parent when a smaller value of Dr is set.

B. Proposed Crossover Pattern

Regarding the generalized crossover pattern introduced in

(6), it is only biased to the basic parent. A smaller value of Dr
indicates a stronger bias from the offspring to the basic parent.
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Basic parent
+

Mating parent
=
Disturbed vector

Offspring

(a) Traditional crossover pattern

Basic parent
+

Mating parent
=
Disturbed vector

Offspring

(b) The proposed crossover pattern

Fig. 1. A comparison between traditional crossover pattern and the proposed
crossover pattern.

Particularly, when Dr is set to zero, the offspring is equal to

the basic parent. Here, a more flexible crossover pattern is

introduced, as follows.

yi =

⎧⎪⎨
⎪⎩
Disturb(xbsc

i , xmat
i ); if r ≤ Dr

xmat
i ; else if r ≤ Dr + Er

xbsc
i ; otherwise

(7)

where yi is the i-th gene of the offspring and r is a uniformly

generated real numbers in [0, 1]. The disturbance rate Dr
controls the ratio of genes inherited from the disturbed vector,

while the exchange rate Er controls the proportion of genes

inherited from the mating parent xmat
i .

A comparison between the generalized crossover pattern in

(6) and the proposed crossover pattern in (7) is illustrated

in Fig. 1, from which we can observe that the former only

generates child solution with a combination of genes from

basic parent and disturbed vector, while the latter can produce

child solution with a combination of genes from basic parent,

disturbed vector and mating parent. More elite genes can

be reserved to the next generation when the mating parents

are selected from an elite subset of current population. The

proposed EGG operator follows the new proposed crossover

pattern in (7), which is introduced in the following subsection.

C. Implementation of EGG

In order to implement EGG, there are three important

issues needed to be addressed. One is the mating parent

selection mechanism, which can provide the elite genes for

child solution with a ratio of Er. The other is disturbance

method, which is the main source to provide new genes and

may significantly affect the crossover’s performance. The last

one is the settings of Dr and Er in (7), which controls the

balance between the gene diversity and the recombination of

the currently found genes. Here, the detailed implementation

of these three parts is introduced in the following subsections

in order to better solve MaOPs using EGG.

1) Mating selection mechanism: In order to provide good

genes for recombination with the basic parent, mating parents

are only selected from the knee points [48], as these solutions

show some promising properties on convergence and diversity.

The knee points have been used in KnEA [48] for mating

selection, where the basic parent and mating parents are select-

ed from the knee points using a binary tournament selection

strategy with three comparison criteria, i.e., Pareto dominance,

knee point criterion, and a weighted distance. However, in

EGG, the mating parents are randomly selected from the knee

points, while the basic parent is the current solution to be

evolved. Moreover, the crossover in KnEA follows the pattern

in (6), while EGG realizes the pattern in (7), which has a

combination of genes from basic parent, disturbed vector and

mating parent.

A promising adaptive strategy in [48] has been proposed to

identify the knee points. With this strategy, a hyperplane L is

first constructed by passing through the extreme points of each

objective, and then the solution is deemed to a knee point when

it has the maximum distance to L within its neighborhood.

The main steps of finding these knee points are presented in

Algorithm 1. First, the extreme hyperplane L is calculated

(steps 2-3). Second, the neighborhood region is identified by

R, which is adaptively calculated by steps 4-7. In step 6, the

initial niching ratio r and the rate of knee points t are set to

r = 1 and t = 0, respectively. Third, the distance between each

solution in P and L is calculated and then all the solutions

are sorted in a descending order (steps 8-9). After that, the

extreme solutions are added to the knee point set K and then

removed from P (steps 10-11). These steps of finding the knee

points are slightly different from that of KnEA, as we further

consider the extreme points as the knee points. At last, the

solution with the largest distance to L in P will be added to

K and the neighboring solutions including the solution itself

will be removed from P (steps 13-16). These steps will be

run until P is empty. The ratio of knee points in population

is controlled by a parameter T (step 6), which is set to 0.5 in

this paper. Therefore, half of solutions will be selected from

the current population as the mating parents pool.

To clearly show this strategy, an illustration of knee points is

shown in Fig. 2 on a bi-objective minimization problem. The

hyperplane L connects two extreme solutions A and I . Then,

the solutions C, F , H far away from L and the two extreme

solutions (A and I) are marked as the knee points, with the

rectangles in dashed lines to show their neighborhoods.

2) Disturbance Method: For the new crossover pattern in

(7), a disturbance rate Dr is used to control the disturbance

between the basic parent and the mating parents. This is the

main source to provide new genes for the offspring. In our

approach, the disturbance method of SBX in (1) with η = 30
was used to generate new genes close to the parent’s genes,

while the disturbance method of DE in (4) with F = 0.5 was

adopted to yield a larger step size than SBX.

In [49], we proposed a hybrid gene-level disturbance

0 5 10 15

5

10

15

A

L

f1

f2

B
CD E

F G
H I

Knee points
Non Knee points
Neighborhood

Fig. 2. An illustration of knee points for a bi-objective minimization problem.
In this example, solutions C,F,H and the two extreme points (A and I) are
identified as knee points for the given neighborhood denoted by the rectangles
in dashed lines.
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Algorithm 1: K = Finding knee point(P̂ )

Input: P̂ - the non-dominated solutions

Output: K - the knee point set

1 K = ∅
2 E = Find extreme solution(P̂ )
3 L = Calculate extreme hyperplane(E)

4 fmax
j = max{fj(x)|x ∈ P̂}, ∀1 ≤ j ≤ m

5 fmin
j = min{fj(x)|x ∈ P̂}, ∀1 ≤ j ≤ m

6 update r = r × e−
1−t/T

m //initial values r=1,t=0

7 calculate R by Rj = (fmax
j − fmin

j )× r, ∀1 ≤ j ≤ m

8 calculate the distance between each solution in P̂ and L

9 sort P̂ in a descending order according to the distances

10 add the extreme solutions E to knee point set K

11 P̂ = P̂\E
12 while P̂ is not empty do
13 set p to the solution with largest distance to L in P̂
14 K = K

⋃
p

15 NB = {a|a ∈ P̂ ∧ |f j
a − f j

p | ≤ Rj , ∀1 ≤ j ≤ m}
16 P̂ = P̂\NB

17 update t = |K|
N

18 return K

method, which combines the search power of SBX and DE.

Following the idea of the hybrid gene-level disturbance method

in [49], the disturbed genes of DE serve as a complement for

the disturbed genes of SBX, as follows.

dEGG
i =

{
dDE
i ; if r ≤ Lr

dSBX
i ; otherwise

(8)

where dEGG
i are the disturbed genes for EGG, while dSBX

i

and dDE
i are respectively the disturbed genes from SBX in (1)

and from DE in (4). For example, in a 2-dimensional decision

space, two parents x1 = (0.3, 0.3) and x2 = (0.7, 0.7)
were used to produce 1000 sampling solutions by (1) with

η = 30 and the distribution of dSBX
i in (1) is illustrated in

Fig. 3(a). It is clear that the disturbance method in (1) only

searches around the four rectangle points (0.7, 0.3), (0.7, 0.7),
(0.3, 0.7), and (0.3, 0.3). After embedding the disturbance

method of (4) with a 0.2 probability (i.e., Lr is set to 0.2

in (8)), the distribution of 1000 points from x1 = (0.3, 0.3)
and x2 = (0.7, 0.7) is plotted in Fig. 3(b) in 2-dimension

(2-D) case, while a 3-dimension (3-D) case is plotted in Fig.

3(c). Observed from Figs. 3(b) and (c), the disturbance method

in (8) can search around a rectangle in 2-D case and a cube

in 3-D case, and consequently, in n-D decision space it will

search around a hypercube, whose center is determined by

the center of parents. Thus, if a large search step (e.g., the

disturbance of (4)) can be added to some genes of the parents,

the search capability of EGG can be strengthened, which was

experimentally validated in Section V-C2.

The detail of the disturbance method in EGG is provided

in Algorithm 2, which generates a new disturbed gene dEGG
i

by three allels xbsc
i , xmat1

i , xmat2
i . It uses a small probability

Lr (set to 0.2 in this paper) to generate dEGG
i using (4) with

0 0.5 1
0

0.5

1

x1

x2

x1
(a)    

x 2

dSBX

0 0.5 1
0

0.5

1

x1

x2

x1
(b)

x 2

dEGG(Lr=0.2)

0
0.5

1

0
0.5

1
0

0.5

1

x1

dEGG(Lr=0.2)

x2

x 3

(c)

Fig. 3. The disturbance methods of SBX and the hypercube search. (a) The
distribution of dSBX in (3); (b) The distribution of dEGG in (8) in 2-D; (c)
The distribution of dEGG in (8) in 3-D.

Algorithm 2: dEGG
i = Disturb(xbsc

i , xmat1
i , xmat2

i )

Input: xbsc
i , xmat1

i , xmat2
i are three alleles in the

basic parent and mating parents

Output: the disturbed gene dEGG
i

1 if rand ≤ Lr then
2 calculate dDE

i by (4)

3 dEGG
i = dDE

i

4 else
5 calculate β by (2)

6 calculate dSBX
i by (1)

7 dEGG
i = dSBX

i

8 return dEGG
i

large disturbed step (steps 2-3), otherwise to produce dEGG
i

close to the gene of the parents by (1) (steps 5-7).

3) The Complete EGG: The disturbance method and the

selection of mating parents in EGG have been introduced

in the above subsections. Here, EGG is embedded into the

general framework of MOEAs. The pseudo-code of MOEA-

EGG is shown in Algorithm 3. After the initialization process

(steps 1-2), the algorithm turns into the loop of the evolution-

ary process (steps 3-3), until the function evaluation counter

fes reaches the predefined maximum value max fes. During

the evolutionary phase, the selection of mating parents is first

run to randomly select two mating parents xmat1 , xmat2 from

the knee point set (steps 5-7). For each gene, EGG uses

a Dr probability to disturb the current gene (steps 9-10).

Otherwise, it exchanges genes with the mating parent by an

Er probability or inherits the same genes from the basic parent

by a (1−Dr−Er) probability (steps 11-14). After the EGG

operator is applied, the mutation operator (e.g., polynomial

mutation [33]) is further run to disturb the offspring gene with

a small probability (usually set to 1/n, n is the number of

variables), in order to gain more population diversity (steps 15-

16). At last, after the population Q is generated, the population

update process is executed in step 20. The above evolutionary

phase will be repeated until max fes is reached. At the end of

the algorithm, the non-dominated solutions in P are reported

as the final result.

4) Settings of the Parameters Dr and Er: It is obvious that

the settings of Dr and Er significantly affect the performance

of EGG. When EGG keeps a large probability of Dr to

disturb parents, the genes in the offspring will be more diverse.
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Algorithm 3: General framework of MOEA-EGG

Input: max fes - maximum number of function

evaluations

N - population size

Output: P - the final solutions

1 initialize a population P = {x1, x2, ..., xN}
2 fes = 0
3 while fes < max fes do
4 for j = 1 to N do
5 set P̂ as the first non-dominated front in P

6 K=Finding knee point(P̂ ) (Algorithm 1)

7 randomly select xmat1 , xmat2 from K
8 for i = 1 to n do
9 if rand ≤ Dr then

10 yi = Disturb(xj
i , x

mat1
i , xmat2

i )
(Algorithm 2)

11 else if rand ≤ Dr + Er then
12 yi = xmat1

i

13 else
14 yi = xj

i

15 if rand ≤ 1
n then

16 mutate yi by polynomial mutation

17 repair yi by box constraints

18 Q = Q
⋃

y
19 fes = fes+ 1

20 P = Population Update(P,Q)

21 return P

Disturbance model

20%

(Dr)

Exchange model

70%

(Er)

Inheritance model

10%

Fig. 4. The configuration for Dr and Er.

Intuitively, when Dr is set to 1.0, all genes in the offspring

are new. On the other hand, a large value of Er lets the

offspring be more biased toward the mating parents, while a

small Er makes the offspring more similar to the basic parent.

Their impacts on the behavior of EGG (i.e., to favor diversity

and convergence) are analyzed experimentally in Section V-B

and some suggestions are also given to properly set Dr and

Er. In this paper, a small Dr=0.2 and a large Er=0.7 are

recommended for solving MaOPs, as shown in Fig. 4.

D. Features of EGG

After introducing EGG, its features are summarized as

follows.

• EGG has three models to generate the offspring genes,

i.e., inheritance, disturbance and exchange. The ex-

changed gene model can yield a recombination of the

genes in basic parents and mating parents. This recombi-

nation ratio is controlled by Er and it can gain diversity

for the offspring.

• The mating parents are only selected from the knee points

of the first non-dominated front in the population. This

lets EGG run the disturbance and the exchanged gene

models with some promising individuals, as these knee

points show good convergence and diversity, which can

be viewed as a better representation for the population.

• A small ratio of running disturbance is used in EGG,

as inspired from the studies on recombination operators

for MaOEAs [1] [43] [44]. In EGG, a small value of

Dr is applied for each gene in (7), thus the offspring is

much closer to the basic parent or mating parent in high

dimensional search spaces. Moreover, the effectiveness

on the setting for Dr was also studied in Section V-B.

• On the disturbance model, most genes are disturbed using

a small-size step, as a distribution index of 30 for the

disturbance model of SBX in (1) is used in EGG, while

only a few genes are perturbed with a large-size step

using (4). This setting leads to a new search pattern as

shown in Figs. 3(b) and (c) for 2-D and 3-D respectively.

As validated in Section V-C2, a small ratio of large-size

step is helpful to enhance the performance of EGG.

IV. EXPERIMENTAL SETUP

This section is devoted to the experimental design for

investigating the performance of EGG. In the following sec-

tions, the test problems used in our experiments are firstly

provided. Then, the quality indicators used for evaluating the

performance of an algorithm will be introduced. At last, the

experimental settings in this paper are indicated.

A. Test Problems
To analyze the effectiveness of EGG, two well-known test

suites (i.e., DTLZ [50] and WFG [51]) for MaOPs were used.

To reliably compute the quality indicators, DTLZ1-DTLZ4

were adopted, as the nature of PFs of DTLZ5 and DTLZ6

is unclear beyond three objectives [51]. All these problems

can be scaled to any number of objectives and decision

variables. In this study, the number of objectives is set to

m ∈ {3, 5, 8, 10, 15}. For DTLZ1-DTLZ4, the total number

of decision variables is given by n = m + k − 1, where

k is set to 5 for DTLZ1, and to 10 for DTLZ2-DTLZ4 as

recommended in [50]. For all the WFG test problems, the

number of decision variables is set to 2 × (m − 1) + 20
composed by two types of parameters (i.e., 2 × (m − 1)
position related parameters and 20 distance related parameters

as suggested in [51]). These test problems have a variety of

characteristics, such as linear, mixed (convex&concave), multi-

modal, disconnected, degenerate, and differently scaled PFs,

which can challenge different abilities of MaOEAs.

B. Quality Indicators
In this paper, two indicators, i.e., Hyper-Volume (HV) and

Coverage of two sets (C) metric [52], were used to assess the

performance of the compared algorithms in solving the DTLZ

and WFG test problems.
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TABLE I
THE SETTINGS OF POPULATION SIZE AND MAXIMUM NUMBER OF

FUNCTION EVALUATIONS FOR DIFFERENT PROBLEMS

m (H1, H2) N
max fes

DTLZ1
DTLZ2
DTLZ4

DTLZ3
WFG1-WFG9

3 (12,0) 91 18200 9100 45500
5 (6,0) 210 42000 16800 105000
8 (3,2) 156 39000 23400 117000

10 (3,2) 275 55000 27500 206250
15 (2,1) 135 67500 33750 270000

1) HV metric: HV assesses the size of the area dominated

by the approximated PF, thus a higher value means a bet-

ter quality of non-dominated set. The reference points for

HV are set to 1.1 times the nadir points of the true PFs.

Thus, the reference points are set to 1.1 × (0.5, · · · , 0.5)
for DTLZ1, to 1.1 × (1, · · · , 1) for DTLZ2-DTLZ4, and

to 1.1 × (2, 4, · · · , 2m) for WFG1-WFG9. Regarding the

problems with 3 and 5 objectives, a fast calculation method

was employed to get the exact HV, while a Monte Carlo

sampling approach was applied to approximate HV for the

problems with 8, 10, and 15 objectives [9]. It is noted that the

solutions dominated by the reference point were not included

for the HV calculation.

2) C metric: C metric can identify the Pareto-dominance

relationship between two compared sets. Moreover, C metric is

convenient to evaluate the performance of MaOEAs, because

its calculation doesn’t need to know the true PF. Assuming that

A and B are two approximated non-dominated sets. The result

of the coverage of two sets C(A,B) returns the proportion of

the individuals in B that are equal to or dominated by the

individuals in A, which can be formulated as follows.

C(A,B) =
|{b ∈ B; ∃a ∈ A : a � b}|

|B| (9)

where the symbol “a � b” means b is equal to or dominated

by a. The value C(A,B) = 1 means that all the individuals

in B are equal to or dominated by the individuals in A,

while C(A,B) = 0 implies no individual in B is equal to or

dominated by the individual in A. It is noted that both C(A,B)
and C(B,A) are required to be considered as C(A,B) is not

necessarily equal to 1 − C(B,A). Therefore, A is said to be

better than B when we get a large value of C(A,B) and a

smaller value of C(B,A).

C. Experimental Settings

In this paper, to verify the performance of EGG, it was em-

bedded into four competitive MaOEAs, i.e., three representa-

tive MaOEAs with reference point (MOEA/D [16], NSGA-III

[1], θ-DEA [6]) and one representative MaOEA without using

reference vectors (SPEA2-SDE [46]). The general settings are

introduced as follows.

1) Setting of the Population Size: As recommended in [1],

a bi-layer generation method was adopted here to generate

reference vectors on both the outer layer and the inside layer.

The number of reference points N is determined by the

simplex-lattice design factors H1 and H2, respectively for the

TABLE II
SUMMARIZED HV COMPARISON RESULTS OF SBX, DE, EP AND EGG ON

FOUR BASELINE MAOEAS

�����������Algorithms
Problems DTLZ

(w/b/s)
WFG

(w/b/s)
Total

(w/b/s)

MOEA/D
EGG vs. SBX 0/20/0 2/41/2 2/61/2
EGG vs. DE 4/9/7 2/34/9 6/43/16
EGG vs. EP 0/20/0 5/35/5 5/55/5

NSGA-III
EGG vs. SBX 0/18/2 3/34/8 3/52/10
EGG vs. DE 0/20/0 0/41/4 0/61/4
EGG vs. EP 0/20/0 2/43/0 2/63/0

SPEA2-SDE
EGG vs. SBX 0/20/0 15/19/11 15/39/11
EGG vs. DE 8/11/1 1/41/3 9/52/4

θ-DEA
EGG vs. SBX 0/19/1 2/35/8 2/54/9
EGG vs. DE 2/12/6 0/38/7 2/50/13

Please note that “w/b/s” indicates that EGG is worse than, better than
and similar to the corresponding competitor, respectively on w, b, and s
problems in terms of HV indicator.

inside and outside layers, by N =
(
H1+m−1

m−1

)
+

(
H2+m−1

m−1

)
where m is the number of objectives. The population size is

set the same with the number of reference points. In Table I,

the detailed settings of H1, H2, and the population sizes are

given for all the test problems.
2) Number of runs and termination criterion: Each algo-

rithm was run 30 times independently for each test instance.

The algorithm will be terminated when the function evaluation

counter fes reaches max fes, which is given in Table I.

Please note that different settings of max fes were used for

the test problems with different objectives, as they have varied

computational complexities.
3) Significance test: To test the difference of statistical

significance among the experimental results, the Wilcoxon

rank sum test [53] at a 5% significance level was carried out on

the experimental results obtained by two compared algorithms.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Comparisons with Other Reproduction Operators in
MOEA/D, NSGA-III, SPEA2-SDE, and θ-DEA

The most commonly used reproduction operator for solving

MaOPs is SBX, e.g., NSGA-III, SPEA2-SDE and θ-DEA all

adopt SBX. Recently, an evolutionary path based reproduction

operator was proposed for reference vector based MaOEAs.

Therefore, in order to study the advantages of EGG, it was

firstly incorporated into MOEA/D and NSGA-III in order

to compare with SBX, DE and EP1. Please note that the

probabilities for applying SBX and polynomial-based mutation

were respectively set to 1.0 and 1/n (where n denotes the

number of decision variables), and the distribution indexes of

SBX and polynomial-based mutation were respectively set to

30 and 20. For the DE operator, the scaling factor F was

set to 0.5 in this paper. The parameter Dr in (3) and (5)

respectively for SBX and DE was analyzed in Section S-B1

of the supplementary file and the best parameter Dr = 0.2
was selected for comparison. The parameters for EP were set

as recommended in the original reference [45] as the same

baseline algorithm and test problems were used for comparison
2.

1The code of this paper is available at https://github.com/zhuqingling/EGG.
2The code of EP is downloaded from https://github.com/hxyokokok/EPDE.
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Fig. 5. Box plots of C metric in the framework of MOEA/D in solving DTLZ3 with 3, 5, 8, 10, and 15 objectives. In this plot, “1”, “2”, “3”, “4”, “5”, and
“6” in the x-axis respectively denote C(EGG,SBX), C(SBX,EGG), C(EGG, DE), C(DE,EGG), C(EGG,EP), and C(EP,EGG). They have the same meanings
in Fig. 6 and Figs. S-1 to S-24 of the supplementary file.
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Fig. 6. Box plots of C metric in the framework of NSGA-III in solving DTLZ3 with 3, 5, 8, 10, and 15 objectives.

Due to pages limitations, the detailed HV results (median

value and IQR value of 30 runs) of the comparisons between

SBX, DE, EP and EGG in the framework of MOEA/D

are presented in Table S-3 of the supplementary file. The

summarized comparison results of EGG, EP, DE, SBX in the

framework of MOEA/D are provided in the “MOEA/D” row of

Table II. As observed from the “MOEA/D” row of Table II,

EGG performs better than SBX, DE and EP in most cases.

More specifically, from the Wilcoxon rank sum test, EGG

performs significantly better than SBX, DE and EP in 61, 43,

and 55 out of 65 test instances, respectively. In addition, C

metric is also calculated and its box plots for all test instances

are illustrated in Figs. S-1 to S-12 of the supplementary file.

In most cases, the results of C metric are consistent with the

HV results shown in Table S-3 of the supplementary file. For

example, the box plot results of DTLZ3 with 3, 5, 8, 10, and

15 objectives are plotted in Fig. 5. In Fig. 5, “1”, “2”, “3”, “4”,

“5”, and “6” in the x-axis respectively denote C(EGG,SBX),

C(SBX,EGG), C(EGG,DE), C(DE,EGG), C(EGG,EP), and

C(EP,EGG). The larger value of C(A,B) means there is a

large percentage of solutions obtained by algorithm B that are

equal to or dominated by solutions obtained by algorithm A.

As observed from the subplots in Fig. 5, EGG is better than

SBX and EP in 3, 5, 8, 10, and 15-objective DTLZ3 because

C(EGG,SBX) and C(EGG,EP) are respectively large than

C(SBX,EGG) and C(EP,EGG). However, when compared to

DE on DTLZ3 with 3, 5, 8, 10, and 15 objectives, EGG

does not have a superior performance. That is because the

neighboring information is not utilized in MOEA/D-EGG

since EGG selects the mating parents randomly from the knee

points. The neighboring information is helpful for MOEA/D-

DE to solve MaOPs due to the fact that two close parents are

beneficial for the differential part in DE.

Except the comparison of EGG with SBX, DE, EP in the

MOEA/D framework, we also compare them in the framework

of NSGA-III. As observed from the summarized results in Ta-

ble II, EGG shows an overwhelming better performance then

SBX, DE and EP. Compare to the cases in the MOEA/D frame-

work, EGG seems more suitable for the NSGA-III framework.

There are two reasons for this case. One is that the neighboring

information is not considered in the framework of NSGA-III.

So that the advantages of utilizing neighboring information

in MOEA/D-DE will not be employed in the framework of

NSGA-III. On the other hand, the environmental selection

mechanism in NSGA-III is better than that in MOEA/D for

solving MaOPs, so that it can keep the promising individuals.

As a result, EGG can fully utilize the better genes in the

archive by exchanging genes with mating parents, which are

selected from the knee point set. The box plots of C metric

for the experimental results of SBX, DE, EP and EGG in the

framework of NSGA-III are plotted in Fig. 6 when solving

DTLZ3 with 3, 5, 8, 10, and 15 objectives. As observed from
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Fig. 6, more than half of the solutions obtained by SBX, DE,

and EP are dominated by that generated from EGG. Whereas,

very few solutions obtained by EGG are dominated by that

from SBX, DE, and EP, as the mean values of C metric

are very close to zero. From this aspect, the convergence of

NSGA-III-EGG is much better than that of NSGA-III-SBX,

NSGA-III-DE, NSGA-III-EP on DTLZ3 with 3, 5, 8, 10, and

15 objectives. Due to pages limitations, the box plots of C

metric for the other test problems are illustrated in Fig. S-13

to Fig. S-24 of the supplementary file.

Moreover, two other frameworks of SPEA2-SDE and θ-

DEA were also adopted to compare EGG with SBX and DE.

The detailed comparison results are collected in Table S-5 of

the supplementary file. It is noted that, in [45], EP was only

incorporated in the frameworks of MOEA/D and NSGA-III.

Thus we do not incorporate it into SPEA2-SDE due to the

fact that EP needs to work with reference vectors. From the

summarized results in Table II, it can be observed that EGG

performs better than SBX and DE on 39 and 52 out of 65 test

instances, respectively, in the framework of SPEA2-SDE. The

similar observation can also be found in the framework of θ-

DEA, as EGG gets significantly better performance than SBX

and DE on 54 and 50 out of 65 test instances, respectively.

Based on the above analysis, we have the following obser-

vations. The performance of EGG is affected by the environ-

mental selection. Recently, there are many methods to improve

the performance of environmental selection, trying to reserve

promising solutions to the next generation. Here, EGG can

better utilize the elite individuals after environmental selection

due to the use of exchanged gene model and mating selection

mechanism from knee points. Thus, EGG is more suitable

for MaOEAs with better environmental selection mechanisms,

such as NSGA-III and θ-DEA.

B. An Analysis of Er and Dr

In order to analyze the parameter settings of Er and Dr, a

reference vector based framework θ-DEA and a non-reference-

vector framework SPEA2-SDE are adopted here to compare

EGG with its variants.

The settings of the disturbance rate Dr and the exchange

rate Er significantly affect the performance of EGG. In this

section, five combinations of Dr and Er introduced below

were included for comparison, with Lr for the disturbance

method set to 0.2 in (8).

• EGG1: Dr = 1 and Er = 0 were selected. All the

genes with EGG1 will undergo disturbance as shown in

Fig. 7(a). This case provides abundant diversity for the

population.

• EGG2: Dr = 0.5 and Er = 0 were selected. EGG2 has

a 0.5 probability for disturbance and otherwise inherits

the same genes from the basic parent as shown in Fig.

7(b).

• EGG3: Dr = 0.5 and Er = 0.25 were selected. EGG3

has a 0.5 probability for disturbance and otherwise has a

0.5 probability to exchange genes with the mating parent

and a 0.5 probability to inherit the same genes from the

basic parent, as shown in Fig. 7(c).

100%

(Dr)

(a) EGG1: Dr=1, Er=0

50%

(Dr)

50%

0%

(Er)

(b) EGG2: Dr=0.5, Er=0

50%

(Dr)

25%

(Er)

25%

(c) EGG3: Dr=0.5, Er=0.25

50%

(Dr)

50%

(Er)

0%

(d) EGG4:Dr=0.5,Er=0.5

Fig. 7. Different proportions of the three models (disturbance, exchange, and
inheritance) using different settings of Dr and Er for EGG.

TABLE III
SUMMARIZED HV COMPARISON RESULTS OF EGG1, EGG2, EGG3,

EGG4, AND EGG UNDER THE FRAMEWORKS OF θ-DEA AND

SPEA2-SDE

�����������Algorithms
Problems DTLZ

(w/b/s)
WFG

(w/b/s)
Total

(w/b/s)

θ-DEA

EGG vs. EGG1 0/18/2 2/41/2 2/59/4
EGG vs. EGG2 2/14/4 1/39/5 3/53/9
EGG vs. EGG3 2/13/5 1/35/9 3/48/14
EGG vs. EGG4 1/14/5 2/34/9 3/48/14

SPEA2-SDE

EGG vs. EGG1 3/13/4 1/41/3 4/54/7
EGG vs. EGG2 4/11/5 0/40/5 4/51/10
EGG vs. EGG3 1/10/9 5/29/11 6/39/20
EGG vs. EGG4 2/10/8 0/37/8 4/47/16

• EGG4: Dr = 0.5 and Er = 0.5 were selected as

illustrated in Fig. 7(d). When comparing this setting to

EGG2 (with Dr = 0.5 and Er = 0), EGG4 is more

biased to the mating parent, while EGG2 is more biased

to the basic parent.

• EGG: Dr = 0.2 and Er = 0.7 were selected as shown

in Fig. 4. This setting has a lower ratio for disturbance

model and a larger ratio for exchanged gene model when

compared to EGG3.

The comparison results of those five settings on solving the

DTLZ and WFG test problems are illustrated in Table S-6 of

the supplementary file, by embedding them into the framework

of θ-DEA. Moreover, the summarized comparison results are

shown in Table III.

For the DTLZ problems, EGG performed significant better

than EGG1, EGG2, EGG3, and EGG4 on 18, 14, 13, and 14

out of 20 test problems according to the Wilcoxon rank sum

test. For DTLZ1-DTLZ4 with 3 objectives, EGG was better

than EGG2 and EGG4 on DTLZ2 and DTLZ4, but worse on

DTLZ1 and DTLZ3. When compared to EGG3, EGG was

not advantageous on 3-objective DTLZ1-DTLZ4. However,

regarding DTLZ1-DTLZ4 with 5, 8, 10, and 15 objectives,

EGG showed overwhelming advantages as it obtained better or

similar performance on all cases. EGG was similar to EGG2,

EGG3, and EGG4 on DTLZ1 with 5, 8, 10, and 15 objectives

according to the Wilcoxon rank sum test. That is because EGG

and its variants EGG2, EGG3, EGG4 can well approximate the
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Fig. 8. The HV trend charts (averaged over 30 runs) of EGG, EGG1, EGG2, EGG3, and EGG4 on DTLZ1 with 5, 10 and 15 objectives.
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Fig. 9. The HV trend charts (averaged over 30 runs) of EGG, EGG1, EGG2, EGG3, and EGG4 on DTLZ3 with 5, 10, and 15 objectives.

true PF as their HV values are very close to one. The HV trend

chart of DTLZ1 with 5, 10, 15 objectives is shown in Fig. 8.

As observed from Fig. 8, EGG obtained better HV values for

DTLZ1 with 10 and 15 objectives. In addition, the HV trend

chart of DTLZ3 with 5, 10, 15 objectives is shown in Fig 9.

DTLZ3 is more difficult than DTLZ1 due to the fact that it has

(3k − 1) local PFs and all local PFs are parallel to the global

PF. As observed from Fig. 9, the convergence rate of EGG

is much faster than that of the other four variants, especially

for DTLZ3 with 10 and 15 objectives. On the other hand, the

superior performance of EGG over EGG1, EGG2, EGG3, and

EGG4 can also be found under the framework of SPEA2-SDE.

Due to pages limitations, their detail experimental results are

provided in Table S-7 of the supplementary file, while the

summarized results are shown in Table III. Specifically, EGG

performed better than and similarly to EGG1, EGG2, EGG3,

and EGG4 on 17, 16, 19, and 18 out of the 20 DTLZ test

instances.

For the WFG problems, EGG had a significantly better

performance than EGG1, EGG2, EGG3 and EGG4 on 41, 39,

35, and 34 out of 45 test instances. When compared to EGG,

EGG1 only performed better on WFG2 with 15 objectives, on

WFG3 with 15 objectives, and performed similarly on WFG3

with 8 and 10 objectives. EGG was significantly better than

EGG1 on 41 out of 45 test problems. This is mainly because

all genes were disturbed in EGG1, leading to a more random

evolution for the parents and to a lack of convergence. Such

weakness of EGG1 can also be found in the HV trend charts

of DTLZ2-DTLZ4 and WFG1-WFG9 in the supplementary

file, respectively plotted in Figs. S-25 to S-36. For EGG2,

it was better than EGG only on WFG3 with 15 objectives.

According to the Wilcoxon rank sum test, EGG2 performed

similarly to EGG on WFG3 with 3, 8, and 10 objectives, on

WFG2 with 10 objectives, and on WFG9 with 5 objectives.

Thus, EGG performed better than EGG2 on 39 out of 45 test

problems. This is mainly because the exchanged gene model

was not embedded into EGG2, and this also validated that

a recombination of the currently found genes in this model

helps to enhance performance. Regarding the comparison of

EGG with EGG3, EGG performed worse only on WFG3

with 15 objectives. In summary, EGG performed better than

or similarly to EGG3 on 44 out of 45 test problems. The

configuration of EGG3 has a larger disturbance rate and much

smaller exchange rate than EGG. When compared to EGG4,

EGG performed worse on WFG2 with 15 objectives, and on

WFG3 with 15 objectives. That is to say, EGG also performed

better than or similarly to EGG4 on 43 out of 45 test problems.

When compared to EGG, the setting of EGG4 has a larger

disturbance rate and is more biased to the mating parent. As

EGG3 and EGG4 also contain the exchanged gene model,

the superior performance of EGG over EGG3 and EGG4

confirmed the setting of EGG with Dr = 0.2, Er = 0.7
was more reasonable and effective.

In summary, EGG performed best on WFG1 and WFG4-

WFG9 with 3, 5, 8, 10, and 15 objectives. For WFG2 and

WFG3, their HV results were mostly similar to each other,

as θ-DEA may not be suitable for solving disconnected

and degenerated problems using reference points [54]. Thus,

EGG was also embedded into the framework of SPEA2-SDE

without using the reference points, and the detailed comparison

results of the five settings on the DTLZ and WFG problems

were provided in Table S-7 of the supplementary file. The

summarized comparison results are also collected in Table III.

From Table III, it was observed that EGG with Dr = 0.2
and Er = 0.7 performed better than and similarly to EGG1,

EGG2, EGG3, and EGG4 on 61, 61, 59, and 63 out of all the

65 test problems, respectively. From all the above analysis,

the setting of EGG with Dr = 0.2 and Er = 0.7 performed

better than its other four settings. This is mainly due to

the fact that EGG disturbs a small proportion of genes to

run a local search and also exchanges elite gene provided

by the environmental selection and knee-point-based mating
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TABLE IV
SUMMARIZED HV COMPARISON RESULTS OF EGG-NOEXCHANGE,
EGG-NOKP, EGG (Lr=0), EGG (Lr=0.5) AND EGG UNDER THE

FRAMEWORK OF θ-DEA

�����������Algorithms
Problems DTLZ

(w/b/s)
WFG

(w/b/s)
Total

(w/b/s)
EGG vs. EGG-noExchange 1/15/4 3/30/12 4/45/16
EGG vs. EGG-noKP 3/10/7 4/28/13 7/38/20
EGG vs. EGG (Lr=0) 0/8/12 9/18/18 9/26/30
EGG vs. EGG (Lr=0.5) 2/2/16 3/21/21 5/23/37

selection. Consequently, EGG overcomes the difficulties as

analyzed in Section II. This setting of EGG can fully realize

the merits of EGG, as described in Section III-D.

C. An Analysis of Different Parts in EGG

When compared to the traditional crossover pattern in (6),

the proposed new pattern in (7) gains an exchanged gene

model, which exchanges gene with the mating parents by an

exchange rate Er. In order to implement EGG in (7) for

solving MaOPs, the knee points are randomly selected as

mating parents and the disturbance method in (8) is used. In

this section, all these three parts (the exchanged gene model,

the disturbance method in (8), and the knee points as the

mating parents) were experimentally analyzed. Thus, EGG was

compared to the three EGG variants, i.e., EGG-noExchange

(this variant sets Er = 0 and discards the exchanged gene

model), EGG-noKP (this variant only randomly selects the

mating parents from the population, but not from the knee

points), EGG(Lr = 0) (this variant sets Lr = 0), and

EGG(Lr = 0.5) (this variant sets Lr = 0.5). Their median

and IQR results on 65 test instances (DTLZ1-DTLZ4, WFG1-

WFG9 with 3, 5, 8, 10, 15 objectives) were collected in Table

S-8 of the supplementary file. The summaries of statistical test

results are shown in Table IV. Based on these experimental

results, the analysis for the exchanged gene model, the distur-

bance method in (8), and the knee points as the mating parents

are respectively given below.

1) An Analysis of the Exchanged Gene Model: For the

analysis of Er and Dr, it shows that the EGG variant with a

small ratio for disturbance and a large ratio for exchange, i.e.,

Dr = 0.2, Er = 0.7, was shown to perform best in solving

most of the test problems adopted. Here, the impact of the

exchanged gene model is further studied by comparing EGG

to EGG-noExchange.

By observing the summarized comparison results of EGG-

noExchange and EGG at the “EGG vs. EGG-noExhange” row

of Table IV, it was found that the performance of EGG was

significantly deteriorated when the exchanged gene model was

removed, as EGG-noExchange performed worst on most cases.

More specifically, EGG performed better than or similarly

to EGG-noExchange on 61 out of 65 (93%) test instances.

Although the mating parents were also selected from the knee

point set in EGG-noExchange, the elite genes in the mating

parents have less chances to be reserved for the next generation

if the exchanged gene model is not applied to EGG.

2) An Analysis of the Disturbance Method: In the distur-

bance method of (9) with Lr=0.2, a probability of 0.8 was
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Fig. 10. The final approximate PFs for EGG with different Lr on WFG2
problem (One run with median HV value is plotted).

used for a small-size step, i.e., dSBX
i , while a probability of

0.2 was employed for a large-size step, i.e., dDE
i . This search

model was shown in Figs. 3(b)-(c). In order to keep the same

search model in Figs. 3(b) and 3(c), the ratio of the large-size

step dDE
i should be set small (i.e., around [0.1, 0.3]).

Regarding the WFG2 test instance as an example, which

is a disconnected problem and whose last objective func-

tion is multi-modal, EGG(Lr=0.2) showed a significantly

better performance than that without a larger step size (i.e.,

EGG(Lr=0)). In this case, some extreme areas of the true

PF of WFG2 may be missed, when a large-size step was

removed from disturbance, as shown in Fig. 10, where the

final sets from EGG(Lr=0) and EGG(Lr=0.2) were plotted

on WFG2 with 2 and 3 objectives. Therefore, a small ratio for

running a large-size step in EGG was very helpful to enhance

its performance.

Here, two extreme cases were further considered for the

disturbance method, such as no large-size step (Lr=0) and a

large ratio (Lr=0.5) of large-size step. From the summarized

comparison results of EGG(Lr=0) and EGG(Lr=0.2) in Table

IV, EGG (Lr=0.2) performed better than or similarly to

EGG(Lr=0) on 56 out of 64 (87.5%) test instances. Especially

for WFG2, as observed from the detailed comparison results

in Table S-8 of the supplementary file, EGG performed better

than EGG(Lr=0) on all the WFG2 instances having 3, 5,

8, 10, 15 objectives. On the other hand, when compared to

EGG(Lr=0.5) in Table IV, EGG also performed better or

similarly on 60 out of 65 (92%) test instances. This also

indicated that the ratio of large-size step should not be set

too large, as it will only run a coarse-grained search around

the parents.

From the above discussion, it is reasonable to conclude

that the disturbance method plotted in Figs. 3(b) and 3(c)

was effective for EGG when solving MaOPs. However, a

proper setting of Lr should be suggested, as a disturbance
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without large-size step or with too many large-size steps will

significantly deteriorate the performance of EGG.

3) An Analysis of Mating Selection: In our proposed EGG,

the mating parents are only picked out from the knee points

of the current population. Please note that the mating parents

in EGG not only participate in the exchanged gene model in

(7), but also join the disturbance method in (8). Here, EGG

was compared to its variant EGG-noKP and the experimental

results of EGG-noKP are provided in Table S-8 of the supple-

mentary file.

Based on the comparison of results of EGG-noKP and EGG

shown in Table S-8, it can be seen that the performance

of EGG deteriorated when the knee points were not used,

as EGG-noKP was respectively better than, worse than and

similar to EGG on 7, 38, and 20 out of 65 test problems. In

other words, EGG performed better than or similarly to EGG-

noKP on 58 out of 65 (89%) test instances. These experimental

results confirmed that the selection of knee points for mating

parents can provide better genes for EGG to participate both of

the exchanged gene model in (7) and the disturbance method

in (8).

Based on the above analysis of three components of EGG,

it can be concluded that the exchanged gene model, the

disturbance method in (8) and the knee points as the mating

parents have a positive impact on the performance of EGG.

Moreover, based on the summarized comparison performance

of these EGG variants in Table IV, it is found that EGG

performed significantly better than EGG-noExchange, EGG-

noKP, EGG(Lr=0), EGG(Lr=0.5) on 45, 38, 26 and 23 out

of 65 test instances. Therefore, we can conclude that the

exchanged gene model is the most important (first) contributor

for the performance enhancement of EGG. The knee point as

the mating parents was the second contributor for enhancing

EGG. Moreover, as the knee point based mating selection

mechanism can provide elite genes for the exchanged gene

model, the synergy of those two parts can further enhance

the performance of EGG. At last, the disturbance method

in (8) was the third contributor for enhancing EGG, as

EGG performed similarly to EGG(Lr=0) and EGG(Lr=0.5)

respectively on 30 and 37 out of 65 test instances, and

EGG performed significantly better than EGG(Lr=0) and

EGG(Lr=0.5) respectively on 26 and 23 out of 65 test

instances according to the Wilcoxon rank sum test.

VI. CONCLUSION

In this paper, an elite gene guided reproduction operator

(EGG) was designed for tackling MaOPs, by using three

models (disturbance, exchange, and inheritance) to generate

offspring solutions. The running of these models is controlled

by a disturbance rate Dr and an exchange rate Er. When

tackling MaOPs, our experiments indicated that EGG with a

small value of Dr and a large value of Er showed a better

overall performance. That is because the mating parents are

only selected from a sub set of the current population, i.e., the

knee point set. This mating selection mechanism cooperated

with the exchanged gene model will have more elite genes

reserved to the next generation. In addition, a new disturbance

method was proposed for EGG, in which most of the genes are

disturbed by a small-size step while a few genes are perturbed

using a large-size step. This new disturbance strategy leads

to a hypercube search, which was validated to effectively

enhance the performance of EGG when solving MaOPs. The

experimental results showed the superior performance of our

proposed EGG operator when it was embedded into three

reference-based MaOEAs (MOEA/D, NSGA-III and θ-DEA)

and a non-reference-based MaOEA (SPEA2-SDE).

In the framework of MOEA/D, EGG is not so promising

when compared with DE operator. That is mainly because

EGG randomly selects the mating parents from the knee point

set without considering the neighborhood information. In the

future, the neighboring knee points around the current solution

can be further used to enhance the performance under the

MOEA/D framework. Moreover, it would also be interesting to

extend our EGG to solve constrained MaOPs by incorporating

constraint-handling techniques.

REFERENCES

[1] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE transactions on evo-
lutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[3] K. Ikeda, H. Kita, and S. Kobayashi, “Failure of pareto-based MOEAs:
Does non-dominated really mean near to optimal?” in Proceedings
of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.
01TH8546), vol. 2. IEEE, 2001, pp. 957–962.

[4] S. Yang, M. Li, X. Liu, and J. Zheng, “A grid-based evolutionary
algorithm for many-objective optimization,” IEEE Transactions on Evo-
lutionary Computation, vol. 17, no. 5, pp. 721–736, 2013.

[5] Z. He, G. G. Yen, and J. Zhang, “Fuzzy-based pareto optimality for
many-objective evolutionary algorithms,” IEEE Transactions on Evolu-
tionary Computation, vol. 18, no. 2, pp. 269–285, 2014.

[6] Y. Yuan, H. Xu, B. Wang, and X. Yao, “A new dominance relation-
based evolutionary algorithm for many-objective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 20, no. 1, pp. 16–37,
2016.

[7] M. Elarbi, S. Bechikh, A. Gupta, L. B. Said, and Y.-S. Ong, “A new
decomposition-based NSGA-II for many-objective optimization,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 7,
pp. 1191–1210, 2018.

[8] Y. Tian, R. Cheng, X. Zhang, Y. Su, and Y. Jin, “A strengthened
dominance relation considering convergence and diversity for evolution-
ary many-objective optimization,” IEEE Transactions on Evolutionary
Computation, 2018.

[9] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-
based many-objective optimization,” Evolutionary computation, vol. 19,
no. 1, pp. 45–76, 2011.

[10] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in International Conference on Parallel Problem Solving from
Nature. Springer, 2004, pp. 832–842.

[11] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjec-
tive selection based on dominated hypervolume,” European Journal of
Operational Research, vol. 181, no. 3, pp. 1653–1669, 2007.

[12] F. Li, R. Cheng, J. Liu, and Y. Jin, “A two-stage R2 indicator based
evolutionary algorithm for many-objective optimization,” Applied Soft
Computing, vol. 67, pp. 245–260, 2018.

[13] Y. Sun, G. G. Yen, and Z. Yi, “IGD indicator-based evolutionary algo-
rithm for many-objective optimization problems,” IEEE Transactions on
Evolutionary Computation, 2018.

[14] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An indicator-based
multiobjective evolutionary algorithm with reference point adaptation
for better versatility,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 4, pp. 609–622, 2018.



13

[15] T. Pamulapati, R. Mallipeddi, and P. N. Suganthan, “Isde+-an indicator
for multi and many-objective optimization,” IEEE Transactions on
Evolutionary Computation, 2018.

[16] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on evolutionary computa-
tion, vol. 11, no. 6, pp. 712–731, 2007.

[17] H. Li and Q. Zhang, “Multiobjective optimization problems with com-
plicated pareto sets, MOEA/D and NSGA-II,” IEEE transactions on
evolutionary computation, vol. 13, no. 2, pp. 284–302, 2009.

[18] L. Chen, H.-L. Liu, K. C. Tan, Y.-M. Cheung, and Y. Wang, “Evolu-
tionary many-objective algorithm using decomposition-based dominance
relationship,” IEEE transactions on cybernetics, 2018.

[19] Y. Zhou, Y. Xiang, Z. Chen, J. He, and J. Wang, “A scalar projection
and angle-based evolutionary algorithm for many-objective optimization
problems,” IEEE transactions on cybernetics, no. 99, pp. 1–12, 2018.

[20] X. Cai, Z. Mei, and Z. Fan, “A decomposition-based many-objective
evolutionary algorithm with two types of adjustments for direction
vectors,” IEEE transactions on cybernetics, vol. 48, no. 8, pp. 2335–
2348, 2018.

[21] X. He, Y. Zhou, Z. Chen, and Q. Zhang, “Evolutionary many-objective
optimization based on dynamical decomposition,” IEEE Transactions on
Evolutionary Computation, 2018.

[22] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-
objective optimization algorithm based on dominance and decomposi-
tion,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 5,
pp. 694–716, 2015.

[23] Y. Liu, D. Gong, X. Sun, and Y. Zhang, “Many-objective evolution-
ary optimization based on reference points,” Applied Soft Computing,
vol. 50, pp. 344–355, 2017.

[24] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector
guided evolutionary algorithm for many-objective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 20, no. 5, pp. 773–791,
2016.

[25] Y. Liu, D. Gong, J. Sun, and Y. Jin, “A many-objective evolutionary
algorithm using a one-by-one selection strategy,” IEEE Transactions on
Cybernetics, vol. 47, no. 9, pp. 2689–2702, 2017.

[26] Q. Lin, S. Liu, Q. Zhu, C. Tang, R. Song, J. Chen, C. A. C. Coello, K.-C.
Wong, and J. Zhang, “Particle swarm optimization with a balanceable
fitness estimation for many-objective optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 1, pp. 32–46,
2018.

[27] D. Gong, Y. Liu, and G. G. Yen, “A meta-objective approach for many-
objective evolutionary optimization,” Evolutionary computation, pp. 1–
25, 2018.

[28] R. Wang, R. C. Purshouse, and P. J. Fleming, “Preference-inspired co-
evolutionary algorithms using weight vectors,” European Journal of
Operational Research, vol. 243, no. 2, pp. 423–441, 2015.

[29] D. Gong, F. Sun, J. Sun, and X. Sun, “Set-based many-objective
optimization guided by a preferred region,” Neurocomputing, vol. 228,
pp. 241–255, 2017.

[30] C. Liu, Q. Zhao, B. Yan, S. Elsayed, T. Ray, and R. Sarker, “Adaptive
sorting-based evolutionary algorithm for many-objective optimization,”
IEEE Transactions on Evolutionary Computation, 2018.

[31] D. Gong, J. Sun, and Z. Miao, “A set-based genetic algorithm for
interval many-objective optimization problems,” IEEE Transactions on
Evolutionary Computation, vol. 22, no. 1, pp. 47–60, 2018.

[32] R. B. Agrawal, K. Deb, and R. B. Agrawal, “Simulated binary crossover
for continuous search space,” Complex systems, vol. 9, no. 2, pp. 115–
148, 1995.

[33] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS)
for engineering design,” Computer Science and informatics, vol. 26, pp.
30–45, 1996.

[34] R. Hinterding, “Gaussian mutation and self-adaption for numeric genetic
algorithms,” in Proceedings of 1995 IEEE International Conference on
Evolutionary Computation, vol. 1. IEEE, 1995, p. 384.

[35] K. Chellapilla, “Combining mutation operators in evolutionary program-
ming,” IEEE transactions on Evolutionary Computation, vol. 2, no. 3,
pp. 91–96, 1998.

[36] L. J. Eshelman and J. D. Schaffer, “Real-coded genetic algorithms and
interval-schemata,” in Foundations of genetic algorithms. Elsevier,
1993, vol. 2, pp. 187–202.

[37] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[38] S. Tsutsui, M. Yamamura, and T. Higuchi, “Multi-parent recombination
with simplex crossover in real coded genetic algorithms,” in Proceedings

of the 1st Annual Conference on Genetic and Evolutionary Computation-
Volume 1. Morgan Kaufmann Publishers Inc., 1999, pp. 657–664.

[39] K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolution-
ary algorithm for real-parameter optimization,” Evolutionary computa-
tion, vol. 10, no. 4, pp. 371–395, 2002.

[40] G. Pavai and T. Geetha, “A survey on crossover operators,” ACM
Computing Surveys (CSUR), vol. 49, no. 4, p. 72, 2017.

[41] Q. Zhu, Q. Lin, and J. Chen, “A gene-level hybrid search framework
for multiobjective evolutionary optimization,” Neural Computing and
Applications, vol. 30, no. 3, pp. 759–773, 2018.

[42] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE transactions on Evolutionary Computation, vol. 13, no. 2, pp.
398–417, 2009.

[43] H. Sato, H. E. Aguirre, and K. Tanaka, “Genetic diversity and effective
crossover in evolutionary many-objective optimization,” in International
Conference on Learning and Intelligent Optimization. Springer, 2011,
pp. 91–105.

[44] H. Ishibuchi, Y. Tanigaki, H. Masuda, and Y. Nojima, “Distance-based
analysis of crossover operators for many-objective knapsack problems,”
in International Conference on Parallel Problem Solving from Nature.
Springer, 2014, pp. 600–610.

[45] X. He, Y. Zhou, and Z. Chen, “An evolution path based reproduction
operator for many-objective optimization,” IEEE Transactions on Evo-
lutionary Computation, 2017.

[46] M. Li, S. Yang, and X. Liu, “Shift-based density estimation for pareto-
based algorithms in many-objective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 18, no. 3, pp. 348–365, 2014.

[47] Q. Lin, S. Liu, K.-C. Wong, M. Gong, C. A. C. Coello, J. Chen,
and J. Zhang, “A clustering-based evolutionary algorithm for many-
objective optimization problems,” IEEE Transactions on Evolutionary
Computation, 2018.

[48] X. Zhang, Y. Tian, and Y. Jin, “A knee point-driven evolutionary
algorithm for many-objective optimization,” IEEE Transactions on Evo-
lutionary Computation, vol. 19, no. 6, pp. 761–776, 2015.

[49] Q. Zhu, Q. Lin, Z. Du, Z. Liang, W. Wang, Z. Zhu, J. Chen, P. Huang,
and Z. Ming, “A novel adaptive hybrid crossover operator for multi-
objective evolutionary algorithm,” Information Sciences, vol. 345, pp.
177–198, 2016.

[50] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in Proceedings of the 2002
Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600),
vol. 1. IEEE, 2002, pp. 825–830.

[51] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477–506,
2006.

[52] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-
parative case study and the strength pareto approach,” IEEE transactions
on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[53] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera, “A practical tutorial
on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm and
Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011.

[54] H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima, “Performance
of decomposition-based many-objective algorithms strongly depends on
pareto front shapes,” IEEE Transactions on Evolutionary Computation,
vol. 21, no. 2, pp. 169–190, 2017.

Qingling Zhu received the B.Sc. degree from the
Nanchang Institution of Technology, Nanchang, Chi-
na, in 2013, the M.Sc. degree from Shenzhen Uni-
versity, Shenzhen, China, in 2016. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science, City University of Hong Kong,
Hong Kong. His current research interests include
evolutionary multiobjective optimization and ma-
chine learning.



14

Qiuzhen Lin received the B.S. degree from Zhao-
qing University, Zhaoqing, China, in 2007, the M.S.
degree from Shenzhen University, Shenzhen, China,
in 2010, and the Ph.D. degree from the Department
of Electronic Engineering, City University of Hong
Kong, Hong Kong, in 2014.

He is currently a Lecturer with the College of
Computer Science and Software Engineering, Shen-
zhen University. He has published over ten research
papers since 2008. His current research interests
include artificial immune system, multiobjective op-

timization, and dynamic system.

Jianqiang Li received his B.S. and Ph.D. Degree in
automation major from from South China University
of Technology, Guangzhou, China, in 2003 and
2008, respectively.

He is a professor at the College of Computer
and Software Engineering of Shenzhen University.
He led a project of the National Natural Science
Foundation, and a project of the Natural Science
Foundation of Guangdong Province, China. His ma-
jor research interests include embedded systems and
Internet of Things.

Carlos A. Coello Coello (M’98–SM’04–F’11) re-
ceived the Ph.D. degree in computer science from
Tulane University, New Orleans, LA, USA, in
1996. He is currently a Professor (CINVESTAV-
3F Researcher) with the Computer Science De-
partment, CINVESTAV-IPN, Mexico City, Mexico.
He has authored and co-authored over 450 tech-
nical papers and book chapters. He has also co-
authored the book entitled Evolutionary Algorithms
for Solving Multi-Objective Problems (Second Edi-
tion, Springer, 2007). His has over 45 000 Google

Scholar citations with an H-index of 83. His current research interests include
evolutionary multiobjective optimization and constraint-handling techniques
for evolutionary algorithms. Dr. Coello Coello was a recipient of the 2007
National Research Award from the Mexican Academy of Sciences in the
area of Exact Sciences, the 2013 IEEE Kiyo Tomiyasu Award and the 2012
National Medal of Science and Arts in the area of Physical, Mathematical and
Natural Sciences. He is currently an Associate Editor of the IEEE Transactions
on Evolutionary Computation and serves in the editorial board of 12 other
international journals. He is a member of the ACM and the Mexican Academy
of Science.

Zhong Ming is a professor at College of Computer
and Software Engineering of Shenzhen University.
He is a member of a council and senior member
of China Computer Federation. His major research
interests are AI and cloud computing. He led two
projects of National Natural Science Foundation,
including one key project (61836005), one normal
project (61672358)

Jianyong Chen (M’11) received the Ph.D. degree
from the City University of Hong Kong, Hong Kong,
in 2003.

He is a Professor with the College of Com-
puter Science and Software Engineering, Shenzhen
University, Shenzhen, China. He was with ZTE
Corporation, Shenzhen, as a Senior Engineer of
network technology from 2003 to 2006. Then he
joined Shenzhen University. He has published over
30 papers and got over 30 patents in the field of
artificial intelligence and information security. His

current research interests include in artificial intelligence and information
security.

Dr. Chen was the Vice-Chairman of International Telecommunication
Union-Telecommunication SG17 from 2004 to 2012, and an Editor of three
recommendations developed in ITU-T SG17.

Jun Zhang (F’17) received the Ph.D. degree from
the City University of Hong Kong, Kowloon, Hong
Kong, in 2002.

He is currently a visiting scholar with Victoria
University, Melbourne, VIC, Australia. His current
research interests include computational intelligence,
cloud computing, high performance computing, op-
erations research, and power electronic circuits.

Dr. Zhang was a recipient of the Changjiang Chair
Professor from the Ministry of Education, China, in
2013, the China National Funds for Distinguished

Young Scientists from the National Natural Science Foundation of China
in 2011, and the First-Grade Award in Natural Science Research from the
Ministry of Education, China, in 2009. He is currently an Associate Editor of
the IEEE Transactions on Evolutionary Computation, the IEEE Transactions
on Cybernetics, and the IEEE Transactions on Industrial Electronics.


