

Chapter 1CONSTRAINEDEVOLUTIONARY OPTIMIZATION| the penalty funtion approahThomas Philip RunarssonDepartment of Applied Mathematis and Computer SieneSiene Institute, University of Ielandtpr�raunvis.hi.isXin YaoShool of Computer SieneThe University of Birminghamx.yao�s.bham.a.ukAbstrat The penalty funtion method has been used widely in onstrained evo-lutionary optimization (CEO). This hapter provides an in-depth anal-ysis of the penalty funtion method from the point of view of searhlandsape transformation. The analysis leads to the insight that apply-ing di�erent penalty funtion methods in evolutionary optimization isequivalent to using di�erent seletion shemes. Based on this insight,two onstraint handling tehniques, i.e., stohasti ranking and globalompetitive ranking, are proposed as seletion shemes in CEO. Ourexperimental results have shown that both tehniques performed verywell on a set of benhmark funtions. Further analysis of the two teh-niques explains why they are e�etive: they introdue few loal optimaexept for those de�ned by the objetive funtions.Keywords: Constrained evolutionary optimization (CEO), penalty funtion method,ranking.
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21. IntrodutionThe general nonlinear programming problem an be formulated asminimize f(x); x = (x1; : : : ; xn) 2 Rn (1.1)where f(x) is the objetive funtion, x 2 S \ F , S � Rn de�nes thesearh spae whih is an n-dimensional spae bounded by the parametrionstraints xj � xj � xj ; j 2 f1; : : : ; ng; (1.2)and the feasible region F is de�ned byF = fx 2 Rn j gk(x) � 0 8 k 2 f1; : : : ;mgg; (1.3)where gk(x); k 2 f1; : : : ;mg, are inequality onstraints. Equality on-straints h(x) an be approximated by inequality onstraints using jh(x)j�Æ � 0, where Æ is a small positive number that indiates the degree ofonstraint violation. Only minimization problems are onsidered in thishapter without loss of generality sine maxff(x)g = �minf�f(x)g.The penalty funtion methods onsidered in this hapter belong to theexterior penalty approah. They are used widely in evolutionary on-strained optimization (ECO), although some of the methods are equallyappliable to non-evolutionary optimization algorithms. In ontrast tonumerous penalty funtion methods proposed for ECO (Mihalewiz andShoenauer, 1996), few theoretial analysis are available to explain howand why a penalty funtion method works. This hapter �lls in thisgap by providing an in-depth analysis of penalty funtion methods andtheir relationship to searh landsape transformation. Suh analysis hasled to the development of new onstraint handling tehniques for CEO.In essene, a penalty funtion method transforms the searh landsapeby adding a penalty term to the objetive funtion. Suh transforma-tion inuenes the relative �tness of individuals in a population. It alsoalters the harateristis of the searh landsape, e.g., ruggedness. Apreviously �t individual aording to the objetive funtion might notbe �t anymore on the transformed searh landsape. Sine the primary,if not the only, plae in an evolutionary algorithm that �tness is used isseletion, it is easy to see that an e�etive approah to \implementing" apenalty funtion method is to design a new seletion sheme. Two rank-based seletion shemes are desribed in this hapter to illustrate howpenalty funtion methods an be \implemented" e�etively by designingnew ranking shemes in ECO.The rest of this hapter is organized as follows. Setion 2 analysis thepenalty funtion method in CEO and disusses how di�erent penalty







Constrained Evolutionary Optimization 3funtion methods inuene evolutionary searh. In partiular, the re-lationship between di�erent penalty funtion methods and the rankingof individuals in a population is disussed in detail. Setions 3 and 4present the ideas and algorithms of two onstraint handling tehniquesbased on ranking, i.e., stohasti ranking (Runarsson and Yao, 2000)and global ompetitive ranking. Setion 5 provides further analysis ofpenalty funtion methods and shows how the penalty funtion methodworks through two detailed examples. Setion 6 gives our experimentalresults on the two onstraint handling tehniques. Finally, Setion 7gives a brief summary of this hapter.2. The Penalty Funtion MethodConstrained optimization problems have often been transformed intounonstrained ones by adding a measure of the onstraint violation tothe objetive funtion (Fiao and MCormik, 1968). This onstrainedhandling tehnique is known as the penalty funtion method.The introdution of the penalty term enables the transformation ofa onstrained optimization problem into a series of unonstrained ones,e.g.,  (x) = f(x) + r(g) �(gj(x); j = 1; : : : ;m) (1.4)where � � 0 is a real valued funtion whih imposes a penalty, �(gj(x),ontrolled by a sequene of penalty oeÆients fr(g)gG0 . G indiates themaximum number of generations used in CEO. The general form of fun-tion � inludes both the generation ounter g (for dynami penalty) andthe population (for adaptive penalty). In our urrent notation, this isreeted in the penalty oeÆient r(g). This transformation, i.e. equa-tion (1.4), has been used widely in CEO (Kazarlis and Petridis, 1998;Siedleki and Sklansky, 1989). In partiular, the following quadratiloss funtion (Fiao and MCormik, 1968), whose derease in valuerepresents an approah to the feasible region, has often been used as thepenalty funtion (Mihalewiz and Attia, 1994; Joines and Houk, 1994):�(gj(x); j = 1; : : : ;m) = mXj=1maxf0; gj(x)g2: (1.5)However, any other penalty funtion is equally valid. Di�erent penaltyfuntions haraterize di�erent problems. It is unlikely that a generipenalty funtion exists whih is optimal for all problems. The intro-dution of penalties may transform a smooth objetive funtion into arugged one. The searh may then beome more easily trapped in loalminima. For this reason, it is neessary to develop a penalty funtion







4method whih attempts to preserve the topology of the objetive fun-tion and yet enables a CEO algorithm to loate the optimal feasiblesolution.The penalty funtion method may work quite well for some problems.However, deiding an optimal (or near-optimal) value for r(g) turns outto be a diÆult optimization problem itself! If r(g) is too small, aninfeasible solution may not be penalized enough. Hene an infeasiblesolution may be evolved by an evolutionary algorithm. If r(g) is toolarge, then a feasible solution is very likely to be found but ould be ofvery poor quality. A large r(g) disourages the exploration of infeasibleregions even in the early stages of evolution. This is partiularly inef-fetive for problems where feasible regions in the whole searh spae aredisjoint. In this ase, it may be diÆult for an evolutionary algorithmto move from one feasible region to another unless they are very loseto eah other. Reasonable exploration of infeasible regions may at asbridges onneting two or more di�erent feasible regions. The ritialissue here is how muh exploration of infeasible regions (i.e., how larger(g) is) should be onsidered as reasonable. The answer to this questionis problem dependent. Even for the same problem, di�erent stages ofevolutionary searh may require di�erent r(g) values.There has been some work on the dynami setting of r(g) values inCEO (Joines and Houk, 1994; Kazarlis and Petridis, 1998; Mihalewizand Attia, 1994). Suh work usually relies on a prede�ned monotoni-ally nondereasing sequene of r(g) values. This approah worked wellfor some simple problems but failed for more diÆult ones beause theoptimal setting of r(g) values is problem dependent (Reeves, 1997). A�xed and prede�ned sequene annot solve a variety of di�erent problemssatisfatorily. A trial-and-error proess has to be used in this situationin order to �nd a proper funtion for r(g) for eah problem, as is donein (Joines and Houk, 1994; Kazarlis and Petridis, 1998).An adaptive approah, where r(g) values are adjusted dynamiallyand automatially by an evolutionary algorithm itself, appears to bemost promising in takling di�erent onstrained optimization problems.For example, population information an be used to adjust r(g) valuesadaptively (Smith and Coit, 1997). Di�erent problems lead to di�erentpopulations in evolutionary searh and thus lead to di�erent r(g) values.The advantage of suh an adaptive approah is that it an be appliedto problems where little prior knowledge is available beause there is noneed to �nd a prede�ned r(g) value, or a sequene of r(g) values.Aording to (1.4), di�erent r(g) values lead to di�erent �tness fun-tions. A �t individual under one �tness funtion may not be �t undera di�erent �tness funtion. When rank-based seletion is used in CEO,







Constrained Evolutionary Optimization 5�nding a near optimal r(g), adaptively, is equivalent to ranking individu-als in a population adaptively. Hene, the issue of setting r(g) adaptivelybeomes how to rank individuals aording to their objetive and penaltyvalues.To failitate later disussion, some notations are �rst introdued here.The individuals being ranked will be arbitrarily assigned some numeriallabels. Then for any ranking of individuals, the orresponding permuta-tion � 2 P� will be a funtion from f1; : : : ; �g onto itself, whose argu-ments are the individuals and whose values are the ranks. The followingnotation is used: �(i) is the rank given to individual i and ��1(j) is theindividual assigned the rank j. Sine ��1(j) is the individual assignedthe rank j, the braket notation� = h��1(1); ��1(2); : : : ; ��1(�)iorresponds to listing all individuals in their ranked order.For a given penalty oeÆient r(g) > 0 let the ranking of � individualsbe  (x�-1(1)) �  (x�-1(2)) � : : : �  (x�-1(�)) (1.6)where  is the transformation funtion given by equation (1.4). Nowexamine the adjaent pair ��1(i) and ��1(i+ 1) in the ranked order:fi + r(g)�i � fi+1 + r(g)�i+1; i 2 f1; : : : ; �� 1g; (1.7)where notations fi = f(x�-1(i)) and �i = �(gj(x�-1(i)); j = 1; : : : ;m)) areused for onveniene.De�ne a parameter, �ri, whih will be referred to as the ritial penaltyoeÆient for the adjaent pair i and i+ 1, as�ri = (fi+1 � fi)=(�i � �i+1); for �i 6= �i+1: (1.8)For a given hoie of r(g) � 0, there are three di�erent ases whih maygive rise to Inequality (1.7):1 fi � fi+1 and �i � �i+1: the omparison is said to be dominatedby the objetive funtion and 0 < r(g) � �ri beause the objetivefuntion f plays the dominant role in determining the inequality.When individuals are feasible, �i = �i+1 = 0 and �ri !1.2 fi � fi+1 and �i < �i+1: the omparison is said to be dominatedby the penalty funtion and 0 < �ri < r(g) beause the penaltyfuntion � plays the dominant role in determining the inequality.3 fi < fi+1 and �i < �i+1: the omparison is said to be nondomi-nated and �ri < 0.







6 When omparing nondominated and feasible individuals, the valueof r(g) has no impat on Inequality (1.7). In other words, it does nothange the order of ranking of the two individuals. However, the valueof r(g) is ritial in the �rst two ases as �ri is the ipping point thatwill determine whether the omparison is objetive or penalty funtiondominated. For example, if r(g) is inreased to a value greater than �ri inthe �rst ase, individual ��1(i+1) would hange from a �tter individualinto a less �t one. For the entire population, the hosen value of r(g) usedfor omparisons will determine the fration of individuals dominated bythe objetive and penalty funtions.Not all possible r(g) values an inuene the ranking of individuals.They have to be within a ertain range, i.e. rg < r(g) < rg, to inuenethe ranking, where the lower bound rg is the minimum ritial penaltyoeÆient omputed from adjaent individuals ranked only aording tothe objetive funtion and the upper bound rg is the maximum riti-al penalty oeÆient omputed from adjaent individuals ranked onlyaording to the penalty funtion. In general, there are three di�erentategories of r(g) values (Runarsson and Yao, 2000):1 r(g) < r(g): All omparisons are based only on the objetive fun-tion. r(g) is too small to inuene the ranking of individuals. Thisis alled under-penalization.2 r(g) > r(g): All omparisons are based only on the penalty fun-tion. r(g) is so large that the impat of the objetive funtion anbe ignored. This is alled over-penalization.3 r(g) < r(g) < r(g): All omparisons are based on a ombination ofobjetive and penalty funtions.Penalty funtion methods an be lassi�ed into one of the above threeategories. Some methods may fall into di�erent ategories during dif-ferent stages in evolutionary searh. It is important to understand thedi�erene among these three ategories beause they indiate whih fun-tion (or ombination of funtions) is driving the searh proess and howsearh progresses. For example, most dynami penalty methods startwith a low r(g) value (i.e., r(g) < r(g)) in order to �nd a good region thatmay ontain both feasible and infeasible individuals. Towards the end ofsearh, a high r(g) value (i.e., r(g) > r(g)) is often used in order to loatea good feasible individual. Suh a dynami penalty method would workwell for problems for whih the unonstrained global optimum is lose tothe onstrained global optimum. It is unlikely to work well for problemsfor whih the onstrained global optimum is far away from the unon-strained one, beause the initial low r(g) value would drive the searh







Constrained Evolutionary Optimization 7towards the unonstrained global optimum and thus further away fromthe onstrained one.The traditional onstraint handling tehnique used in evolution strate-gies (ESs) falls roughly into the ategory of over-penalization sine allinfeasible individuals are regarded as worse than feasible ones (Shwefel,1995; Ho�meister and Sprave, 1996; Deb, 1999; Jim�enez and Verdegay,1999). In fat, anonial evolution strategies allow only feasible indi-viduals in the initial population. To perform onstrained optimization,an ES is �rst used to �nd a feasible initial population by minimizingthe penalty funtion (Shwefel, 1995, p. 115). One a feasible initialpopulation is found, the ES algorithm will then minimize the objetivefuntion and rejet all infeasible solutions generated.It has been widely reognized that neither under- nor over-penalizationis a good onstraint handling tehnique and there should be a balane be-tween preserving feasible individuals and rejeting infeasible ones (Genand Cheng, 1997; Runarsson and Yao, 2000). Suh a balane an beahieved by adjusting our measure of how �t an individual should be inomparison with others. The adjustment an be done expliitly throughranking individuals in evolutionary algorithms. In order to strike theright balane, ranking should be dominated by a mixture of objetiveand penalty funtions. That is, the penalty oeÆient r(g) should bewithin the bounds: r(g) < r(g) < r(g). It is worth noting that the twobounds are not �xed. They are problem dependent and may hangefrom generation to generation as they are also inuened by the urrentpopulation.One way to measure the balane of dominane of objetive and penaltyfuntions is to ount how many omparisons of adjaent individual pairsare dominated by the objetive and penalty funtions respetively. Suha number of omparisons an be omputed for any given r(g) by ount-ing the number of ritial penalty oeÆients given by (1.8) whih aregreater than r(g). If there is a predetermined preferene for the num-ber of adjaent omparisons that should be dominated by the penaltyfuntion then a orresponding penalty oeÆient an be determined.It is lear from the analysis in this setion that all a penalty funtionmethod tries to do is to obtain the right balane between objetive andpenalty funtions so that the searh moves towards the optimal feasiblesolution rather than the optimum in the ombined feasible and infea-sible spae. One way to ahieve suh balane e�etively and eÆientlyis to adjust suh balane diretly and expliitly. Possible methods ofahieving this will be presented in the following two setions.







83. Stohasti RankingThe ranking proedure introdued in this setion is stohasti ranking(Runarsson and Yao, 2000) where ranking is ahieved by a bubble-sort-like proedure. In this approah a probability Pf of using only the ob-jetive funtion for omparing individuals in the infeasible region of thesearh spae is introdued. That is, given any pair of two adjaent indi-viduals, the probability of omparing them (in order to determine whihone is �tter) aording to the objetive funtion is 1 if both individualsare feasible, otherwise it is Pf .The proedure provides a onvenient way of balaning the dominanein a ranked set. In the bubble-sort-like proedure, � individuals areranked by omparing adjaent individuals in at least � sweeps1. Theproedure is halted when no hange in the rank ordering ours within aomplete sweep. Figure 1.1 shows the stohasti bubble sort proedureused to rank individuals in a population (Runarsson and Yao, 2000).If at least one individual is infeasible in an adjaent pair, the prob-ability of an individual winning a omparison, i.e., holding the higherStohasti bubble sort (Pf , f , �):�(j) = j 8 j 2 f1; : : : ; �g;for i = 1 to N dofor j = 1 to �� 1 dosample u 2 U(0; 1);if (�(x� -1(j)) = �(x� -1(j+1)) = 0) or (u < Pf ) thenif (f(x� -1(j)) > f(x� -1(j+1))) thenswap(��1(j); ��1(j + 1));�elseif (�(x� -1(j)) > �(x� -1(j+1))) thenswap(��1(j); ��1(j + 1));��odif no swap done break; �odreturn (�)Figure 1.1. Stohasti ranking proedure, where U(0; 1) is a uniform random numbergenerator and N is the number of sweeps going through the whole population. WhenPf = 0 the ranking is equivalent to over-penalization. When Pf = 1 the ranking isequivalent to under-penalization. The initial ranking is generated at random.







Constrained Evolutionary Optimization 9rank, in the ranking proedure isPw = PfwPf + P�w(1� Pf ) (1.9)where Pfw is the probability of the individual winning aording to theobjetive funtion and P�w is the probability of the individual winningaording to the penalty funtion. In the ase where adjaent individualsare both feasible Pw = Pfw, the probability of winning k more ompar-isons than losses an be omputed. The total number of wins will bek0 = (N + k)=2 where N is the total number of omparisons made. Theprobability of winning k0 omparisons out of N is given by the binomialdistribution Pw(y = k0) = �Nk0�P k0w (1� Pw)N�k0 : (1.10)The probability of winning at least k0 omparisons isP 0w(y � k0) = 1� k0�1Xj=0 �Nj �P jw(1� Pw)N�j : (1.11)Equations (1.10) and (1.11) show that the greater the number of om-parisons (N) the less inuene the initial ranking will have. It is worthnoting that the probability Pw usually varies for di�erent individualsin di�erent stages of ranking. Now onsider the ase where Pw is on-stant during the entire ranking proedure, whih will be true if fi < fj,�i > �j ; j 6= i; j = 1; : : : ; �. Then Pfw = 1 and P�w = 0. If Pf = 0:5 ishosen then Pw = 0:5. There will be an equal hane for a omparisonto be made based on the objetive or penalty funtion. Beause we areinterested in feasible solutions as the �nal solution, Pf should be lessthan 0:5 suh that there is a pressure against infeasible solutions. Thestrength of the pressure an be adjusted easily by adjusting only Pf .When parameter N , the number of sweeps, approahes 1, the rank-ing will be determined by Pf . That is, if Pf > 0:5, the ranking will bebased on the objetive funtion. If Pf < 0:5, the ranking is equivalent toover-penalization. Hene, an inrease in the number of ranking sweepsis e�etively equivalent to hanging parameter Pf . Hene, N = � anbe �xed and Pf adjusted to ahieve the best performane.The e�etiveness and eÆieny of stohasti ranking will be evaluatedin Setion 6 through experimental studies.4. Global Competitive RankingA di�erent method of ranking individuals in a population, in orderto strike the right balane between objetive and penalty funtions, is







10the deterministi global ompetitive ranking sheme. In this sheme,an individual i is ranked by omparing it against all other members ofthe population. This is di�erent from the stohasti ranking approahwhere only adjaent individuals ompete for a given rank. In the globalompetitive ranking method, speial onsideration is given to tied ranks.In the ase of tied ranks the same lower rank will be used. For example,for ranking � = h1, 3, (2; 6), 7,(4; 5)i, we should have �(1) = 1, �(3) = 2,�(2) = �(6) = 3, �(7) = 5 and �(4) = �(5) = 6.Similar to the stohasti ranking approah, it is assumed that eitherthe objetive or the penalty funtion will be used in deiding an individ-ual's rank. Pf indiates the probability that a omparison is done basedon the objetive funtion only. The probability that individual i holdsits rank �(i) when hallenged by any other member of the population is,P (�(i)) = Pf �� �f (i)�� 1 + (1� Pf )�� ��(i)�� 1 ; (1.12)where the permutations �f and �� orrespond to the ranking of individ-uals based on the objetive and penalty funtions, respetively. Equa-tion (1.12) an be used to determine the �nal ranking. That is, the�tness funtion for the minimization problem beomes: (xi) = Pf �f (i)� 1�� 1 + (1� Pf )��(i) � 1�� 1 : (1.13)It is lear from the above that Pf an be used easily to bias rankingaording to the objetive or penalty funtion. In pratie, the prob-ability should take a value 0 < Pf < 0:5 in order to guarantee that afeasible solution may be found. The lose the probability is to 0:5, thegreater the emphasis will be on minimizing the objetive funtion. Asthe Pf approahes 0, not equal to zero, the ranking orresponds an over-penalization. The global ompetitive ranking sheme, unlike stohastiranking, is deterministi. It an be summarized by Figure 1.2.Global ompetitive ranking (Pf , f , �):Step 1: Determine the ranking, �f ; ��:f(x� -1f (1)) � f(x� -1f (2)) � : : : � f(x� -1f (�))�(x� -1� (1)) � �(x� -1� (2)) � : : : � �(x� -1� (�))Step 2. Compute ompetitive �tness: (xi) = Pf �f (i)�1��1 + (1� Pf )��(i)�1��1 :Step 3. Determine �nal ranking, �: (x� -1(1)) �  (x� -1(2)) � : : : �  (x� -1(�))Figure 1.2. Global ompetitive ranking method for onstraint handling.







Constrained Evolutionary Optimization 115. How Penalty Methods WorkConvergene and onvergene rate are two important issues in stohas-ti optimization and searh algorithms, suh as EAs. For a stohastisearh proedure, average positive progress towards the global optimum,x�, is neessary in order to �nd the optimum eÆiently. One approahof measuring progress is to ompute the distane travelled between su-essive generations (Shwefel, 1995) towards x�. The distane from thebest individual in generation (g) to the optimum x� should be on aver-age greater than that of the best individual at generation (g + 1). Thatis, the following 'x should be greater than 0:'x = Ehd�x(g)�-1(1);x��� d�x(g+1)�-1(1);x�����x(g)�-1(1); : : : ;x(g)�-1(�)i; (1.14)where the distane metri d(x;x�) =k x � x� k. A similar progressde�nition is given by (Rudolph, 1997, p. 207) in terms of �tness for theunonstrained problem:'f = Ehf�x(g)�-1(1)�� f�x(g+1)�-1(1)����x(g)�-1(1); : : : ;x(g)�-1(�)i: (1.15)However, the progress rate omputed from �tness values, as the onegiven by (1.15), indiates the progress towards a loal unonstrainedminimum only. Progress towards the global minimum in a multimodallandsape an only be omputed in terms of the distane and when theglobal minimum is known (Yao et al., 1999). Computing ' analytiallyis a diÆult theoretial problem although there has been some publishedwork on drift analysis (He and Yao, 2001).If positive progress towards the global optimum is to be maintained,there must exist at least one parent x(g) whih produes at least oneo�spring that is loser than itself to the optimum x� on average. Con-sider a simple (1; �) EA where there is only one parent (� = 1) at eahgeneration produing � o�spring. The o�spring are produed using thefollowing mutation operator:x(g+1)�-1(i) = x(g)�-1(1) +Ni(0; �2) i = 1; : : : ; �; (1.16)where Ni(0; �2) is a normally distributed random variable with zeromean and variane �2. We an now use two examples to illustrate how apenalty funtion method works by investigating the relationship betweendi�erent penalty funtion methods and progress rates. In partiular, wewill examine how the progress in terms of �tness orresponds to that interms of the distane to the global optimum.
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Figure 1.3. Expeted �tness of the best o�spring as a funtion of parent position fortest funtion f12. The urves lying below the dashed one (parent �tness) orrespondsto positive progress towards the global optimum.The �rst example is a the benhmark test funtion, f12 in (Koziel andMihalewiz, 1999):maximize: f12(x) = �100 � (x1 � 5)2 � (x2 � 5)2 � (x3 � 5)2� =100subjet to:g(x) = (x1 � p)2 + (x2 � q)2 + (x3 � r)2 � 0:0625 � 0;where 0 � xi � 10 (i = 1; 2; 3) and p; q; r = 1; 2; : : : ; 9. The feasibleregion of the searh spae onsists of 93 disjointed spheres. A point(x1; x2; x3) is feasible if and only if there exist p; q; r suh that the aboveinequality holds. Hene, the g(x) returned orresponds to its lowestvalue for given p; q; r values. The feasible global optimum is loated atx� = (5; 5; 5) where f12(x�) = 1.Figure 1.3 shows the results of 10,000 one-generational experimentsfor a number of di�erent parent values. In Figure 1.3, variables x2 andx3 were �xed at 5 and only x1 was adjusted between values 2 and 5.The mean searh step size used was � = 0:2 and the number of o�spring� = 10. This simulation was onduted using three di�erent rankingstrategies: over-penalization, stohasti ranking, and global ompetitiveranking. In both the stohasti and global ompetitive ranking, the value







Constrained Evolutionary Optimization 13of Pf is 0:45. Over-penalization orresponds to a ranking with Pf = 0.The problem was treated as a minimization one.In Figure 1.3, the expeted objetive funtion value of the highestranked o�spring is plotted versus the parent value of x1. The dashedline orresponds to the objetive funtion value of the parent. Hene,positive progress toward the global optimum will be ahieved when theexpeted objetive funtion value of the best o�spring lies beneath thedashed line. The �gure illustrates how the over-penalization approahhas e�etively transformed the original unimodal objetive funtion toa multimodal �tness funtion. There existed large regions of negativeprogress when the over-penalization approah was used. The stohas-ti and global ompetitive ranking, however, maintained their positiveprogress towards the global feasible optimum even in infeasible regions,although the rate of progress is slower. This example shows that thepenalty funtion method works by transforming the searh landsape(Runarsson, 2000). Inappropriate penalty funtions may make the opti-mization task more diÆult than it should be.The seond example is also a well known benhmark test funtion in(Koziel and Mihalewiz, 1999):minimize: f11(x) = x21 + (x2 � 1)2subjet to: h(x) = x2 � x21 = 0;where �1 � x1 � 1 and �1 � x2 � 1. The global feasible optimum is atx� = (�1=p2; 1=2) where f11(x�) = 0:75. Figure 1.4 shows the objetivefuntion, f11(x), and the onstraint urve h(x).In this example both parent variables x1 and x2 were varied in ourexperimental study. Stohasti ranking (Pf = 0:45) was ompared withover-penalization (Pf = 0). Sine there exist two optima for this ex-ample, the progress was omputed in terms of the maximum distaneovered towards one of the optima:'x = Ehmin�d�x(g)�-1(1);y��; d�x(g)�-1(1); z��	 (1.17)�min�d�x(g+1)�-1(1);y��; d�x(g+1)�-1(1); z��	iwhere z� and y� are the optima (�1=p2; 1=2).Two di�erent mean step sizes were used in our experiments: � = 0:05and � = 0:1. The number of o�spring generated was again � = 10.The progress rate given by Equation 1.17 is illustrated by ontour plots
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Figure 1.4. Fitness landsape for test funtion f11. The urve represents the regionof feasibility.
shown in Figure 1.5, where regions of negative progress are outlined withontour lines.It is lear from Figure 1.5 that negative regions of progress were lo-ated around the global optima. This is not surprising sine the meansearh step size used was too large in these regions. A dereasing meansearh step size should be used. For the over-penalization approah,however, there existed additional regions of negative progress whih werenot in the global optimum regions. These regions formed additional lo-al attrators and would trap individuals as the mean searh step sizedereased. Stohasti ranking did not reate any loal attrators in thisase. This is also true for global ompetitive ranking, as will be seen inthe following setion.In summary, the introdution of onstraints may produe additionalloal optima in the searh landsape. A well designed onstraint han-dling tehnique an minimize the number of suh misleading loal op-tima. This is the primary reason why our ranking methods worked sowell on many test funtions. Our ranking methods also make it easy toontrol onstrained searh by adjusting Pf for di�erent problems.
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Figure 1.5. The �gures show the progress rate in terms of the distane metri, i.e.'x where � = 1 and � = 10, for test funtion f11. The drawn ontours mark regionsof negative progress (darker regions). When Pf = 0 (over-penalization), there existsa region where no progress is maintained towards either global optima, and thusthe searh will get stuk in this region. This �gure explains the poor performaneobserved in Table 1.1 for this funtion.6. Experimental Study6.1. Evolutionary Optimization AlgorithmThe evolutionary optimization algorithm desribed in this setion isbased on the evolution strategy (ES) (Shwefel, 1995). One reason forhoosing ES is that it does not introdue any speialized onstraint-handling variation operators. It will be shown that speialized andomplex variation operators for onstrained optimization problems areunneessary although they may be quite useful for partiular types ofproblems (see for example (Mihalewiz et al., 1996)). A simple ex-tension to the ES, i.e., the use of the ranking shemes proposed in theprevious setions, an ahieve signi�antly better results than other moreompliated tehniques.







16In a (�; �)-ES algorithm, an individual i is a pair of real-valued ve-tors, (xi; �i), 8 i 2 f1; : : : ; �g. The initial population of x is generatedaording to a uniform n-dimensional probability distribution over thesearh spae S. Let Æx be an approximate measure of the expeted dis-tane to the global optimum, then the initial setting for the `mean stepsizes' should be (Shwefel, 1995, p. 117):�(0)i;j = Æxj=pn � (xj � xj)=pn; i 2 f1; : : : ; �g; j 2 f1; : : : ; ng; (1.18)where �i;j denotes the j-th omponent of the vetor �i. These initialvalues will also be used as upper bounds on �.Following the ranking shemes presented, the evaluated objetive f(x)and penalty funtion �(gk(x); k = 1; : : : ;m) for eah individual (xi; �i),8 i 2 f1; : : : ; �g is used to rank individuals in a population and thebest (highest-ranked) � individuals out of � are seleted for the nextgeneration. The trunation level is set at �=� � 1=7 (B�ak, 1996, p. 79).Variation of strategy parameters is performed before the modi�ationof objetive variables. New � strategy parameters are produed fromthe � highest ranked individuals and then applied later for generating� o�spring. The `mean step sizes' are updated aording to the log-normal update rule (Shwefel, 1995): i = 1; : : : ; �, h = 1; : : : ; �, andj = 1; : : : ; n, �(g+1)h;j = �̂(g)h;j exp(� 0N(0; 1) + �Nj(0; 1))); (1.19)where N(0; 1) is a normally distributed one-dimensional random vari-able with an expetation of zero and variane one. The subsript j inNj(0; 1) indiates that the random number is generated anew for eahvalue of j. The `learning rates' � and � 0 are set equal to '�=p2pnand '�=p2n respetively where '� is the expeted rate of onvergene(Shwefel, 1995, p. 144) and is set to one (B�ak, 1996, p. 72). Reombi-nation is performed on the self-adaptive parameters before applying theupdate rule given by (1.19). In partiular, global intermediate reom-bination (the average) between two parents (Shwefel, 1995, p. 148) isimplemented as�̂(g)h;j = (�(g)i;j + �(g)kj ;j)=2; kj 2 f1; : : : ; �g; (1.20)where kj is an index generated at random and anew for eah j.Having varied the strategy parameters, eah individual (xi; �i), 8 i 2f1; : : : ; �g, reates �=� o�spring on average, so that a total of � o�springare generated: x(g+1)h;j = x(g)i;j + �(g+1)h;j Nj(0; 1) (1.21)







Constrained Evolutionary Optimization 17Table 1.1. Over-penalization.fn optimal best median st. dev. Gmf1 �15:000 �15:000 �15:000 0:0E+00 697f2 �0:803619 �0:803578 �0:785253 1:5E�02 1259f3 �1:000 �0:327 �0:090 7:2E�02 61f4 �30665:539 �30665:539 �30665:538 3:8E+00 632f5 5126:498 5126:945 5225:100 2:7E+02 213f6 �6961:814 �6961:814 �6961:814 1:9E�12 946f7 24:306 24:322 24:367 5:9E�02 546f8 �0:095825 �0:095825 �0:095825 2:7E�17 647f9 680:630 680:632 680:657 3:8E�02 414f10 7049:331 7117:416 7336:280 3:4E+02 530f11 0:750 0:750 0:953 5:4E�02 1750f12 �1:000000 �0:999972 �0:999758 1:4E�04 90f13 0:053950 0:919042 0:997912 1:5E�02 1750Reombination is not used in the variation of objetive variables.When an o�spring is generated outside the parametri bounds de�nedby the problem, the mutation (variation) of the objetive variable will beretried until the variable is within its bounds. In order to save omputa-tion time the mutation is retried only 10 times and then ignored, leavingthe objet variable in its original state within the parameter bounds.6.2. Experimental Results and DisussionThirteen benhmark funtions are studied. The �rst 12 are taken from(Koziel and Mihalewiz, 1999) and the 13th from (Mihalewiz, 1995).The details, inluding the original soures, of these funtions are listed inappendix 1.A. Funtions f2, f3, f8, and f12 are maximization problems.They are transformed to minimization problems using �f(x). For eahof the benhmark problems 30 independent runs are performed using a(30; 200)-ES and the ranking proedures desribed in the previous se-tions. All runs are terminated after G = 1750 generations exept for f12,whih was run for 175 generations. The experimental results using thestohasti and global ompetitive ranking, with Pf = 0:45, are given inTables 1.2 to 1.3. The results are ompared against the over-penalizationapproah (Table 1.1) used in ES (Ho�meister and Sprave, 1996). Theover-penalization approah orresponds to the ranking shemes disussedfor Pf ! 0. In the tables the best feasible objetive value, median, stan-dard deviation, and median number of generations (Gm) needed to �ndthe best individual are given.







18Table 1.2. Stohasti ranking (Pf = 0:45).fn optimal best median st. dev. Gmf1 �15:000 �15:000 �15:000 0:0E+00 741f2 �0:803619 �0:803515 �0:785800 2:0E�02 1086f3 �1:000 �1:000 �1:000 1:9E�04 1146f4 �30665:539 �30665:539 �30665:539 2:0E�05 441f5 5126:498 5126:497 5127:372 3:5E+00 258f6 �6961:814 �6961:814 �6961:814 1:6E+02 590f7 24:306 24:307 24:357 6:6E�02 715f8 �0:095825 �0:095825 �0:095825 2:6E�17 381f9 680:630 680:630 680:641 3:4E�02 557f10 7049:331 7054:316 7372:613 5:3E+02 642f11 0:750 0:750 0:750 8:0E�05 57f12 �1:000000 �1:000000 �1:000000 0:0E+00 82f13 0:053950 0:053957 0:057006 3:1E�02 349Table 1.3. Global ompetitive ranking (Pf = 0:45).fn optimal best median st. dev. Gmf1 �15:000 �15:000 �15:000 0:0E+00 692f2 �0:803619 �0:803591 �0:792805 1:7E�02 1335f3 �1:000 �1:000 �1:000 2:6E�05 1725f4 �30665:539 �30665:539 �30665:538 5:4E�01 731f52 5126:498 5126:497 5126:721 1:1E+00 319f6 �6961:814 �6943:560 �6579:214 2:9E+02 13f7 24:306 24:308 24:361 1:1E�01 517f8 �0:095825 �0:095825 �0:095825 2:6E�17 398f9 680:630 680:631 680:657 5:8E�02 396f10 7049:331 { { { {f11 0:750 0:750 0:750 7:2E�05 76f12 �1:000000 �1:000000 �1:000000 0:0E+00 63f13 0:053950 0:053943 0:053987 1:3E�04 247As an be seen from Tables 1.1 to 1.3, both stohasti ranking andglobal ompetitive ranking performed very well for most test funtions,espeially for funtions f3; f11; f12, and f13, for the reasons given in Se-tion 5. They are also muh faster than the over-penalization approah formost test funtions. There are, however, two test funtions that standout: f10 and f6. It is diÆult to determine whether it is the onstrainthandling tehnique or the underlying searh method whih is ontribut-ing to the suess or failure in loating the optimum. In (Runarsson and







Constrained Evolutionary Optimization 19Table 1.4. Over-penalization versus stohasti ranking for test funtion f10 and ' =1=4. Pf optimal best median st. dev. Gm0:45 7049:331 7049:852 7054:111 5:7E+00 17330:00 7049:331 7049:955 7062:673 3:1E+01 1745Yao, 2000) the importane of the searh method was illustrated on testfuntion f10 by setting ' = 1=4. This results is given in table 1.4 andillustrates how signi�ant the searh method is.Test funtion f6 is the only test funtion solved more e�etively usingover-penalization. For this reason it is interesting to plot its progressrate landsape. The test funtion has two variables. The progress rateis simulated as before using 10:000 one generational experiments in theregion where suboptimal solutions are found. The result is depited in�gure 1.6. Progress landsapes for the step sizes � = 0:05 (dotted) and� = 0:01 (dashed) are plotted as ontours. Negative progress is main-tained to the right of the last of the three ontour lines plotted. Thesolid lines in the �gure are the onstraint urves and the irle marks theloation of x�. The feasible region is the top narrow band formed by thetwo onstraint urves. From the �gure it beomes lear that in this aseover-penalization guides the searh diretly to the optimal feasible solu-tions from the infeasible region. However, stohasti ranking approahesthe optimal solution from the ombined feasible and infeasible region.The progress ontours are simply rotated. In this test ase no additional
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Figure 1.6. Progress landsape for test funtion f6 for step sizes � = 0:05 (dotted)and � = 0:01 (dashed). Negative progress is to the right of the last of the threeontour lines. The solid lines are the onstraint urves and the irle the loation ofx�. The feasible region is the top narrow band formed by the two onstraint urves.







20attrators are reated by the over-penalization method and thereforethe two approahes should yield similar performane. This leads one tospeulate whether the performane di�erene may be due to the lak ofrotational invariane of the searh method. To test this the oordinatesystem is rotated by �=4 and the experiment is re-run. The results aregiven in table 1.5. This simple experiment supports our predition thatthe performane di�erene is due to the lak of rotational invariane ofthe searh method.Table 1.5. Over-penalization versus stohasti ranking for test funtion f6 and o-ordinate system rotated by �=4.Pf best median mean st. dev. worst Gm0:45 �6954:352 �6913:419 �6909:142 2:7E+01 �6842:484 9570:00 �6942:806 �6903:223 �6887:683 4:2E+01 �6782:945 8647. ConlusionThe penalty funtion method is widely used in onstrained optimiza-tion. It is emphasized in this hapter that the penalty funtion methodtransforms a onstrained problem into an unonstrained one by modify-ing the searh landsape. Di�erent modi�ations lead to di�erent searhlandsapes and thus di�erent diÆulties of optimization. We have giventwo onrete examples to illustrate how additional loal optima ould beintrodued through inappropriate penalty methods and how suh loaloptima ould mislead searh.Seletion in an EA depends primarily on �tness values of individuals.Modi�ations to a searh (�tness) landsape an be ahieved throughmodi�ations to the seletion sheme, rather than to the �tness funtion.Ranking is a simple yet e�etive seletion method that an be usedto indiate whih individuals are �tter than others and thus ahievethe goal of modifying the �tness landsape. Two ranking shemes havebeen introdued in this paper to show how they an be used to handleonstraints e�etively and eÆiently without adding a penalty term inthe �tness funtion. Experimental results on a set of benhmark testfuntions are given in this hapter to support our analysis.Notes1. It would be exatly � sweeps if the omparisons were not made stohasti.2. Statistis based on 11 feasible solutions found.
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REFERENCES 23Appendix: Test Funtion SuiteMinimize (Floundas and Pardalos, 1987):f1(x) = 5 4Xi=1 xi � 5 4Xi=1 x2i � 13Xi=5 xisubjet to: g1(x) = 2x1 + 2x2 + x10 + x11 � 10 � 0g2(x) = 2x1 + 2x3 + x10 + x12 � 10 � 0g3(x) = 2x2 + 2x3 + x11 + x12 � 10 � 0g4(x) = �8x1 + x10 � 0g5(x) = �8x2 + x11 � 0g6(x) = �8x3 + x12 � 0g7(x) = �2x4 � x5 + x10 � 0g8(x) = �2x6 � x7 + x11 � 0g9(x) = �2x8 � x9 + x12 � 0where the bounds are 0 � xi � 1 (i = 1; : : : ; 9), 0 � xi � 100 (i = 10; 11; 12) and0 � x13 � 1. The global minimum is at x� = (1; 1; 1; 1; 1; 1; 1; 1; 1; 3; 3; 3; 1) where sixonstraints are ative (g1; g2; g3; g7; g8 and g9) and f1(x�) = �15.Maximize (Koziel and Mihalewiz, 1999):f2(x) = ����Pni=1 os4(xi)� 2Qni=1 os2(xi)pPni=1 ix2i ����subjet to: g1(x) = 0:75 � nYi=1xi � 0g2(x) = nXi=1 xi � 7:5n � 0where n = 20 and 0 � xi � 10 (i = 1; : : : ; n). The global maximum is unknown, thebest we found is f2(x�) = 0:803619 (whih, to the best of our knowledge, is betterthan any reported value), onstraint g1 is lose to being ative (g1 = �10�8).Maximize (Mihalewiz et al., 1996):f3(x) = (pn)n nYi=1 xih1(x) = nXi=1 x2i � 1 = 0







24where n = 10 and 0 � xi � 1 (i = 1; : : : ; n). The global maximum is at x�i = 1=pn(i = 1; : : : ; n) where f3(x�) = 1.Minimize (Himmelblau, 1972):f4(x) = 5:3578547x23 + 0:8356891x1x5 + 37:293239x1 � 40792:141subjet to:g1(x) = 85:334407 + 0:0056858x2x5 + 0:0006262x1x4 � 0:0022053x3x5 � 92 � 0g2(x) = �85:334407 � 0:0056858x2x5 � 0:0006262x1x4 + 0:0022053x3x5 � 0g3(x) = 80:51249 + 0:0071317x2x5 + 0:0029955x1x2 + 0:0021813x23 � 110 � 0g4(x) = �80:51249 � 0:0071317x2x5 � 0:0029955x1x2 � 0:0021813x23 + 90 � 0g5(x) = 9:300961 + 0:0047026x3x5 + 0:0012547x1x3 + 0:0019085x3x4 � 25 � 0g6(x) = �9:300961 � 0:0047026x3x5 � 0:0012547x1x3 � 0:0019085x3x4 + 20 � 0where 78 � x1 � 102, 33 � x2 � 45 and 27 � xi � 45 (i = 3; 4; 5). Theoptimum solution is x� =(78, 33, 29:995256025682, 45, 36:775812905788) wheref4(x�) = �30665:539. Two onstraints are ative (g1 and g6).Minimize (Hok and Shittkowski, 1981):f5(x) = 3x1 + 0:000001x31 + 2x2 + (0:000002=3)x32subjet to: g1(x) = �x4 + x3 � 0:55 � 0g2(x) = �x3 + x4 � 0:55 � 0h3(x) = 1000 sin(�x3 � 0:25) + 1000 sin(�x4 � 0:25) + 894:8 � x1 = 0h4(x) = 1000 sin(x3 � 0:25) + 1000 sin(x3 � x4 � 0:25) + 894:8 � x2 = 0h5(x) = 1000 sin(x4 � 0:25) + 1000 sin(x4 � x3 � 0:25) + 1294:8 = 0where 0 � x1 � 1200, 0 � x2 � 1200, �0:55 � x3 � 0:55 and �0:55 � x4 � 0:55. Thebest known solution (Koziel and Mihalewiz, 1999) x� = (679:9453; 1026:067; 0:1188764;�0:3962336) where f5(x�) = 5126:4981.Minimize (Floundas and Pardalos, 1987):f6(x) = (x1 � 10)3 + (x2 � 20)3subjet to: g1(x) = �(x1 � 5)2 � (x2 � 5)2 + 100 � 0g2(x) = (x1 � 6)2 + (x2 � 5)2 � 82:81 � 0where 13 � x1 � 100 and 0 � x2 � 100. The optimum solution is x� = (14:095; 0:84296)where f6(x�) = �6961:81388. Both onstraints are ative.







REFERENCES 25Minimize (Hok and Shittkowski, 1981):f7(x) = x21 + x22 + x1x2 � 14x1 � 16x2 + (x3 � 10)2 + 4(x4 � 5)2 + (x5 � 3)2 +2(x6 � 1)2 + 5x27 + 7(x8 � 11)2 + 2(x9 � 10)2 + (x10 � 7)2 + 45subjet to: g1(x) = �105 + 4x1 + 5x2 � 3x7 + 9x8 � 0g2(x) = 10x1 � 8x2 � 17x7 + 2x8 � 0g3(x) = �8x1 + 2x2 + 5x9 � 2x10 � 12 � 0g4(x) = 3(x1 � 2)2 + 4(x2 � 3)2 + 2x23 � 7x4 � 120 � 0g5(x) = 5x21 + 8x2 + (x3 � 6)2 � 2x4 � 40 � 0g6(x) = x21 + 2(x2 � 2)2 � 2x1x2 + 14x5 � 6x6 � 0g7(x) = 0:5(x1 � 8)2 + 2(x2 � 4)2 + 3x25 � x6 � 30 � 0g8(x) = �3x1 + 6x2 + 12(x9 � 8)2 � 7x10 � 0where �10 � xi � 10 (i = 1; : : : ; 10). The optimum solution is x� = (2:171996,2:363683, 8:773926, 5:095984, 0:9906548, 1:430574, 1:321644, 9:828726, 8:280092,8:375927) where f7(x�) = 24:3062091. Six onstraints are ative (g1, g2, g3, g4,g5 and g6).Maximize (Koziel and Mihalewiz, 1999):f8(x) = sin3(2�x1) sin(2�x2)x31(x1 + x2)subjet to: g1(x) = x21 � x2 + 1 � 0g2(x) = 1� x1 + (x2 � 4)2 � 0where 0 � x1 � 10 and 0 � x2 � 10. The optimum is loated at x� = (1:2279713; 4:2453733)where f8(x�) = 0:095825. The solution lies within the feasible region.Minimize (Hok and Shittkowski, 1981):f9(x) = (x1 � 10)2 + 5(x2 � 12)2 + x43 + 3(x4 � 11)2 +10x65 + 7x26 + x47 � 4x6x7 � 10x6 � 8x7subjet to: g1(x) = �127 + 2x21 + 3x42 + x3 + 4x24 + 5x5 � 0g2(x) = �282 + 7x1 + 3x2 + 10x23 + x4 � x5 � 0g3(x) = �196 + 23x1 + x22 + 6x26 � 8x7 � 0g4(x) = 4x21 + x22 � 3x1x2 + 2x23 + 5x6 � 11x7 � 0







26where �10 � xi � 10 for (i = 1; : : : ; 7). The optimum solution is x� = (2:330499,1:951372, �0:4775414, 4:365726, �0:6244870, 1:038131, 1:594227) where f9(x�) =680:6300573. Two onstraints are ative (g1 and g4).Minimize (Hok and Shittkowski, 1981):f10(x) = x1 + x2 + x3subjet to: g1(x) = �1 + 0:0025(x4 + x6) � 0g2(x) = �1 + 0:0025(x5 + x7 � x4) � 0g3(x) = �1 + 0:01(x8 � x5) � 0g4(x) = �x1x6 + 833:33252x4 + 100x1 � 83333:333 � 0g5(x) = �x2x7 + 1250x5 + x2x4 � 1250x4 � 0g6(x) = �x3x8 + 1250000 + x3x5 � 2500x5 � 0where 100 � x1 � 10000, 1000 � xi � 10000 (i = 2; 3) and 10 � xi � 1000(i = 4; : : : ; 8). The optimum solution is x� = (579:3167, 1359:943, 5110:071, 182:0174,295:5985, 217:9799, 286:4162, 395:5979) where f10(x�) = 7049:3307. Three on-straints are ative (g1, g2 and g3).Minimize (Koziel and Mihalewiz, 1999):f11(x) = x21 + (x2 � 1)2subjet to: h(x) = x2 � x21 = 0where �1 � x1 � 1 and �1 � x2 � 1. The optimum solution is x� = (�1=p2; 1=2)where f11(x�) = 0:75.Maximize (Koziel and Mihalewiz, 1999):f12(x) = (100� (x1 � 5)2 � (x2 � 5)2 � (x3 � 5)2)=100subjet to: g(x) = (x1 � p)2 + (x2 � q)2 + (x3 � r)2 � 0:0625 � 0where 0 � xi � 10 (i = 1; 2; 3) and p; q; r = 1; 2; : : : ; 9. The feasible region of thesearh spae onsists of 93 disjointed spheres. A point (x1; x2; x3) is feasible if andonly if there exist p; q; r suh that the above inequality holds. The optimum is loatedat x� = (5; 5; 5) where f12(x�) = 1. The solution lies within the feasible region.Minimize (Hok and Shittkowski, 1981):f13(x) = ex1x2x3x4x5







REFERENCES 27subjet to: h1(x) = x21 + x22 + x23 + x24 + x25 � 10 = 0h2(x) = x2x3 � 5x4x5 = 0h3(x) = x31 + x32 + 1 = 0where �2:3 � xi � 2:3 (i = 1; 2) and �3:2 � xi � 3:2 (i = 3; 4; 5). The op-timum solution is x� = (�1:717143, 1:595709, 1:827247, �0:7636413, �0:763645)where f13(x�) = 0:0539498.






