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Abstract

This document presents a new artificial immune system algorithm based on the clonal selection principle
and hypervolume contribution. The main aim is to investigate the performance ofthis class of algorithm
with respect to other algorithms which are representative of the state of the art in solving Multi Objective
Problems (MOP). The main features of an immune system algorithm are implementedand some results are
provided comparing them to the well-known algorithm NSGA-II. The results show that artificial immune
system algorithms based on hypervolume are competitive, even when using only a few of the features,
among the many available, that a true immune system can offer.
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1. Introduction

For the last decade, evolutionnary algorithms (EAs) have been widely used to solve MOPs. An EA
uses some mechanisms inspired by biological evolution, which have been shown to be efficient on a large
set of difficult problems, including NP-Hard or even NP-complete class problems. EAsare said to be
population-based algorithms because they use a set (population) of solutions that is updated at each itera-
tion (generation). The main advantage of EAs, and metaheuristics in general, is that at each generation, the
algorithm is able to provide solutions (exact or approximate) in a reasonablelow amount of time (polyno-
mial complexity). On the contrary, exact algorithms always lead to solutions (the best ones) after a costly
search, even if using intelligent methods (e.g. Branch & Bound). The onlydrawback of EAs is that, in
general, their convergence cannot be guaranteed. Nevertheless, inpractice, EAs generate approximations
that are generally sufficiently good to justify their use.
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Many metaheuristics have been designed aiming to solve as many problems as possible while changing
a minimum number of parameters from the algorithm. However, most of the existingalgorithms which
solve MOPs have to be tuned to be efficient on a large set of different and complex problems. The purpose
of the algorithm proposed here is not to overcome this difficulty but rather to create a fast and robust algo-
rithm with basic features based on artificial immune system algorithms and hypervolume contribution. The
future addition of more elaborate self-adaptation mechanisms to the proposedapproach should improve its
performance and robustness. Next, we provide some basic concepts related to multi-objective optimization
and artifical immune systems.

1.1. Multi Objective Optimization
In multi-objective optimization, the aim is to optimize two or more objective functions (which are

normally in conflict with each other) at the same time. Objectives could be maximizedor minimized, but
here, we assume that all of them are to be minimized. The problem can be unconstrained or constrained and
is generally modeled as:











































opt fi(~x) ∀i ∈ {1, ...,m}
s.t

g j(~x) ≤ 0 ∀ j ∈ {1, ..., p}
hk(~x) = 0 ∀k ∈ {1, ...,q}

xl ∈ [lb,ub] ∀l ∈ {1, ...,n}
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where:
opt ∈ {min,max},
m is the number of objective functions,
p is the number of inequality constraints,
q is the number of equality constraints,
n is the number of decision variables of the problem,
lb,ubare the lower and upper bound of each variablexl , respectively.

Finding the optimal vector~x∗ of a single objective problem can be easily defined as

∄ ~x such that f1(~x) < f1(~x∗)

In the multiobjective case, each vector solution has to be optimized through morethan one objective
function, then, formobjectives, the problem can be described as

{min fi : ~x ∈ Rn→ R ∀i | g j(~x) ≤ 0, hk(~x) = 0 ∀ j, k}

In this case, there is no unique solution. Indeed,∀i, j ∈ {1,2}, and for two solutions~x1 and~x2, we can
suppose thatf1(~x1) < f1(~x2) and f2(~x2) < f2(~x1). Then we can’t deduce anything by comparing these
solutions and they are considered as two feasible solutions of the problem. In order to define formally this
relation, we need to introduce the notion of Pareto dominance.

1.1.1. Pareto Dominance
One vector~x∗ dominates (in the Pareto sense) a vector~x if and only if fi(~x∗) ≤ fi(~x) ∀i ∈ {1, ...,m} and

there exists at least onei such thatfi(~x∗) < fi(~x) (assuming minimization). We also say that~x is dominated
by ~x∗. A binary operator “≺” is defined as:

~x dominates ~y⇐⇒ ~x ≺ ~y
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Figure 1: A simple bi-objective problem with two variables

1.1.2. Pareto Optimal Set& Pareto Front
All the solutions whose vectors are not dominated by any other vector inRm are said to benon-

dominated. Pareto optimal set is composed of all vectors in the search spaceRn that are non-dominated.
The image of the Pareto optimal set (i.e., their objective function value) form the Pareto front. The main
goal in multi-objective optimization is to generate as many elements of the Pareto optimal set as possible.
A simple graphical representation is given in Figure1.

1.1.3. Spread& Convergence
When working with multi-objective problems, two important notions have to be well-understood : con-

vergence and spread. The convergence allows to measure how far thesolutions found are, from the true
Pareto front; a classical performance measure to calculate it is the Generational Distance (GD1). The al-
gorithm’s convergence can also be seen as the time (or number of generations) needed to reach the Pareto
front. For example, an algorithm would have a good convergence if

∃ ǫ ∈ N, ǫ ≪ T, such that lim
t→ǫ

GDt(S) = 0

where:
S is the set of solutions found,
T is the maximum number of generations.

The spread indicates how well-distributed are the solutions on the true Paretofront (or its approximation).
This is an important indicator as it gives more choices to the decision-maker when choosing one or more
non-dominated solutions. The spread proposed in [1] is a widely used indicator that adopts, of course, the
distance between solutions, but also the Pareto front’s extreme solutions, inorder to take into account the
maximum interval where the solutions are found for each objective.

1.2. Multi Objective Artificial Immune System (MOAIS)
1.2.1. The Immune System

The immune system’s role is to defend the body against infections. It has several defenses against
outside attacks: the barrier of the skin, mucous membranes, and the passive system defense of cells, but the

1Mean distance betweeen solutions found so far and the nearest solution belonging to the true Pareto front
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functioning of antibodies is its main element. Usually, when a foreign element is detected by the immune
system, an immediate elimination reaction sets in. This reaction involves phagocytic cells and lymphocytes
that circulate continuously throughout the body. This reaction is fast andcalled non-specific, meaning that
the immune system attacks the antigen without knowing its nature.

Depending on the severity of the infection, this rapid and non-specific immuneresponse may not be
sufficient to eliminate the intruder. A second reaction, slower and more specific willbe set up: it puts
into play the recognition of the foreign element by immune cells. Following the recognition, immune cells
specifically adapted for the destruction of the foreign agent (lymphocytes) will multiply rapidly. Some of
these clones may be corrupt, and a risk of generating autoimmune cells occurs. The immune system is able
to suppress self-generated cells (suppression of similar individuals in MOO). Subsequently, the organism
keeps track of this encounter with the foreign element (thanks to the B cells).There is some form of
memory in the immune system. This will optimize the specific immune response, which will be faster at a
forthcoming encounter with the same foreign element.

Immunity is a very complex system that is difficult to simulate retaining all of its characteristics. Nev-
ertheless, the key ideas that can be used to build an AIS are:

• A set of immune agents (antibodies) that try to find the best binding to fit to pathogen agents (anti-
gens).

• A set of cells that record characteristics of antigens previously encountered.

• Communication between these entities.

• The capability of some cells to clone (asexual reproduction) and mutate.

Some more features of AIS are given in [2], nevertheless, most of them are not relevant for MOO and,
therefore, are not discussed here.

1.2.2. AIS applied to MOO
In MOAIS, we usually consider two sets of solutions, antibodies and antigens. Differences between

these are defined by the designer of the algorithm. The most common idea is to split good and bad solutions.
Interactions between the solutions (Ag-Ab, Ag-Ag,...) are usually defined by a function called “affinity”
with classical methods such as distance measures, Pareto dominance ranking, etc. Depending on the affinity
value a selection and a cloning process occurs, then the clones are mutated. Finally, a strategy is used to
generate the new population and to store the best solutions found so far (archiving is nowadays a common
feature in MOEAs). In [2], a canonical algorithm gives the main procedure of an MOAIS, which is reported
here in Algorithm1 with the notation of this document.

The canonical MOAIS algorithm first defines the problem, like all population-based algorithms (line
1). An archive is defined (line 2) in order to store the non-dominated solutions found so far. The online
population is initialized (line 3) containing the solutions from the current generation. The main loop starts
and performs the following steps until a stop criterion is met. The algorithm evaluates the online population
(line 5) using objective functions and constraints. Depending on the choices made, the solutions of the set
B are analysed and given an affinity value (line 6), the archiveA can be used, for example to define the
new affinities between best solutions found so far. The cloning selection is triggered following stochastic
or deterministic rules (line 7), based on affinities values or not. The cloning process is usually done based
on the affinity values (proportional cloning), while the mutation of each individual can have several variants
(line 8). The two previous steps are commonly adapted in all AIS, this is called the clonal selection principle.

4



Algorithm 1 : Outline of the canonical MOAIS

Define the search spaceS , objectives functionsfi , constraintsg j ,hk ;1

A(t = 0)←− Initialize offline population;2

B(t = 0)←− Initialize online population with random individuals;3

while ¬ stop criteriondo4

Evaluate populationB(t) using fi ,g j ,hk;5

B1(t)←− Define affinities(B(t), [A(t)]);6

B2(t)←− Selection for cloning(B1(t), [A(t)]);7

B3(t)←− Proliferation and mutation(B2(t));8

B4(t)←− Diversification & Suppression;9

B(t + 1)←− B3(t) ∪ B4(t) ;10

A(t + 1)←− Update(A(t), B(t + 1));11

t ←− t + 1;12

end13

The diversification procedure (line 9) is not mandatory, its goal is to add methods to bring some diversity
to the population usually by creating new random individuals. Suppressionis not mandatory either and
can be applied to delete some individuals (responsible for autoimmune disorder), particularly to individuals
that are not relevant for further optimization. The new population is generated taking into account the best
clones (line 10), applying some predefined rules. Eventually, the archive is updated (line 11).

1.3. State of the art

An overview of Artificial Immune System for MOO is given in [3]. It shows that MISA2 is considered
as the first MOAIS proposed in the litterature [4]Cruz Cort́es, 2002). The algorithm is designed to fit the
immune system metaphor and it follows the canonical algorithm previously presented. MISA uses the
classical non-dominated Pareto ranking algorithm to classify solutions and todetermine which of them
will be cloned. The number of clones depends on antibody-antibody affinities. The clones are uniformly
mutated according to their antigen-antibody affinities whereas other solutions use non-uniform mutation.
An adaptive grid is used to ensure diversity in the fixed size archive. Selection to access the archive is
determined by some defined rules based on the non-dominated Pareto ranking. This algorithm is the first
AIS explicitly designed to solve MOP, and its results show that in spite of being,based on simple rules,
MISA can be efficient. MISA was successively improved until 2005 but, after that, metaphors from the
immune system were not followed as strictly as before. The following algorithmspresented are chosen
according to five critera:

1. Respect of the canonical AIS algorithm
2. No use of a recombination operator
3. Implemented for real-coded variables
4. Detailed results
5. Most recently published

2Multiobjective Immune System Algorithm
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1.3.1. VAIS
In [5], Freschi & Repetto (2005, 2006) present VAIS3, an algorithm using selection, cloning, mutation,

suppression and an archiving process. For non-dominated individuals, fitness is determined by the strength
defined in SPEA2 [6]. For dominated solutions, fitness corresponds to the number of individuals which
dominate them. A suppression procedure is used for the archive as well as a diversification procedure by
allowing a fixed number of random individuals to enter the archive. Resultsare compared with NSGA-II
and show that VAIS can outperform NSGA-II on unconstrained and constrained problems such as Tanaka,
Viennet and Zitzler. Nevertheless, no results are provided on DTLZ problems, which are considered to be
harder to solve.

1.3.2. IDCMA/NNIA
IDCMA4 was presented in [7] (Jiao, Gong, Shang, Du & Lu, 2005). As the algorithm had difficulties

solving DTLZ problems, NNIA5, was later presented as an improved version of IDCMA in [8] (Gong, Jiao,
Du & Bo, 2008). The selection mechanism which chooses the set of candidates to be cloned is based on
non-dominated solutions. If the non-dominated solutions are beyond a certain threshold, then the crowding
distance is used. The archive process uses the same methods to select candidates to enter the archive. In
NNIA, recombination is used, nevertheless, some results are presented with and others without this feature.
It shows that recombination is a powerful method that gives better results regarding the ”two sets coverage”
between NNIA-X6 and NNIA (ZDT[1-4,6], DTLZ[1-4,6]).

1.3.3. IFMOA
In [9], IFMOA7 (Lu, Jiao, Du & Gong, 2005) is presented. The affinity assignment is based on Pareto

strength[6] and antibody-antibody affinity is inversely proportional to the sum of two smallest Euclidean
distances between an antibody and the rest of the population. The “immune forget unit” is a set of solutions
that are not participating in clonal proliferation. Results are given by comparing the algorithm to MOGA
and SPEA2 on six unconstrained MOP. On the results shown, the algorithm performs well but no results are
given for more difficult problems.

1.3.4. omni-aiNet
Coelho & Von Zuben (2006) presented omni-aiNet as a single and multi objective optimizer in [10].

First, all the individuals will be clonedNc times.Nc is a parameter. A random variation with rates inversely
proportional to its affinity to the antigen is applied to each generated clone. Polynomial mutation is used
to apply variations to the clones. Solutions are arranged in classes, the better the class, the smaller the
variation. The algorithm is using suppression and diversification. Unfortunately, results are provided only
by comparing the algorithm with another algorithm called ”DT omni-optimizer”. Moreover, results are only
graphical and on only focused three problems.

1.3.5. SMS-EMOA
It is worth presenting the well-known SMS-EMOA [11] algorithm, which is based on Hypervolume.

At each iteration, a new solution is generated by means of randomised variation operators. Then, the

3Vector Artificial Immune System
4Immune Dominance Clonal Multiobjective Algorithm
5Nondominated Neighbor Immune Algorithm
6NNIA without recombination
7Immune Forgetting Multiobjective Optimization Algorithm
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algorithm sorts the solutions by ranks and discards an individual from theworst rank that contributes the
least in maximizing the Hypervolume. All results show that SMS-EMOA is a very powerful solver even
for difficult problems. Its main drawback however,is its high computational complexity, which is related
to the calculation of the hypervolume contribution which can be very time consuming when the number of
objectives increases.

2. The MOAIS-HV algorithm

In this section, MOAIS-HV is detailed. First, some basic about hypervolume are discussed, then the
algorithms, data structures and other choices that have been taken to implement MOISA-HV are presented.
The main goal of the algorithm is to investigate the quality of the results while combining AIS and Hyper-
volume. The algorithm is designed to be tested on a large number of problems, tohave a low complexity,
to respect the number of function evaluations and to follow the characteristics of a pure AIS algorithm (no
recombination operator is adopted).

2.1. Hypervolume vs. Hypervolume contribution

Hypervolume is a very common indicator used to measure and compare the qualityof final solutions
in population-based algorithms. The hypervolume measure was originally proposed by Zitzler and Thiele
in [12]. This indicator represents the surface (or the volume for more than 2 objectives) of the region
dominated by solutions found so far. LetΛ denote the Lebesgue measure, then theS metric is defined as

S(A, yre f ) = Λ


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,A ⊆ Rm

where:
A is a subset of the objective space,
yre f denotes a reference point that is dominated by all Pareto-optimal solutions,
” ≺ ” denotes the dominance relation.

The main drawback of the hypervolume indicator is that no general polynomial algorithm exists in or-
der to calculate it, therefore it has been unpopular for use as an online feature in MOO. Nevertheless, it
is now well-known that using the hypervolume indicator provides good results in both convergence and
spread. Indeed, it has been shown in [13] that given a finite search space and a reference point, maximizing
hypervolume enables the finding of all the non-dominated solutions of the Pareto front.

In this document, hypervolume is used to selectµ individuals amongn = λ+µ individuals.λ represents
the number of individuals discarded one by one. Theµ individuals are the candidates to be cloned. The aim
is to find the set ofµ individuals that maximizes the hypervolume. Two methods are commomly used, each
of them having advantages and drawbacks:

• Hypervolume indicator

This algorithm computes the hypervolume for the whole set of solutions. Nowadays, there is no
general polynomial algorithm to calculate it for any number of objectives. Thus, computing

(

n
µ

)

hypervolumes is considered to be too time consuming.
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Figure 2: Hypervolume contribution

• Hypervolume contribution

Hypervolume contribution computes the contribution of each solution in maximizing the hypervol-
ume taking into account its neighbours on each objective, see Figure2. Selecting the optimal set ofµ
solutions implies calculating

(

n
µ

)

conventional hypervolume contributions, which is considered to be
computationally too expensive. In [14], an algorithm is presented to compute the set ofλ solutions
that contributes less in maximizing the hypervolume inO(n

m
2 log n+ nλ), wheren is the number of

solutions,m the number of objectives, andλ the number of solutions to discard.

Another method just discards the lowest contributor of a population iteratively until reaching a pop-
ulation of sizeµ. It has been shown in [15] that this method can lead to a set that is not the optimal
according to the hypervolume maximization. Nevertheless, the error ratio is not higher than 35% and
the small complexity of such an algorithm makes it more competitive compared to stateof the art
algorithms.

Considering these facts, in the algorithm presented in the following, the selection of individuals will be
processed by discarding iteratively solutions that contribute the least in maximizing the hypervolume. The
reason is to avoid using complicated data structures and to have an acceptable complexity. Future work
should improve the efficiency of the hypervolume algorithm. The method used for calculating the hyper-
volume contribution is to sort the population of each objective via a quicksort;each solution is assigned
the distance to its neighboor for the first objective. Then, this value is multipliedby distances found by the
same process on other objectives. This can be done inO(mn3), but requiresO(mn2log n) on average.

2.2. Description of the algorithm

The following describes the new immune system algorithm based on hypervolume contribution. The
main idea is to maintain an online population of antigens and antibodies. The antigens are considered to be
the good solutions, the antibodies the bad ones. These two sets form two newsubpopulations. The antigens
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Figure 3: Main algorithm loop

are cloned (best antibodies are cloned too if the number of antigens is insufficient) and a mutation operator
is applied. If only one rank exists, candidates to be cloned are selected from individuals that contribute the
most to maximize the hypervolume, otherwise successive ranks are selectedand hypervolume selection is
only applied to the last one. The clones and the best antigens found are merged and the size of the main
population is maintained by discarding individuals that contribute the least in maximizing the hypervolume.
The main loop of the algorithm is represented in Figure3. In the algorithm, the following notations will be
used:

Q,P: the main population and the pool,
Ab,Ag: the sets of antibodies and antigens (subsets ofQ),
n: size of the main population,
m,ngen: number of objectives and number of generations.

1. Initializing populations:
Initialize populationQ (Main population) by generating random individuals.
→ fixed sizen.
Initialize Antibodies populationAb to empty.
→ fixed sizen.
Initialize Antigens (or Archive) populationAg to empty.
→ fixed sizen. Store the best individuals found so far.
Initialize a poolP to empty (to store the clones).

9



→ fixed size 2∗ n.

2. Evaluate all individuals of the populationQ.
→ Feasibility and objective values
For constrained problems, the constraints are handled as in NSGA-II.
→ Fast non-dominated ranking
In order to compute the ranks of all individuals, the well-known algorithm presented in [16] is used
and has a complexity ofO(mn2). Nevertheless, more investigation would have to be done regard-
ing the paper of Bentley (1993) [17] who presents an algorithm to find the convex hull of a set in
mn+ O(n1−1/mlog1/mn) scalar comparisons.

3. Split the populationQ into two sets:
Constrained problems:
Antigens:
→ Feasible and non-dominated
Antibodies:
→ Unfeasible and non-dominated
→ Feasible and dominated
→ Unfeasible and dominated
Unconstrained problems:
Antigens:
→ Non-dominated
Antibodies:
→ Dominated

4. Define Affinity for antibodies and antigens.
All the distance measures are normalized values on all objectives in order toavoid the relative impor-
tance between objectives.
Defining affinity on antibodies:
For each antibody, select randomly one antigen inAg. The affinity value of an antibodyAb is defined
by its euclidean distance to the selected antigenAg.

A f f(Abi) =
1.0

Eucl Dist(Abi ,Ag)
) ∀i

If there’s no antigen, each antibody is assigned an affinity based on its rank:

A f f(Abi) =
1.0

(Rank(Abi) + 1)
) ∀i

For each antibody belonging to bounded solutions, the affinity is equal to the maximum affinity found
so far. By doing this, antibodies belonging to the extreme solutions on each objective will be more
cloned and thus increase the probability to extend the Pareto front.

A f f(Abext) = maxi(A f f(Abi)) ∀ext

Defining affinity on antigens:
For each antigen, the affinity is based on Hypervolume contribution:

A f f(Agi) = HypervCont(Agi) +maxj(A f f(Abj)) ∀i
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Algorithm 2 : Computing Hypervolume contributions

Input: PopulationAg ;1

Initialize Affinities(Ag) to 0.0 ;2

for i from 1 to mdo3

SortAgby obj i;4

for j from 1 to Ag.size() do5

Ag.ind[ j].a f f inity += (Ag.ind[ j].ob j[i] − Ag.ind[ j + 1].ob j[i]);6

end7

end8

for j from 1 to Ag.size() do9

Ag.ind[ j].a f f inity += maxj(A f f(Abj));10

end11

The algorithm that computes Hypervolume contribution is presented in algorithm2
For each antigen belonging to bounded solutions, the affinity is equal to the maximum affinity found
so far (on antigens). By doing this, antigens belonging to the extreme solutions on each objective will
be more cloned and thus increase the probability to extend the Pareto front.

A f f(Agext) = maxi(A f f(Agi)) ∀ext

For both antibodies and antigens, the greater the affinity, the better.

5. Clonal selection principle
Most of the population-based algorithms don’t discard dominated individuals when selecting solu-
tions to be cloned or mutated. The main aim in doing this is to keep some diversity in thepopulation.
After some experiments, the choice for this algorithm was to select dominated solutions only if nec-
essary (if non-dominated solutions are fewer than the number of clones).Some previous results have
shown that cloning the antibodies gives worse results (convergence metric) than considering the best
individuals found so far, the antigens. In order to fit to the immune system metaphor, one can con-
sider here that if the main population already contains a certain number of antigens, it means that
the immune system has already recognised some pathogen agents and it will use them to perform the
cloning process (the antibody which reached the pathogen agent and is now considered as an anti-
gen). The number of clones is usually defined as about 20% of the population. Nevertheless, as the
behaviour of the algorithm is not known and some statistics on results still haveto be made, a param-
eter is introduced to control the number of candidates:nb cl ∈ [0,1]. The number of candidates (NC)
is defined once for all iterations by the formula:

NC = n ∗ 10%+ nb cl ∗ n ∗ 30%

In the main population, the antigens and antibodies are classed acording to their affinity. The first
NC best solutions are chosen and for each of them a different number of clones will be calculated
depending on their affinity. Moreover, these candidates are split into two setsj = 1,2: the extreme
solutions and the others. For each set, we define their total number of clones, the extreme solutions
will be cloned more at the beginning and less at the end.
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Generation 1, total number of clones:
For extreme solutionsP1 = n ∗ 50%, for other solutionsP2 = n ∗ 50%
Generationngen, total number of clones:
For extreme solutionsP1 = n ∗ 10%, for other solutionsP2 = n ∗ 90%

Then, for eachNC solution, the number of clones of each candidate (NCC) is given by:

NCC(Ai, j) = P j ∗
A f f(Ai, j)

∑n j

i=0 A f f(Ai, j)
∀i, j

where:
Ai, j is theith antigen or theith antibody of the setj,
P j is the total number of clones for the setj,
n j is the number of candidates in the setj.

6. Mutation
Mutation is an important part of any metaheuristic since it guides the search through the generations.
It is well-known that some basic mutations can’t provide good results as different problems don’t
need the same proportions of global search and local search to find the Pareto Front.
Most metaheuristics require parameters in order to tune the algorithm depending on the problem they
are solving. As the number of parameters increases, experiments are needed and comparisons with
other algorithms can then be difficult. Therefore, a small number of parameters is preferable.
Regarding mutation, two important choices have to be made:

• the mutation probability

It controls the probability to mutate one variable of a vector.

• the mutation step-size

It controls the degree of perturbation given to the variable selected to be mutated.

Concerning the mutation probability, the aim of this study is to simplify the algorithm in order to em-
phasize the combination MOAIS/Hypervolume and investigate this new idea. Moreover, comparison
is easier with NSGA-II while using the same probability for mutation. Thus, the mutation probability
mp in this document is fixed.

mp=
1

nreal
Nevertheless, as an improvement, it will be interesting to change the mutation probability throughout
the search. For example, SANUM8 has been shown to be efficient in [18].

7. Hybrid mutation
Up to now, hybrid mutation [19] has been adopted to find the optimal mutation step-size. The main
idea is to use two types of mutation to perform the search. When a variable is selected to be mutated,
we perform either a mutation that will provide a long step size, or a small step size. The Gaussian
mutation is a well-known mutation that can be very easily tuned to perform long step size or small
step size mutation. Let’s say we have two types of mutation, namelyGL (Gaussian local) andGG
(Gaussian global). At the begining of the search, depending on the problem, we have to explore a

8Statistics-Based Adaptive Non-uniform Mutation
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Figure 4: Gaussian mutation type probability. When ls=0, probability to do local search is very low until generation 60 (on 100
generations). If ls=1, probability to do local search is growing fast as soon as the algorithm starts.

large zone in order to improve significantly the fitness of solutions. When the algorithm performs
searches near the final generations, we expect a small mutation in order tofind solutions closer to
the Pareto front. This idea can be seen as a kind of non-uniform mutation, but there, two types of
mutation can be processed in one generation. Non-uniform mutation should be explored in a future
work on the Local Gausian mutation.
Each time a variable has to be mutated, we compute the following value:

p mut type=
1.0

(1.0+ exp(−2.0 ∗ (x+ p)))

where:
x = −6.0+ (t/ngen) ∗ 12.0, increasing with the number of generations.
p = −4.0+ ls ∗ 8.0, with ls a parameter which determines the tradeoff betweenGL andGG.

While the algorithm is running, the probability to chooseGL will increase and the mutation will
perform more local searches. Figure4 shows both curves for extreme parametersls = 0 andls = 1.
Local Gaussian mutation is performed following this formula:

x∗i = xi + (maxi −mini) ∗ 0.1 ∗ N(0, st1)

Global Gaussian mutation is performed following this formula:

x∗i = xi + (maxi −mini) ∗ 0.1 ∗ N(0, st2)

where:
maxi ,mini are the bounds of the decision variable,
xi is the variable to be mutated,
N(0, x) is the Normal distribution with mean 0 and standard deviationx,
st1 ∈ [0.1,0.5], parameter which controls the local Gaussian mutation step,
st2 ∈ [0.5,1.5], parameter which controls the global Gaussian mutation step.

The curves of the different density of probability for Gaussian mutation are shown in Figure5.
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Figure 5: Gaussian mutation. These curves show three different Normal distributions with mean value 0 and three different standard
deviations

8. Evaluate the pool: Objectives, feasibility.
9. Add the Antigens into the poolP

10. Non-dominated sorting in the poolP
11. Update the main populationQ

The archiving process is quite simple but some choices have to be made whenthe archive is full and
candidates to enter it are non-dominated individuals. The main aim of the archive is to increase the
value of the whole hypervolume at each generation. In order to achieve this situation, new individuals
are added to the archive only if they dominate a previous individual. An archiving method is presented
in [20] but the complexity is, once again, exponential with the number of objectives. In this document,
the hypervolume maximization of the archive will be ensured by only acceptingindividuals that
dominate previous individuals. One drawback of this method is that we assumethat the previous
generation has a good spread to ensure that all optimal solutions of the Pareto front are reachable
(relatively because of the bounded size of the archive) - this is not so inmost cases (see Figure6).
The following method is adopted in order to find a good spread of solutions before accepting only
individuals that will maximize the Hypervolume.

(a) Fill the main population with successive ranks from the poolP.
(b) If the addition of the individuals of the current rank is greater thann, two cases occur:

- if (curgen < 2
3ngen), perform Hypervolume discard process (the individual which has the

lowest hypervolume contribution is discarded. The procedure is repeated until reaching a rank
of sizen − nprev which will be added to the main population). The aim here is to find a good
spread.
- Otherwise, only accept individuals that dominate solutions already in the archive by replacing
them. The aim here is to maximise the hypervolume.

The value2
3 is obviously a parameter that has to be optimized upon the problem, it corresponds to an

approximation of the generation number for which the Pareto front found so far is well-distributed.
Knowing when the global optimum front is reached is a hard task... Some ideasto stop the hypervol-
ume discard process would be to detect relative stability on hypervolume of the whole set or on the
number of new non-dominated solutions.

12. Split the population (Antigens & Antibodies)
13. Go to step 4 if the stop criterion is not met.
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Figure 6: Pareto front gaps. By accepting only solutions that dominate previous solutions, some parts of the Pareto front cannot be
reached.

14. Return the antigen population as the approximation of the Pareto front.

2.3. Data structures, Algorithms, Complexity

A MOAIS algorithm can be considered as a genetic algorithm whose features are changed for selection,
proliferation, mutation and archiving. In order to keep the comparison with NSGA-II as fair as possible, the
implementation of the new algorithm is based on the data structures used in [1] for NSGA-II. Other data
structures used are simply arrays and the code is easily understandable and maintainable for further work.

All algorithms used are classical ones (Non dominated sorting, Dominance checker...) or are easily
understandable in the code9, thus not relevant to incorporate in this document.

A competitive complexity is always hard to achieve when dealing with hypervolume. Nevertheless, the
complexity of the algorithm presented isO(mn3) andO(mn2logn) on average. This low complexity makes
the algorithm suitable for real-world problems.

3. Comparison

An algorithm has been implemented in C to compare NSGA-II and MOISA-HV. Each algorithm is run
100 times on each problem and numerical results are mean values on these runs. The algorithm provides
some indicators:

• Pareto Front Hypervolume:

Pareto front data files are quite hard to find online. Some data bases exist but files are often faulty. The
Pareto front provided for the comparator has been done on a populationof 1000 individuals for bi-
objective problems and 2000 individuals on three-objective problems. Each problem has been run for

9http://tom.pierrard.free.fr/thesis/
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1000 generations on each algorithm, then final populations merged to keep only the non-dominated
solutions.

• Hypervolume (to be maximized):

This indicator provides good numerical values to analyze the behavior of the algorithms for both
convergence and spread. The reference point is computed according to both the algorithms and the
true Pareto front. The code used is the one presented by Fonseca in [21].

• Coverage two sets (to be maximized):

The coverage of two sets is an indicator that counts how many solutions of a population dominate
solutions from another population. Because of the non-dominated solutions, this indicator is not
symmetrical and should be computed for both sets. The following formula defines the two sets cov-
erage :

Ic(A, B) =
|{ ~x ∈ A | ∃ ~y ∈ B : ~x ≺ ~y }|

|A|

whereA andB are two sets of final solutions from two different algorithms.

The valueIc(B,A) is also computed, as well asIc(PF, [A, B]) where PF represents the Pareto front.

• Inverted General distance (to be minimized):

This indicator was introduced for measuring how far the elements in the Paretooptimal set are from
those in the set of non-dominated vectors found. It corresponds to the mean distance between each
value of the Pareto Front and the nearest individual from the non-dominated vectors found. It is
defined as:

IGD =

√

√ n
∑

i=1

d2
i

n
where:

n is the number of vectors in the Pareto optimal set.

di is the Euclidean distance between each of these solutions and the nearest member of the set of the
non-dominated vectors found

• Spread (to be minimized):

The Spread indicator is a diversity metric that measures the extent of spread achieved among the
obtained solutions. This metric is defined as:

∆ =

df + dl +

n−1
∑

i=1

|di − d̄|

df + dl + d̄ (n− 1)

where:

di is the Euclidean distance between consecutive solutions.

d̄ is the mean of these distances.

df anddl are the Euclidean distances to the extreme solutions of the Pareto front.
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4. Setting up parameters

The algorithm presented can be tuned with 4 parameters, each of them belongs to [0,1]:

• a: Parameter which defines the trade-off between global search and local search, (Gausian global,
Gaussian local).

0.0 allows a more global search and 1.0 allows a more local search.

• b & c: Parameters which define mutation stepsize for Gaussian mutation.

0.0 allows smaller step-size mutation whereas 1.0 sets the mutation to a larger step-size.

• d: Parameter which defines the number of candidates to be cloned.

0.0 represents 10% of the size of the population. 1.0 represents 40% of the population’s size.

NSGA-II is used with its usual parameters [1]. For problems that were not originally implemented in
NSGA-II, parameters were chosen depending on the number of objectives, variables and constraints that
are efficient in other problems. Compilation and execution of MOISA-HV, NSGA-II and the comparator
are detailed in their ”ReadMe” files.

5. Results

The aim of this document is to compare NSGA-II and MOISA-HV, while being as fair as possible.
In order to achieve this, the same number of function evaluations is used forboth algorithms. The same
population size and same number of generations are used. The new algorithm has been written with a view
to having low complexity. A large set of problems are tested to compare the algorithms’ capability to be
efficient on most of them. Considering these facts, a comparison on the quality offinal populations on both
algorithms is processed.

A search on parameters has been done, each parameter belonging to [0,1] with a step of 0.2 (6 values
for each parameter). The parameters for MOISA-HV were chosen by considering (maximizing) the ratio
Hypervolume found by MOISA-HV/ Pareto front. Obviously, the set of parameters chosen doesn’t repre-
sent the best results provided by the algorithm and more statistics and analysis on the parameters still have
to be made. In the following, a list of classical problems is given and some comments are made according
to the results shown in appendices. For each problem, a score is given for each algorithm. The score is the
number of indicators in which one algorithm is better than the other.

5.1. Bi-objective unconstrained problems
According to the Hypervolume, MOISA-HV performs better on all the problems tested, excepts for

ZDT4 in which it gives worse results. Nevertheless, ZDT4 is multi-frontal and it is considered hard to
solve. [8] shows that recombination (used in NSGA-II) can play an important role in solving such problems.
Concerning the other indicators, some difficulties are encountered on ZDT3. The discontinuous Pareto front
of ZDT3 seems to be a difficulty for MOISA-HV. It is worth noting that, when the Pareto front is continuous,
the best parameter to control the number of clones is low. (See Table 1)

5.2. Bi-objectives constrained problems
Results show that MOISA-HV performs again well on problems which have acontinuous Pareto front.

Problem OSY seems to be difficult to solve for MOISA-HV. The reason could be the selection of solutions
based on the Hypervolume contribution. Indeed, depending on the shapeof the Pareto front, the algorithm
may discard individuals belonging to a part of the curve with a very steep slope. (See Table 2)
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Name # Variables # Objectives # Constraints Score(NSGAII) Score(MOISA-HV)
ZDT1 30 2 0 0 5
ZDT2 30 2 0 0 5
ZDT3 30 2 0 2 3
ZDT4 10 2 0 5 0
ZDT6 10 2 0 0 5
KUR 3 2 0 0 5
SCH1 1 2 0 1 4
SCH2 1 2 0 0 5

Table 1: Bi-objective unconstrained problems

Name # Variables # Objectives # Constraints Score(NSGAII) Score(MOISA-HV)
BNH 2 2 2 0 5
OSY 6 2 6 5 0
SRN 2 2 2 0 5
TNK 2 2 2 2 3

Table 2: Bi-objectives constrained problems

5.3. Three objectives problems

On three objectives problems, once again the algorithm performs well and the graphical results show
that convergence through the Pareto front is achieved. The DTLZ class problems are known to be hard
to solve. Nevertheless, in 4 DTLZ problems, some indicators show that MOISA-HV can perform better,
among them two problems are significantly better. The comparison with other MOAIS algorithms is difficult
since only a few results on DTLZ problems have been provided in the past. (See Table 3)

Those results show that MOISA-HV is competitive even if using very basic features. Hard problems
obviously give worse results but adding new methods taken from the immune system metaphor should
significantly improve these results. Implementing an immune system memory seems to be relevant in
order to avoid cloning candidates in bad regions of the objective space. Another idea would be to use a

Name # Variables # Objectives # Constraints Score(NSGAII) Score(MOISA-HV)
BNH4 2 3 2 0 5
VNT1 2 3 0 0 5
VNT2 2 3 0 1 4
VNT3 2 3 0 0 5
DTLZ1 12 3 0 5 0
DTLZ2 12 3 0 1 4
DTLZ3 12 3 0 4 1
DTLZ4 12 3 0 3 2
DTLZ7 22 3 0 1 4

Table 3: Three objectives problems
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diversity function to add some random elements ”between” two good solutions. These solutions would be
non-dominated solutions that were suppressed previously by the hypervolume discard process.

6. Conclusion

In this document, a new algorithm has been presented. The aim was to investigate the competitivity of
the proposed approach with respect to state-of-the-art MOEA. MOAISare recent algorithms that have al-
ready shown to be efficient. Here, the new idea was to combine basics of MOAIS with Hypervolume, which
is known to have good characteristics for achieving convergence and spread. Comparisons on population
based-algorithms is still nowadays a hard task and many papers don’t follow a standard methodology to
present results, which is why some frameworks have recently appeared, such as ParadisEO-MOEO[22] or
Jmetal[23]. Nevertheless, these frameworks are either quite complicated to handle orwritten in a language
that is considered ill-adapted for optimization. In this paper, the choice was made to implement a robust and
maintainable algorithm in C, as well as a comparator that can be applied to further investigation on other
algorithms.

The results show that the new algorithm performs well on a large set of problems even while using very
simple features from MOAIS. Moreover, the hypervolume contribution discard process was simplified with
the purpose of limiting the complexity of the algorithm. This obviously decreases the final population qual-
ity. Many improvements are expected on population-based algorithms workingwith an online hypervolume
indicator, especially working with 3 or more objectives. This algorithm seems tobe the first MOAIS using
Hypervolume contribution, and many drawbacks still remain to be studied:

• Among the 4 parameters, at least 2 have to be tuned to fit specific problems (GG stepsize and GL
stepsize). Nevertheless, some experiments showed that categories of problems share the same param-
eters.

• Difficulties while solving some problems (ZDT4, OSY, DTLZ)

• Local Gaussian search can lead to a loss of diversity, especially on three objectives problems.

In the litterature, only 2 papers have been found providing results on DTLZ problems solved via Immune
System Algorithms. These algorithms are not true Immune System Algorithms because they use a crossover
operator, which is quite a powerful feature. Therefore, this algorithm can be considered as the first one
that provides results (that are reasonably good) on difficult problems as a true MOAIS. An analysis of the
results with an exhaustive search on parameters still has to be made. It is almost certain that bounds of
the parameters have to be redefined. Furthermore, many improvements to this algorithm can be envisaged
as Artificial Immune System algorithms can offer many more methods taken as a metaphor from the true
immune system. The next paragraph gives the main ideas about the work thatwas still being planned when
starting to write this document, and some other investigations that could be done ina further work.

6.1. Future work

• Investigate self-adaptive parameters.

The algorithms being run with basic parameters always reaches the Pareto front after a few genera-
tions, but can be much more efficient if the set of parameters is well-chosen. After some experiments,
it appears that the parameter defining the number of clones is the one that has the least influence
regarding the final quality of the population. The mutation steps size is a parameter that should be
self-adapting. The parameter that controls the mutation type may be self-adaptive as well starting
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with a high probability to do global search and trying to detect when the algorithm reaches the Pareto
front to increase local Gaussian probability.

• Changing the mutation probability

In population-based algorithms,1nreal is commonly used as the mutation probability. It has been shown
that this value can be increased at the begining of the search to explore faster and be more efficient.
Statistics on previous good mutation values can also be used to guide the search with variables that
participate the most in improving the set of solutions.

• Improving Diversity

The diversity feature presented in the canonical algorithm is not used here. For some problems, not
using recombination leads to a significant loss of diversity. The reason can be easily understood by
comparing the selection, proliferation and mutation of candidates as simple local searches. To avoid
such behavior in the algorithm, random individuals (or from a previous generation) should be created
and used as candidates to enter the archive.

• Non-uniform mutation

Non-uniform mutation has given good results in genetic algorithms. It would be very easy to apply
a coefficient to the Gaussian mutation, local, global or both and to try some experiments inorder to
see if it worth doing. If a method detecting the convergence to the true Paretofront is found, then
one could envisage starting a non-uniform mutation by decreasing the step-size mutation after the
detection.

• Comparator

Up to now, the comparator has given good numerical values when comparing two algorithms with a
large set of indicators. Nevertheless, the algorithm was implemented quickly and more work could
be done to improve its design. Later, the algorithm will be able to generate more results, faster, and
will be capable of handling a larger number of runs for experiments. Also,the convergence rate is an
indicator that still has to be implemented. This new operator could be used with theevolution of the
hypervolume throughout the generations, or the inverted generationnaldistance.
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Appendix A. Problem ZDT1

Table A.4: ZDT1 problem with parametersa = 0.6, b = 1.0, c = 1.0, d = 0.0

PROB=zdt1, A1=NSGAII, A2=AIS-HV
POPSIZE=100, PFSIZE= 1000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 8.972159e-01 -
HYPERVOLUME (A1): 8.889857e-01 5.097441e-04
HYPERVOLUME (A2): 8.924710e-01 1.428605e-04
Inv-Gen-Dst (A1): 1.981111e-04 1.007348e-05
Inv-Gen-Dst (A2): 1.678874e-04 8.989136e-06
COV2SETS (A1/A2): 7.100000e-01 8.977193e-01
COV2SETS (A2/A1): 3.166000e+01 6.638102e+00
COV2SETS (PF/A1): 3.295500e+02 4.710082e+01
COV2SETS (PF/A2): 2.716000e+01 1.405327e+01
SPREAD (A1): 2.543682e-01 5.710559e-04
SPREAD (A2): 1.916463e-01 2.677102e-04

(a) Ais-HV

(b) NSGA-II

Figure A.7: Generation 200 on Ais-HV(a), and NSGA-II(b)
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Appendix B. Problem ZDT2

Table B.5: ZDT2 problem with parametersa = 0.4, b = 0.8, c = 0.4, d = 0.0

PROB=zdt2, A1=NSGAII, A2=AIS-HV
POPSIZE=100, PFSIZE= 1000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 5.764303e-01 -
HYPERVOLUME (A1): 5.675995e-01 5.716423e-04
HYPERVOLUME (A2): 5.717070e-01 1.715964e-04
Inv-Gen-Dst (A1): 1.966293e-04 8.388726e-06
Inv-Gen-Dst (A2): 1.632170e-04 9.104609e-06
COV2SETS (A1/A2): 7.000000e-01 9.110434e-01
COV2SETS (A2/A1): 4.265000e+01 7.250345e+00
COV2SETS (PF/A1): 4.211600e+02 6.013281e+01
COV2SETS (PF/A2): 2.152000e+01 1.253434e+01
SPREAD (A1): 2.511818e-01 4.924860e-04
SPREAD (A2): 1.773486e-01 2.244342e-04

(a) Ais-HV

(b) NSGA-II

Figure B.8: Generation 200 on Ais-HV(a), and NSGA-II(b)
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Appendix C. Problem ZDT3

Table C.6: ZDT3 problem with parametersa = 0.6, b = 1.0, c = 0.0, d = 0.6

PROB=zdt3, A1=NSGAII, A2=AIS-HV
POPSIZE=100, PFSIZE= 1000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 1.121989e+00 -
HYPERVOLUME (A1): 1.115808e+00 3.356911e-03
HYPERVOLUME (A2): 1.119018e+00 2.652612e-04
Inv-Gen-Dst (A1): 2.619783e-04 3.233972e-04
Inv-Gen-Dst (A2): 3.662419e-04 1.237625e-04
COV2SETS (A1/A2): 2.640000e+00 3.024963e+00
COV2SETS (A2/A1): 3.014000e+01 5.856654e+00
COV2SETS (PF/A1): 3.061900e+02 4.153834e+01
COV2SETS (PF/A2): 7.464000e+01 3.494897e+01
SPREAD (A1): 4.426133e-01 3.096580e-04
SPREAD (A2): 5.278173e-01 1.216346e-03

(a) Ais-HV

(b) NSGA-II

Figure C.9: Generation 200 on Ais-HV(a), and NSGA-II(b)
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Appendix D. Problem ZDT4

Table D.7: ZDT4 problem with parametersa = 1.0, b = 0.4, c = 0.6, d = 0.0

PROB=zdt4, A1=NSGAII, A2=AIS-HV
POPSIZE=100, PFSIZE= 1000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 4.243026e+00 -
HYPERVOLUME (A1): 4.218502e+00 1.852282e-02
HYPERVOLUME (A2): 4.181431e+00 2.965293e-02
Inv-Gen-Dst (A1): 6.799886e-04 8.813995e-04
Inv-Gen-Dst (A2): 1.287022e-03 6.623777e-04
COV2SETS (A1/A2): 3.742900e+02 2.757433e+02
COV2SETS (A2/A1): 1.759000e+01 6.398517e+01
COV2SETS (PF/A1): 1.458580e+03 1.131187e+03
COV2SETS (PF/A2): 5.003750e+03 2.625216e+03
SPREAD (A1): 3.025505e-01 2.326102e-02
SPREAD (A2): 4.640457e-01 9.048357e-03

(a) Ais-HV

(b) NSGA-II

Figure D.10: Generation 200 on Ais-HV(a), and NSGA-II(b)
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Appendix E. Problem ZDT6

Table E.8: ZDT6 problem with parametersa = 0.2, b = 0.4, c = 0.6, d = 0.4

PROB=zdt6, A1=NSGAII, A2=AIS-HV
POPSIZE=100, PFSIZE= 1000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 3.681806e-01 -
HYPERVOLUME (A1): 3.479779e-01 2.363901e-03
HYPERVOLUME (A2): 3.662232e-01 4.861708e-05
Inv-Gen-Dst (A1): 4.907628e-04 6.094925e-05
Inv-Gen-Dst (A2): 1.107655e-04 2.752997e-06
COV2SETS (A1/A2): 0.000000e+00 0.000000e+00
COV2SETS (A2/A1): 3.119400e+02 3.995768e+01
COV2SETS (PF/A1): 3.071790e+03 4.026863e+02
COV2SETS (PF/A2): 0.000000e+00 0.000000e+00
SPREAD (A1): 2.455140e-01 4.993801e-04
SPREAD (A2): 1.682690e-01 2.354683e-04

(a) Ais-HV

(b) NSGA-II

Figure E.11: Generation 200 on Ais-HV(a), and NSGA-II(b)
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Appendix F. Problem KUR

Table F.9: KUR problem with parametersa = 1.0, b = 0.4, c = 0.0, d = 0.8

PROB=kur, A1=NSGAII, A2=AIS-HV
POPSIZE=100, PFSIZE= 1000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 4.038610e+01 -
HYPERVOLUME (A1): 4.005438e+01 1.835585e-02
HYPERVOLUME (A2): 4.015592e+01 8.009187e-03
Inv-Gen-Dst (A1): 1.629555e-03 5.685489e-05
Inv-Gen-Dst (A2): 1.259808e-03 2.280523e-05
COV2SETS (A1/A2): 4.190000e+00 2.571750e+00
COV2SETS (A2/A1): 1.917000e+01 4.384187e+00
COV2SETS (PF/A1): 2.316300e+02 3.525667e+01
COV2SETS (PF/A2): 9.240000e+01 1.690207e+01
SPREAD (A1): 3.399824e-01 3.880348e-04
SPREAD (A2): 2.489354e-01 1.503382e-04

(a) Ais-HV

(b) NSGA-II

Figure F.12: Generation 200 on Ais-HV(a), and NSGA-II(b)
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Appendix G. Problem SCH1

Table G.10: SCH1 problem with parametersa = 0.2, b = 0.8, c = 0.0, d = 0.0

PROB=sch1, A1=NSGAII, A2=AIS-HV
POPSIZE=100, PFSIZE= 1000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 1.673083e+01 -
HYPERVOLUME (A1): 1.666395e+01 3.756141e-03
HYPERVOLUME (A2): 1.667902e+01 6.385606e-04
Inv-Gen-Dst (A1): 8.566620e-04 4.678536e-05
Inv-Gen-Dst (A2): 6.259442e-04 6.406047e-06
COV2SETS (A1/A2): 5.000000e-01 7.141428e-01
COV2SETS (A2/A1): 3.500000e-01 6.538348e-01
COV2SETS (PF/A1): 1.030000e+00 8.769835e-01
COV2SETS (PF/A2): 7.800000e-01 6.720119e-01
SPREAD (A1): 2.848059e-01 7.347945e-04
SPREAD (A2): 1.124959e-01 8.237493e-05

(a) Ais-HV

(b) NSGA-II

Figure G.13: Generation 200 on Ais-HV(a), and NSGA-II(b)
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Appendix H. Problem SCH2

Table H.11: SCH2 problem with parametersa = 0.6, b = 0.6, c = 0.0, d = 0.6

PROB=sch2, A1=NSGAII, A2=AIS-HV
POPSIZE=100, PFSIZE= 1000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 2.606859e+01 -
HYPERVOLUME (A1): 2.598037e+01 4.319898e-03
HYPERVOLUME (A2): 2.600114e+01 1.003242e-03
Inv-Gen-Dst (A1): 1.266999e-03 8.120261e-05
Inv-Gen-Dst (A2): 9.617711e-04 2.013877e-05
COV2SETS (A1/A2): 3.900000e-01 6.147357e-01
COV2SETS (A2/A1): 1.320000e+00 1.340746e+00
COV2SETS (PF/A1): 1.950000e+00 1.251998e+00
COV2SETS (PF/A2): 1.250000e+00 8.645808e-01
SPREAD (A1): 9.707172e-01 1.542839e-04
SPREAD (A2): 9.529271e-01 1.520728e-05

(a) Ais-HV

(b) NSGA-II

Figure H.14: Generation 200 on Ais-HV(a), and NSGA-II(b)
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Appendix I. Problem BNH

Table I.12: BNH problem with parametersa = 0.2, b = 0.8, c = 1.0, d = 0.8

PROB=bnh, A1=NSGAII, A2=AIS-HV
POPSIZE=100, PFSIZE= 1000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 6.411704e+03 -
HYPERVOLUME (A1): 6.379973e+03 1.819580e+00
HYPERVOLUME (A2): 6.389734e+03 4.076710e-01
Inv-Gen-Dst (A1): 2.068579e-02 1.247548e-03
Inv-Gen-Dst (A2): 1.568725e-02 2.579401e-04
COV2SETS (A1/A2): 1.520000e+00 1.268700e+00
COV2SETS (A2/A1): 1.565000e+01 3.592701e+00
COV2SETS (PF/A1): 1.572200e+02 2.875990e+01
COV2SETS (PF/A2): 2.544000e+01 7.864248e+00
SPREAD (A1): 3.959604e-01 1.256399e-03
SPREAD (A2): 3.222677e-01 2.594123e-04

(a) Ais-HV

(b) NSGA-II

Figure I.15: Generation 200 on Ais-HV(a), and NSGA-II(b)
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Appendix J. Problem SRN

Table J.13: SRN problem with parametersa = 1.0, b = 0.2, c = 0.2, d = 1.0

PROB=srn, A1=NSGAII, A2=AIS-HV
POPSIZE=100, PFSIZE= 1000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 3.703809e+04 -
HYPERVOLUME (A1): 3.671138e+04 1.609865e+01
HYPERVOLUME (A2): 3.681206e+04 3.998687e+00
Inv-Gen-Dst (A1): 4.003212e-02 1.856587e-03
Inv-Gen-Dst (A2): 3.041670e-02 3.686325e-04
COV2SETS (A1/A2): 1.160000e+00 1.036533e+00
COV2SETS (A2/A1): 1.348000e+01 3.474133e+00
COV2SETS (PF/A1): 1.438800e+02 2.573608e+01
COV2SETS (PF/A2): 2.937000e+01 7.929256e+00
SPREAD (A1): 2.508401e-01 3.914518e-04
SPREAD (A2): 1.190118e-01 9.635186e-05

(a) Ais-HV

(b) NSGA-II

Figure J.16: Generation 200 on Ais-HV(a), and NSGA-II(b)
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Appendix K. Problem OSY

Table K.14: OSY problem with parametersa = 1.0, b = 0.8, c = 0.6, d = 0.6

PROB=osy, A1=NSGAII, A2=AIS-HV
POPSIZE=100, PFSIZE= 1000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 2.121310e+04 -
HYPERVOLUME (A1): 2.090325e+04 2.443592e+02
HYPERVOLUME (A2): 1.986941e+04 1.785109e+03
Inv-Gen-Dst (A1): 1.270094e-01 8.061315e-02
Inv-Gen-Dst (A2): 2.090655e-01 1.647553e-01
COV2SETS (A1/A2): 5.675200e+02 8.568820e+02
COV2SETS (A2/A1): 1.713000e+01 1.303507e+01
COV2SETS (PF/A1): 6.410300e+02 2.242667e+02
COV2SETS (PF/A2): 5.463970e+03 7.502850e+03
SPREAD (A1): 5.510363e-01 3.033283e-03
SPREAD (A2): 5.571633e-01 2.665801e-03

(a) Ais-HV

(b) NSGA-II

Figure K.17: Generation 200 on Ais-HV(a), and NSGA-II(b)
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Appendix L. Problem TNK

Table L.15: TNK problem with parametersa = 1.0, b = 0.2, c = 0.0, d = 0.8

PROB=tnk, A1=NSGAII, A2=AIS-HV
POPSIZE=100, PFSIZE= 1000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 5.335408e-01 -
HYPERVOLUME (A1): 5.273578e-01 8.032265e-04
HYPERVOLUME (A2): 5.296092e-01 5.341263e-04
Inv-Gen-Dst (A1): 2.870605e-04 5.937704e-05
Inv-Gen-Dst (A2): 3.477924e-04 2.503430e-04
COV2SETS (A1/A2): 1.648000e+01 4.290641e+00
COV2SETS (A2/A1): 2.360000e+01 5.734108e+00
COV2SETS (PF/A1): 3.573000e+02 4.961965e+01
COV2SETS (PF/A2): 2.929100e+02 4.547771e+01
SPREAD (A1): 7.239077e-01 1.604295e-03
SPREAD (A2): 7.843828e-01 2.038829e-03

(a) Ais-HV

(b) NSGA-II

Figure L.18: Generation 200 on Ais-HV(a), and NSGA-II(b)
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Appendix M. Problem BNH4

Table M.16: BNH4 problem with parametersa = 1.0, b = 0.0, c = 0.0, d = 1.0

PROB=bnh4, A1=NSGAII, A2=AIS-HV
POPSIZE=200, PFSIZE= 2000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 1.666199e+02 -
HYPERVOLUME (A1): 1.642451e+02 1.365045e-01
HYPERVOLUME (A2): 1.650376e+02 6.789279e-02
Inv-Gen-Dst (A1): 1.208248e-03 7.449092e-05
Inv-Gen-Dst (A2): 8.074322e-04 3.771509e-05
COV2SETS (A1/A2): 2.494000e+01 5.408919e+00
COV2SETS (A2/A1): 5.672000e+01 7.973807e+00
COV2SETS (PF/A1): 8.554600e+02 7.874178e+01
COV2SETS (PF/A2): 5.345600e+02 4.548809e+01
SPREAD (A1): 3.629387e-01 3.498537e-04
SPREAD (A2): 3.054108e-01 2.902681e-04

(a) Ais-HV

(b) NSGA-II

Figure M.19: Generation 500 on Ais-HV(a), and NSGA-II(b)
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Appendix N. Problem VNT1

Table N.17: VNT1 problem with parametersa = 0.0, b = 1.0, c = 1.0, d = 0.8

PROB=vnt1, A1=NSGAII, A2=AIS-HV
POPSIZE=200, PFSIZE= 2000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 3.915465e+01 -
HYPERVOLUME (A1): 3.843549e+01 4.400205e-02
HYPERVOLUME (A2): 3.846757e+01 4.315937e-02
Inv-Gen-Dst (A1): 2.492565e-03 9.407104e-05
Inv-Gen-Dst (A2): 2.443735e-03 9.419610e-05
COV2SETS (A1/A2): 4.490000e+00 2.670187e+00
COV2SETS (A2/A1): 8.540000e+00 3.389454e+00
COV2SETS (PF/A1): 7.466000e+01 1.849823e+01
COV2SETS (PF/A2): 4.618000e+01 2.083861e+01
SPREAD (A1): 3.682286e-01 1.205947e-02
SPREAD (A2): 3.194453e-01 1.368506e-02

(a) Ais-HV

(b) NSGA-II

Figure N.20: Generation 500 on Ais-HV(a), and NSGA-II(b)
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Appendix O. Problem VNT2

Table O.18: VNT2 problem with parametersa = 0.0, b = 0.4, c = 0.8, d = 0.8

PROB=vnt2, A1=NSGAII, A2=AIS-HV
POPSIZE=200, PFSIZE= 2000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 9.753846e-01 -
HYPERVOLUME (A1): 9.713098e-01 5.181028e-04
HYPERVOLUME (A2): 9.725243e-01 3.363723e-04
Inv-Gen-Dst (A1): 2.117062e-04 1.616032e-05
Inv-Gen-Dst (A2): 7.047082e-04 2.868213e-04
COV2SETS (A1/A2): 1.009000e+01 4.730951e+00
COV2SETS (A2/A1): 1.811000e+01 4.890593e+00
COV2SETS (PF/A1): 3.126100e+02 4.518582e+01
COV2SETS (PF/A2): 1.468300e+02 4.346747e+01
SPREAD (A1): 2.683721e-01 2.784821e-04
SPREAD (A2): 2.620417e-01 3.959834e-04

(a) Ais-HV

(b) NSGA-II

Figure O.21: Generation 500 on Ais-HV(a), and NSGA-II(b)
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Appendix P. Problem VNT3

Table P.19: VNT3 problem with parametersa = 0.6, b = 0.2, c = 0.2, d = 0.8

PROB=vnt3, A1=NSGAII, A2=AIS-HV
POPSIZE=200, PFSIZE= 2000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 5.362486e+00 -
HYPERVOLUME (A1): 5.343830e+00 1.001768e-03
HYPERVOLUME (A2): 5.347744e+00 9.577516e-04
Inv-Gen-Dst (A1): 7.165877e-04 1.512673e-04
Inv-Gen-Dst (A2): 5.077640e-04 3.849537e-05
COV2SETS (A1/A2): 5.810000e+00 3.022234e+00
COV2SETS (A2/A1): 2.534000e+01 5.503126e+00
COV2SETS (PF/A1): 2.896800e+02 4.698678e+01
COV2SETS (PF/A2): 9.728000e+01 2.612014e+01
SPREAD (A1): 6.957154e-01 7.535019e-04
SPREAD (A2): 6.638902e-01 6.407286e-04

(a) Ais-HV

(b) NSGA-II

Figure P.22: Generation 500 on Ais-HV(a), and NSGA-II(b)
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Appendix Q. Problem DTLZ1

Table Q.20: DTLZ1 problem with parametersa = 0.0, b = 1.0, c = 1.0, d = 0.8

PROB=dtlz1, A1=NSGAII, A2=AIS-HV
POPSIZE=200, PFSIZE= 2000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 1.456069e+00 -
HYPERVOLUME (A1): 1.425056e+00 3.987393e-02
HYPERVOLUME (A2): 1.422801e+00 1.218025e-02
Inv-Gen-Dst (A1): 1.216457e-03 1.201047e-03
Inv-Gen-Dst (A2): 1.997958e-03 5.495831e-04
COV2SETS (A1/A2): 1.922010e+03 1.076029e+03
COV2SETS (A2/A1): 2.183000e+02 1.080882e+03
COV2SETS (PF/A1): 3.723810e+03 1.791160e+04
COV2SETS (PF/A2): 2.046786e+04 1.006530e+04
SPREAD (A1): 3.517348e-01 7.443500e-03
SPREAD (A2): 4.163033e-01 2.365465e-03

(a) Ais-HV

(b) NSGA-II

Figure Q.23: Generation 500 on Ais-HV(a), and NSGA-II(b)
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Appendix R. Problem DTLZ2

Table R.21: DTLZ2 problem with parametersa = 0.0, b = 1.0, c = 0.2, d = 1.0

PROB=dtlz2, A1=NSGAII, A2=AIS-HV
POPSIZE=200, PFSIZE= 2000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 1.204409e+00 -
HYPERVOLUME (A1): 1.144841e+00 4.590454e-03
HYPERVOLUME (A2): 1.161533e+00 8.947158e-03
Inv-Gen-Dst (A1): 1.230231e-03 4.686928e-05
Inv-Gen-Dst (A2): 1.257585e-03 6.905440e-05
COV2SETS (A1/A2): 1.070000e+00 1.274794e+00
COV2SETS (A2/A1): 1.221000e+01 4.554767e+00
COV2SETS (PF/A1): 8.351000e+01 2.201794e+01
COV2SETS (PF/A2): 1.514000e+01 8.122832e+00
SPREAD (A1): 2.564649e-01 2.455185e-04
SPREAD (A2): 2.055064e-01 3.284170e-04

(a) Ais-HV

(b) NSGA-II

Figure R.24: Generation 500 on Ais-HV(a), and NSGA-II(b)
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Appendix S. Problem DTLZ3

Table S.22: DTLZ3 problem with parametersa = 0.8, b = 0.6, c = 0.8, d = 0.6

PROB=dtlz3, A1=NSGAII, A2=AIS-HV
POPSIZE=200, PFSIZE= 2000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 3.100326e+05 -
HYPERVOLUME (A1): 3.100281e+05 2.691994e+00
HYPERVOLUME (A2): 3.100302e+05 1.161351e+01
Inv-Gen-Dst (A1): 1.285379e-03 6.793484e-05
Inv-Gen-Dst (A2): 8.142901e-03 4.594056e-03
COV2SETS (A1/A2): 4.008970e+03 3.367163e+03
COV2SETS (A2/A1): 2.130000e+00 8.877674e+00
COV2SETS (PF/A1): 2.408900e+02 2.803561e+02
COV2SETS (PF/A2): 4.157050e+04 3.382124e+04
SPREAD (A1): 3.529938e-01 7.582437e-02
SPREAD (A2): 8.583327e-01 1.190171e-01

(a) Ais-HV

(b) NSGA-II

Figure S.25: Generation 500 on Ais-HV(a), and NSGA-II(b)
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Appendix T. Problem DTLZ4

Table T.23: DTLZ4 problem with parametersa = 0.8, b = 0.8, c = 0.8, d = 0.2

PROB=dtlz4, A1=NSGAII, A2=AIS-HV
POPSIZE=200, PFSIZE= 2000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 9.796691e-01 -
HYPERVOLUME (A1): 9.239092e-01 4.660974e-03
HYPERVOLUME (A2): 9.171880e-01 5.370789e-02
Inv-Gen-Dst (A1): 1.194994e-03 4.561336e-05
Inv-Gen-Dst (A2): 3.289257e-03 3.309546e-03
COV2SETS (A1/A2): 1.410000e+00 1.667903e+00
COV2SETS (A2/A1): 2.292000e+01 1.185216e+01
COV2SETS (PF/A1): 7.976000e+01 1.893416e+01
COV2SETS (PF/A2): 1.917000e+01 1.508844e+01
SPREAD (A1): 2.746856e-01 4.038541e-04
SPREAD (A2): 1.924270e-01 8.777892e-04

(a) Ais-HV

(b) NSGA-II

Figure T.26: Generation 500 on Ais-HV(a), and NSGA-II(b)
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Appendix U. Problem DTLZ7

Table U.24: DTLZ7 problem with parametersa = 0.0, b = 1.0, c = 1.0, d = 0.4

PROB=dtlz7, A1=NSGAII, A2=AIS-HV
POPSIZE=200, PFSIZE= 2000, RUNS=100
INDICATOR MEAN Std. Dev.
HYPERVOLUME (PF) 2.130413e+00 -
HYPERVOLUME (A1): 2.045854e+00 6.288492e-03
HYPERVOLUME (A2): 2.058288e+00 9.128645e-03
Inv-Gen-Dst (A1): 1.259613e-03 7.820159e-05
Inv-Gen-Dst (A2): 1.334508e-03 1.389308e-04
COV2SETS (A1/A2): 3.210000e+00 2.346465e+00
COV2SETS (A2/A1): 2.769000e+01 6.778931e+00
COV2SETS (PF/A1): 2.295600e+02 4.502406e+01
COV2SETS (PF/A2): 4.558000e+01 2.256598e+01
SPREAD (A1): 5.607393e-01 1.161393e-03
SPREAD (A2): 5.151642e-01 1.216795e-03

(a) Ais-HV

(b) NSGA-II

Figure U.27: Generation 500 on Ais-HV(a), and NSGA-II(b)
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[21] C. M. Fonseca, L. Paquete, M. López-Ib́añez, An improved dimension-sweep algorithm for the hypervolume indicator, pp.
1157–1163.

[22] A. Liefooghe, L. Jourdan, E.-G. Talbi, A software frameworkbased on a conceptual unified model for evolutionary multiob-
jective optimization: Paradiseo-moeo, European Journal of Operational Research 209 (2) (2011) 104 – 112.

[23] J. Durillo, A. Nebro, E. Alba, The jmetal framework for multi-objective optimization: Design and architecture, in: CEC
2010, Barcelona, Spain, 2010, pp. 4138–4325.

42


	Introduction
	Multi Objective Optimization
	Pareto Dominance
	Pareto Optimal Set & Pareto Front
	Spread & Convergence

	Multi Objective Artificial Immune System (MOAIS)
	The Immune System
	AIS applied to MOO

	State of the art
	VAIS
	IDCMA/NNIA
	IFMOA
	omni-aiNet
	SMS-EMOA


	The MOAIS-HV algorithm
	Hypervolume vs. Hypervolume contribution
	Description of the algorithm
	Data structures, Algorithms, Complexity

	Comparison
	Setting up parameters
	Results
	Bi-objective unconstrained problems
	Bi-objectives constrained problems
	Three objectives problems

	Conclusion
	Future work

	Aknowledgments
	Problem ZDT1
	Problem ZDT2
	Problem ZDT3
	Problem ZDT4
	Problem ZDT6
	Problem KUR
	Problem SCH1
	Problem SCH2
	Problem BNH
	Problem SRN
	Problem OSY
	Problem TNK
	Problem BNH4
	Problem VNT1
	Problem VNT2
	Problem VNT3
	Problem DTLZ1
	Problem DTLZ2
	Problem DTLZ3
	Problem DTLZ4
	Problem DTLZ7

