
c©Copyright by Tao Wang, 2001

GLOBAL OPTIMIZATION FOR CONSTRAINED NONLINEAR PROGRAMMING

BY

TAO WANG

B.E., Zhejiang University, 1989
M.E., Zhejiang University, 1991

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2001

Urbana, Illinois

Abstract

In this thesis, we develop constrained simulated annealing (CSA), a global optimization

algorithm that asymptotically converges to constrained global minima (CGMdn) with prob-

ability one, for solving discrete constrained nonlinear programming problems (NLPs). The

algorithm is based on the necessary and sufficient condition for constrained local minima

(CLMdn) in the theory of discrete constrained optimization using Lagrange multipliers de-

veloped in our group. The theory proves the equivalence between the set of discrete saddle

points and the set of CLMdn, leading to the first-order necessary and sufficient condition for

CLMdn.

To find a CGMdn, CSA searches for a discrete saddle point with the minimum objective

value by carrying out both probabilistic descents in the original-variable space of a discrete

augmented Lagrangian function and probabilistic ascents in the Lagrange-multiplier space.

We prove that CSA converges asymptotically to a CGMdnwith probability one. We also

extend CSA to solve continuous and mixed-integer constrained NLPs. By achieving asymp-

totic convergence, CSA represents one of the major developments in nonlinear constrained

global optimization today, which complements simulated annealing (SA) in unconstrained

global optimization.

Based on CSA, we have studied various strategies of CSA and their trade-offs for solv-

ing continuous, discrete, and mixed-integer NLPs. The strategies evaluated include adap-

tive neighborhoods, distributions to control sampling, acceptance probabilities, and cooling

iii

schedules. An optimization software package based on CSA and its various strategies has

been implemented.

Finally, we apply CSA to solve a collection of engineering application benchmarks and de-

sign filters for subband image coding. Much better results have been reported in comparison

with other existing methods.

iv

To my wife Xiao, and my parents

v

Acknowledgments

First of all, I would like to express my sincere gratitude to my advisor, Professor Benjamin

W. Wah, for his invaluable guidance, advice and encouragement during the course of my

graduate study. His constant confidence and persistence in face of research uncertainties

inspire me much and teach me to be a real scientist.

I would like to thank Professor Michael T. Heath for granting me a one-year fellowship

in the computational science & engineering (CSE) program, and Professor Pierre Moulin,

my co-advisor in the CSE program, for his helpful discussions and suggestions toward my

research in subband image coding. I wish to thank Professors Narendra Ahuja, Michael

T. Heath, Pierre Moulin, and Sylvian R. Ray for serving on my Ph.D. committee and for

providing many useful comments and suggestions.

I would also like to thank all the members in our research group for providing crucial

comments on the work and for providing a congenial environment for me to work in.

I wish to thank my parents and my wife, Xiao, for their everlasting love and support.

Finally, I would like to acknowledge the support of National Science Foundation Grant

MIP 96-32316, National Aeronautics and Space Administration Grant NAG 1-613, and the

CSE program in the University of Illinois at Urbana-Champaign, without which this work

would not have been possible.

vi

Table of Contents

Chapter

1 Introduction . 1

1.1 Problem Formulation . 2

1.2 Basic Concepts . 3

1.3 Research Goals . 5

1.4 Contributions of This Thesis . 10

1.5 Outline of the Thesis . 11

2 Previous Work . 14

2.1 Search Methods for Continuous NLPs . 15

2.1.1 Direct Solutions for Continuous NLPs 15

2.1.2 Penalty Formulations for Continuous NLPs 19

2.1.3 Lagrangian Formulations for Continuous NLPs 28

2.2 Search Methods for Discrete NLPs . 34

2.2.1 Direct Solutions for Discrete NLPs 34

2.2.2 Penalty Formulations for Discrete NLPs 34

2.2.3 Nonlinear Constrained 0-1 Programming 36

2.2.4 Lagrangian Formulations for Discrete Constrained NLPs 37

2.3 Search Methods for Constrained MINLPs . 45

2.3.1 Direct Solutions for Constrained MINLPs 45

2.3.2 Penalty Formulations for Constarined MINLPs 45

2.3.3 Lagrangian Formulations for Constrained MINLPs 47

vii

2.4 Summary . 50

3 Discrete Constrained Optimization: Constrained SA 51

3.1 Theory of Simulated Annealing . 52

3.2 Constrained Simulated Annealing Algorithm 56

3.3 Asymptotic Convergence of CSA . 60

3.3.1 Inhomogeneous Markov Chain . 61

3.3.2 Asymptotic Convergence to Constrained Global Minima 65

3.4 Optimal Cooling Schedules . 76

3.5 Summary . 77

4 Design of Efficient Strategies for CSA . 79

4.1 Choice of Neighborhoods . 79

4.2 Generation of Trial Points . 80

4.3 Acceptance Probabilities . 82

4.4 Adaptive Neighborhoods . 83

4.5 Cooling Schedules . 84

4.6 Selected Test Benchmarks . 85

4.7 Results on Evaluating CSA Strategies . 87

4.8 An Illustration of a Search Trajectory for CSA 93

4.9 Summary . 94

5 Experimental Results on Constrained NLP Benchmarks 96

5.1 Continuous Benchmark Problems and Their

Derived Discrete and Mixed-Integer Versions 96

5.2 Experimental Results on Discretized G1-G10 and Floudas and Pardalos’ Bench-

marks . 98

5.3 Experimental Results on CUTE Benchmarks 106

5.4 Summary . 116

viii

6 Filter-Bank Design for Subband Image Coding 118

6.1 Subband Transforms . 119

6.2 Procedure of Subband Image Coding . 120

6.2.1 Two-Dimensional Subband Transforms 121

6.2.2 Bit Allocation and Quantization . 122

6.2.3 Coding Quantized Coefficients . 122

6.3 Subband-Filter Design Criteria . 123

6.3.1 Choice of Filter-Bank Types . 124

6.3.2 Performance Metrics for Filter-Bank Design 125

6.4 Optimization Formulations for Filter-Bank Design 131

6.5 Implementation Issues . 134

6.5.1 Solution Methods for Filter-Bank Design 134

6.5.2 Wavelet Image Coding Package . 135

6.5.3 Measurements of Coding Quality . 135

6.6 Experimental Results . 136

6.6.1 Control Parameters for Optimization Formulations 138

6.6.2 Experimental Results on 9/7 Filters 138

6.6.3 Experimental Results on 13/11 Filters 141

6.7 Summary . 144

7 Conclusions and Future Work . 147

7.1 Summary of Accomplished Research . 147

7.2 Future Work . 148

Appendix

A Enhancing First-Order Methods for Continuous Constrained NLPs . . 151

A.1 Handling Inequality Constraints . 152

A.1.1 Transformations Using Slack Variables 153

A.1.2 Transformations Using the MaxQ Method 157

ix

A.1.3 Comparisons of the Slack-variable and MaxQ Methods 165

A.2 Dynamic Weighting Strategy . 167

A.2.1 General Weight-Adaptation Strategy 168

A.2.2 Dynamic Weight Adaptation for Continuous Constrained NLPs . . . 171

A.2.3 Illustrative Examples . 173

A.2.4 Comparison of Static and Dynamic Weighting 175

A.3 Experimental Results . 177

Bibliography . 180

Vita . 201

x

List of Tables

2.1 Summary of search methods for solving continuous constrained NLPs based on

the four criteria of optimality achieved, convergence property for stochastic

methods with global optimality, ability to handle nonlinear functions, and

requirement on function continuity and differentiability. 33

2.2 Summary of search methods for solving discrete constrained NLPs based on

the four criteria of achieved optimality, convergence property for stochastic

methods with global optimality, ability to handle nonlinear functions, and

requirement on function continuity and differentiability. 44

2.3 Summary of search methods for solving constrained MINLPs based on the four

criteria of achieved optimality, convergence property for stochastic methods

with global optimality, ability to handle nonlinear functions, and requirement

on function continuity and differentiability. 49

4.1 Statistics of the 12 benchmark problems used for tuning CSA. 86

5.1 Performance comparison of DONLP2 (SQP) and CSA in solving derived dis-

crete constrained NLPs G1-G10. CSA is based on (Cauchy1, S-uniform, M)

and α = 0.8. All times are in seconds on a Pentium-III 500-MHz computer

running Solaris 7. ‘-’ stands for no feasible solution found for the specified

solution quality within 100 runs. Both SQP and CSA use the same sequence

of starting points. 99

xi

5.2 Performance comparison of DONLP2 (SQP) and CSA in solving derived dis-

crete constrained NLPs from Floudas and Pardalos’ continuous constrained

benchmarks [68]. CSA is based on (Cauchy1, S-uniform, M) and α = 0.8.

All times are in seconds on a Pentium-III 500-MHz computer running Solaris

7. ‘-’ stands for no feasible solution found for the specified solution quality

within 100 runs. Both SQP and CSA use the same sequence of starting points. 100

5.3 Performance comparison of DONLP2 (SQP) and CSA in solving derived

mixed-integer constrained NLPs G1-G10. CSA is based on (Cauchy1, S-

uniform, M) and α = 0.8. All times are in seconds on a Pentium-III 500-MHz

computer running Solaris 7. ‘-’ stands for no feasible solution found for the

specified solution quality within 100 runs. Both SQP and CSA use the same

sequence of starting points. 101

5.4 Performance comparison of DONLP2 (SQP) and CSA in solving derived

mixed-integer constrained NLPs from Floudas and Pardalos’ continuous con-

strained benchmarks [68]. CSA is based on (Cauchy1, S-uniform, M) and

α = 0.8. All times are in seconds on a Pentium-III 500-MHz computer run-

ning Solaris 7. ‘-’ stands for no feasible solution found for the specified solution

quality within 100 runs. Both SQP and CSA use the same sequence of starting

points. 102

5.5 Performance comparison of EAs, DONLP2 (SQP) and CSA in solving contin-

uous constrained NLPs G1-G10. (S.T. stands for strategic oscillation, H.M.

for homomorphous mappings, and D.P. for dynamic penalty). CSA is based

on (Cauchy1, S-uniform, M) and α = 0.8. All times are in seconds on a

Pentium-III 500-MHz computer running Solaris 7. Both SQP and CSA use

the same sequence of starting points. 103

xii

5.6 Performance comparison of Epperly’s method [64] (an interval method), DONLP2

(SQP) and CSA in solving Floudas and Pardalos’ continuous constrained

NLPs [68]. CSA is based on (Cauchy1, S-uniform, M) and α = 0.8. All

times are in seconds on a Pentium-III 500-MHz computer running Solaris 7.

‘-’ stands for no feasible solution found for Epperly’s method. Both SQP and

CSA use the same sequence of starting points. 104

5.7 Comparison results of LANCELOT, DONLP2, and CSA in solving discrete

constrained NLPs that are derived from selected continuous problems from

CUTE using the starting point specified in each problem. CSA is based

on (Cauchy1, S-uniform, M) and α = 0.8. All times are in seconds on a

Pentium-III 500-MHz computer running Solaris 7. ′−′ means that no feasi-

ble solution can be found by both the public version (01/05/2000) and the

commercial version of LANCELOT (by submitting problems through the In-

ternet, http://www-neos.mcs.anl.gov/neos/solvers/NCO:LANCELOT/), and

that no feasible solution can be found by DONLP2. Numbers in bold represent

the best solutions among the three methods if they have different solutions. 108

5.8 Comparison results of LANCELOT, DONLP2, and CSA in solving mixed-

integer constrained NLPs that are derived from selected continuous problems

from CUTE using the starting point specified in each problem. CSA is based

on (Cauchy1, S-uniform, M) and α = 0.8. All times are in seconds on a

Pentium-III 500-MHz computer running Solaris 7. ′−′ means that no feasi-

ble solution can be found by both the public version (01/05/2000) and the

commercial version of LANCELOT (by submitting problems through the In-

ternet, http://www-neos.mcs.anl.gov/neos/solvers/NCO:LANCELOT/), and

that no feasible solution can be found by DONLP2. Numbers in bold represent

the best solutions among the three methods if they have different solutions. 109

xiii

5.9 Comparison results of LANCELOT, DONLP2, and CSA in solving selected

continuous problems from CUTE using the starting point specified in each

problem. CSA is based on (Cauchy1, S-uniform, M) and α = 0.8, and does

not use derivative information in each run. All times are in seconds on a

Pentium-III 500-MHz computer running Solaris 7. ′−′ means that no feasi-

ble solution can be found by both the public version (01/05/2000) and the

commercial version of LANCELOT (by submitting problems through the In-

ternet, http://www-neos.mcs.anl.gov/neos/solvers/NCO:LANCELOT/), and

that no feasible solution can be found by DONLP2. ′∗′ means that solutions

are obtained by the commercial version (no CPU time is available) but cannot

be solved by the public version. Numbers in bold represent the best solutions

among the three methods if they have different solutions. 110

5.11 Experimental Results of applying LANCELOT on selected CUTE problems

that cannot be solved by CSA at this time. All times are in seconds on a

Pentium-III 500-MHz computer running Solaris 7. ′−′ means that no feasi-

ble solution can be found by both the public version (01/05/2000) and the

commercial version of LANCELOT. 115

6.1 Comparison results of applying FSQP and CSA to design 9/7 filters using

different problem formulations and their control parameters. All runs were

done on a Pentium-III 450-Mhz computer under Solaris 7. Numbers in bold

represent the best solution in terms of average improved PSNR. 139

6.2 PSNRs (dB) for Daubechies’ 9/7 and our best 9/7 filters. Numbers in bold

represent improved PSNRs. 142

6.3 Comparison results of applying FSQP and CSA to design 13/11 filters with

respect to different problem formulations and their control parameters. All

runs were done on a Pentium-III 450-Mhz computer under Solaris 7. Numbers

in bold represent the best solution in terms of average improved PSNR. . . 143

6.4 PSNRs (dB) for Villasenor’s 13/11 and our best 13/11 filters. Numbers in

bold represent improved PSNRs. 145

xiv

A.1 Results on a collection of constrained optimization benchmarks [68] comparing

the MaxQ and the slack-variable methods. All times are in CPU seconds on

a Pentium-III 500MHz computer under Solaris 7. Symbol ‘-’ means that the

method was not able to find a solution for the corresponding problem. . . . 178

xv

List of Figures

1.1 An illustration showing the difference between asymptotic convergence and

reachability. Algorithms with asymptotic convergence always have better

reachability probabilities than algorithms without when the number of it-

erations exceeds some finite threshold. 8

2.1 Classification of search methods for solving continuous constrained NLPs. . . 16

2.2 Relationship among solution sets of nonlinear continuous constrained NLPs. 29

2.3 Classification of search methods for solving discrete constrained NLPs. . . . 35

2.4 Relationship among solution sets of nonlinear discrete constrained NLPs. . . 41

2.5 Classification of search methods for solving constrained MINLPs. 46

3.1 Simulated annealing (SA) algorithm. 53

3.2 CSA: the constrained simulated annealing algorithm. 57

3.3 The Markov chain modeling the Lagrangian space of (3.14) and the corre-

sponding Lagrangian-function values. The four saddle points are shaded in

a). 62

3.4 Virtual energy W (x) of Example 3.1. 68

3.5 Proof strategy for Theorem 3.3. 69

3.6 Proof of part a1) in Theorem 3.3 (Solid arrow indicates edge in the spanning

tree). 70

3.7 Proof of part a2) in Theorem 3.3 (Solid arrow indicates edge in the spanning

tree). 71

3.8 Proof of part b) in Theorem 3.3. 73

xvi

3.9 Example showing the convergence probabilities, reachability probabilities Pr, and

average time Tr/Pr (see section 1.3 and [198] for detail) to find the global solution

for CSA and random search. 75

4.1 Comparisons of average relative CPU times and average relative solution quali-

ties for different strategies normalized with respect to the baseline of (Cauchy1,

S-uniform, M) at various cooling rates for solving 12 difficult mixed-integer

NLPs. All runs were made on a Pentium-III 500-MHz computer running

Solaris 7. 89

4.2 Performance of CSA based on (Cauchy1, S-uniform, M) and cooling rate α =

0.8 on 12 difficult continuous constrained NLPs. (The optimal solution in

each problem is represented as a dotted line in the graph. All runs were made

on a Pentium-III 500-MHz computer running Solaris 7. The optimal solutions

in Problems 7.2-7.4 have been normalized to one.) 90

4.3 Performance of CSA based on (Cauchy1, S-uniform, M) and cooling rate α =

0.8 on 12 difficult derived discrete constrained NLPs. (The optimal solution

in each problem is represented as a dotted line in the graph. All runs were

made on a Pentium-III 500-MHz computer running Solaris 7. The optimal

solutions in Problems 7.2-7.4 have been normalized to one.) 91

4.4 Performance of CSA based on (Cauchy1, S-uniform, M) and cooling rate α =

0.8 on 12 difficult derived mixed-integer constrained NLPs. (The optimal

solution in each problem is represented as a dotted line in the graph. All

runs were made on a Pentium-III 500-MHz computer running Solaris 7. The

optimal solutions in Problems 7.2-7.4 have been normalized to one.) 92

4.5 The run-time behavior of CSA based on (Cauchy1, S-uniform,M) at different

temperatures in solving (4.13). 95

5.1 Normalized solution quality and normalized CPU time of CSA with respect

to LANCELOT for those CUTE benchmarks that are solvable by both CSA

and LANCELOT, where normalized CPU time is in log scale. 114

xvii

6.1 The structure of a two-band filter bank. 119

6.2 Performance metrics of a low-pass filter. 126

6.3 Four test images. 137

6.4 Frequency amplitudes of Daubechies’ 9/7 filter and our best 9/7 filter obtained

using formulation A(wf/wc = 1.0/1.0). 140

6.5 Frequency amplitudes of Villasenor’s 13/11 filter and our best 13/11 filter

obtained by solving A(wf/wc = 1.0/0.0) using CSA. 144

A.1 The objective and maximum violation oscillate using the slack-variable method

(w = 1/10). 156

A.2 The objective and maximum violation converge after oscillations subside using

the slack-variable method (w = 1/15). 156

A.3 Relationship between CLMcn and feasible region. (a) CLMcn is within the

feasible region; (b) CLMcn is on the boundary of feasible region. 160

A.4 The objective and maximum violation converge smoothly using MaxQ for

Problem 2.3 with w = 1/10. 164

A.5 Illustration of the search trajectories of the slack-variable method when CLMcn is

on the boundary of a feasible region. The search may (a) converge to a CLMcn,

(b) oscillate around a CLMcn, or (c) diverge to infinity. 166

A.6 Illustration of the search trajectory of the MaxQ method when CLMcn is

on the boundary of a feasible region. The search starts from inside (left)

or outside (right) the feasible region. In both cases, the search trajectory

eventually approaches the CLMcn from outside the feasible region. 166

A.7 Pseudo code for a new dynamic weight-adaptation algorithm 169

A.8 Weight-adaptation rules (Step 10 of Figure A.7). 172

A.9 The objective function and maximum violation first oscillate and then con-

verge using dynamic weight adaptation. 174

A.10 The objective and maximum violation converge after 756 iterations for MaxQ

using dynamic weight adaptation (initial w = 1
10

). 174

xviii

A.11 Comparison of the first-order method with static weights and the adaptive

first-order method in terms of convergence time and solution quality. All runs

were done on a Sparc-10 computer under SunOS. 176

xix

Chapter 1

Introduction

A Variety of applications in engineering, decision science, and operations research have been

formulated as constrained nonlinear programming problems (NLPs). Such applications in-

clude neural-network learning, digital signal and image processing, structural optimization,

engineering design, computer-aided-design (CAD) for VLSI, database design and processing,

nuclear power plant design and operation, mechanical design, and chemical process con-

trol [68, 145, 180]. Due to the availability of a lot of unconstrained optimization algorithms,

many real applications that are inherently nonlinear and constrained have been solved in

various unconstrained forms. Optimal or good solutions to these applications have signif-

icant impacts on system performance, such as low-cost implementation and maintenance,

fast execution, and robust operation.

Every constrained NLP has three basic components: a set of unknowns or variables to

be determined, an objective function to be minimized or maximized, and a set of constraints

to be satisfied. Solving such a problem amounts to finding values of variables that optimize

(minimize or maximize) the objective function while satisfying all the constraints.

1

In this chapter, we first define constrained NLPs, some related basic concepts, and our re-

search goals. We then describe the contributions of this research and outline the organization

of this thesis.

1.1 Problem Formulation

A general constrained nonlinear programming problem (NLP) that we study in this thesis

takes the following form

minimize f(x)

subject to h(x) = 0 x = (x1, . . . , xn) (1.1)

g(x) ≤ 0

where f(x) is an objective function that we want to minimize. h(x) = [h1(x), · · · , hm(x)]T

is a set of m equality constraints, and g(x) = [g1(x), · · · , gk(x)]
T is a set of k inequality

constraints. All f(x), h(x), and g(x) are either linear or nonlinear, convex or nonconvex,

continuous or discontinuous, analytic (i.e., in closed-form) or procedural (i.e., evaluated by

some procedure or simulation). Variable space X is composed of all possible combinations

of variables xi, i = 1, 2, · · · , n. In contrast to many existing NLP theory and methods,

our formulation has no requirements on convexity, differentiability, and continuity of the

objective and constraint functions.

Without loss of generality, we discuss our results with respect to minimization problem

(1.1), knowing that maximization problems can always be transformed into minimization

problems by negating their objective functions. Therefore, we use optimization and mini-

mization interchangeably in this thesis. Two special cases are involved: a) an unconstrained

NLP if there is no constraint, and b) a constraint-satisfaction problem if there is no objective

function.

2

With respect to minimization problem (1.1), we make the following assumptions.

• Objective function f(x) is lower bounded, but constraints h(x) and g(x) can be either

bounded or unbounded.

• All variables xi (i = 1, 2, · · · , n) are bounded.

• All functions f(x), h(x), and g(x) can be either linear or nonlinear, convex or noncon-

vex, continuous or discontinuous, differentiable or non-differentiable.

In some applications, variables are restricted to take prespecified values. According to

the values that variable x takes, we have three classes of constrained NLPs [141]:

• Discrete problems: Variable x is a vector of discrete variables, where component

xi takes discrete and finite values, such as integers. Although variable space X at

this time is finite (because variable x is bounded), it is usually very huge, making it

impossible to enumerate every combination of x.

• Continuous problems: Variable x is a vector of continuous variables, xi ∈ R, and

x ∈ Rn. Variable space X is infinite.

• Mixed-integer problems (MINLP): Some variables take discrete values while oth-

ers take continuous values. Let Id be the set of indices of discrete variables, and Ic be

those of continuous variables. Then Id
⋃

Ic = {1, 2, · · · , n}, and Id
⋂

Ic = ∅. Variable

space X is infinite because of continuous variables.

1.2 Basic Concepts

To characterize the solutions sought, we introduce some basic concepts [31, 125, 145, 69] on

neighborhoods, feasible solutions, and constrained local and global minima here.

3

Definition 1.1 N (x), the neighborhood of point x in variable space X, is a set of points

x′ ∈ X such that x′ ∈ N (x)⇐⇒ x ∈ N (x′).

Neighborhood N (x) has different meanings for the three types of constrained NLPs de-

fined in (1.1). For a discrete problem on a discrete space, neighborhood Ndn(x) is in general

user-defined and application-dependent [1, 221]. The choice of neighborhood, however, does

not affect the validity of a search as long as one definition is used consistently throughout.

Normally, one may chooseNdn(x) to include nearby discrete points to x so that neighborhood

carries its original meaning. However, one may also choose the neighborhood to contain “far

away” points.

For a continuous problem, neighborhood Ncn(x) is well-defined and application indepen-

dent [31, 125, 106]. It includes those points that are sufficiently close to x, i.e., Ncn(x) is

a set of points x′ such that ||x′ − x|| < ε for some small ε > 0. For a mixed-integer prob-

lem, neighborhood Nmn(x) can be defined as a joint neighborhood of its discrete subspace

xi (i ∈ Id) and its continuous subspace xj (j ∈ Ic), where the neighborhood of its discrete

subspace is user-defined and application-dependent.

Definition 1.2 Point x ∈ X is called a feasible point, if x satisfies all the constraints; that

is, h(x) = 0 and g(x) ≤ 0.

Definition 1.3 Point x∗ ∈ X is called a constrained local minimum (CLM), iff a) x∗ is a

feasible point, and b) for every feasible point x ∈ N (x∗), f(x∗) ≤ f(x).

Note that when all neighboring points of x∗ are infeasible, that is, x∗ is the only feasible

point surrounded by infeasible points, x∗ is still a CLM. To avoid confusion of CLM in

discrete, continuous, and mixed-integer spaces, we denote, respectively, CLMdn to be a

CLM in discrete space, CLMcn to be a CLM in continuous space, and CLMmn to be a

4

CLM in mixed-integer space. Further, in a discrete or mixed-integer space, point x may be

a CLMdn or CLMmn for one definition of Ndn(x) or Nmn(x), but may not be for another

definition of N ′
dn(x) or N ′

mn(x).

Definition 1.4 Point x∗ ∈ X is called a constrained global minimum (CGM), iff a) x∗ is a

feasible point, and b) for every feasible point x ∈ X, f(x∗) ≤ f(x). The set of all the CGM

is denoted by Xopt.

1.3 Research Goals

The general goal of this research is to develop a global optimization method for solving

constrained NLP (1.1). Global optimization methods are methods that are able to find

CGM of constrained NLPs by either hitting a CGM during the search or converging to one

when the search stops.

As (1.1) does not have closed-form solutions and cannot be solved analytically except in

some trivial cases, it is generally solved by some iterative procedure ψ [125, 141]. Formally,

let Ω be a search space of ψ. Search space Ω is determined by procedure ψ, and may or

may not be equal to variable space X. Given starting point ω(k = 0) ∈ Ω, search procedure

ψ generates a sequence of iterative points, ω(1), ω(2), · · · , ω(k), · · · in search space Ω, until

some stopping conditions hold.

ψ is called a deterministic procedure [105, 225] if ω(k) is generated deterministically.

Otherwise, ψ is called a probabilistic or stochastic procedure.

Finding CGM of (1.1) is challenging as well as difficult. First, f(x), h(x), and g(x)

may be non-convex and highly nonlinear, making it difficult to even find a feasible point

or a feasible region. Moreover, it is not useful to keep a search within a feasible region,

as feasible regions may be disjoint and the search may need to visit a number of feasible

5

regions before finding a CGM. Second, f(x), h(x), and g(x) may be discontinuous or may not

have derivatives, rendering it impossible to apply existing theories and methods developed

for solving continuous problems. Last, there may be a large number of CLM, trapping

trajectories that only utilize local information.

Constrained global optimization is NP-hard [105, 191], because it takes exponential time

to verify whether a feasible solution is optimal or not for a general constrained NLP. This

is true even for quadratic programming problems with linear or box constraints. As stated

by Griewank [88], global optimization is mathematically ill-posed in the sense that a lower

bound for f(x) cannot be given after any finite number of evaluations, unless f(x) satisfies

certain subsidiary conditions, such as Lipschitz conditions and the condition that the search

area is bounded.

Global optimization algorithms can be further divided into deterministic or stochastic

approaches. Deterministic approaches consist of analytic and decomposition methods that

are applicable in special cases. Analytic methods can only solve some trivial cases of con-

strained NLPs, while decomposition methods are enumerative methods that decompose a

large problem into smaller subproblems that are easier to solve. These methods, such as

branch-and-bound search, do not work when constraints are highly nonlinear and cannot be

linearized. Other methods, such as interval methods, require the continuity and differentia-

bility of functions and, thus, do not work for discrete and mixed-integer NLPs. In addition,

decomposition methods are computationally expensive, because they have to enumerate all

possibilities of points or subproblems.

Stochastic methods sample search space Ω based on some probability distributions that

generate ω(k). Depending on the coverage of search space Ω and the way that the best

solution is kept, stochastic methods can at best converge to a CGM with probability one

6

when time approaches infinity. When terminated in finite time, stochastic methods may be

better than enumerative methods because they may find a CGM with high probability.

Stochastic methods have two interpretations [10, 225] with respect to global optimization.

Let Ωs be a subset of Ω that has a one-to-one correspondence with Xopt, the set of all CGM.

Definition 1.5 Procedure ψ is said to have asymptotic convergence to global minimum, or

simply asymptotic convergence [10, 225], if ψ converges with probability one to an element

of Ωs, that is, limk→∞ P (ω(k) ∈ Ωs) = 1, independent of starting point ω(k = 0).

Otherwise, ψ is called non-asymptotically convergent if it converges with a probability

less than one to an element in Ωs; that is, limk→∞ P (ω(k) ∈ Ωs) < 1. Such a procedure is

also said to have reachability of global minimum [10, 225] or convergence in the best solution

to a CGM, because by keeping the best solution found in the course of ψ, ψ will eventually

visit one of the CGM as time approaches infinity

Definition 1.6 Procedure ψ is said to have reachability of global minimum [10, 225], if

probability limk→∞ P (ω(l) ∈ Ωs, ∃l, 0 ≤ l ≤ k) = 1.

Reachability is much weaker than asymptotic convergence as it only requires ω(k) to hit a

CGM sometime during a search. A pure random search is one example of global optimization

with reachability. In contrast, asymptotic convergence requires ψ to converge to a CGM in Ωs

with probability one. Consequently, the probability of hitting a global solution increases as a

search progresses, making it more likely to find a CGM than an algorithm with reachability

alone if the search were stopped before it converges.

Here we assume that each iterative point ω(k) generated by procedure ψ is independent

of the best solution visited so far. Otherwise, we can always transform an algorithm with

reachability into the one with asymptotic convergence: For example, one simply remembers

7

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2000 4000 6000 8000 10000

P(
ω

j ε
 Ω

s)

Iteration j

Convergent procedure 1
Convergent procedure 2

Non-convergent procedure

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2000 4000 6000 8000 10000

P r
(j

)

Iteration j

Convergent procedure 1
Convergent procedure 2

Non-convergent procedure

a) Probabilities of hitting a CGM b) Corresponding reachability probabilities

Figure 1.1: An illustration showing the difference between asymptotic convergence and

reachability. Algorithms with asymptotic convergence always have better reachability prob-

abilities than algorithms without when the number of iterations exceeds some finite threshold.

the best solution (call it the incumbent) visited up to now, and for the next iteration, selects

with probability p the incumbent and with probability 1 − p a new point according to the

original reachability algorithm. Let p tend to approach one as the iterations progress. Then

one obtains an algorithm with asymptotic convergence. This procedure, however, destroys

the independence assumption.

Figure 1.1a illustrates the difference between asymptotically convergent and non-asympto-

tically convergent stochastic procedures. Note that the non-asymptotically convergent pro-

cedure in Figure 1.1a may have higher probabilities of hitting a CGM when the number of

iterations is small.

In practice, asymptotic convergence can never be achieved because any algorithm must

terminate within a finite amount of time. When an algorithm completes in t iterations, one is

interested in its reachability probability Pr(t) of hitting a CGM in any of its past t iterations,

assuming all the iterations are independent,

Pr(t) = 1−
t

∏

j=1

(1− P (ω(j) ∈ Ωs)). (1.2)

8

Figure 1.1b illustrates the reachability-probability curves corresponding to the curves in

Figure 1.1a. It shows that algorithms with asymptotic convergence always have a better

chance of finding a CGM when the number of iterations exceeds some finite threshold. For

this reason, it is important to design algorithms with asymptotic convergence, especially in

solving complex constrained NLPs.

In short, the first goal of this thesis is to develop a stochastic global optimization al-

gorithm, called constrained simulated annealing (CSA), which achieves asymptotic conver-

gence for solving discrete constrained NLP (1.1) and to extend it to solve continuous and

mixed-integer NLPs. These constrained NLPs do not have the requirements on convexity,

differentiability, and continuity of the objective and constraint functions. This goal is of

great theoretical importance in nonlinear constrained global optimization.

There are three performance measures to evaluate a stochastic algorithm: the quality

of solution f ∗ found, the maximum time (or iterations) Tr taken by the algorithm, and the

probability Pr of finding such a solution f ∗. Hence, the average completion time of finding

a solution with quality f ∗ using multiple runs of the algorithm from random starting points

is [198]:

∞
∑

i=1

i · Tr · (1− Pr)
i−1 · Pr =

Tr

Pr
(1.3)

Here, Pr is a monotonically non-decreasing function of Tr. In general, if Tr is very small, it is

very unlikely to find a solution of desired quality, leading to very small Pr and large Tr/Pr.

As Tr increases, Pr will increase until it approaches one. After that, further increases in Tr

will cause Tr/Pr to increase monotonically. Hence, there exists an optimal running time Tr

such that Tr/Pr is minimized.

Because the Tr/Pr measure is only meaningful when dealing with solutions of the same

quality f ∗, the second goal of the thesis is to develop efficient strategies to implement our

9

stochastic algorithm, measure its performance by depicting Tr/Pr with respect to various

levels of quality of solution f ∗, and compare them with some existing methods.

1.4 Contributions of This Thesis

The main contributions of this thesis are as follows:

• Global optimization algorithm for discrete constrained NLPs (Chapter 3) [202, 200].

We have developed constrained simulated annealing (CSA), a global optimization al-

gorithm that converges to a CGMdn with probability one, for solving discrete con-

strained NLPs. CSA carries out both probabilistic descents of the discrete augmented

Lagrangian function in the original-variable space and probabilistic ascents in the

Lagrange-multiplier space. By achieving asymptotic convergence, CSA is one of the

major developments in nonlinear constrained global optimization today. One of the

papers published [200] was given the best paper award at the 11th IEEE Int’l Conf.

on Tools with Artificial Intelligence, Nov., 1999.

• Efficient strategies of CSA (Chapter 4) [203]. Our CSA procedure involves choos-

ing neighborhoods, sampling distributions, acceptance probabilities, as well as cooling

schedules. We have studied different strategies for each component, and have explored

their tradeoffs for solving discrete, continuous, and mixed-integer constrained NLPs.

Finally, an optimization software package based on CSA and its various strategies has

been implemented.

• Global optimization for solving engineering applications (Chapter 5 and 6) [202, 200,

203, 209]. We have applied CSA to solve a set of engineering benchmarks and design

wavelet filters in subband image coding. We have obtained much better results on

these benchmarks than others and have improved coding quality of real images.

10

• Inequality constraint-handling and dynamic-weighting strategies (Appendix A) [201,

208, 205, 204, 210]. We have proposed adaptive and robust strategies to handle in-

equality constraints by MaxQ and dynamic weighting in order to speed up conver-

gence in first-order methods for solving continuous constrained NLPs. Although this

enhanced first-order method is not comparable to sequential quadratic programming

(SQP) in terms of convergence speed, it represents new results on first-order methods.

To highlight our major results on CSA in this thesis, we have described this method

in Appendix A.

1.5 Outline of the Thesis

This thesis is organized as follows. In Chapter 2, we survey existing work on solving con-

tinuous, discrete, and mixed-integer constrained NLPs. These methods are classified based

on the problem formulations they use, and for each formulation, further classified into local

search, global search, and global optimization methods. We comment these methods based

on four criteria: (c1) what kind of optimality they achieve, local or global; (c2) if global

optimality, which convergence they achieve, asymptotic convergence or reachability, if they

are stochastic methods; (c3) whether they are able to cope with nonlinear objective and

constraints; and (c4) whether they require continuity and differentiability of the objective

and constraint functions.

In Chapter 3, we develop constrained simulated annealing (CSA), a global optimization

algorithm that converges to CGMdn with probability one, for solving discrete constrained

NLPs. Based on the necessary and sufficient conditions for CLMdn (Theorem 2.2) in the

theory of discrete constrained optimization using Lagrange multipliers (see Section 2.2.4),

CSA aims to find a saddle point with the minimum objective value, i.e., a CGMdn. CSA

11

carries out in an annealing fashion both probabilistic descents in the original variable sub-

space and probabilistic ascents in the Lagrange-multiplier subspace. By modeling CSA as

a finite inhomogeneous Markov chain, we prove the asymptotic convergence of CSA to a

CGMdn with probability one. By achieving asymptotic convergence, CSA is one of the

major developments in nonlinear constrained global optimization today and complements

simulated annealing (SA) in nonlinear unconstrained global optimization.

In Chapter 4, we evaluate various strategies used in CSA that may affect its performance

in solving discrete, continuous, and mixed-integer constrained NLPs. The strategies studied

consist of adaptive neighborhoods, distributions to control sampling, acceptance probabili-

ties, as well as cooling schedules.

In Chapter 5, we choose the best strategy among all the combinations of strategies

tested in Chapter 4, and apply CSA with this strategy to solve three sets of continuous

constrained benchmarks, and their derived discrete and mixed-integer NLPs. We report some

improvements over the best-known solutions in comparison with two sequential-quadratic-

programming (SQP) packages DONLP2 and LANCELOT, evolutionary algorithms (EAs)

with specific constraint handling techniques, and interval methods.

In Chapter 6, we address filter-design issues in subband image coding by studying different

problem formulations for filter design, including two constrained NLPs and one unconstrained

NLP. We then solve them using such optimization algorithms as FSQP [226] and CSA. We

demonstrate the performance of CSA by improving the coding quality of the filters in terms

of their peak signal-to-noise ratios (PSNRs), and compare their performance with that of

some well-known subband or wavelet filters.

Finally, in Chapter 7, we briefly summarize the major work we have presented in this

thesis and point out future directions to extend and enhance this research.

12

In Appendix A, we develop two strategies to speed up the convergence of first-order meth-

ods for solving continuous constrained NLPs. To avoid oscillations or even divergence of the

slack-variable method for handling inequality constraints, we propose the MaxQ method and

study some techniques to speed up its convergence. We also propose a dynamic weighting

strategy to balance the relative weights between the objective and the constraints. It mon-

itors search progress and adaptively adjusts the weights once imbalance is detected. Using

such a strategy, we are able to eliminate divergence, reduce oscillations, and greatly speed

up convergence.

13

Chapter 2

Previous Work

Active research in the past four decades has produced a variety of methods for solving general

constrained NLPs [185, 106, 69, 91, 127]. They fall into one of two general formulations, direct

solution or transformation-based. The former aims to directly solve constrained NLP (1.1) by

searching its feasible regions, while the latter first transforms (1.1) into another form before

solving it. Transformation-based formulations can be further divided into penalty-based and

Lagrangian-based. For each formulation, strategies that can be applied are classified as local

search, global search, and global optimization.

Local search. Local search methods use local information, such as gradients and Hessian

matrices, to generate iterative points and attempt to locate CLM quickly. Local search

methods may not guarantee to find CLM, and their solution quality is heavily dependent

on starting points. These CLM are CGM [141] only if (1.1) is convex, namely, the objec-

tive function f(x) is convex, every inequality constraint gi(x) is convex, and every equality

constraint hi(x) is linear.

Global search. Global search methods employ local search methods to find CLM and, as

they get stuck at local minima, utilize some mechanisms, such as multistart, to escape from

14

these local minima. Hence, one can seek as many local minima as possible and pick the best

one as the result. These mechanisms can be either deterministic or probabilistic and do not

guarantee to find CGM.

Global optimization. Global optimization methods are methods that are able to find

CGM of constrained NLPs. They can either hit a CGM during their search or converge to

a CGM when they stop (see Section 1.3 for more details).

In this chapter, we survey existing methods for solving each class of discrete, continuous,

and mixed-integer constrained NLPs. We comment these methods based on four criteria:

(c1) what kind of optimality they can have, local or global; (c2) if global optimality, what

kind of convergence they can achieve, and whether asymptotic convergence or reachability is

achieved, if they are stochastic methods; (c3) whether they are able to cope with nonlinear

objective and constraints; and (c4) whether they require continuity and differentiability of

the objective and constraint functions.

2.1 Search Methods for Continuous NLPs

In this section, we survey previous work on solving continuous constrained NLPs. We classify

them based on the problem formulations they use, and for each formulation, classify them

as local search, global search and global optimization. Figure 2.1 classifies existing search

methods for solving continuous NLPs.

2.1.1 Direct Solutions for Continuous NLPs

Direct solution aims to solve (1.1) directly without transforming it into another form. Based

on this formulation, solution methods can be classified into local search, global search, or

global optimization.

15

feasible direction reject/discarding random search

deterministic stochastic stochasticdeterministicdeterministic deterministic deterministic stochastic stochastic deterministic

strategic oscillation

barrier/interior methods

learning-based

local-minimum-

Bayesian methods

simulated annealing

FSQP

local search global search global optimization

direct solution formulation

local search global search global optimization global search

penalty formulation Lagrangian formulation

interval methods

Search Methods for Solving Continuous Constrained NLPs

repair methods,

preserving feasibility,

graident descent,

conjugate graident,

Newton’s methods,

direct set method,

simplex methods,

trajectory methods,

trace methods,

penalty methods,

random multi-start,

adaptive multi-start,

Tabu search,

guided local search,

ant colony system,

incremental learning,

random search,

pure adaptive search,

hesitant adaptive search,

controlled random search,

genetic algorithms,

first-order methods,

Newton-like methods,

SQP,

Figure 2.1: Classification of search methods for solving continuous constrained NLPs.

16

Local Search. Feasible-direction methods [31, 122, 125] start from feasible points and

iteratively maintain feasible directions by searching along gradients of the objective and

projecting them into feasible regions. They try to reduce the value of objective function

f(x) during their search while staying within feasible regions. Such deterministic methods

perform well with linear constraints. However, when there are nonlinear constraints, feasible

regions may be disconnected, and keeping a search within a feasible region may lead to poor

solutions. In addition, it is very difficult or expensive to project a trajectory into feasible

regions for nonlinear constraints.

Global Search. Rejecting/discarding methods [110, 14, 160, 154] are stochastic proce-

dures. They iteratively generate random points and only accept feasible points, while drop-

ping infeasible points during their search. Although they are simple and easy to implement,

they are very inefficient when constraints are nonlinear and feasible regions are difficult to

find, because they spend a lot of time in generating and rejecting infeasible points. Adaptive

simulated annealing (ASA) [13] implements one form of rejecting/discarding methods that

requires the user to provide feasible points during its search.

Repair methods [113, 142] attempt to maintain feasibility by repairing infeasible points

and transforming them into feasible points by some repair operators. Such deterministic

methods, however, are usually very problem-specific and limited in their applications. Be-

sides, restoring feasibility in case of nonlinear constraints may be as difficult as solving the

original problem and is sometimes computationally expensive.

Preserving feasibility [131] and strategic oscillation [81, 172] are examples of deterministic

repair methods. They involve specialized operators to maintain feasibility or keep a search

on the boundaries of feasible regions. Both methods are problem dependent and cannot deal

with general nonlinear constraints. Sometimes, keeping a search within a feasible region or

17

on the boundary of a feasible region may be as difficult as solving the original constrained

NLP. In addition, both methods are easy to get stuck at local minima when feasible regions

are disconnected.

Global Optimization. Covering methods [106, 65, 91, 137] are deterministic algorithms.

They detect subregions that do not contain CGMcn and exclude them from further consid-

eration. They can guarantee the quality of solutions and approximate CGMcn by iteratively

tightening bounds.

Interval methods are examples of covering methods that use interval arithmetic to recur-

sively divide regions into subregions. These methods keep subregions that may have good

solutions while dropping unpromising subregions. In order to verify the existence of feasi-

ble points for a given subregion, they usually utilize interval Newton methods [116, 115].

GlobSol [80] and ILOG solver [108] are popular software packages that implement these

methods.

Interval methods, however, are unable to cope with general nonlinear constraints and

may be misled by inaccurate evaluations of lower bounds. Obtaining solutions of guaran-

teed quality implies exhaustive search over a search space. Hence, interval methods have

huge computational costs, with computational time increasing dramatically as problem size

increases [23, 24], and can only be used to solve small problems. Besides, interval meth-

ods require the continuity and differentiability of functions and cannot be used for solving

discrete and mixed-integer NLPs.

Pure random search samples uniformly a search space, while adaptive random search

guides sampling based on information derived from its previous samples [104]. Both methods

are stochastic approaches that guarantee the reachability of CGMcn because any point in a

search space has a chance to be found. The sequence of sample points, however, may not

18

converge, or even diverge, and fail to provide asymptotic convergence. In addition, both

methods may waste most of their time sampling infeasible points and are very inefficient for

solving large problems or problems with nonlinear constraints.

2.1.2 Penalty Formulations for Continuous NLPs

Static-penalty formulations [31, 125, 145] transform (1.1) into a single unconstrained NLP

by using a weighted sum of the objective and constraints,

min
x
Lρ(x, γ) = f(x) +

m
∑

i=1

γi|hi(x)|
ρ +

k
∑

j=1

γm+jmax
ρ(0, gj(x)) (2.1)

where constant ρ > 0, and penalty γ = {γ1, γ2, · · · , γm+k} is fixed and chosen to be a

large positive value. Note that other forms of penalty formulations are also available in

the literature [31]. Because this formulation is simple to apply and can be solved by many

existing well-defined unconstrained optimization methods, it has been widely used [125, 123,

102, 213, 150].

Selecting a suitable value of γ, however, proves to be very difficult. If it is chosen to be

too large, the search terrain of Lρ(x, γ) may become too rugged to be searched by gradient-

based methods. If it is too small, the solution to unconstrained problem (2.1) may not be a

CLMcn to the original problem or even may not be a feasible solution.

Dynamic-penalty formulations address these difficulties by increasing penalties gradually.

They transform the original problem (1.1) into a sequence of unconstrained NLPs:

min
x
Lρ(x, λ(κ)) = f(x) +

m
∑

i=1

λi(κ)|hi(x)|
ρ +

k
∑

j=1

λm+j(κ)max
ρ(0, gj(x)) (2.2)

19

using an increasing sequence λ(κ), κ = 1, 2, · · · ,K, where 0 ≤ λ(κ) < λ(κ+1), and λ(K) = γ.

Here λ ≤ λ′ iff λi ≤ λ′i for every i = 1, 2, · · · , m+ k, and λ < λ′ iff λ ≤ λ′ and there exists

at least one i such that λi < λ′i.

Dynamic-penalty formulations avoid guessing the value of γ. Based on dynamic-penalty

formulation (2.2), the solution obtained at one stage of λ(k) is employed as a starting point

for the next stage of λ(k + 1). Therefore, the different stages are correlated, and the final

solution to (1.1) depends on every stage of (2.2) for a given λ(k).

Local Search. After transforming (1.1) into (2.1), one can solve it by many existing un-

constrained local-search algorithms [125, 145, 161, 128], such as gradient descent, conjugate

gradient, and Newton’s methods and their variants. Direction-set (or Powell’s) method [155]

can be viewed as an approximation to conjugate gradient-descent methods. Because a large

penalty γ is required, the search terrain of Lρ(x, γ) may be very rugged, and its uncon-

strained local minima may be very deep. Such a rugged search terrain causes the derivatives

of Lρ(x, γ) to change very rapidly from one point to another, making it difficult for gradient-

based methods to converge. It is also difficult for these methods to get out of deep local

minima after getting stuck in them.

Simplex methods [138, 155] utilize a set of sample points to form a simplex, and iterate

such a simplex by the reflection, expansion, and contraction operators until its volume is

sufficiently small. Everytime, the worst point in a simplex is replaced by a new and better

point. The rugged search terrain of Lρ(x, γ) and its associated deep local minima make

simplex methods shrink quickly into a simplex of a small volume and get trapped at local

minima before exploring a large search space.

Using dynamic-penalty formulation (2.2), if one increases λ slowly, the search is hope-

fully close to the solution before λ reaches a large value. Therefore, if one solves (2.2) at

20

each stage of λ(k) using gradient-based local-search methods [125, 145, 161, 128] or simplex

methods [138, 155], the rugged terrain at large λ may have little effect. However, this may

be computationally expensive [31], as more unconstrained problems need to be solved when

λ increases slowly.

As an alternative to dynamic-penalty formulation (2.2), barrier methods [69, 145] also

solve (1.1) by solving a sequence of unconstrained problems, each of which is controlled by

a barrier parameter to prevent a search from going out of feasible regions. Such methods,

however, require initial feasible points that may be as difficult as solving the original problem

when there are nonlinear constraints. They only work for inequality constraints but not

equality constraints. Interior point methods [214, 215, 141] extend the barrier methods by

keeping non-negative variables strictly positive while allowing the search outside feasible

regions. This gives them freedoms to start and proceed in infeasible regions. Since solutions

of both methods depend highly on starting points, they are usually used for local search.

Global Search. To solve a single unconstrained problem (2.1) or a sequence of uncon-

strained problems (2.2), many global-search methods employ some heuristics to escape from

local minima, identify good starting points, and use local-search methods to find local min-

ima. Among all the CLMcn found, the best one is reported as the search result. Hence,

global-search methods are generally built on top of local-search methods. There is no guar-

antee that such global-search approaches are able to find CGMcn. This is the major difference

between global search and global optimization as discussed in Section 1.3.

According to strategies utilized to escape from local minima, global-search approaches

can be either deterministic or stochastic. Deterministic global-search approaches consist of

generalized descent methods (including trajectory or tunneling methods [194, 57, 170, 182],

21

trace methods [197, 174] and local-minimum penalty methods [44, 75]) and learning-based

methods [38, 39].

Generalized descent methods improve over local-search methods by continuing their

search process whenever a local minimum is found. There are three approaches to achieve

this. First, trajectory or tunneling methods [194, 57, 170, 182] modify the differential equa-

tions that control the local-descent trajectory in order to escape from local minima. These

methods require the differentiability of the objective and constraint functions, and their main

disadvantage is the large number of function evaluations that are spent at unpromising re-

gions. Second, a trace-based method [197, 174] is a trajectory method that uses an external

force to pull a search out of local minima and picks up good starting points from a couple of

stages of global-search trajectories. This method is only applicable to continuous problems

with differentiability and may also be limited to a small search space. Third, local-minimum

penalty methods [44, 75] prevent multiple visits to the same local minima by adding to the

objective a penalty term on each local minimum found. Their major problem is that, as more

local minima are found, the modified objective function becomes more difficult to minimize

and may not lead to good solutions.

A learning-based approach [38, 39] learns some relationships expressed as evaluation

functions between starting points and solution quality of a local search method in order

to predict good starting points using these evaluation functions. The evaluation functions

derived must be simple (such as quadratic functions), although their simplicity limits their

ability to capture information about complicated search terrains and leads to poor starting

points.

Stochastic global-search approaches consist of random multistarts [171, 169, 96, 177],

adaptive multi-starts [34], tabu search [82, 25], guided local search (GLS) [195], ant colony

22

system [60, 59], population-based incremental learning [20] and its enhancements [36, 21, 22],

as well as Bayesian methods [134, 196, 135].

Multi-start [171, 169, 96, 177] restarts a search by randomly generating new starting

points after it gets trapped at local minima. This method may not find good solutions,

because good starting points may not be easy to generate when the problem size is large.

As the number of starting points is gradually increased, multi-start will approach the av-

erage quality of all the solutions, due to a consequence of the Central Limit Theorem [34].

Adaptive multi-start [34] explores a so-called globally convex structure, meaning that the

best local minima appear to be at the center of other local minima. This method, however,

is very problem specific and cannot be used for solving general optimization problems. Tabu

search [82, 25] employs a tabu list to prevent a local search from revisiting recently found

solutions and to avoid getting stuck at local minima. Because this heuristic is independent

of solution quality, it may waste a lot of time in unpromising regions.

Explicit exploitations of search-related information have recently been used for global

search. Guided local search (GLS) [195] extracts such information called solution features

from previously found local minima of (2.1) and uses it to guide the next local search by

adaptively updating the objective function of (2.1). Ant colony system [60, 59] uses positive

feedbacks from the behavior of a group of ants or search agents for the discovery of good

solutions. The major problems of GLS and ant colony system are two folds. First, they only

use information about previously found local minima to guide the next local search but do

not fully use information during the search process. Second, both methods are specific to

some problems, such as the traveling salesman problem (TSP), and may not work well for

general optimization problems. When there are nonlinear constraints, feasible regions may

be disconnected, and information about one local minimum may not be useful for finding

other local minima.

23

Population-based incremental learning (PBIL) [20] uses a population of solutions and

captures the dependencies between individual solution parameters and solution quality us-

ing a simple model of unconditional probabilities. This model is entirely rederived after each

generation. Mutual information maximization for input clustering (MIMIC) [36] extends

PBIL by utilizing pairwise dependencies between solution parameters through a model of

conditional probabilities. This pairwise probability model is further improved by more accu-

rate dependency trees [21], whose high computational efforts have been reduced by combining

optimizers with mutual information tree (COMIT) [22] and using fast search techniques like

hillclimbing. However, these methods are still computationally expensive and assume some

relationships between solution quality and solution parameters. Like GLS and ant colony

system, such an assumption may not be correct, because the feasible regions modeled by

nonlinear constraints may be disconnected, leading to little relevance among local minima

in different feasible regions.

Bayesian methods [134, 196, 135] model original problem variables by random variables,

construct stochastic functions, and minimize the expected deviation of the estimate from

actual global minima. These methods do not work well because most of the samples that

they collect randomly from the error surface are close to the average error value and are

inadequate to model the behavior at minimum points. They are also too expensive to be

applied to problems with more than twenty variables [185].

Global Optimization. To find CGMcn using static-penalty formulation (2.1), one re-

quires penalty γ to be large enough such that

Lρ(x
∗, γ) < Lρ(x, γ) ∀x ∈ X −Xopt and x∗ ∈ Xopt. (2.3)

In this case, an unconstrained global minimum of (2.1) over x is a CGMcn for (1.1).

Hence, it is sufficient to minimize (2.1), whose search space is the same as variable space

24

X. The requirement of such a large penalty γ, however, may cause the search terrain of

Lρ(x, γ) to be very rugged and its local minima to be very deep, making it very difficult to

find optimal solutions to (2.1) in practice.

Instead of directly minimizing (2.1) using a large penalty γ, dynamic-penalty methods

solve a sequence of unconstrained problems formulated as (2.2). They achieve asymptotic

convergence if, for every λ(κ), (2.2) is solved optimally [31, 125]. The requirement of ob-

taining an unconstrained global minimum of (2.2) in every stage is, however, difficult to

achieve in practice, given only finite amount of time in each stage. If the result in one stage

is not a global minimum, then the process cannot be guaranteed to find a CGMcn. Some

approximations that sacrifice global optimality of solutions have been developed, such as

two-phase evolutionary programming [117] and two-phase neural networks [126].

Many stochastic global optimization algorithms have been developed to solve (2.1). Pure

random search (PRS) randomly samples an entire search space X, whereas pure adaptive

search (PAS) [148] tries to sample uniformly regions that may have better solutions. Hesi-

tant adaptive search (HAS) [40] extends PAS by allowing the procedure to ‘hesitate’ before

improvement continues, instead of requiring every iteration to produce an improved solu-

tion. Controlled random search (CRS) [156, 4, 7] maintains a population of points and is a

generalization of the simplex method with randomization. Various versions of CRS differ in

their ways of generating random points and replacement policies in the population.

Although PRS, PAS, HAS, and CRS are able to achieve reachability of optimal solutions,

their major problems are two folds. First, it is impossible or very difficult for them to

identify promising regions when constraints are nonlinear, not to mention that it is difficult

to verify whether nonlinear constraints can be satisfied or not in a given region. In such a

situation, these methods spend a lot of time in sampling infeasible regions. Second, because

25

these methods focus too much on improving current solutions, they have small chances to

overcome rugged search terrains and deep local minima and get stuck at local minima easily.

Genetic algorithms (GAs) [85, 71, 127, 167, 140, 147, 94] maintain a population of points

in every generation and uses some genetic operators, such as cross-overs and mutations, to

generate new points. These old and new points compete for survival in the next generation

based on a fitness function modeled by (2.1). Variations of GAs include evolution strategies

(ES) [14, 15], evolutionary programming (EP) [70, 71] as well as differential evolution (DE)

[181]. By carefully choosing control parameters of cross-overs and mutations, GAs and

its variants are capable of reaching every point from every other point in a search space.

Therefore, these methods assure the reachability of optimal solutions, albeit asymptotic

convergence.

Some variants of penalty formulations have also been used in GAs to handle constraints.

The method of multi-level static-penalties [101] divides constraint violations into levels, each

of which has its own penalty values. This method is very problem-dependent and cannot

be generalized to other optimization problems. Generation-based dynamic-penalties [112],

annealing penalties [130] and adaptive penalties [27, 89, 151] can be viewed as approximate

implementations of dynamic-penalty formulation (2.2). Although they differ in their ways

of modifying the penalties, all of them adjust penalties at the end of each generation, in-

stead of when unconstrained problem (2.2) at previous penalty levels has been minimized.

Accordingly, these mehods cannot achieve asymptotic convergence.

Behavioral memory with a linear order of constraints [173] copes with constraints in some

predefined linear order. The major problem is that it is difficult to satisfy all the nonlinear

constraints simultaneously, in the sense that enforcing the satisfaction of one constraint may

cause other constraints to be violated. Furthermore, its results depend heavily on the order

of constraints. A co-evolutionary algorithm [146, 132] is based on a coevolutionary model

26

that utilizes two populations: one containing a set of constraints difficult to be satisfied

and the other composed of potential solutions to the problem. These two populations are

competitively evolved in such a way that fitter constraints are violated by less solutions

while fitter solutions satisfy more constraints. This method is good for solving constraint

satisfaction problems but may not work well for constrained NLPs, because it does not

consider the objective seriously. Besides, it calculates fitness based on historical records,

making it easy to get stuck in local minima.

All these methods have at least one of the following problems [129, 133, 130]: (a) difficulty

in finding feasible regions or in maintaining feasibility for nonlinear constraints, (b) requiring

specific domain knowledge or problem-dependent genetic operators, and (c) tendency to get

stuck at local minima. A series of software packages, GENOCOP I, II, and III [76], utilize

some of the above constraint handling techniques.

In contrast to GAs that generally accept points with reduced objective value of (2.1),

simulated annealing (SA) [?, 43, 190, 152, 90, 124, 1, 63] accepts with some probabilities

points that increase the objective. These probabilities are managed by a control parameter

called temperature that is set initially to be a large value and then reduced slowly.

Besides achieving reachability like other stochastic global optimization methods, SA can

achieve asymptotic convergence in solving unconstrained problem (2.1). This important

property is promising in practice and has led to the development of many variants of SA

with improved efficiency. These include varying the neighborhood during a search [221],

combining with simplex method [155, 120], sampling by an improved Hit-and-Run (IHR)

method [162, 223], incorporating SA with some local-search steps [56], aspiration-based SA

[5] with a self-regulatory mechanism, and direct search SA (DSA) [6].

However, SA cannot be applied to solve constrained optimization problems for the fol-

lowing reasons. In order to solve a constrained problem, one has to first transform it into

27

an unconstrained problem by a penalty formulation before applying SA. Large penalties re-

quired by (2.1) lead to rugged search terrains and deep local minima. In such a situation, the

search has to overcome some infeasible regions by large increases in the values of its penalty

functions, making it difficult for SA to move from one feasible region to another or escape

from local minima, especially at low temperatures.

2.1.3 Lagrangian Formulations for Continuous NLPs

Lagrangian methods [31, 125, 145, 69, 104] were traditionally developed to solve continuous

NLPs with differentiability. They utilize Lagrange multipliers to combine constraints with

the objective function to form a Lagrangian function and then gradually resolve the con-

straints through iterative updates in Lagrangian search space (the joint space of variable x

and Lagrange multipliers). Therefore, a local search in the Lagrangian space can also be

viewed as a global search in variable space x, because updating Lagrange multipliers may

bring the search out of local minima in x space.

Theory of Continuous Constrained Optimization Using Lagrange Multipliers.

Lagrangian methods generally work with equality constraints and transform inequality con-

straints into equality constraints using slack variables [31, 125] before solving it. For example,

inequality constraint gi(x) ≤ 0 can be transformed into either gi(x) + zi = 0 with zi ≥ 0 or

gi(x)+z
2
i = 0. The former is rarely used because it increases the number of variables and has

another form of inequality, whereas the latter does not have such drawbacks by eliminating

slack variable zi [31, 125]. Please also see Appendix A.1.1 for detail.

A general continuous equality-constrained NLP is defined as:

minimize f(x) x = (x1, x2, . . . , xn) is a vector (2.4)

subject to h(x) = 0 of continuous variables

28

cn

)

CLM

(CLMcnA

B C Points
second-order

conditions

Constrained Local minima

Saddlesatisfying the
first-order &

Figure 2.2: Relationship among solution sets of nonlinear continuous constrained NLPs.

where h(x) = [h1(x), . . . , hm(x)]T is a set of m equality constraints. Both f(x) and h(x) are

assumed to be differentiable.

Definition 2.1 The augmented Lagrangian function of (2.4) is defined as

L(x, λ) = f(x) + λTh(x) +
1

2
||h(x)||2 (2.5)

where λ is a vector of Lagrange multipliers, and ||h(x)||2 =
∑m

i=1 h
2
i (x).

L(x, λ) can be viewed a sum of objective f(x) and constraint h(x) weighted by Lagrange

multiplier λ. In contrast to penalty and other heuristic formulations whose search space is

X, a Lagrangian search works in the joint search space of S = X × Λ with variables x and

λ. Therefore, any point in search space S is a vector (x, λ).

Definition 2.2 Point (x∗, λ∗) is called a saddle point of L(x, λ), iff it satisfies L(x∗, λ) ≤

L(x∗, λ∗) ≤ L(x, λ∗) for all (x∗, λ) and all (x, λ∗) sufficiently close to (x∗, λ∗).

Definition 2.3 Point x is said to be a regular point [125] if gradient vectors [125]

∇h1(x), ∇h2(x), · · · , ∇hm(x)

at point x are linearly independent.

29

Theorem 2.1 First-order necessary conditions for continuous problems [125]. Let x be a

local extremum point of f(x) subject to h(x) = 0, and assume that x = (x1, x2, · · · , xn) is a

regular point. Then there exists λ ∈ Rm such that

∇xL(x, λ) = 0; ∇λL(x, λ) = 0. (2.6)

Additional second-order sufficient conditions are needed to ensure that the solution to (2.6)

is a CLMcn of the continuous equality-constrained NLP (2.4).

Figure 2.2 depicts the relationships among the three solution sets [216, 206]: the set

of CLMcn (A), the set of solutions satisfying the first-order necessary and second-order

sufficient conditions (B), and the set of saddle points (C). A-B is the set of CLMcn that are

either not differentiable or not regular points. If both the objective and constraint functions

are differentiable, then B ⊆ C; that is, the set of points satisfying the first-order necessary

and second-order sufficient conditions is a subset of the set of saddle points.

Global Search. Various Lagrangian methods aim to locate CLMcn based on solving the

first-order necessary conditions (2.6). First-order methods [125, 145, 69, 224, 46, 189] do

both gradient descents in the original-variable subspace and gradient ascents in the Lagrange-

multiplier subspace and can be written as a dynamic system that consists of a set of ordinary

differential equations (ODEs),

dx

dt
= −∇xL(x, λ) = −∇xf(x)− λT∇xh(x)

dλ

dt
= ∇λL(x, λ) = h(x) (2.7)

where t is an autonomous time variable. From a starting point (x(t = 0), λ(t = 0)), the

dynamic system in (2.7) evolves over time t by performing gradient descents in the original-

30

variable subspace of x and gradient ascents in the Lagrange-multiplier subspace of λ. When

the system reaches an equilibrium point where

dX

dt
= 0 and

dλ

dt
= 0, (2.8)

the first-order necessary conditions in (2.6) are satisfied. Because first-order methods only

use gradients instead of Hessian matrices, their rate of convergence is linear [31, 141].

One can also solve these first-order necessary conditions in (2.6) by using Newton’s meth-

ods or quasi-Newton methods [31, 125] in order to achieve quadratic or superlinear conver-

gence and by using starting points that were sufficiently close to some local minima. To have

global convergence from remote starting points, a variety of line-search techniques have been

developed [31, 141].

Sequential quadratic programming (SQP) [41, 79, 35, 178, 107] approximates solutions

to the first-order necessary conditions by solving a series of quadratic programming (QP)

subproblems, each involving the minimization of a quadratic approximation of the objective

function, subject to a linear approximation of the constraints. Such a QP problem is then

solved efficiently using Newton-like methods in order to have at least superlinear convergence

when near some local minima. To have global convergence from remote starting points,

trust-region techniques have been used [141]. Feasible SQP (FSQP) is a variation of SQP

in which all iterations are within feasible regions of relaxed constraints [143, 144]. It is very

useful if the objective function is undefined or difficult to compute outside feasible regions.

DONLP2 [58], FSQP [73], and LANCELOT [121] are examples of software packages that

implement the above search methods for solving continuous constrained NLPs.

The major problems of first-order methods, Newton-like methods and SQP methods are

two folds. First, they require the derivatives of both the objective and constraint functions,

restricting them to continuous NLPs with differentiability but not discrete and mixed-integer

31

NLPs. Second, they are not guaranteed to find a CGMcn even if they can find all the solutions

satisfying the first-order necessary and second-order sufficient conditions in Theorem 2.1,

because a CGMcn may be in set A-B in Figure 2.2.

Table 2.1 summarizes existing methods for solving continuous constrained NLPs based

on the four criteria for evaluating search methods.

32

Table 2.1: Summary of search methods for solving continuous constrained NLPs based

on the four criteria of optimality achieved, convergence property for stochastic methods

with global optimality, ability to handle nonlinear functions, and requirement on function

continuity and differentiability.

Problem Search Search Achieved Convergence Ability to Handle Require Cont’y

Formulations Strategies Methods Optimality(c1) Property(c2) Nonlinear F’s(c3) & Diff’y(c4)

Direct

Solutions

Local Search feasible direction local none no yes

Global

Search

repair methods local none no no

preserving feasibility local none no no

startegy oscillation local none no no

reject/discarding local none yes no

Global interval methods global none no yes

Optimization random search global reachability yes no

Penlaty

Formulations

Local

Search

gradient descent local none yes yes

conjugate gradient local none yes yes

Newton’s methods local none yes yes

direct set methods local none yes yes

simplex methods local none yes no

barrier/interior local none yes yes

Global

Search

trajectory methods local none yes yes

trace methods local none yes yes

local-minimum penalty local none yes yes

learning-based methods local none yes no

random multi-start local none yes no

adaptive multi-start local none yes no

Tabu search local none yes no

guided local search local none yes no

ant colony system local none yes no

incremental learning local none yes no

Bayesian methods local none yes no

Global

Optimization

random search global reachability yes no

pure adaptive search global reachability yes no

hesitant adaptive search global reachability yes no

controlled random search global reachability yes no

genetic algorithms global reachability yes no

simulated annealing global asymptotic yes no

Lagrangian

Formulations

Global

Search

first-order methods local none yes yes

Newton-like methods local none yes yes

SQP local none yes yes

FSQP local none yes yes

33

2.2 Search Methods for Discrete NLPs

In this section, we survey existing work for solving discrete constrained NLPs whose variables

take discrete values. In this case, derivatives are not available, causing many gradient-

or Hessian-based approaches to fail, even when the objective and constraint functions are

differentiable. Figure 2.3 classifies existing search methods for solving discrete constrained

NLPs.

2.2.1 Direct Solutions for Discrete NLPs

Global Search. Direct-solution methods try to directly solve (1.1) based either on reject-

ing/discarding [110, 14, 160, 154] infeasible points or on repairing [113, 142] infeasible points

into feasible ones. Both methods are not efficient in handling nonlinear constraints, because

the former wastes a lot of time in generating and rejecting infeasible points whereas the

latter is very problem-specific and has high computational cost to maintain feasibility.

Global Optimization. Direct solution can be either random search [104] or enumeration.

Enumerative methods [211] utilize branch-and-bound algorithms to find lower bounds using

linearized constraints. Lower bounds found this way are inaccurate when constraints are

highly nonlinear. Hence, branch-and-bound methods do not work well on general discrete

NLPs. Besides, such methods are computationally expensive and can only be used to solve

small problems.

2.2.2 Penalty Formulations for Discrete NLPs

Local Search. Penalty-based methods first transform constrained problem (1.1) into a

single unconstrained problem (2.1) and then solve it by greedy search or hillclimbing [157].

34

reject/discarding branch-and-bound random search

deterministic stochastic stochasticdeterministic deterministic deterministic stochastic stochastic

Bayesian methods

global search global optimization local search global search global optimization

hillclimbing

learning-based

simulated annealing

cutting-plane methods

deterministic

local search

programming
constrained 0-1penalty formulationdirect solution formulation Lagrangian formulation

global optimization

deterministic

Lagrangian
relaxation

global search

stochastic

first-order methods
(DLM)

repair methods

Search Methods for Solving Discrete Constrained NLPs

greedy search, random multi-start,

adaptive multi-start,

Tabu search,

guided local search,

ant colony system,

incremental learning,

random search,

pure adaptive search,

hesitant adaptive search,

controlled random search,

genetic algorithms,

linearization,

algebraic methods,

Figure 2.3: Classification of search methods for solving discrete constrained NLPs.

35

These methods, although popular, generally lead to CLMdn and do not guarantee constraint

satisfaction if penalties were not chosen properly.

Global Search. Penalty-based methods first transform problem (1.1) into either a single

unconstrained problem (2.1) or a sequence of unconstrained problems (2.2) and then solve

them using unconstrained global-search strategies. Stochastic global-search strategies include

random multi-start [171, 169, 96, 177], adaptive multi-start [34], learning-based approach

[38, 39], tabu search [82, 25], guided local search (GLS) [195], ant colony system [60, 59],

incremental learning [20, 36, 21, 22], and Bayesian methods [134, 196, 135]. Deterministic

global-search methods consist of learning-based approaches [38, 39]. Section 2.1.2 gives more

details on each of the above methods.

Global Optimization. Penalty-based global-optimization approaches solve unconstrained

problems (2.1) or (2.2) using pure random search (PRS), pure adaptive search (PAS) [148],

hesitant adaptive search (HAS) [40], controlled random search (CRS) [156, 4, 7], genetic

algorithm (GA) and its variants [85, 71, 127, 167, 140, 147, 94, 14, 15, 70, 181], or simulated

annealing (SA) [?, 43, 190, 152, 90, 124, 1, 63] and its improved implementations [221, 155,

120, 162, 223, 56, 5, 6]. See Section 2.1.2 for more details.

2.2.3 Nonlinear Constrained 0-1 Programming

This approach rewrites a discrete constrained NLP as a constrained 0-1 NLP before solving

it. There are three local-search methods based on nonlinear 0-1 integer programming [92].

First, a nonlinear problem can be linearized by replacing each distinct product of variables

by a new 0-1 variable and by adding some new constraints [83, 84]. This method only works

for simple nonlinear problems and cannot be applied to solve general nonlinear problems.

Second, algebraic methods [165] express the objective function as a polynomial function of

36

the variables and their complements. These methods can only solve problems whose con-

straints can all be removed. Last, cutting-plane methods [86, 87] further reduce a constrained

nonlinear 0-1 problem into a generalized covering problem. This approach is very limited

because many nonlinear 0-1 problems cannot be transformed this way. The major problem

with these methods is that they can only be applied to linear or simple nonlinear problems

and, therefore, are very limited in solving general discrete constrained NLPs.

2.2.4 Lagrangian Formulations for Discrete Constrained NLPs

Lagrangian Relaxation. Lagrangian relaxation [74, 26] is a class of algorithms for solving

linear programming (LP) problem based on Lagrangian Duality theory [184]. It reformulates

a linear integer optimization problem

z = minimizex Cx

subject to Gx ≤ b where x is an integer vector of variables (2.9)

x ≥ 0 and C and G are constant matrices

into a relaxed problem

L(λ) = minimizex (Cx+ λ(b−Gx))

subject to x ≥ 0. (2.10)

that can be solved efficiently for any given vector λ. Lagrangian relaxation aims to find an op-

timal primal solution given an optimal dual solution, or vice versa. Although some work [16]

addresses nonlinear NLPs, the approach does not work for general nonlinear functions.

Theory of Discrete Constrained Optimization Using Lagrange Multipliers. Here

we briefly overview a new theory of discrete constrained optimization using Lagrange mul-

tipliers [206, 216] developed in our research group. In contrast to Lagrangian methods that

37

work only for continuous constrained NLPs [31, 125], this new theory was derived for dis-

crete constrained NLPs and can be extended to solve both continuous and mixed-integer

NLPs. More importantly, its first-order necessary and sufficient conditions for CLMdn pro-

vide a strong theoretic foundation for developing global optimization methods for solving

constrained NLPs.

We first consider a special case of (1.1) with only equality constraints and then discuss

ways to handle inequality constraints. A general discrete equality-constrained NLP is:

minimize f(x) x = (x1, x2, . . . , xn) is a vector (2.11)

subject to h(x) = 0 of discrete variables.

Similar to that in the continuous case [125], the generalized discrete augmented Lagrangian

function [206] of (2.11) is defined as

Ld(x, λ) = f(x) + λTH(h(x)) +
1

2
||h(x)||2, (2.12)

where λ = {λ1, λ2, · · · , λm} is a set of Lagrange multipliers, H is a continuous transformation

function that satisfies H(x) = 0⇔ x = 0, and ||h(x)||2 =
∑m

i=1 h
2
i (x).

A Lagrangian search treats original variable x and Lagrange multiplier λ equally in

Ld(x, λ), and defines its search space to be S = X × Λ with both x and λ being variables.

Hence, any point in S can be represented by a vector (x, λ). This is quite different from

other penalty formulations whose search space is X.

We cannot use Ld to derive first-order necessary conditions similar to those in continuous

space [125] because there are no gradients or differentiation in discrete space. Without these

concepts, none of the calculus in continuous space is applicable in discrete space.

An understanding of gradients in continuous space shows that they define directions in

a small neighborhood in which function values decrease. To this end, we define in discrete

38

space a direction of maximum potential drop (DMPD) for Ld(x, λ) at point x for fixed λ as

a vector 1 that points from x to a neighbor of x ∈ Ndn(x) with the minimum Ld:

∆xLd(x, λ) = ~νx = y ⊖ x = (y1 − x1, . . . , yn − xn) (2.13)

where y ∈ Ndn(x) ∪ {x} and Ld(y, λ) = min
x′∈Ndn(x)

∪{x}

Ld(x
′, λ).

Here, ⊖ is the vector-subtraction operator for changing x in discrete space to one of its

“user-defined” neighborhood points Ndn(x). Intuitively, ~νx is a vector pointing from x to y,

the point with the minimum Ld value among all neighboring points of x, including x itself.

If x itself has the minimum Ld, then ~νx = ~0. It is important to emphasize that, with this

definition of discrete descent directions, DMPDs cannot be added and subtracted in discrete

space [216]. Consequently all the results derived in continuous space are not applicable here.

Based on DMPD, we define the concept of discrete saddle points [175, 216] in discrete space

similar to those in continuous space [31, 125].

Definition 2.4 Point (x∗, λ∗) is a discrete saddle point iff

Ld(x
∗, λ) ≤ Ld(x

∗, λ∗) ≤ Ld(x, λ
∗), (2.14)

for all x ∈ Ndn(x∗) and all possible λ.

Note that the first inequality in (2.14) holds only when all the constraints are satisfied,

which implies that it must be true for all λ. Further, (x∗, λ′) is also a saddle point if λ′ ≥ λ∗,

where λ′ ≥ λ∗ means that every component of λ′ is no less than the corresponding component

of λ∗. Both saddle points have the same x∗ but different λ’s.

The concept of saddle points is of great importance to discrete NLPs because, starting

from saddle points, we can derive first-order necessary and sufficient conditions for discrete

1To simplify our symbols, we represent points in x space without the explicit vector notation.

39

constrained NLPs. These conditions are stronger than their continuous counterparts since

they are necessary and sufficient (rather than necessary alone). Although these conditions

look similar to those for continuous problems, they were derived from the concept of saddle

points rather than from that of regular points [31, 125].

Theorem 2.2 First-order necessary and sufficient conditions for discrete CLMdn [206, 216].

In discrete space, if H(x) in (2.12) is a continuous function satisfying H(x) = 0 ⇔ x = 0

and is non-negative (or non-positive), then point x∗ is a CLMdn if and only if there exists

λ∗ such that

• (x∗, λ∗) is a saddle point, or

• (x∗, λ∗) satisfies the following first-order conditions:

∆xLd(x, λ) = 0 and h(x) = 0, (2.15)

where ∆x is the DMPD operator defined in (2.13) for discrete space.

Let A be the set of all CLMdn, B be the set of all solutions that satisfy the discrete-space

first-order necessary and sufficient conditions (2.15), and C be the set of all discrete saddle

points satisfying (2.14). The meaning of Theorem 2.2 is shown in Figure 2.4.

Theorem 2.2 is very important in the following aspects. First, it is sufficient to search for

saddle points in order to find CLMdn. Second, global optimization, aiming to find a CGMdn,

amounts to finding saddle points with the minimum objective value. In contrast, continuous-

space global optimization methods based on continuous first-order necessary and second-

order sufficient conditions are not guaranteed to find any CGMcn, because these CGMcn may

be outside the set of points that satisfy the first-order and second-order conditions. This

fact has been illustrated in Figure 2.2.

40

CLM

minima (CLM

dn

dn) in =

A B C

satisfying the

space
conditions

discrete-space

Constrained Local

discrete space
= discrete

points in

first-order

Saddle

Figure 2.4: Relationship among solution sets of nonlinear discrete constrained NLPs.

Handling Inequality Constraints. The results discussed so far apply only to discrete

NLPs with equality constraints (2.11). To handle (1.1) with inequality constraints, we need to

transform them into equivalent equality constraints. Here we choose to transform inequality

constraint gj(x) ≤ 0 into equality constraint by using a maximum function, max(0, gj(x)) =

0. Obviously, the new constraint is satisfied iff gj(x) ≤ 0. Hence, the discrete augmented

Lagrangian function for (1.1) is

Ld(x, λ, µ) = f(x) + λTH(h(x)) +
1

2
||h(x)||2

+
k

∑

i=1

µiH(max(0, gi(x))) +
1

2

k
∑

i=1

max2(0, gi(x)) (2.16)

where λ = {λ1, λ2, · · · , λm} and µ = {µ1, µ2, · · · , µk} are, respectively, Lagrange multipliers

for the equality and inequality constraints.

Discrete Lagrangian Methods (DLM) have been developed in [206, 175, 216] based on the

first-order necessary and sufficient conditions (2.15). Given a starting point (x0, λ0), DLM

iterates the following steps:

xk+1 = xk ⊕∆xLd(x
k, λk) (2.17)

λk+1 = λk + c1 ·H
(

h(xk)
)

, (2.18)

41

where ⊕ is the vector-addition operator, x ⊕ y = (x1 + y1, x2 + y2, . . . xn + yn), and c1 is a

constant controlling the speed of changing the Lagrange multipliers.

DLM is a local search method in discrete Lagrangian space, and may get stuck at

CLMdn or infeasible points. To escape from these traps, many global search strategies have

been proposed [219, 218, 216], such as global perturbation, multi-start, updating Lagrange

multipliers, and adding distance-related penalties. None of these global search strategies,

however, can guarantee the reachability of global solutions, let alone asymptotic conver-

gence.

In addition, both GAs and SA cannot be used to minimize Lagrangian function Ld(x, λ),

because Ld(x, λ) is not minimum at CGMdn, and because minimization of the Lagrangian

function cannot guarantee satisfaction of all the constraints.

Extensions to continuous and mixed-integer NLPs. Theorem 2.2 has been extended

to apply to continuous and mixed-integer NLPs [217] if all continuous variables are repre-

sented in floating-point types (single or double precision in digital computers, for example).

Such a representation can be viewed as a kind of discretization to the continuous variables.

Here we summarize the main results in [217].

Let c∗ be the CGMcn to Porg, the original continuous constrained NLP, and d∗ be the

CGMdn to Psub, the corresponding NLP with its continuous variables represented by floating-

point numbers, whose interval size is sgrid,j. Let ℓf , ℓhi
be the Lipschitz constants for objective

function f(x) and constraint function hi(x), such that for any two points x, y ∈ X, |f(x)−

f(y)| ≤ ℓf · ‖x − y‖, |hi(x) − hi(y)| ≤ ℓhi
· ‖x − y‖, i = 1, . . . , m. We also define minimum

Lipschitz constants ℓmin
f , ℓmin

hi
, i = 1, 2, . . . , m as the minima of all possible Lipschitz constants

ℓf and ℓhi
, i = 1, 2, . . . , m, respectively. The following theorem shows the worst-case bound

between f(c∗) and f(d∗).

42

Theorem 2.3 Worst-case error on objective function due to floating-point representation of

continuous variables [217]. Assume the following for Porg and Psub.

1. ℓmin
f , and ℓmin

hi
, i = 1, . . . , m, are finite.

2. Constraint hi(x), i = 1, 2, . . . , m, is considered to be satisfied if |hi(x)| ≤ Φ, where Φ

is a pre-specified maximum violation tolerance.

3. The interval sizes for all dimensions satisfy

G =
1

2

√

√

√

√

n
∑

j=1

s2
grid,j ≤

Φ

maxm
i=1ℓ

min
hi

. (2.19)

Then the error in objective function f due to a floating-point representation of d∗ is:

f(d∗)− f(c∗) ≤ ℓmin
f ·G. (2.20)

Theorem 2.3 reveals that solving continuous or mixed-integer constrained NLPs Porg by

digital computers is equivalent to solving discrete constrained NLP Psub mapped on a finite,

discrete space represented by floating-point numbers. Therefore, continuous and mixed-

integer NLPs can be solved in a similar way as discrete NLPs if their continuous variables

are first discretized to the precision of computers.

Table 2.2 summarizes existing methods for solving discrete constrained NLPs based on

the four criteria that we use to evaluate search methods.

43

Table 2.2: Summary of search methods for solving discrete constrained NLPs based on the

four criteria of achieved optimality, convergence property for stochastic methods with global

optimality, ability to handle nonlinear functions, and requirement on function continuity and

differentiability.

Problem Search Search Achieved Convergence Ability to Handle Require Cont’y

Formulations Strategies Methods Optimality(c1) Property(c2) Nonlinear F’s(c3) & Diff’y(c4)

Direct

Solutions

Global repair methods local none no no

Search reject/discarding local none yes no

Global branch-and-bound global none no no

Optimization random search global reachability yes no

Penlaty

Formulations

Local Search greedy/hillclimbing local none yes no

Global

Search

learning-based methods local none yes no

random multi-start local none yes no

adaptive multi-start local none yes no

Tabu search local none yes no

guided local search local none yes no

ant colony system local none yes no

incremental learning local none yes no

Bayesian methods local none yes no

Global

Optimization

random search global reachability yes no

pure adaptive search global reachability yes no

hesitant adaptive search global reachability yes no

controlled random search global reachability yes no

genetic algorithms global reachability yes no

simulated annealing global asymptotic yes no

Constrained 0-1

Programming

Local

Search

linearization local none no no

algebraic methods local none no no

cutting-plane methods local none no no

Lagrangian Global Search DLM local none yes no

Formulations Global Optimization Lagrangian relaxation global none no no

44

2.3 Search Methods for Constrained MINLPs

In this section, we survey previous work for solving constrained MINLPs, where some vari-

ables take discrete values while others take continuous values. In such a situation, derivatives

are not available, rendering many gradient or Hessian-matrix based methods not applica-

ble, even when the objective and constraint functions are differentiable. Figure 2.5 shows a

classification of search methods for solving constrained MINLPs.

2.3.1 Direct Solutions for Constrained MINLPs

Global Search. Many global search methods surveyed for solving continuous constrained

NLPs can be extended to solve constrained MINLPs. Reject/discarding [110, 14, 160, 154]

or repair methods [113, 142] iteratively sample a search space and either discard infeasible

points or transform them into feasible points. Different sampling strategies may be used

for continuous and discrete variables. Their major problems are their inability to cope with

nonlinear constraints and their high computational costs.

2.3.2 Penalty Formulations for Constarined MINLPs

Local Search. The most popular way to solve MINLPs is to first transform them into

unconstrained problems and then solve them by greedy search or hillclimbing [157]. This

approach requires different sampling strategies to be used for continuous and discrete vari-

ables. Convergence to CLMmn may not be guaranteed if one does not select or adapt

penalties correctly.

Global Search. Penalty-based methods, surveyed in Section 2.1.2, first transform (1.1)

into either a single unconstrained problem (2.1) or a sequence of unconstrained problems

(2.2), and then solve them using unconstrained global-search strategies, such as random

45

deterministic deterministic stochastic stochastic

Bayesian methods

local search global search global optimization

hillclimbing

learning-based

simulated annealing

penalty formulation

global search

stochastic

first-order methods
(DLM)

local search

deterministic

GCD

Lagrangian formulation

global optimization

random search

stochastic

reject/discarding

deterministic stochastic

global search

repair methods

direct solution formulation

Search Methods for Solving Constrained MINLPs

greedy search, random multi-start,

adaptive multi-start,

Tabu search,

guided local search,

ant colony system,

incremental learning,

random search,

pure adaptive search,

hesitant adaptive search,

controlled random search,

genetic algorithms,

GBD,

OA,

Figure 2.5: Classification of search methods for solving constrained MINLPs.

46

multi-start [171, 169, 96, 177], adaptive multi-start [34], learning-based approach [38, 39],

tabu search [82, 25], guided local search (GLS) [195], ant colony system [60, 59], incremen-

tal learning [20, 36, 21, 22], Bayesian methods [134, 196, 135], as well as learning-based

approaches [38, 39].

Global Optimization. Existing global-optimization approaches for solving constrained

MINLPs are based on penalty formulations, which transform them into unconstrained prob-

lems using static-penalty (2.1) or dynamic-penalty (2.2) formulations. Then the uncon-

strained problems can be solved by pure random search (PRS), pure adaptive search (PAS)

[148], hesitant adaptive search (HAS) [40], controlled random search (CRS) [156, 4, 7], ge-

netic algorithms with non-uniform mutations [127], or simulated annealing (SA) [1, 63] and

its variants [221, 155, 162, 223, 56, 5, 6]. See Section 2.1.2 for more details.

All these methods except SA can only guarantee the reachability of global minima by

choosing proper sample distributions and neighborhoods. As mentioned before, combining

penalty formulations and SA is not efficient. First, choosing suitable penalties prove to be

difficult. Second, rugged search terrains and deep local minima, caused by large penalties,

prevent SA from traversing large search spaces and trap it in local minima, especially at low

temperature. Such traps seriously degrade the performance of SA.

2.3.3 Lagrangian Formulations for Constrained MINLPs

Local Search Using Function Convexity. This approach generally formulates a con-

strained MINLP in a Lagrangian formulation and then decomposes it into subproblems in

such a way that, after fixing a subset of the variables, the resulting subproblem is convex

and can be solved easily. There are three methods to implement this approach.

47

Generalized Benders decomposition (GBD) [67, 77, 29] computes at each iteration an

upper bound on the solution sought by solving a primal problem and a lower bound on

a master problem. The primal problem corresponds to the original problem with fixed

discrete variables, while the master problem is derived through nonlinear duality theory.

The sequence of upper (resp. lower) bounds have been shown to be non-increasing (resp.

nondecreasing) and converge in a finite number of iterations. Its major disadvantage is that

it is only applicable to a class of MINLPs with restrictions on their variable space, such as a

nonempty and convex continuous subspace with convex objective and constraint functions.

Outer approximation (OA) [62, 61] solves constrained MINLPs by a sequence of approx-

imations where each approximated subproblem contains the original feasible region. OA is

similar to GBD except that the master problem is formulated based on primal information

and outer linearization. This method requires the continuous subspace to be a nonempty,

compact, and convex set, and the objective and constraint functions to be convex.

Generalized cross decomposition (GCD) [67, 99, 100, 166] iteratively alternates between

two phases: phase 1 solving the primal and dual subproblems and phase 2 solving the master

problem. Similar to OA and GBD, GCD also requires the objective and constraint functions

to be proper convex functions.

The major problems of these convexity-based methods are that they are only applicable

to specific classes of constrained MINLPs whose convex subproblems can be constructed and

solved. Accordingly, their application to solve general constrained MINLPs is very restricted.

Even in cases that convex subproblems can be constructed, they are prohibitively expensive

because the number of convex subproblems may be too large to be enumerated.

Global Search. Discrete Lagrangian methods (DLM) [206, 175, 216], developed for solving

discrete constrained NLPs based on the theory of discrete constrained optimization using

48

Table 2.3: Summary of search methods for solving constrained MINLPs based on the

four criteria of achieved optimality, convergence property for stochastic methods with global

optimality, ability to handle nonlinear functions, and requirement on function continuity and

differentiability.

Problem Search Search Achieved Convergence Ability to Handle Require Cont’y

Formulations Strategies Methods Optimality(c1) Property(c2) Nonlinear F’s(c3) & Diff’y(c4)

Direct

Solutions

Global repair methods local none no no

Search reject/discarding local none yes no

Global Optimization random search global reachability yes no

Penlaty

Formulations

Local Search greedy/hillclimbing local none yes no

Global

Search

learning-based methods local none yes no

random multi-start local none yes no

adaptive multi-start local none yes no

Tabu search local none yes no

guided local search local none yes no

ant colony system local none yes no

incremental learning local none yes no

Bayesian methods local none yes no

Global

Optimization

random search global reachability yes no

pure adaptive search global reachability yes no

hesitant adaptive search global reachability yes no

controlled random search global reachability yes no

genetic algorithms global reachability yes no

simulated annealing global asymptotic yes no

Lagrangian

Formulations

Local

Search

GBD local none no no

OA local none no no

GCD local none no no

Global Search DLM local none yes no

Lagrange multipliers, has been extended in [217] to solve constrained MINLPs. To escape

from local minima, many global search strategies have been proposed [219, 218, 216], such

as global perturbation, multi-start, ways to update Lagrange multipliers, and additional

distance-related penalties. Such strategies, however, do not guarantee that a CGMmn will

be found.

Table 2.3 summarizes existing methods for solving constrained MINLPs based on the

four criteria described earlier to evaluate search methods.

49

2.4 Summary

In this chapter, we have surveyed existing work for solving continuous, discrete, and mixed-

integer constrained NLPs. We have organized these methods based on the hierarchy of

problem formulations they use, search strategies (local search, global search, and global

optimization), and their optimality and requirements.

To achieve the goal of this thesis and to have asymptotic convergence in solving con-

strained NLPs, we propose to transform (1.1) into an unconstrained NLP using penalty

formulations and solve it using simulated annealing (SA), an unconstrained global optimiza-

tion algorithm that achieves asymptotic convergence in solving unconstrained NLPs.

For static-penalty formulation (2.1), it proves to be difficult to choose suitable penalty γ.

If the penalty is too large, SA tends to find feasible solutions rather than optimal solutions.

If the penalty is too small, unconstrained local or global minima may not be a CLM or

CGM to (1.1), and may even not be a feasible point. For dynamic-penalty formulation

(2.2), unconstrained problem (2.2) at every stage of λ(k) has to be solved optimally [31,

125] in order to have asymptotic convergence. Hence, a sequence of unconstrained global

optimization is required. This is difficult to achieve in practice, given only a finite amount of

time in each stage. If the result in one stage is not a global minimum, then the process cannot

be guaranteed to find a CGM. Note that SA cannot be applied to search in Lagrangian space,

because minimizing (2.12) does not guarantee constraint satisfaction.

In the next chapter, we develop a stochastic global-optimization algorithm, called con-

strained simulated annealing (CSA), that achieves asymptotic convergence for solving con-

strained NLPs. In contrast to using SA in penalty formulations, CSA searches in a La-

grangian space, carries out a single global optimization process, and does not depend on

initial values of its penalty.

50

Chapter 3

Discrete Constrained Optimization:

Constrained SA

In this chapter, we develop constrained simulated annealing (CSA), a global optimization

algorithm that converges to CGMdn with probability one, for solving discrete constrained

NLPs. The algorithm is based on the necessary and sufficient conditions for CLMdn (The-

orem 2.2) in the theory of discrete constrained optimization using Lagrange multipliers (see

Section 2.2.4). To find CGMdn, i.e., discrete saddle points with the minimum objective

value, we model CSA by a finite inhomogeneous Markov chain that carries out in an anneal-

ing fashion both probabilistic descents of the discrete augmented Lagrangian function in the

variable space of x and probabilistic ascents in the Lagrange-multiplier space of λ. Then we

prove the asymptotic convergence of the algorithm to a CGMdn with probability one. By

achieving asymptotic convergence, CSA is one of the major developments in nonlinear con-

strained global optimization today and complements simulated annealing (SA) in nonlinear

unconstrained global optimization.

It is following, we first outline the differences between traditional SA [1, 118] and CSA

developed in this thesis.

51

• Targeted problems: SA was developed for solving unconstrained NLPs, whereas CSA is

for solving constrained NLPs. In addition to minimizing objective function f(x), CSA

has to find solutions that satisfy a set of nonlinear constraints h(x) = 0 and g(x) ≤ 0.

Therefore, SA can be viewed as a special case of CSA in the absence of constraints.

Here we assume that f(x) is lower bounded, that g(x) and h(x) need not be bounded,

and that variable space X is bounded.

• Search space: SA searches in variable space X, whereas CSA searches in a joint space of

variable x and Lagrange multiplier λ. SA looks for solution points with the minimum

objective value, whereas CSA looks for saddle points in its search space.

• Search procedure: SA does probabilistic descents in variable x space with acceptance

probabilities governed by a temperature, while CSA does both probabilistic ascents in

the λ subspace and probabilistic descents in the x subspace. Therefore, SA is explicit

in minimizing objective function f(x), whereas CSA is implicit in minimizing a virtual

energy according to the GSA framework [186, 187] instead of L(x, λ), since minimizing

L(x, λ) cannot satisfy all the constraints.

• Converged solutions: SA has asymptotic convergence to an unconstrained global mini-

mum [1], while CSA has asymptotic convergence to a CGMdn [202].

3.1 Theory of Simulated Annealing

In this section, we briefly overview simulated annealing (SA) and its theory [1, 90, ?] for

solving discrete unconstrained NLPs or combinatorial optimization problems. A general un-

constrained NLP is defined as

minimizei f(i) for i ∈ S (3.1)

52

1. procedure SA

2. set starting point i = i0;

3. set starting temperature T = T 0 and cooling rate 0 < α < 1;

4. set NT (number of trials per temperature);

5. while stopping condition is not satisfied do

6. for k ← 1 to NT do

7. generate trial point i′ from Si using q(i, i′);

8. accept i′ with probability AT (i, i′)

9. end for

10. reduce temperature by T ←− α× T ;

11. end while

12. end procedure

Figure 3.1: Simulated annealing (SA) algorithm.

where f(i) is an objective function to be minimized, and S is the solution space denoting

the finite set of all possible solutions.

A solution iopt is called a global minimum if it satisfies f(iopt) ≤ f(i), for all i ∈ S. Let Sopt

be the set of all the global minima and fopt = f(iopt) be their objective value. Neighborhood

Si of solution i is the set of discrete points j satisfying j ∈ Si ⇔ i ∈ Sj.

Figure 3.1 shows the procedure of SA for solving unconstrained problem (3.1). q(i, i′),

the generation probability, is defined as q(i, i′) = 1/|Si| for all i′ ∈ Si, and AT (i, i′), the

acceptance probability of accepting solution point i′, is defined by:

AT (i, i′) = exp

(

−
(f(i′)− f(i))+

T

)

, (3.2)

where a+ = a if a > 0, and a+ = 0 otherwise.

53

Accordingly, SA works as follows. Given current solution i, SA first generates trial point

i′. If f(i′) < f(i), i′ is accepted as a starting point for the next iteration; otherwise, solution

i′ is accepted with probability exp
(

−f(i′)−f(i)
T

)

. The worse the i′ is, the smaller is the

probability that i′ is accepted for the next iteration. The above procedure is repeated NT

times until temperature T is reduced. Theoretically, if T is reduced sufficiently slowly in

logarithmic scale, then SA will converge asymptotically to an optimal solution iopt ∈ Sopt

[1, 90, ?] (see below). In practice, a geometric cooling schedule, T ← αT , is generally utilized

to have SA settle down at some solution i∗ in a finite amount of time.

SA can be modeled by an inhomogeneous Markov chain that consists of a sequence

of homogeneous Markov chains of finite length, each at a specific temperature in a given

temperature schedule. According to generation probability q(i, i′) and acceptance probability

AT (i, i′), the one-step transition probability of the Markov chain is:

PT (i, i′) =

q(i, i′)AT (i, i′) if i′ ∈ Si

1−
∑

j∈Si,j 6=i PT (i, j) if i′ = i

0 otherwise,

(3.3)

and the corresponding transition matrix is PT = [PT (i, i′)].

It is assumed that, by choosing neighborhood Si properly, the Markov chain is irreducible

[1, 90], meaning that for each pair of solutions i and j, there is a positive probability of

reaching j from i in a finite number of steps.

Consider the sequence of temperatures {Tk, k = 0, 1, 2, · · · }, where Tk > Tk+1 and

limk→∞ Tk = 0, and choose NT to be the maximum of the minimum number of steps re-

quired to reach an iopt from every j ∈ S. Since the Markov is irreducible and search space

S is finite, such NT always exists. The asymptotic convergence theorem of SA is stated as

follows [1, 90].

54

Theorem 3.1 The Markov chain modeling SA converges asymptotically to a global mini-

mum of Sopt [1, 90] if the sequence of temperatures satisfies:

Tk ≥
NT△

loge(k + 1)
, (3.4)

where △ = maxi,j∈S{f(j)− f(i)|j ∈ Si}.

The proof of this theorem is based on so-called local balance equation [1], meaning that:

πT (i)PT (i, i′) = πT (i′)PT (i′, i), (3.5)

where πT (i) is the stationary probability of state i at temperature T .

Although SA works well for solving unconstrained NLPs, it cannot be used directly to

solve constrained NLPs that have a set of constraints to be satisfied, in addition to minimizing

the objective. The widely used strategy is to transform constrained NLP (1.1) into an

unconstrained NLP using penalty formulations as described in Section 2.1.2. For static-

penalty formulation (2.1), it is very difficult to choose suitable penalty γ: if the penalty is

too large, SA tends to find feasible solutions rather than optimal solutions. For dynamic-

penalty formulation (2.2), unconstrained problem (2.2) at every stage of λ(k) has to be solved

optimally [31, 125] in order to have asymptotic convergence. However, this requirement is

difficult to achieve in practice, given only a finite amount of time in each stage. If the

result in one stage is not a global minimum, then the process cannot be guaranteed to find

a CGMdn. Therefore, applying SA to a dynamic-penalty formulation does not always lead

to asymptotic convergence. Besides, SA cannot be used to search in a Lagrangian space,

because minimizing Lagrangian function (2.12) does not guarantee constraint satisfaction.

In the next section, we develop a novel stochastic global optimization algorithm, called

constrained simulated annealing (CSA), that achieves asymptotic convergence for solving

55

discrete constrained NLPs. The method searchs in a discrete Lagrangian space and aims

to find a discrete saddle point with the minimum objective value. CSA carries out a single

global optimization process and does not need to guess a penalty for each constraint.

3.2 Constrained Simulated Annealing Algorithm

The goal of constrained simulated annealing (CSA) [202] is to find a saddle point with the

minimum objective value, i.e., a CGMdn based on Theorem 2.2, assuming H is the absolute

function. Therefore, CSA works in a discrete Lagrangian space, the joint space S = X×Λ of

both x and λ variables, according to theory of discrete Lagrange multiplier in Section 2.2.4.

Without loss of generality, we discuss CSA for solving discrete equality-constrained problem

(2.11) with the following augmented Lagrangian function:

L(x, λ) = f(x) + λT |h(x)|+
1

2
||h(x)||2, (3.6)

since inequality constraints can always be transformed into equality constraints and incor-

porated into Lagrangian function (2.16).

Figure 3.2 describes the procedure of CSA. CSA begins from starting point x = (x, λ)

(Line 2), where x can be either user-provided or randomly generated and λ = 0. Initial

temperature T 0 is set (Line 3) to be so large that allows almost all trial points x′ to be

accepted. Line 4 sets NT , the number of iterations at each temperature. CSA stops (Line

5) when the current point x is not changed, i.e., no other new point x′ is accepted, for a

couple of successive temperatures, or when the current temperature T is small enough (e.g.

T < 10−6).

Line 7 generates a random trial point x′ in neighborhoodN (x) of current point x = (x, λ)

in search space S = X × Λ using generation probability q(x,x′), where N (x), N 1
dn(x),

56

1. procedure CSA

2. set starting point x = (x, λ);

3. set starting temperature T = T 0 and cooling rate 0 < α < 1;

4. set NT (number of trials per temperature);

5. while stopping condition is not satisfied do

6. for k ← 1 to NT do

7. generate trial point x′ from N (x) using q(x,x′);

8. accept x′ with probability AT (x,x′)

9. end for

10. reduce temperature by T ←− α× T ;

11. end while

12. end procedure

Figure 3.2: CSA: the constrained simulated annealing algorithm.

neighborhood of x at x, and N 2
cn(λ), neighborhood of λ at x, are defined as follows:

N (x) = {(x′, λ) ∈ S where x′ ∈ N 1
dn(x)}

⋃

{(x, λ′) ∈ S where λ′ ∈ N 2
cn(λ)} (3.7)

N 1
dn(x) = {x′| neighboring points of x such that x′ ∈ N 1

dn(x)⇐⇒ x ∈ N 1
dn(x′)}

N 2
cn(λ) = {µ ∈ Λ | µ < λ and µi = λi if hi(x) = 0}

⋃

{µ ∈ Λ | µ > λ and µi = λi if hi(x) = 0}, (3.8)

where relation “<” on two vectors has been defined earlier. Neighborhood N 2
cn(λ) prevents

λi from being changed when the corresponding constraint is satisfied, i.e., hi(x) = 0.

An example of N 2
cn(λ) is that µ differs from λ in one variable (e.g. µi 6= λi, and µj = λj

for j 6= i), and {µi| i 6= j} is a set of values, some of which are larger than λi and others are

smaller. Hence, point x = (x, λ) has two kinds of neighbors: (x′, λ) or (x, λ′). Trial point

(x′, λ) is a neighboring point to (x, λ) if x′ is a neighboring point to x in variable space X, and

57

(x, λ′) is a neighboring point to (x, λ) if λ′ is a neighboring point to λ in Lagrange-multiplier

space Λ and h(x) 6= 0.

Note that CSA does not try to satisfy the first-order necessary and sufficient conditions

(2.15) of CLMdn, because CSA is unable to compute DMPD defined by (2.13) when the

number of neighboring points is large. Hence, if CSA were stopped in finite time, it would

only stop at a feasible point that may not be a saddle point.

q(x,x′), the generation probability from x to x′ ∈ N (x), satisfies:

q(x,x′) > 0 and
∑

x′∈N (x)

q(x,x′) = 1. (3.9)

The choice of q(x,x′) is arbitrary as long as it satisfies (3.9). In our illustrative example 3.1

below, we use a uniform probability over N (x), independent of T ,

q(x,x′) = 1/|N (x)|. (3.10)

Experimentally, we have found better performance using a nonuniform probability over N (x)

in which trial point (x′, λ) is generated more frequently than trial point (x, λ′). For this

reason, we use a nonuniform distribution in our experiments.

We accept x′ (Line 8) according to acceptance probability AT (x,x′), which consists of

two components, depending on whether x or λ is changed in x′:

AT (x,x′) =

exp
(

− (L(x′)−L(x))+

T

)

if x′ = (x′, λ)

exp
(

− (L(x)−L(x′))+

T

)

if x′ = (x, λ′),

(3.11)

where (a)+ = a if a > 0, and (a)+ = 0 otherwise for all a ∈ R.

AT (x,x′) differs from (3.3) used in SA [1, 118] that only has the first part of (3.11). The

goal of SA is to look for global minima in the x subspace. Hence, it only needs probabilistic

descents in that space and does not need the λ subspace.

58

In contrast, our goal here is to look for saddle points in the joint space X×Λ of x and λ,

which exist at local minima in the x subspace and at local maxima in the λ subspace. To this

end, the first part of (3.11) carries out probabilistic descents of L(x, λ) with respect to x for

fixed λ. That is, when we generate a new point x′ given fixed λ, we accept it with probability

one when δx = L(x′, λ)−L(x, λ) is negative; otherwise, we accept it with probability e−δx/T .

This is performing exactly descents while allowing occasional ascents in the x subspace, as

done in conventional SA [1, 118].

However, descents in the x subspace alone only lead to local/global minima of the La-

grangian function without satisfying the constraints. To this end, the second part of (3.11)

carries out probabilistic ascents of L(x, λ) with respect to λ for fixed x in order to increase the

penalties of violated constraints and to force them into satisfaction. Hence, when we generate

a new point λ′ given fixed x, we accept it with probability one when δλ = L(x, λ′)−L(x, λ) is

positive; otherwise, we accept it with probability e+δλ/T . This is performing exactly ascents

in the λ subspace while allowing occasional descents (and reducing the ruggedness of the

terrains). Note that when a constraint is satisfied, the corresponding Lagrange multiplier

will not be changed according to (3.8).

Although our algorithm only changes either the x or λ variable one at a time, CSA can

be implemented with simultaneous changes of x and λ. In this case, we can decompose

the aggregate change from (x, λ) to (x′, λ′) into two steps: (a) (x, λ) −→ (x′, λ) and (b)

(x′, λ) −→ (x′, λ′), each of which fits into the CSA procedure.

Finally, Line 10 reduces T using the following geometric cooling schedule after looping

NT times at a given T :

T ←− α× T, (3.12)

59

where α is a constant smaller than 1 (typically between 0.5 and 0.99). Theoretically, if T is

reduced slow enough, then CSA will converge to a CGMdn of (1.1) with probability one as

T approaches 0 (see the next section).

Acceptance probability (3.11) enables any trial point to be accepted with high prob-

abilities at high T , allowing the search to traverse a large space and overcome infeasible

regions. As T is gradually reduced, the acceptance probability decreases, and at very low

temperatures the algorithm behaves like a local search.

3.3 Asymptotic Convergence of CSA

In this section, we prove the asymptotic convergence of CSA to a CGMdn by modeling

the process as an inhomogeneous Markov chain, showing that the Markov chain is strongly

ergodic, proving that the Markov chain minimizes an implicit virtual energy based on the

framework of generalized SA (GSA) [186, 187], and showing that the virtual energy is at its

minimum at any CGMdn. We also illustrate the results by a simple example.

As discussed in Section 2.2.4, if (x∗, λ∗) is a discrete saddle point, then (x∗, λ′) is also a

saddle point for λ′ ≥ λ∗. This means that the exact value of λ′ is not important as long as

it is large enough to make (x∗, λ′) a saddle point. Therefore, without loss of generality, we

assume that Lagrange multiplier λ takes discrete values with the maximum value γ larger

than or equal to λ∗ for all CLMdn x∗. Because variable subspace X is finite for discrete

problems, γ always exists and is finite. Lagrange-multiplier subspace Λ is then the finite set

of all possible combinations of discrete λ, and the search space of CSA S = X × Λ is finite.

60

3.3.1 Inhomogeneous Markov Chain

CSA can be modeled by an inhomogeneous Markov chain consisting of a sequence of homo-

geneous Markov chains of finite length, each at a specific temperature in a given temperature

schedule. According to generation probability q(x,x′) and acceptance probability AT (x,x′),

the one-step transition probability of the Markov chain is similar to (3.3):

PT (x,x′) =

q(x,x′)AT (x,x′) if x′ ∈ N (x)

1−
∑

y∈N (x) PT (x,y) if x′ = x

0 otherwise,

(3.13)

and the corresponding transition matrix is PT = [PT (x,x′)].

Example 3.1 The following simple example illustrates the Markov chain for a problem

that minimizes a quadratic objective with one quadratic constraint:

minimize f(x) = −x2 (3.14)

subject to h(x) = |(x− 0.6)(x− 1.0)| = 0,

where x ∈ X = {0.5, 0.6, · · · , 1.2} and λ ∈ Λ = {2, 3, 4, 5, 6} are both discrete, and γ, the

maximum Lagrange multiplier, is 6. The state space is, therefore, S = {(x, λ)| x ∈ X, λ ∈ Λ},

and the total number of states is |S| = 8× 5 = 40.

In the Markov chain, we define the neighborhoods of x and λ as follows:

N 1
dn(x) = {x− 1, x+ 1| 0.6 ≤ x ≤ 1.1} ∪ {x+ 1| x = 0.5} ∪ {x− 1| x = 1.2}

N 2
cn(λ) = {λ− 1, λ+ 1| 3 ≤ λ ≤ 5, x 6= 0.6, and x 6= 1.0} ∪ {λ− 1| λ = 6,

x 6= 0.6, and x 6= 1.0} ∪ {λ+ 1| λ = 2, x 6= 0.6, and x 6= 1.0}. (3.15)

Given N 1
dn(x) and N 2

cn(λ), N (x) is defined as in (3.7).

61

x=0.6 x=0.7 x=0.8 x=0.9 x=1.0 x=1.1 x=1.2x=0.5

λ = 6

λ = 5

λ = 4

λ = 3

λ = 2

L(x,λ)

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 2
3

4
5

6-1.5

-1

-0.5

0

0.5

1

x

λ

L(x,λ)

a) State-space with non-zero transition

probabilities

b) Lagrangian function value at each

state

Figure 3.3: The Markov chain modeling the Lagrangian space of (3.14) and the correspond-

ing Lagrangian-function values. The four saddle points are shaded in a).

Figure 3.3 shows the Markov chain constructed based on N (x). In the chain, node

x = (x, λ) represents a point in S, and an arrow from x to x′ ∈ N (x) (where x′ = (x′, λ) or

(x, λ′)) means that there is a one-step transition from x to x′ with PT (x,x′) > 0. For x = 0.6

and x = 1.0, there is no transition among the λ’s because the constraints are satisfied at

these points according to (3.8).

Two saddle points at (0.6, 5) and (0.6, 6) in this Markov chain corresponds to CLMdn x =

0.6, while the other two saddle points at (1.0, 5) and (1.0, 6) correspond to CLMdn x = 1.0.

Since h(x) is non-negative, each saddle point has an associated CLMdn according to Theo-

rem 2.2. Hence, the solution space is the set of four saddle points or the set of two CLMdn.

CSA is designed to locate the saddle point corresponding to CGMdn x
∗ = 1.0 and λ = γ at

(1.0, 6).

62

Let xopt = {(x∗, γ)| x∗ ∈ Xopt}, and NL be the maximum of the minimum number of

transitions required to reach xopt from all x ∈ S. By properly constructing N (x), we assume

that PT is irreducible, and that NL can always be found. This property is illustrated in

Figure 3.3 in which any two nodes can reach each other. To verify whether the Markov

chain PT is irreducible or not, one can calculate the |S|-step transition probability P ′ =

[PT (x,x′)]|S| for any temperature T , where |S| is the number of states in the Markov chain.

If, for every x and x′, P ′(x,x′) > 0, then the Markov chain PT is irreducible. In fact, if

[PT (x,x′)]p(x,x′) > 0 and [PT (x,x′)]p−1(x,x′) = 0, then p is the minimum number of steps

to reach x′ from x.

Consider the sequence of temperatures {Tk, k = 0, 1, 2, · · · }, where Tk > Tk+1 and

limk→∞ Tk = 0, and set NT , the number of trials per temperature, to be NL. The following

theorem proves the strong ergodicity of the Markov chain.

Theorem 3.2 The inhomogeneous Markov chain is strongly ergodic if the sequence of tem-

peratures {Tk} satisfy:

Tk ≥
NL△L

loge(k + 1)
, (3.16)

where △L = maxx{|L(x′)− L(x)|,x′ ∈ N (x)}.

Proof. The proof of strong ergodicity follows the steps used to show the weak ergodicity

of SA [1] and use the strong ergodicity conclusions [9, 10].

a) Let △G = minx∈S,x′∈N (x) q(x,x
′). For all x ∈ S and x′ ∈ N (x), we have

PTk
(x,x′) = q(x,x′)ATk

(x,x′) ≥ △G e−△L/Tk , (3.17)

because (L(x′) − L(x))+ ≤ △L for x′ = (x′, λ) and (L(x) − L(x′))+ ≤ △L for x′ = (x, λ′),

according to the definition of △L.

63

b) Let Ŝ be the set of local maxima of L(x, λ) over x given any λ. Then for every

x = (x, λ) ∈ S − Ŝ, there always exists some x′′ = (x′′, λ) ∈ N (x) such that L(x′′) > L(x).

Let δ = minx∈S−Ŝ,x′′∈N (x){L(x′′)− L(x)} > 0. We have

PTk
(x,x) = 1−

∑

y∈N (x)

q(x,y)ATk
(x,y)

≥ 1−

∑

y∈N (x),y 6=x′′

q(x,y)

− q(x,x′′)e−δ/Tk

= q(x,x′′)(1− e−δ/Tk) ≥ △G(1− e−δ/Tk)

Because Tk is a decreasing sequence, it is always possible to find k0 > 0 such that for all

k ≥ k0, 1− e−δ/Tk ≥ e−△G/Tk . Thus, for x ∈ S − Ŝ, we get:

PTk
(x,x) ≥ △Ge

−△L/Tk . (3.18)

c) Based on (3.17) and (3.18), for all x,y ∈ S and k ≥ k0, the NT -step transition

probability from x = x0 to y = xNT
satisfies the following:

PNT
Tk

(x,y) ≥ PTk
(x0,x1)PTk

(x1,x2) · · ·PTk
(xNT −1,xNT

) ≥
[

△Ge
−△L/Tk

]NT
.

Let τ1(P) be the coefficient of ergodicity of transition matrix P . Then the lower bound of

1− τ1(P
NT
Tk

) is:

1− τ1(P
NT
Tk

) = min
x,x′∈S

∑

y∈S

min{PNT
Tk

(x,y), PNT
Tk

(x′,y)}

≥ min
x,x′∈S

min
y′∈S
{PNT

Tk
(x,y′), PNT

Tk
(x′,y′)}

≥
[

△Ge
−△L/Tk

]NT
= △NT

G e−△LNT /Tk .

64

Then using any temperature schedule that satisfies (3.16), the following holds:

∞
∑

k=0

[1− τ1(P
NT
Tk

)] ≥
∞

∑

k=k0

△NT
G e−△LNT /Tk ≥ △NT

G

∞
∑

k=k0

1

k + 1
=∞. (3.19)

Therefore, the Markov chain is weakly ergodic.

d) In addition, because transition probability PTk
(x,x′) for all x,x′ ∈ S belongs to the

exponential rationals in a closed class of asymptotically monotone functions (CAM) [9, 10],

the Markov chain is strongly ergodic.

Strongly ergodicity implies that the Markov chain has a unique stationary distribution

πT , where πT (x) is the probability of hitting point x during the search of CSA. Hence, the

Markov chain in Figure 3.3 is strongly ergodic if we set NL = 5 + 8 = 13 and the cooling

schedule as Tk ≥
NL△L

loge(k+1)
, where △L = maxx{|L(x′)−L(x)|,x′ ∈ N (x)} = 0.411 in Example

3.1.

3.3.2 Asymptotic Convergence to Constrained Global Minima

In this section, we first discuss the framework of generalized simulated annealing (GSA) [186,

187] and show how our Markov chain fits into this framework in which the Markov chain

minimizes a virtual energy. Then we focus on proving the main theorem that CSA has

asymptotic convergence to a CGMdn.

Generalized Simulated Annealing (GSA). As we mentioned earlier, the proof of

asymptotic convergence of simulated annealing (SA) in unconstrained NLPs [1] utilizes a

sufficient condition of local balance equation (3.5). This sufficient condition, however, may

not be satisfied by many general applications. GSA [186, 187] aims to establish a new

65

framework for those applications, where the family of transition probabilities is given as

follows:

Definition 3.1 Communication Cost “(Definition 2.1 in [186, 187]). Let

(QT)T>0 be a family of Markov kernels on E. We say that (QT)T>0 is ad-

missible for q and k if there exists a family of positive real-valued numbers

(V (i, j))(i,j)∈E×E (some of them may take the value +∞) such that:

• V (i, j) < +∞, iff q(i, j) > 0,

• for all T > 0, all i, j ∈ E,

1

κ
q(i, j)e−V (i,j)/T ≤ QT (i, j) ≤ κq(i, j)e−V (i,j)/T , (3.20)

where function V : E × E → [0,+∞] is called the communication cost

function.”

Any one-step transition probability QT (i, j) that satisfies the two conditions in Definition

3.1 is called generalized simulated annealing (GSA). There is no need of satisfying the local

balance equation for QT (i, j), because q(i, j)QT (i, j) may not equal to q(j, i)QT (j, i). For the

special case where V (i, j) = (f(j)− f(i))+ used in SA, we have the local balance equation

q(i, j)QT (i, j) = q(j, i)QT (j, i). In the following, we quote the notion of A-graph and virual

energy as defined in [72, 186, 187]

Definition 3.2 A-Graph “(Definition 2.4 in [72, 186, 187]). Let A ⊂ E. A

set g of arrows i → j in Ac × E is an A-graph, where j ∈ N (i), iff a) for each

i ∈ Ac, there exists a unique j ∈ E such that i→ j ∈ g; b) for each i ∈ Ac, there

is a path in g ending on a point j ∈ A.”

66

Here E is the set of all states (or nodes) in the Markov chain defined in Definition 3.1,

A is a subset of E, and Ac is the complement of A in E. Accordingly, A-graph g is actually

a spanning tree rooted at set A, where the tree is defined over the digraph constructed by

neighborhood N (i). Let G(A) be the set of A-graphs. For each g ∈ G(A), the cost of g is

defined as V (g) =
∑

i→j∈g V (i, j).

Definition 3.3 Virtual Energy “(Definition 2.5 in [186, 187]). For each state

i ∈ E, its virtual energy W (i) is defined as:

W (i) = min
g∈G({i})

V (g), (3.21)

which is the cost of the minimum spanning tree rooted at point i.”

The following theorem shows the asymptotic convergence of GSA in minimizing virtual

energy W (i).

Proposition 3.1 “(Proposition 2.6 in [72, 186, 187]). For every T > 0, the

unique stationary distribution πT of the Markov chain satisfies:

πT (i) −→ exp

(

−
W (i)−W (E)

T

)

as T −→ 0, (3.22)

where W (i) is the virtual energy of i, and W (E) = mini∈S W (i).”

Asymptotic Convergence of CSA. Our Markov chain (3.13) fits into the framework of

GSA (3.20), if we define an irreducible Markov kernel QT (i, j) = PT (x,x′) and its associated

communication cost V (x,x′):

V (x,x′) =

(L(x′)− L(x))+ if x′ = (x′, λ)

(L(x)− L(x′))+ if x′ = (x, λ′).

(3.23)

67

W(x,λ)

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 2
3

4
5

6
0
1
2
3
4
5
6
7

x

λ

W(x,λ)

Figure 3.4: Virtual energy W (x) of Example 3.1.

Obviously V (x,x′) ≥ 0 and function V : S × S → [0,+∞].

Hence, CSA minimizes an implicit virtual energy W (x), according to GSA, and converges

to the global minimum of W (x) with probability one. Here, virtual energy W (x) is the cost

of the minimum spanning tree rooted at point x of the digraph governed by N (x). This

is quite different from SA in solving unconstrained NLPs, whose explicit objective is to

minimize a single objective f(i) by performing probabilistic descents given by (3.3). Note

that CSA does not minimize L(x, λ) due to its probabilistic descents in the x subspace and

probabilistic ascents in the λ subspace.

Example 3.1 (cont’d). Figure 3.4 shows the virtual energy W (x) for Example 3.1. One

can obtain W (x) by enumerating all possible spanning trees rooted at x and finding the one

with the minimum cost. This only works for a small problem like Example 3.1. Another

more efficient way is to first compute stationary probability πT (x) based on (3.24) (discussed

later) and then compute W (x) using (3.22).

68

���
���
���
���

space

≥ ≥

≥ ≥

≥ ≥

≥ ≥

x

λ

W

≥

≥

≥

≥

≥ ≥ ≥

≥ ≥ ≥

≥ ≥ ≥

≥ ≥ ≥

(x∗, γ)

λ = γ

x = x∗

Figure 3.5: Proof strategy for Theorem 3.3.

Clearly, L(x, λ) 6= W (x, λ). For a given x, as λ increases, L(x, λ) is non-decreasing

while W (x, λ) is non-increasing. The minimum value of W (x, λ) is at (x = 1.0, λ = 6) (see

Figure 3.4), which is a saddle point with the minimum objective value. However, the min-

imum value of L(x, λ) is at (x = 1.2, λ = 2) (see Figure 3.3b), which is not a feasible point.

In order to prove that our Markov chain converges asymptotically to a CGMdn of the

original problem (1.1), we need to show that W (x) is minimized at (x∗, γ), i.e., W ((x∗, γ)) <

W ((x, λ)) for x∗ ∈ Xopt, all x ∈ X−Xopt and λ ∈ Λ. This is stated in the following theorem.

Theorem 3.3 The Markov chain modeling CSA converges asymptotically to a CGMdn x
∗ ∈

Xopt with probability one.

Proof. The proof consists of two steps as shown in Figure 3.5. First, we show that for a

given x, the virtual energy satisfies W ((x, λ′)) ≤ W ((x, λ)) for any λ′ > λ (the horizontal

69

y y

x = (x, λ) x
′ = (x, λ′) x = (x, λ) x

′ = (x, λ′)

λ

xx

λ

a) MT (x, λ) b) constructed tree T (x, λ′)

Figure 3.6: Proof of part a1) in Theorem 3.3 (Solid arrow indicates edge in the spanning

tree).

direction in Figure 3.5) 1. Here both x and λ are vectors, and λ′ > λ if every λ′i ≥ λi and

there exists at least one j such that λ′j > λj .

Second, we show that W ((x∗, γ)) < W ((x, γ)) at the maximum value γ of the Lagrange

multipliers (the vertical direction along λ = γ in Figure 3.5) 2, where x∗ ∈ Xopt and x ∈

X − Xopt. Hence, W (x) is minimized at (x∗, γ) 3, and the Markov chain converges to

CGMdn x
∗ ∈ Xopt with probability one.

a) Let us first compare virtual energy W (x) with W (x′) where x = (x, λ), x′ = (x, λ′),

and λ′ > λ. There exist two cases according to whether constraint h(x) is satisfied or not.

a1) Consider the case in which h(x) 6= 0 (meaning that at least one hi(x) 6= 0) and

x′ ∈ N (x), implying that there exists an edge x→ x′. Let MT (x) be a minimum spanning

tree rooted at x (see Figure 3.6a). We construct a spanning tree T (x′) rooted at x′ (see

Figure 3.6b) as follows: i) add edge x → x′ to MT (x), and ii) delete edge x′ → y. Edge

1In Example 3.1, W ((0.6, 4)) = 4.03 ≤ W ((0.6, 3)) = 4.44, and W ((0.8, 6)) = 3.14 ≤ W ((0.8, 2)) = 4.05,

shown in Figure 3.4.

2In Example 3.1, W ((1.0, 6)) = 0.097 < W ((0.6, 6)) = 3.37, and W ((1.0, 6)) = 0.097 < W ((0.8, 6)) = 3.14,

shown in Figure 3.4.

3(x∗, γ) = (1.0, 6) in Example 3.1

70

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

(x̂, λ) (x̂, λ)

x = (x, λ) x = (x, λ)

(x̂, λ′)

x
′ = (x, λ′)

(x̂, λ′)

x
′ = (x, λ′)

λ

x

λ

x

(x1, λ′)

P2 P ′

1

(xj−1, λ′)

(xj−2, λ′)

P1 P ′

2

(x1, λ)

(x̄l−1, λ)

(x̄l−2, λ)

(x̄1, λ)

(x̄l−1, λ′)

(x̄l−2, λ′)

(x̄1, λ′)

(xj−1, λ)

(xj−2, λ)

a) MT (x, λ) b) MT (x, λ′)

Figure 3.7: Proof of part a2) in Theorem 3.3 (Solid arrow indicates edge in the spanning

tree).

x′ → y always exists because there is a path from x′ to x in MT (x). Then cost C(x′) of

spanning tree T (x′) satisfies:

C(x′) = W (x) + V (x,x′)− V (x′,y) = W (x)− V (x′,y) ≤W (x).

The equation is true because V (x,x′) = [L(x) − L(x′)]+ = [(λ − λ′)Th(x)]+ = 0 and

V (x′,y) ≥ 0. In addition, W (x′) ≤ C(x′) due to the fact that W (x′) is the cost of a

minimum spanning tree. Therefore, we have W (x′) ≤ C(x′) ≤W (x).

a2) Consider the case in which h(x) = 0, implying that there is no edge from x = (x, λ)

to x′ = (x, λ′) because constraint h(x) is satisfied and λ is not allowed to change according

to (3.8). The minimum spanning tree rooted at x must have has a directed path P1 =

(x, λ′) → (x1, λ′) → · · · ,→ (xj−1, λ′) → (x̂, λ′) from x′ = (x, λ′) to (x̂, λ′) and a directed

path P2 = (x̂, λ) → (x̄l−1, λ) → · · · ,→ (x̄1, λ) → (x, λ) from (x̂, λ) to x = (x, λ) (see

71

Figure 3.7a), where x̂ are points (shown as shaded nodes in Figure 3.7) such that h(x̂) 6= 0

(meaning that at least one constraint is not satisfied at x̂), h(xi) = 0 (i = 1, 2, · · · , j − 1),

and h(x̄i) = 0 (i = 1, 2, · · · , l − 1). Such j and l always exist due to the ergodicity of the

Markov chain, and path P1 may differ from path P2. Note that there is no relationship

between f(x) and f(x̂) and that the spanning tree at xi and x̄i can only move along the x

subspace because they all satisfy the constraints.

In contrast, the minimum spanning tree rooted at x′ must have a directed path P ′
1 =

(x, λ) → (x1, λ) → · · · ,→ (xj−1, λ) → (x̂, λ) from x = (x, λ) to (x̂, λ) and a directed path

P ′
2 = (x̂, λ′) → (x̄l−1, λ′) → · · · ,→ (x̄1, λ′) → (x, λ′) from (x̂, λ′) to x = (x, λ′) (see Figure

3.7b). Then the costs of P1 and P ′
1 satisfy:

C(P1) = V ((x, λ′), (x1, λ′)) + · · ·+ V ((xj−2, λ′), (xj−1, λ′)) + V ((xj−1, λ′), (x̂, λ′))

= V ((x, λ), (x1, λ)) + · · ·+ V ((xj−2, λ), (xj−1, λ)) + [L(x̂, λ′)− L(xj−1, λ′)]+

≥ V ((x, λ), (x1, λ)) + · · ·+ V ((xj−2, λ), (xj−1, λ)) + [L(x̂, λ)− L(xj−1, λ)]+

= C(P ′
1),

where V ((xi−1, λ′), (xi, λ′)) = V ((xi−1, λ), (xi, λ)) for i = 1, 2, . . . , j − 1 (here x0 = x) and

L(xj−1, λ′) = L(xj−1, λ) are used since h(xi) = 0, and L(x̂, λ′) ≥ L(x̂, λ) is used because

h(x̂) 6= 0 and λ′ > λ.

Similarly, the costs of P2 and P ′
2 satisfy:

C(P2) = V ((x̂, λ), (x̄l−1, λ)) + V ((x̄l−1, λ), (x̄l−2, λ)) + · · ·+ V ((x̄1, λ), (x, λ))

= [L(x̄l−1, λ)− L(x̂, λ)]+ + V ((x̄l−1, λ′), (x̄l−2, λ′)) + · · ·+ V ((x̄1, λ′), (x, λ′))

≥ [L(x̄l−1, λ′)− L(x̂, λ′)]+ + V ((x̄l−1, λ′), (x̄l−2, λ′)) + · · ·+ V ((x̄1, λ′), (x, λ′))

= C(P ′
2),

72

x0 = (x∗, γ)x1 = (x1, γ)xr = (x, γ) xr−1 = (xr−1, γ)

x

λ

x0 = (x∗, γ)x1 = (x1, γ)xr = (x, γ) xr−1 = (xr−1, γ)

x

λ

a) MT (x)

b) T (x∗)

Figure 3.8: Proof of part b) in Theorem 3.3.

where V ((x̄i, λ′), (x̄i−1, λ′)) = V ((x̄i, λ), (x̄i−1, λ)) for i = 1, 2, . . . , l − 1 and L(x̄l−1, λ) =

L(x̄l−1, λ′) are used since h(xi) = 0, and L(x̂, λ′) ≥ L(x̂, λ) is used because h(x̂) 6= 0 and

λ′ > λ.

In addition, for any x̂, V ((x̂, λ), (x̂, λ′)) = [L(x̂, λ) − L(x̂, λ′)]+ = [(λ − λ′)Th(x̂)]+ = 0

in MT (x′), and V ((x̂, λ′), (x̂, λ)) = [(λ′ − λ)Th(x̂)]+ ≥ 0 in MT (x). Therefore, we have

W (x′) ≤W (x).

b) For any x ∈ X and λ ∈ Λ, there exists a path such that λ < λ1 < λ2 < · · · < λl < γ.

According to (a), we have W ((x, γ)) ≤ W ((x, λl)) ≤ · · · ≤ W ((x, λ1)) ≤ W ((x, λ)), where

γ is the maximum value of λ. This means that the Markov chain try to push λ to its

maximum γ, but this movement is probabilistic since occasional reductions of λ are also

allowed. Accordingly, we only need to compare W ((x, γ)) (x ∈ X − Xopt) with W ((x∗, γ))

(x∗ ∈ Xopt) at the maximum value γ of the Lagrange multipliers.

Let MT (x) be the minimum spanning tree of x = (x, γ) and its associated virtual energy

be W (x). There must exist a path P = x0(= x∗) → x1 → · · · → xr−1 → xr(= x) of length

73

r from x∗ = (x∗, γ) to x in MT (x) (see Figure 3.8a). Reversing this path, we obtain a

path from x to x∗ and also a spanning tree T (x∗) (see Figure 3.8b) of x∗ with cost C(x∗),

satisfying:

W (x)− C(x∗) =

r
∑

k=1

{[L(xk)− L(xk−1)]
+ − [L(xk−1)− L(xk)]

+}

=
r

∑

k=1

[L(xk)− L(xk−1)] = L(xr)− L(x0)

= L(x, γ)− L(x∗, γ) > 0,

based on the definition of γ. Because W ((x∗, γ)) ≤ C((x∗, γ)), we have W ((x∗, γ)) ≤

C((x∗, γ)) < W ((x, γ)).

c) Summarizing a) and b), we conclude that virtual energy W (x) of x = (x, λ) is min-

imized at CGMdn (x∗, γ). Thus, the Markov chain converges to CGMdn x∗ ∈ Xopt with

probability one according to Proposition 3.1.

Example 3.1 (cont’d). Since multiple runs of CSA do not illustrate their asymptotic

convergence to the global minimum, we evaluate the stationary probabilities πT numerically

at a given T by first computing acceptance probability AT (x,x′) using (3.11) and one-step

transition probability PT (x,x′) using (3.13). The stationary distribution πT of the Markov

chain with transition matrix PT evolves with iteration k as follows:

p(k + 1) = p(k)PT for any given initial vector p(k = 0), (3.24)

As πT = limk→∞ p(k), independent of starting vector p(k = 0), we set pi(k = 0) = 1/|S| for

all i = 1, 2, · · · , |S|.

In this simple example, we set initial temperature T 0 = 1.0, NT = 5, and cooling rate α =

0.9. Figure 3.9a shows the stationary probabilities at x∗ = 1.0 (the optimal solution) for both

74

0

0.2

0.4

0.6

0.8

1

1.2

50 100 150 200 250

st
at

io
na

ry
 p

ro
ba

bi
lit

y

#iters

CSA
random search

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90 100

re
ac

ha
bi

lit
y

pr
ob

ab
ili

ty
 P

r

#iters

CSA
random search

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5 3 3.5 4

av
er

ag
e

tim
e

T
r/

Pr

log(#iters)

CSA
random search

a) Prob. of hitting CGMdn b) reachability probability Pr c) Tr/Pr

Figure 3.9: Example showing the convergence probabilities, reachability probabilities Pr, and

average time Tr/Pr (see section 1.3 and [198] for detail) to find the global solution for CSA and

random search.

CSA and pure random search. The probability of hitting CGMdnincreases monotonically

with iterations and approaches one as T is small in CSA, but remains constant for random

search. Thus, CSA has a larger probability to find the CGMdnthan random search, and the

Markov chain modeling CSA converges asymptotically to the CGMdn.

Figure 3.9b and Figure 3.9c depict, respectively, the corresponding reachability probabil-

ities at each iteration and average times Tr/Pr (see section 1.3 and [198] for detail) to find

CGMdnat each iteration in log scale for both CSA and random search. The curve Tr/Pr

for random search is monotonously increased, whereas the curve Tr/Pr for CSA is convex.

Such a convexity property for CSA has been proved and then utilized to derive an optimal

any-time CSA in [198].

75

3.4 Optimal Cooling Schedules

Theoretically, we have proved that CSA converges asymptotically to a CGMdnwith proba-

bility one if the cooling schedule satisfies the condition of (3.16). Such a cooling schedule,

however, may be too slow to be applied to solve real applications when the goal is to find

high-quality solutions efficiently.

Like conventional simulated annealing [?, 1], the difficulty in applying CSA is to determine

an optimal cooling schedule that allows a CGMdn to be found in the shortest average amount

of time. Intuitively, such a schedule does not generally correspond to the case in which the

success probability in one run of CSA is the highest, because the highest success probability

in one run requires a cooling schedule that approaches infinity. Rather, the optimal schedule

happens when CSA is allowed to be run multiple times, and the average total time of the

multiple runs is the shortest. If each run is too short, it will have very little chance of finding

a CGMdn. This leads to a very large number of runs in order to find a CGMdn and, thus, a

long average total completion time. In contrast, if each run is too long, it will have a high

probability of finding a CGMdn but a very long completion time. Hence, the average total

completion time of a few long runs of CSA will still be very long.

An optimal cooling schedule [198] is defined as one that leads to the shortest average total

completion time of multiple runs of CSA in order to find a solution of prescribed quality.

The optimal cooling schedule, however, is highly problem-dependent and is impossible to

determine it in advance.

Let Tr be the maximum time used in CSA and Pr be the reachability probability of

finding a feasible solution with prescribed quality f ∗ within Tr. The average time of finding

a solution with quality f ∗ using multiple runs is Tr/Pr, as derived in (1.3).

76

By proving the convexity of Tr/Pr with respect to log(Tr), Wah and Chen [198] have

proposed CSA with iterative deepening, called CSAID, by applying iterative deepening to

the cooling schedule. CSAID starts from a very fast cooling schedule and doubles it after a

certain number of consecutive runs of CSA until a feasible solution with a prescribed solution

quality is found. They have proved that the total time spent on CSAID is of the same order

as the time of one CSA run with the optimal cooling schedule.

Because the curve of Tr/Pr is convex with respect to log(Tr) and Pr is less than one,

CSA with an optimal cooling schedule finds desired solutions with the shortest average time

(corresponding to the valley of curve Tr/Pr) in multiple runs. On the other hand, the Tr/Pr

curve in a random search is not convex (monotonously increasing in Figure 3.9c), and, thus,

its performance is always worse than CSA with an optimal cooling schedule. For example,

in Figure 3.9c, the Tr/Pr curve in a random search is always above that in CSA, leading to

longer average time than CSA.

3.5 Summary

In this chapter, we have presented a new stochastic global optimization algorithm, called

CSA, for solving discrete constrained NLPs. The algorithm is based on Theorem 2.2 of the

first-order necessary and sufficient conditions for discrete CLMdn in the theory of discrete

constrained optimization using Lagrange multipliers. This theorem establishes a one-to-one

correspondence between discrete-space saddle points and CLMdn. Hence, global optimiza-

tion can be achieved by searching in the space of saddle points.

Our proposed CSA performs both probabilistic descents in the variable subspace of x

and probabilistic ascents in the Lagrange-multiplier subspace of λ. We have proved that

CSA converges asymptotically to a saddle point with the minimum objective value, namely,

77

a CGMdn, with probability one. By achieving asymptotic convergence, CSA is one of the

major developments in nonlinear constrained global optimization today and complements

simulated annealing (SA) in nonlinear unconstrained global optimization. Based on Theorem

2.3 in the theory of discrete constrained optimization using Lagrange multipliers, CSA is a

powerful method for solving discrete, continuous, and mixed-integer NLPs.

78

Chapter 4

Design of Efficient Strategies for CSA

In this chapter, we examine various strategies used in constrained simulated annealing (CSA)

that may affect its performance in solving discrete, continuous, and mixed-integer constrained

NLPs. The strategies consist of adaptive neighborhoods, distributions to control sampling,

acceptance probabilities, as well as cooling schedules. For each strategy, we first briefly

discuss related work in SA and then extend them to CSA or develop new ones for CSA.

Because CSA performs probabilistic descent in the x subspace that is the same as that of

SA, most strategies used in SA can be extended to CSA in its x subspace. But for the

Lagrange-multiplier subspace, we need to develop new strategies.

4.1 Choice of Neighborhoods

CSA consists of two major steps: generating trial points and accepting them based on

some acceptance probability. In theory, any neighborhoods N 1
dn(x) and N 2

cn(λ) that satisfy

(3.8) and Definition 1.1 will guarantee asymptotic convergence. In practice, however, it is

important to choose appropriate neighborhoods for generating proper trial points in x and

λ in order to improve the probability of finding a CGMdn when finite cooling schedules are

used.

79

Neighborhoods describe how trial points differ from the current point, and their sizes

determine the range of generating trial points [45]. A neighborhood commonly used in SA

allows trial points to differ from the current point in one variable, because it has higher

probability of accepting trial points than those neighborhoods with more than one variables

changed [49]. Here we adopt the same strategy in both the variable and the Lagrange-

multiplier subspaces.

In our implementation, we choose a simple neighborhood N 1
dn(x) as the set of points x′

that differ from x in one variable xi. Likewise, λ′ ∈ N 2
cn(λ) differs from λ in one variable. In

general, both x′ and λ′ can differ from x and λ in more than one variables, as long as the

conditions in (3.8) and Definition 1.1 are satisfied.

We characterize N 1
dn(x) by vector σ, where σi controls the size of the neighborhood along

xi. Similarly, we characterize N 2
cn(λ) by vector φ, where φi denotes the maximum possible

perturbation along λi.

4.2 Generation of Trial Points

Three general distributions used in SA to generate trial points include uniform [49], Gaussian

[45, 222], and Cauchy [51]. Examples of other methods are logarithmic explorations [50] and

tree annealing [33, 32] that organize neighborhoods in a tree. Such methods only work

well for problems with specific objective or constraint forms and may not work for general

problems. Here we test the three general distributions for generating trial points in x.

Generation of trial points (x′, λ). In generating trial point x′ = (x′, λ) from x = (x, λ),

we consider two cases. To generate a continuous trial point, we set:

x′ = x+ θi ei, (4.1)

80

where ei is a vector with its ith component being 1 and the other components being 0, and

i is randomly generated from {1, 2, · · · , n}.

There are three possible choices for θi: a) uniform, where θi is generated uniformly in

[−σi, σi] [49]; b) Gaussian, where θi is generated from a Gaussian distribution with zero

mean and variance σi [222]; and c) Cauchy, where θi is generated from a Cauchy density

[51, 222]:

fd(x) =
1

π

σi

σ2
i + x2

.

The major advantage [51, 222] of using a Cauchy distribution lies in its long flat tail. In

addition to generating samples close to the current point, there is also a high probability

of sampling remote points, making it easy to escape from local minima, especially when

temperatures are low and the basins of attraction to local minima are large.

To generate a discrete trial point x′, we first generate a point by (4.1) and then round it

to its closest discrete grid point. If it happens that x′ = x, we set x′ = x + j/s, where 1/s

is the grid size and j has equal probability to take value +1 or −1.

Generation of trial points (x, λ′). In generating x′ = (x, λ′) from x = (x, λ), we apply

the following rule:

λ′ = λ+ ηj ej , (4.2)

where j is uniformly distributed in {1, 2, · · · , m}.

We test three possible choices for ηj : a) symmetric uniform (S-uniform), where ηj is

generated uniformly in [−φj , φj]; b) non-symmetric uniform (NS-uniform), where ηj is gen-

erated uniformly in [−2
3
φj,

4
3
φj]; and c) nonuniform, where ηj is generated uniformly from

[−φj , 0] and [0, φj] with probabilities 1/3 and 2/3, respectively.

81

We set the ratio of generating (x′, λ) and (x, λ′) from (x, λ) to be 10n to m; that is,

every variable xi is tried 10 times more often than each Lagrange multiplier λj . Hence, x is

updated more frequently than λ.

4.3 Acceptance Probabilities

After generating x′ = (x′, λ) or x′ = (x, λ′), x′ is accepted according to the Metropolis

acceptance probability (3.11).

Besides the Metropolis rule, we also evaluate three other possible acceptance rules studied

in SA: Logistic acceptance rule [1, 164], Hastings’ rule [95, 78], and Tsallis’ rule [8, 93]. All

these acceptance rules lead to asymptotic convergence [163], although they differ in solution

quality when applied under a finite cooling schedule.

Because CSA carries out probabilistic descents in the x subspace like SA, the acceptance

probabilities proposed in SA can also be utilized in CSA when x is changed in generating

a trial point. For probabilistic ascents of CSA in the λ subspace, we modify the three

acceptance probabilities by favoring increases in Lagrangian values.

Let δLx = L(x′, λ)− L(x, λ) and δLλ = L(x, λ′)− L(x, λ). The three acceptance proba-

bilities for CSA are defined as follows:

Logistic rule: AT (x,x′) =

1
1+e+δLx/T if x

′ = (x′, λ)

1
1+e−δLλ/T if x

′ = (x, λ′),
(4.3)

Hastings’ rule: AT (x,x′) =

1+2[1

2
min{eδLx/T , e−δLx/T }]

γ

1+e+δLx/T if x
′ = (x′, λ)

1+2[1

2
min{eδLλ/T , e−δLλ/T }]

γ

1+e−δLλ/T if x
′ = (x, λ′),

(4.4)

Tsallis’ rule: AT (x,x′) =

min
{

1, [1 − (1− q)δLx/T]1/(1−q)
}

if x
′ = (x′, λ)

min
{

1, [1 + (1− q)δLλ/T]1/(1−q)
}

if x
′ = (x, λ′),

(4.5)

82

where γ = 2 in Hastings’ rule, and q in Tsallis’ rule starts from 2 and decreases exponentially

to 1 as T is reduced.

4.4 Adaptive Neighborhoods

Adaptive neighborhoods for x. During the course of CSA, we adaptively adjust neigh-

borhood N 1
dn(x) by updating scale vector σ for x using a modified 1 : 1 rate rule developed

in SA [49] in order to balance the ratio between accepted and rejected configurations:

σi =

σi [1 + β0(pi − pu)/(1− pu)] if pi > pu

σi/ [1 + β1(pv − pi)/pv] if pi < pv,
(4.6)

where pi is the ratio of accepting x′ in which x′i differs from xi. If pi is low (pi < pv), then the

trial points generated are rejected too often. In that case, we reduce σi in order to increase

the chance of generating acceptable trial points. In contrast, if pi is high (pi > pu), then the

trial points generated are too close to (x, λ). In that case, we increase σi in order to generate

more remote trial points.

Empirically, we chose the parameters as follows. When a trial point is generated by a

uniform or a Gaussian distribution, we set β0 = 2, β1 = 2, pu = 0.6, and pv = 0.4. When

a trial point is generated by a Cauchy distribution, we have two sets of parameters: a)

Cauchy0 with β0 = 2, β1 = 2, pu = 0.3, and pv = 0.2; and b) Cauchy1 with β0 = 7, β1 = 2,

pu = 0.3, and pv = 0.2. The only difference between them lies in β0, the ratio of enlarging

neighborhood size.

Adaptive neighborhoods for λ. We adjust φ according to the degree of constraint

violations. Here we decompose φ as:

φ = w ⊗ h(x) = [w1h1(x), w2h2(x), · · · , wmhm(x)] (4.7)

83

where ⊗ represents vector product. When hi(x) is satisfied, φi = 0 because there is no need

to update the corresponding λi. On the other hand, when a constraint is not satisfied, we

adjust φi by modifying wi according to how fast hi(x) is changing:

wi =

η0 wi if hi(x) > τ0T

η1 wi if hi(x) < τ1T ,
(4.8)

where η0 = 1.25, η1=0.8, τ0 = 1.0, and τ1 = 0.01 are all chosen experimentally.

When hi(x) is reduced too quickly (i.e., hi(x) < τ1T), hi(x) may be over-weighted, leading

to possibly poor objective values or difficulty in satisfying under-weighted constraints. In

this case, we reduce the neighborhood size of λi. In contrast, if hi(x) is reduced too slowly

(i.e., hi(x) > τ0T), we enlarge the neighborhood size of λi in order to improve its possibility

of satisfaction. Note that wi is adjusted using T as a reference because constraint violations

are expected to decrease when T drops.

4.5 Cooling Schedules

A cooling schedule consists of initial temperature T 0, number of trials per temperature NT ,

and the ratio α of reducing temperature T in Figure 3.2.

Initial temperature T 0 has to be set large enough to make initial acceptance probabilities

close to 1. To avoid setting it too high, SA normally computes its initial temperature based

on some initial probability of accepting degraded moves in x space [?, 1]. However, in

addition to minimizing the objective, CSA has to satisfy a set of constraints. Accordingly,

we need to consider constraint violations in determining the initial temperature.

We generate initial temperature T 0 by first randomly generating 100 points of x and

their corresponding neighboring points x′, where each component |x′i − xi| ≤ 0.001(ui − li)

and ui and li are upper and lower bounds of variable xi, respectively. We set T 0 =

84

maxx,x′,i{|L(x′, 1) − L(x, 1)|, |hi(x)|}. Our rationale is based on the initial amount of vi-

olations observed in a problem.

In our implementation, we select NT = ζ(10n + m) and ζ = 10(n + m), where n is

the number of variables, and m is the number of constraints. This setting is based on the

heuristic rule in SA [49] and uses n+m instead of n because of the constraints.

There are many cooling schedules developed for SA. These include logarithmic annealing

schedules [1, 90, 28], schedules inversely proportional to annealing steps [183], simulated

quenching scheduling [109, 111], geometric cooling schedules [?, 153], constant annealing

[30], arithmetic annealing [136, 159], polynomial-time cooling [2, 1], adaptive temperature

scheduling based on acceptance ratio of bad moves [212], and non-equilibrium SA (NESA)

[42, 158].

Geometric cooling schedules have been used widely in practice for its simplicity and easy

implementation [1]. For this reason, we reduce T by a geometric cooling schedule (3.12) in

CSA, where α is a constant smaller than 1. In our experiments, we have used four cooling

rates: α = 0.1, α = 0.5, α = 0.8, and α = 0.95.

4.6 Selected Test Benchmarks

To evaluate various strategies used in CSA, we have chosen 12 difficult benchmark problems:

G1, G2 and G5 from G1-G10 [133, 119], and 2.1, 2.7.5, 5.2, 5.4, 6.2, 6.4, 7.2, 7.3 and 7.4

from a collection of optimization benchmarks [68]. The former were originally developed for

testing and tuning various constraint handling techniques in evolutionary algorithms (EAs),

while the latter were derived from practical applications, mostly from chemical engineering.

The 12 selected test problems have objective functions of various types (linear, quadratic,

and nonlinear) and linear/nonlinear constraints of equalities and inequalities. The number

85

Table 4.1: Statistics of the 12 benchmark problems used for tuning CSA.

Problem

ID

number of

variables

number of

constraints

number

of bounds

objective
equality constraints inequality constraints

size type size type

G1 13 9 26 quadratic 0 - 9 linear

G2 20 2 40 nonlinear 0 - 2 nonlinear

G5 4 5 8 nonlinear 3 nonlinear 2 linear

2.1 5 1 10 quadratic 0 - 1 linear

2.7.5 20 10 40 quadratic 0 - 10 linear

5.2 46 36 92 quadratic 36 quadratic 0 -

5.4 32 26 64 linear 26 quadratic 0 -

6.2 9 6 18 linear 4 quadratic 2 quadratic

6.4 9 6 18 linear 4 quadratic 2 quadratic

7.2 16 13 32 nonlinear 16 quadratic 0 -

7.3 27 19 54 nonlinear 19 quadratic 0 -

7.4 38 23 76 nonlinear 23 quadratic 0 -

of variables is up to about 50, and that of constraints, including simple bounds, is up to

about 100. The ratio of feasible space with respect to the whole search space varies from 0%

to almost 100%, and the topologies of feasible regions are quite different. Table 4.1 shows

the statistics of these problems.

Due to a lack of discrete and mixed-integer benchmarks, we derive them from the two

sets of continuous benchmarks [133, 119, 68] as follows. In generating a constrained MINLP,

we assume that variables with odd indices are continuous and those with even indices are

discrete. In discretizing continuous variable xi in range [li, ui], where li and ui are lower and

86

upper bounds of xi, respectively, we force xi to take values from the set:

Ai =

{

ai + bi−ai

s
j, j = 0, 1, · · · , s

}

if bi − ai < 1

{

ai + 1
s
j, j = 0, 1, · · · , ⌊(bi − ai)s⌋

}

if bi − ai ≥ 1,
(4.9)

where s = 107. Hence, the search spaces produced for discrete and mixed-integer NLPs

are very huge and are impossible to be enumerated. For example, for a problem with 10

discrete variables, the size of the search space is at least (107)10 = 1070. Using such a

finely discretized search space allows us to compare directly the quality of solutions between

continuous problems and their discretized versions, since a CLMcn in the continuous version

should differ little from the corresponding solution in the discretized version.

4.7 Results on Evaluating CSA Strategies

The various strategies implemented in CSA can be represented by a triplet: (distribution for

generating trial point (x′, λ), distribution for generating trial point (x, λ′), acceptance prob-

ability for the trial point). The distribution for (x′, λ) can be uniform, Gaussian, Cauchy0 or

Cauchy1 (see Section 4.4); the distribution for (x, λ′) can be symmetric uniform (S-uniform),

non-symmetric uniform (NS-uniform), and nonuniform; and the acceptance probability can

be Metropolis (M), Logistic (L), Hastings (H) or Tsallis (T).

Using a given strategy, we evaluated each problem by running CSA from randomly gen-

erated starting points until a feasible solution was found or until 100 runs of CSA had been

made without finding a feasible solution. In the latter case, we declare that CSA fails to

find a solution for the problem in this run. Here, we assume that an equality constraint is

satisfied if Φ = 10−5 (see Theorem 2.3 in Section 2.2.4).

We then repeated each run 100 times to obtain at most 100 pairs of CPU time and

solution quality. Let tx(i) and fx(i) be, respectively, the CPU time and objective value of

87

the ith run, assuming that a feasible solution has been found. Further, let tr(i) and fr(i) be,

respectively, the CPU time and objective value of the baseline strategy (Cauchy1, S-uniform,

M) run using the same sequence of starting points. If the ith run leads to feasible solutions,

we normalize time and quality as follows:

rt(i) =

tx(i)/tr(i)− 1 if tx(i) > tr(i)

1− tr(i)/tx(i) if tx(i) < tr(i),
(4.10)

rf(i) = (fx(i)− fr(i))/|fbest|, (4.11)

where fbest is the best-known solution for the problem. We use (4.10) to measure the sym-

metric speedup [199] in order to give equal weights to speedups and slowdowns, but use

(4.11) to measure improvements and degradations in the objective value because objective

values can be negative. Finally, we evaluate the average normalized time rt and average

normalized quality rf for the R (out of 100) runs that led to feasible solutions:

rf =
1

R

R
∑

i=1

rf (i), rt =
1

R

R
∑

i=1

rt(i). (4.12)

A strategy is said to be better for a given problem if both rf and rt are smaller.

Figure 4.1 shows the results on evaluating the 12 mixed-integer benchmarks on a subset of

the 48 combinations of strategies at cooling rates 0.1, 0.5, 0.8 and 0.95, respectively. Cauchy0

has similar performance as Cauchy1, but fails to find a solution for Problem 7.4 at cooling

rate 0.5. CSA using Gaussian or uniform distribution tends to spend less times and obtain

slightly better solutions than Cauchy1 for some NLPs, but fails to solve some very difficult

NLPs, such as 7.3 at cooling rates 0.5 and 7.4, because it generated more infeasible local

points and got stuck there. Among the four acceptance probabilities, Logistic, Hastings’

and Tsallis’ rules are worse, using either more running times or reaching worse solutions

88

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-5 0 5 10 15 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

Average normalized CPU time

cooling rate α=0.1
cooling rate α=0.5
cooling rate α=0.8

cooling rate α=0.95

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-5 0 5 10 15 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

Average normalized CPU time

failure for 7.4 at α=0.5

cooling rate α=0.1
cooling rate α=0.5
cooling rate α=0.8

cooling rate α=0.95

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-5 0 5 10 15 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

Average normalized CPU time

failures for 7.4 at α=0.5,0.8,0.95
failure for 7.3 at α=0.5

cooling rate α=0.1
cooling rate α=0.5
cooling rate α=0.8

cooling rate α=0.95

a) (Cauchy1, S-uniform, M) b) (Cauchy0, S-uniform, M) c) (Gauss, S-uniform, M)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-5 0 5 10 15 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

Average normalized CPU time

failures for 7.4 at α=0.5,0.8,0.95
failure for 7.3 at α=0.5

cooling rate α=0.1
cooling rate α=0.5
cooling rate α=0.8

cooling rate α=0.95

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-5 0 5 10 15 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

Average normalized CPU time

failures for 7.4 at α=0.5,0.8

cooling rate α=0.1
cooling rate α=0.5
cooling rate α=0.8

cooling rate α=0.95

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-5 0 5 10 15 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

Average normalized CPU time

failure for 7.4 at α=0.5

cooling rate α=0.1
cooling rate α=0.5
cooling rate α=0.8

cooling rate α=0.95

d) (Uniform, S-uniform, M) e) (Cauchy1, S-uniform, L) f) (Cauchy1, S-uniform, H)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-5 0 5 10 15 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

Average normalized CPU time

failure for 7.4 at α=0.5

cooling rate α=0.1
cooling rate α=0.5
cooling rate α=0.8

cooling rate α=0.95

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-5 0 5 10 15 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

Average normalized CPU time

cooling rate α=0.1
cooling rate α=0.5
cooling rate α=0.8

cooling rate α=0.95

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-5 0 5 10 15 20

A
ve

ra
ge

 n
or

m
al

iz
ed

 o
bj

ec
tiv

e
va

lu
e

Average normalized CPU time

cooling rate α=0.1
cooling rate α=0.5
cooling rate α=0.8

cooling rate α=0.95

g) (Cauchy1, S-uniform, T) h) (Cauchy1, NS-uniform, M) i) (Cauchy1, Nonuniform,M)

Figure 4.1: Comparisons of average relative CPU times and average relative solution qual-

ities for different strategies normalized with respect to the baseline of (Cauchy1, S-uniform,

M) at various cooling rates for solving 12 difficult mixed-integer NLPs. All runs were made

on a Pentium-III 500-MHz computer running Solaris 7.

89

-16

-15.8

-15.6

-15.4

-15.2

-15

-14.8

-14.6

-14.4

-14.2

-14

15.1 15.15 15.2 15.25 15.3 15.35 15.4

so
lu

tio
n

qu
al

ity

time (sec.)

G1: 100 succ.

-0.85

-0.84

-0.83

-0.82

-0.81

-0.8

-0.79

-0.78

-0.77

-0.76

-0.75

53 53.253.453.653.8 54 54.254.454.654.8 55

so
lu

tio
n

qu
al

ity

time (sec.)

G2: 100 succ.

4210

4215

4220

4225

4230

4235

1.5 1.521.541.561.58 1.6 1.621.641.661.68 1.7

so
lu

tio
n

qu
al

ity

time (sec.)

G5: 100 succ.

a) Problem G1 b) Problem G2 c) Problem G5

-18

-17.5

-17

-16.5

-16

-15.5

-15

-14.5

-14

1.2 1.22 1.24 1.26 1.28 1.3

so
lu

tio
n

qu
al

ity

time (sec.)

2.1: 100 succ.

-4400

-4300

-4200

-4100

-4000

-3900

-3800

-3700

-3600

-3500

102102.2102.4102.6102.8103103.2103.4103.6103.8104

so
lu

tio
n

qu
al

ity

time (sec.)

2.7.5: 100 succ.

1.4

1.6

1.8

2

2.2

2.4

481 482 483 484 485 486 487 488 489 490

so
lu

tio
n

qu
al

ity

time (sec.)

5.2: 100 succ.

d) Problem 2.1 e) Problem 2.7.5 f) Problem 5.2

1.8

2

2.2

2.4

2.6

165 170 175 180 185

so
lu

tio
n

qu
al

ity

time (sec.)

5.4: 100 succ.

-420

-415

-410

-405

-400

-395

-390

-385

-380

4.6 4.65 4.7 4.75 4.8

so
lu

tio
n

qu
al

ity

time (sec.)

6.2: 100 succ.

-800

-780

-760

-740

-720

-700

6 6.05 6.1 6.15 6.2

so
lu

tio
n

qu
al

ity

time (sec.)

6.4: 100 succ.

g) Problem 5.4 h) Problem 6.2 i) Problem 6.4

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

41.6 41.65 41.7 41.75 41.8 41.85 41.9 41.95 42

so
lu

tio
n

qu
al

ity

time (sec.)

7.2: 100 succ.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

130 132 134 136 138 140

so
lu

tio
n

qu
al

ity

time (sec.)

7.3: 41 succ.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

280 290 300 310 320 330 340 350

so
lu

tio
n

qu
al

ity

time (sec.)

7.4: 47 succ.

j) Problem 7.2 k) Problem 7.3 l) Problem 7.4
Figure 4.2: Performance of CSA based on (Cauchy1, S-uniform, M) and cooling rate α = 0.8
on 12 difficult continuous constrained NLPs. (The optimal solution in each problem is
represented as a dotted line in the graph. All runs were made on a Pentium-III 500-MHz
computer running Solaris 7. The optimal solutions in Problems 7.2-7.4 have been normalized
to one.)

90

-16

-15.8

-15.6

-15.4

-15.2

-15

-14.8

-14.6

-14.4

-14.2

-14

19 19.2 19.4 19.6 19.8 20

so
lu

tio
n

qu
al

ity

time (sec.)

G1: 100 succ.

-0.85

-0.84

-0.83

-0.82

-0.81

-0.8

-0.79

-0.78

-0.77

-0.76

-0.75

53 53.253.453.653.8 54 54.254.454.654.8 55

so
lu

tio
n

qu
al

ity

time (sec.)

G2: 100 succ.

4210

4215

4220

4225

4230

4235

1.9 1.95 2 2.05 2.1

so
lu

tio
n

qu
al

ity

time (sec.)

G5: 100 succ.

a) Problem G1 b) Problem G2 c) Problem G5

-18

-17.5

-17

-16.5

-16

-15.5

-15

-14.5

-14

1.5 1.52 1.54 1.56 1.58 1.6 1.62 1.64

so
lu

tio
n

qu
al

ity

time (sec.)

2.1: 100 succ.

-4400

-4300

-4200

-4100

-4000

-3900

-3800

-3700

-3600

-3500

106106.2106.4106.6106.8107107.2107.4107.6107.8108

so
lu

tio
n

qu
al

ity

time (sec.)

2.7.5: 100 succ.

1.4

1.6

1.8

2

2.2

2.4

630 632 634 636 638 640 642 644 646 648 650

so
lu

tio
n

qu
al

ity

time (sec.)

5.2: 100 succ.

d) Problem 2.1 e) Problem 2.7.5 f) Problem 5.2

1.8

2

2.2

2.4

2.6

160 162 164 166 168 170 172 174

so
lu

tio
n

qu
al

ity

time (sec.)

5.4: 99 succ.

-420

-415

-410

-405

-400

-395

-390

-385

-380

5.45 5.5 5.55 5.6 5.65

so
lu

tio
n

qu
al

ity

time (sec.)

6.2: 100 succ.

-800

-780

-760

-740

-720

-700

6.7 6.75 6.8 6.85 6.9

so
lu

tio
n

qu
al

ity

time (sec.)

6.4: 100 succ.

g) Problem 5.4 h) Problem 6.2 i) Problem 6.4

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

48 48.2 48.4 48.6 48.8 49 49.2

so
lu

tio
n

qu
al

ity

time (sec.)

7.2: 100 succ.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

148 150 152 154 156 158 160

so
lu

tio
n

qu
al

ity

time (sec.)

7.3: 31 succ.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

330 331 332 333 334 335 336

so
lu

tio
n

qu
al

ity

time (sec.)

7.4: 7 succ.

j) Problem 7.2 k) Problem 7.3 l) Problem 7.4
Figure 4.3: Performance of CSA based on (Cauchy1, S-uniform, M) and cooling rate α = 0.8
on 12 difficult derived discrete constrained NLPs. (The optimal solution in each problem is
represented as a dotted line in the graph. All runs were made on a Pentium-III 500-MHz
computer running Solaris 7. The optimal solutions in Problems 7.2-7.4 have been normalized
to one.)

91

-16

-15.8

-15.6

-15.4

-15.2

-15

-14.8

-14.6

-14.4

-14.2

-14

18.6 18.8 19 19.2 19.4

so
lu

tio
n

qu
al

ity

time (sec.)

G1: 100 succ.

-0.85

-0.84

-0.83

-0.82

-0.81

-0.8

-0.79

-0.78

-0.77

-0.76

-0.75

52.652.8 53 53.253.453.653.8 54 54.254.4

so
lu

tio
n

qu
al

ity

time (sec.)

G2: 100 succ.

4210

4215

4220

4225

4230

4235

1.8 1.821.841.861.88 1.9 1.921.941.961.98 2

so
lu

tio
n

qu
al

ity

time (sec.)

G5: 100 succ.

a) Problem G1 b) Problem G2 c) Problem G5

-18

-17.5

-17

-16.5

-16

-15.5

-15

-14.5

-14

1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54

so
lu

tio
n

qu
al

ity

time (sec.)

2.1: 100 succ.

-4400

-4300

-4200

-4100

-4000

-3900

-3800

-3700

-3600

-3500

104104.2104.4104.6104.8105105.2105.4105.6105.8106

so
lu

tio
n

qu
al

ity

time (sec.)

2.7.5: 100 succ.

1.4

1.6

1.8

2

2.2

2.4

600 610 620 630 640 650

so
lu

tio
n

qu
al

ity

time (sec.)

5.2: 99 succ.

d) Problem 2.1 e) Problem 2.7.5 f) Problem 5.2

1.8

2

2.2

2.4

2.6

160 162 164 166 168 170 172

so
lu

tio
n

qu
al

ity

time (sec.)

5.4: 99 succ.

-420

-415

-410

-405

-400

-395

-390

-385

-380

4.9 5 5.1 5.2 5.3 5.4

so
lu

tio
n

qu
al

ity

time (sec.)

6.2: 100 succ.

-800

-780

-760

-740

-720

-700

6.4 6.426.446.466.48 6.5 6.526.546.566.58 6.6

so
lu

tio
n

qu
al

ity

time (sec.)

6.4: 100 succ.

g) Problem 5.4 h) Problem 6.2 i) Problem 6.4

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

47 47.2 47.4 47.6 47.8 48 48.2 48.4

so
lu

tio
n

qu
al

ity

time (sec.)

7.2: 100 succ.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

152 152.5 153 153.5 154 154.5 155

so
lu

tio
n

qu
al

ity

time (sec.)

7.3: 34 succ.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

331 332 333 334 335 336

so
lu

tio
n

qu
al

ity

time (sec.)

7.4: 30 succ.

j) Problem 7.2 k) Problem 7.3 l) Problem 7.4
Figure 4.4: Performance of CSA based on (Cauchy1, S-uniform, M) and cooling rate α = 0.8
on 12 difficult derived mixed-integer constrained NLPs. (The optimal solution in each
problem is represented as a dotted line in the graph. All runs were made on a Pentium-III
500-MHz computer running Solaris 7. The optimal solutions in Problems 7.2-7.4 have been
normalized to one.)

92

on average. Unlike the Metropolis rule that always accepts better trial points, these three

rules accept better trial points based on some probabilities. Among the three choices for

generating trial points with λ changed, they are able to solve all the problems with similar

running times, but S-uniform is the best in terms of average normalized solution quality.

In short, CSA with (Cauchy1, S-uniform, M) performs the best among all the combi-

nations of strategies tested. Accordingly, we test CSA using (Cauchy1, S-uniform, M) at

cooling rate 0.8 in the following experiments. Note that the performance results may differ

if different cooling rates were used.

Figures 4.2 thru 4.4 show the performance of CSA using (Cauchy1, S-uniform, M) at

cooling rate 0.8 to solve the 12 difficult benchmark problems. In each case, we tried 100

random starting points and reported successes as the number of runs that found feasible

solutions. It is clear that CSA performs consistently well in solving continuous, discrete,

and mixed-integer constrained NLPs. The only exception is in solving discrete Problem 7.4

(Figure 4.3l) in which CSA has much lower success ratio than that of solving the original

continuous version (Figure 4.2l). The main reason is that the size of feasible regions or the

number of feasible points is greatly reduced after discretization, leading to lower success

ratios in solving these problems.

4.8 An Illustration of a Search Trajectory for CSA

Figure 4.5 illustrates the run-time behavior of CSA in converging to a constrained global

minimum at four different temperatures. The continuous constrained problem solved:

minimize f(x) = 10n+
n

∑

i=1

(x2
i − 10cos(2πxi)) (4.13)

subject to |(xi − 4.2)(xi + 3.2)| ≤ 0.1 where n = 2,

93

has a Rastrigin function with 11n local minima as its objective function f(x), four local

minima around four corners denoted by rectangles, and a global solution at (−3.2,−3.2).

The objective space is very rugged as shown in Figure 4.5.

CSA starts from x = [0, 0] with initial temperature T 0 = 20. At high temperatures (e.g.

T = 20), the probability of accepting a trial point is high. Hence, the neighborhood size is

large based on (4.6). Large jumps in Figure 4.5 are due to the use of Cauchy distribution

for generating remote trial points, which increases the chance of getting out of infeasible

local minima. As T is reduced, the acceptance probability of a trial point is reduced, leading

to very small neighborhoods (e.g. at T = 0.45). Probabilistic ascents with respect to λ at

different temperatures help increase penalties on constraint violation and push the search

trajectory of CSA to feasible regions. Accordingly, CSA is focusing more heavily on feasible

regions. Finally it converges to the constrained global minimum at x∗ = [−3.2,−3.2].

4.9 Summary

In this chapter, we have evaluated various strategies used in CSA that may affect its perfor-

mance in solving discrete, continuous, and mixed-integer constrained NLPs. The strategies

studied consist of adaptive neighborhoods, distributions to control sampling, acceptance

probabilities, as well as cooling schedules. After extensive experiments, we found that the

strategies of using Cauchy1 distribution and adaptive neighborhoods in the variable sub-

space, symmetric-uniform distribution in the Lagrange-multiplier subspace, and Metropolis

acceptance probability work the best in the CSA procedure.

94

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

a) T = 20 b) T = 10.24

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

c) T = 8.192 d) T = 0.45

Figure 4.5: The run-time behavior of CSA based on (Cauchy1, S-uniform,M) at different

temperatures in solving (4.13).

95

Chapter 5

Experimental Results on Constrained

NLP Benchmarks

In this chapter, we report experimental results of CSA based on (Cauchy1, S-uniform, M)

and cooling rate α = 0.8 in solving three sets of continuous optimization benchmarks and

their derived discrete, and mixed-integer versions. We also compare the results with those

obtained by some existing search algorithms.

5.1 Continuous Benchmark Problems and Their

Derived Discrete and Mixed-Integer Versions

We have chosen three sets of continuous constrained benchmarks: s1) ten problems G1-

G10 [133, 119], s2) a collection of optimization benchmarks [68], and s3) selected problems

from CUTE [37], a constrained and unconstrained testing environment. These problems have

objective functions of various types (linear, quadratic, cubic, polynomial, and nonlinear) and

linear/nonlinear constraints of equalities and inequalities. The ratio of feasible space with

respect to the whole search space varies from 0% to almost 100%, and the topologies of

feasible regions are quite different.

96

Problems G1-G10 [133, 119] were originally developed for testing and tuning various

constraint handling techniques in evolutionary algorithms (EAs). Examples of techniques

developed in EAs include keeping the search within feasible regions by some specific genetic

operators and dynamic and adaptive penalty methods. The number of variables in this test

set is up to 20, and that of constraints, including simple bounds, is up to about 50.

The second set of benchmarks [68] were collected by Floudas and Pardalos and were

derived from practical applications, mostly from chemical engineering. The number of vari-

ables in this test set is up to about 50, and that of constraints, including simple bounds, is

up to about 100.

The last test problem set was selected from CUTE [37] based on the criterion that at

least the objective or one of the constraints is nonlinear. Some of the CUTE problems were

constructed specifically by researchers to test optimization algorithms, while others were from

real applications, such as semiconductor analysis in physics, chemical reactions in chemistry,

economic equilibrium in economy, and computer production planning in operations research.

Both the number of variables and the number of constraints in CUTE can be as large as

several thousand.

Derived discrete and mixed-integer problems. Due to a lack of large-scale discrete

and mixed-integer benchmarks, we derive them from the above three sets of continuous

benchmarks [133, 119, 68, 37]. In generating a constrained MINLP, we assume that variables

with odd indices are continuous and those with even indices are discrete. In discretizing

continuous variable xi in range [li, ui], where li and ui are lower and upper bounds of xi,

respectively, we force xi to take values from the set:

Ai =

{

ai + bi−ai

s
j, j = 0, 1, · · · , s

}

if bi − ai < 1

{

ai + 1
s
j, j = 0, 1, · · · , ⌊(bi − ai)s⌋

}

if bi − ai ≥ 1,
(5.1)

97

where s = 10000. We also relax equality constraint hi(x) = 0 into inequality constraint

|hi(x)| ≤ 0.001 in order to have feasible solutions in the discretized MINLP.

5.2 Experimental Results on Discretized G1-G10 and

Floudas and Pardalos’ Benchmarks

In this section, we report experimental results of CSA based on (Cauchy1, S-uniform, M)

and α = 0.8 on ten constrained NLPs G1-G10 [133, 119] and all of Floudas and Pardalos’

benchmarks [68]. As a comparison, we also solved these problems using DONLP2 [179],

a popular SQP package. SQP is an efficient local-search method widely used for solving

continuous constrained NLPs. Its quality depends heavily on its starting points, since it is

a local search.

For every problem, both DONLP2 and CSA were run 100 times with the same sequence

of random starting points. For both discrete and mixed-integer problems, SQP first solves

corresponding continuous problems with relaxed equality constraints (as described in pre-

vious section), and then discretizes its continuous solutions to the nearest grids defined by

(5.1). We measure the performance of DONLP2 and CSA using Tr/Pr, where Tr is the

average time to finish one run and Pr is the probability of finding a feasible solution with

prescribed quality of solution. Therefore, Tr/Pr gives the average time to find a feasible

solution with prescribed quality.

Table 5.1 compares the performance of CSA and DONLP2 on discrete problems G1-G10.

The first two columns show the problem IDs and the best-known solutions. The next six

columns list, respectively, Tr/Pr to find feasible solutions that differ within 0%, 1%, 5%, 10%,

20%, and 50% from the best-known solutions for DONLP2. The following six columns show

the results for CSA. As expected, for both DONLP2 and CSA, average time Tr/Pr decreases

98

Table 5.1: Performance comparison of DONLP2 (SQP) and CSA in solving derived discrete

constrained NLPs G1-G10. CSA is based on (Cauchy1, S-uniform, M) and α = 0.8. All

times are in seconds on a Pentium-III 500-MHz computer running Solaris 7. ‘-’ stands for

no feasible solution found for the specified solution quality within 100 runs. Both SQP and

CSA use the same sequence of starting points.

Problem Best-known DONLP2 for Discrete NLPs (100 runs) CSA for Discrete NLPs (100 runs)

ID Solutions 0% 1% 5% 10% 20% 50% 0% 1% 5% 10% 20% 50%

G1 (min) -15 1.13 1.13 1.03 0.364 0.163 0.124 16.8 7.62 5.98 5.14 4.43 0.69

G2 (max) 0.8036 - - - - - - 56.4 32.0 27.6 26.4 26.2 22.6

G3 (max) 1.0 0.405 0.405 0.405 0.405 0.405 0.405 38.5 23.6 23.6 23.6 23.6 23.6

G4 (min) -30665.5 1.17 1.17 1.17 1.17 1.17 1.17 1.83 0.517 0.25 0.17 0.16 0.16

G5 (min) 4211 - 0.105 0.105 0.105 0.105 0.0807 2.58 1.36 1.36 1.36 1.36 1.36

G6 (min) -6961.81 - - - - - - 0.68 0.25 0.105 0.051 0.019 0.0049

G7 (min) 24.3062 - - - - - - 17.15 9.01 7.26 6.67 5.92 4.67

G8 (max) 0.095825 0.056 0.056 0.056 0.056 0.056 0.056 0.826 0.157 0.089 0.066 0.048 0.019

G9 (min) 680.63 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425 4.65 1.03 0.39 0.13 0.026 0.0056

G10 (min) 7049.33 - - - - - - 6.24 4.19 3.81 3.55 3.29 3.01

as the quality of solution decreases. Table 5.2 reports the results on discrete problems derived

from Floudas and and Pardalos’ continuous benchmarks [68]. Both DONLP2 and CSA fail

to find a feasible solution to discrete problem 7.4. This may be due to the reason that

discrete problem 7.4 does not have any feasible solutions.

Table 5.3 and Table 5.4 show the comparison results of DONLP2 and CSA on solving

derived MINLPs.

Obviously, CSA performs much better than DONLP2 in solving both discrete and mixed-

integer constrained NLPs. First, CSA is able to find best-known solutions to all the discrete

and mixed-integer problems (except discrete 7.4), whereas SQP even fails to find feasible

solutions to many problems, such as G2, G6, 5.2 and 5.4. This means that discretization of

continuous solutions found by SQP sometimes may not lead to feasible discrete and mixed-

integer solutions. Besides, SQP finds very poor feasible solutions for some problems such

99

Table 5.2: Performance comparison of DONLP2 (SQP) and CSA in solving derived discrete

constrained NLPs from Floudas and Pardalos’ continuous constrained benchmarks [68]. CSA

is based on (Cauchy1, S-uniform, M) and α = 0.8. All times are in seconds on a Pentium-

III 500-MHz computer running Solaris 7. ‘-’ stands for no feasible solution found for the

specified solution quality within 100 runs. Both SQP and CSA use the same sequence of

starting points.

Problem Best-known DONLP2 for Discrete NLPs (100 runs) CSA for Discrete NLPs (100 runs)

ID Solutions 0% 1% 5% 10% 20% 50% 0% 1% 5% 10% 20% 50%

2.1 (min) -17 0.85 0.85 0.213 0.10 0.0708 0.0293 2.23 1.68 0.613 0.484 0.095 0.014

2.2 (min) -213 0.022 0.022 0.022 0.022 0.022 0.022 1.57 0.368 0.046 0.0073 0.0029 0.0021

2.3 (min) -15 1.13 1.13 1.03 0.364 0.163 0.124 16.8 7.62 5.98 5.14 4.43 0.69

2.4 (min) -11 0.134 0.103 0.0848 0.0848 0.0629 0.0629 2.63 1.34 0.98 0.631 0.172 0.0076

2.5 (min) -268 - - - - - - 20.4 5.53 3.76 3.24 1.51 0.0927

2.6 (min) -39 9.50 2.38 2.38 1.36 1.36 0.50 7.28 3.73 2.78 2.34 1.97 1.35

2.7.1 (min) -394.75 - - - 14.2 14.2 14.2 80.5 39.1 30.7 27.0 21.6 18.2

2.7.2 (min) -884.75 - - - - 74.4 74.4 85.9 42.6 35.4 21.9 18.8 7.02

2.7.3 (min) -8695.0 - - - - - - 78.0 37.3 30.2 26.2 19.2 15.3

2.7.4 (min) -754.75 - - - - 71.6 71.6 76.5 34.0 26.7 21.6 19.2 6.03

2.7.5 (min) -4150.4 - - - - - - 125.6 79.2 40.3 30.0 24.2 20.4

2.8 (min) 15639.0 - - - - - - 62.5 27.8 27.8 27.7 27.7 27.7

3.1 (min) 7049.33 - - - - - - 6.24 4.19 3.81 3.55 3.29 3.01

3.2 (min) -30665.5 1.17 1.17 1.17 1.17 1.17 1.17 1.83 0.517 0.25 0.17 0.16 0.16

3.3 (min) -310.0 - - - - - - 2.05 0.48 0.46 0.46 0.46 0.46

3.4 (min) -4.0 0.091 0.084 0.084 0.084 0.084 0.084 0.87 0.28 0.042 0.0075 0.002 0.0017

4.3 (min) -4.51 0.18 0.18 0.18 0.18 0.15 0.123 1.29 0.53 0.48 0.47 0.47 0.47

4.4 (min) -2.217 0.52 0.371 0.217 0.20 0.186 0.173 1.25 0.44 0.31 0.30 0.30 0.30

4.5 (min) -13.40 - - - - 3.10 3.10 3.61 1.92 1.84 1.84 1.84 1.84

4.6 (min) -5.51 - - - - - 0.0429 0.603 0.0876 0.0081 0.0029 0.0021 0.0015

4.7 (min) -16.74 0.0706 0.0461 0.0461 0.0461 0.0461 0.044 0.453 0.136 0.0735 0.0575 0.0388 0.0315

5.2 (min) 1.60 - - - - - - 10360 5010 1358 510.0 472.9 455.7

5.4 (min) 1.86 - - - - - - 5475 4140 660.0 305.7 202.7 198.6

6.2 (max) 400.0 - - - - - - 4.91 3.07 3.02 3.02 3.02 3.02

6.3 (max) 600.0 - - - - - - 4.76 3.65 3.45 3.40 3.37 3.37

6.4 (max) 750.0 - - - - - - 5.28 4.31 4.31 4.31 4.31 4.31

7.2 (min) 1.05 - - - - - - 3980 1327 137.5 101.9 51.2 26.9

7.3 (min) 1.51 - - - - - - 13700 13650 6801 6801 6801 6801

7.4 (min) - - - - - - - - - - - - -

100

Table 5.3: Performance comparison of DONLP2 (SQP) and CSA in solving derived mixed-

integer constrained NLPs G1-G10. CSA is based on (Cauchy1, S-uniform, M) and α = 0.8.

All times are in seconds on a Pentium-III 500-MHz computer running Solaris 7. ‘-’ stands

for no feasible solution found for the specified solution quality within 100 runs. Both SQP

and CSA use the same sequence of starting points.

Problem Best-known DONLP2 for Mixed-Integer NLPs (100 runs) CSA for Mixed-Integer NLPs (100 runs)

ID Solutions 0% 1% 5% 10% 20% 50% 0% 1% 5% 10% 20% 50%

G1 (min) -15 3.10 3.10 2.48 0.775 0.365 0.276 18.0 7.18 5.61 4.97 3.84 0.62

G2 (max) 0.8036 - - - - - - 56.5 31.5 27.2 26.2 25.6 22.5

G3 (max) 1.0 0.405 0.405 0.405 0.405 0.405 0.405 37.0 22.7 22.7 22.7 22.7 22.7

G4 (min) -30665.5 1.17 1.17 1.17 1.17 1.17 1.17 2.17 0.52 0.23 0.15 0.14 0.14

G5 (min) 4211 0.35 0.0309 0.0309 0.0309 0.0309 0.0309 1.65 0.69 0.66 0.66 0.66 0.66

G6 (min) -6961.81 - - - - - - 0.65 0.23 0.10 0.045 0.017 0.0046

G7 (min) 24.3062 - - - - - - 16.8 8.64 7.25 6.56 5.72 4.47

G8 (max) 0.095825 0.056 0.056 0.056 0.056 0.056 0.056 0.79 0.15 0.085 0.060 0.038 0.018

G9 (min) 680.63 - - - - - - 4.51 0.96 0.35 0.11 0.027 0.0053

G10 (min) 7049.33 - - - - - - 5.82 5.80 3.41 3.25 2.97 2.69

as mixed-integer 2.7.2, where DONLP2 can only find feasible solutions within 20% to 10%

worse than the best-known solutions.

Second, for those problems in which SQP and CSA are able to find feasible solutions, the

average CPU time of SQP is generally shorter than that of CSA, because each run of SQP

is much quicker than CSA although SQP has lower success ratio Pr than CSA.

Third, CSA spends more than 50% CPU time in improving the last 1% of solution quality.

For example, in discrete problem G1, the average time of finding the best-known solution

is 16.8 seconds, but the average time of finding feasible solutions within 1% worse than the

best-known solution is 7.62 seconds. The reason is that CSA is sampling-based and it takes

a long time to exactly hit the best-known solution.

Table 5.5 compares the performance of CSA on solving continuous problems G1-G10. The

first two columns give the problem IDs and the best-known solutions. The next two columns

101

Table 5.4: Performance comparison of DONLP2 (SQP) and CSA in solving derived

mixed-integer constrained NLPs from Floudas and Pardalos’ continuous constrained bench-

marks [68]. CSA is based on (Cauchy1, S-uniform, M) and α = 0.8. All times are in seconds

on a Pentium-III 500-MHz computer running Solaris 7. ‘-’ stands for no feasible solution

found for the specified solution quality within 100 runs. Both SQP and CSA use the same

sequence of starting points.

Problem Best-known DONLP2 for Mixed-Integer NLPs (100 runs) CSA for Mixed-Integer NLPs (100 runs)

ID Solutions 0% 1% 5% 10% 20% 50% 0% 1% 5% 10% 20% 50%

2.1 (min) -17 0.85 0.85 0.213 0.10 0.0708 0.0293 3.14 2.07 0.80 0.16 0.089 0.012

2.2 (min) -213 0.022 0.022 0.022 0.022 0.022 0.022 1.84 0.38 0.045 0.0066 0.0031 0.0027

2.3 (min) -15 3.10 3.10 2.48 0.775 0.365 0.276 18.0 7.18 5.61 4.97 3.84 0.62

2.4 (min) -11 0.134 0.103 0.0848 0.0848 0.083 0.083 2.99 1.14 0.89 0.60 0.15 0.0066

2.5 (min) -268 - - - - - - 22.1 5.36 3.59 2.92 1.42 0.097

2.6 (min) -39 9.50 2.38 2.38 1.36 1.19 0.288 10.5 3.52 2.56 2.19 1.84 1.36

2.7.1 (min) -394.75 - - - 14.2 11.7 10.1 92.8 36.2 29.1 24.6 20.9 17.8

2.7.2 (min) -884.75 - - - - 37.2 24.8 99.1 40.2 32.8 22.1 18.4 6.80

2.7.3 (min) -8695.0 - - - - - - 92.4 34.6 28.1 23.9 18.9 14.7

2.7.4 (min) -754.75 - - - - 71.6 71.6 91.3 33.2 26.2 21.1 18.9 5.72

2.7.5 (min) -4150.4 - - 9.66 9.66 9.66 9.66 122.9 54.9 35.3 29.1 23.4 19.9

2.8 (min) 15639.0 - - - - - - 82.8 36.6 36.6 26.7 26.7 26.7

3.1 (min) 7049.33 - - - - - - 5.82 5.80 3.41 3.25 2.97 2.69

3.2 (min) -30665.5 1.17 1.17 1.17 1.17 1.17 1.17 2.17 0.52 0.23 0.15 0.14 0.14

3.3 (min) -310.0 1.30 1.30 0.229 0.139 0.0812 0.0494 2.80 0.45 0.43 0.43 0.42 0.42

3.4 (min) -4.0 0.091 0.084 0.084 0.084 0.075 0.075 0.92 0.27 0.045 0.0074 0.002 0.0017

4.3 (min) -4.51 0.18 0.18 0.18 0.18 0.15 0.123 1.73 0.49 0.44 0.44 0.44 0.44

4.4 (min) -2.217 0.52 0.371 0.289 0.26 0.236 0.216 1.73 0.367 0.29 0.28 0.28 0.28

4.5 (min) -13.40 - - - - 3.10 3.10 4.16 1.80 1.75 1.75 1.75 1.75

4.6 (min) -5.51 - - - - - 0.0429 0.63 0.077 0.0073 0.0029 0.0019 0.0014

4.7 (min) -16.74 0.0667 0.0545 0.0545 0.0545 0.0545 0.0522 0.50 0.12 0.072 0.054 0.043 0.031

5.2 (min) 1.60 - - - - - - 6063 3915 1391 476.6 366.7 329.0

5.4 (min) 1.86 - - - - - - 7733 1521 618.7 210.4 132.9 129.2

6.2 (max) 400.0 - - - - - - 5.44 2.85 2.84 2.84 2.84 2.84

6.3 (max) 600.0 - - - - - - 6.15 3.65 3.18 3.16 3.16 3.16

6.4 (max) 750.0 - - - - - - 6.05 4.08 4.08 4.08 4.08 4.08

7.2 (min) 1.04 - - - - - - 4390 2190 621.4 180.0 60.4 24.8

7.3 (min) 1.09 - - - - - - 13700 6850 6830 4307 1821 270.9

7.4 (min) 1.08 - - - - - - 35900 35802 16700 8075 8053 4619

102

Table 5.5: Performance comparison of EAs, DONLP2 (SQP) and CSA in solving continuous

constrained NLPs G1-G10. (S.T. stands for strategic oscillation, H.M. for homomorphous

mappings, and D.P. for dynamic penalty). CSA is based on (Cauchy1, S-uniform, M) and

α = 0.8. All times are in seconds on a Pentium-III 500-MHz computer running Solaris 7.

Both SQP and CSA use the same sequence of starting points.

Problem Best-known EAs DONLP2 for Continuous NLPs (100 runs) CSA for Continuous NLPs (100 runs)

ID Solutions best sol’n method 0% 1% 5% 10% 20% 50% 0% 1% 5% 10% 20% 50%

G1 (min) -15 -15 Genocop 1.13 1.13 1.03 0.365 0.163 0.124 15.2 6.36 4.88 4.20 3.68 0.58

G2 (max) 0.8036 0.80355 S.T. - - - - - 33.2 53.8 31.3 26.4 24.6 23.6 21.7

G3 (max) 1.0 0.999866 S.T. 0.368 0.368 0.368 0.368 0.368 0.368 37.2 21.7 21.6 21.6 21.6 21.6

G4 (min) -30665.5 -30664.5 H.M. 0.033 0.033 0.033 0.033 0.033 0.033 1.76 0.43 0.28 0.23 0.23 0.23

G5 (min) 4221.9 5126.498 D.P. 0.024 0.024 0.024 0.024 0.024 0.024 1.62 1.01 1.01 1.01 1.01 1.10

G6 (min) -6961.81 -6961.81 Genocop 0.015 0.015 0.015 0.015 0.015 0.015 0.518 0.21 0.089 0.041 0.014 0.0048

G7 (min) 24.3062 24.62 H.M. 0.047 0.047 0.047 0.047 0.047 0.047 14.0 7.55 6.16 5.36 4.80 3.66

G8 (max) 0.095825 0.095825 H.M. 0.056 0.056 0.056 0.056 0.056 0.056 0.798 0.13 0.075 0.058 0.038 0.016

G9 (min) 680.63 680.64 Genocop 0.031 0.031 0.031 0.031 0.031 0.031 4.48 0.86 0.34 0.12 0.022 0.0048

G10 (min) 7049.33 7147.9 H.M. 2.32 2.32 2.32 2.32 2.32 2.32 4.69 3.60 3.23 3.08 2.87 2.52

show the best solutions obtained by EAs with specific constraint-handling techniques. The

remaining columns are the results of DONLP2 and CSA.

Table 5.6 reports the results on Floudas and Pardalos’ continuous benchmarks [68]. The

third column shows the best solutions obtained by one implementation of interval methods,

called Epperly’s method [64], whereas the other columns have the same meaning as those in

Table 5.5.

Our experimental results on continuous NLPs lead to the following observations.

First, EAs with various constraint handling techniques do not work well, even for simple

problems like G7 where a local-search method like DONLP2 can find the optimal solution

easily. The main reason is that these constraint handling techniques do not look for saddle

points. Hence, they do not guarantee constraint satisfaction and have difficulty in finding

a CGM. Another reason may be attributed to the difficulty of sampling methods in finding

103

Table 5.6: Performance comparison of Epperly’s method [64] (an interval method),

DONLP2 (SQP) and CSA in solving Floudas and Pardalos’ continuous constrained

NLPs [68]. CSA is based on (Cauchy1, S-uniform, M) and α = 0.8. All times are in

seconds on a Pentium-III 500-MHz computer running Solaris 7. ‘-’ stands for no feasible

solution found for Epperly’s method. Both SQP and CSA use the same sequence of starting

points.

Problem Best-known Epperly DONLP2 for Continuous NLPs (100 runs) CSA for Continuous NLPs (100 runs)

ID Solutions best sol’n 0% 1% 5% 10% 20% 50% 0% 1% 5% 10% 20% 50%

2.1 (min) -17 -17 0.85 0.85 0.213 0.10 0.0708 0.0293 2.68 1.62 0.506 0.18 0.071 0.011

2.2 (min) -213 -213 0.022 0.022 0.022 0.022 0.022 0.022 1.82 0.35 0.041 0.0066 0.003 0.0026

2.3 (min) -15 -15 1.13 1.13 1.03 0.365 0.163 0.124 15.2 6.36 4.88 4.20 3.68 0.58

2.4 (min) -11 -11 0.144 0.103 0.0848 0.0848 0.039 0.039 2.75 1.23 0.86 0.56 0.14 0.0074

2.5 (min) -268 -268 0.085 0.085 0.085 0.085 0.085 0.085 23.1 4.95 3.35 2.76 1.34 0.087

2.6 (min) -39 -39 2.38 2.38 2.38 1.36 1.15 0.183 10.8 3.2 2.31 1.99 1.69 1.18

2.7.1 (min) -394.75 -394.75 5.40 5.40 5.40 5.40 2.70 0.975 79.5 34.4 27.7 22.7 19.4 16.5

2.7.2 (min) -884.75 -884.75 4.96 4.96 4.96 2.66 1.16 0.744 98.2 30.3 24.3 19.1 16.58 6.13

2.7.3 (min) -8695.0 -8695.0 3.69 3.69 3.69 3.69 1.66 0.707 100.7 33.8 27.9 23.1 16.9 13.2

2.7.4 (min) -754.75 -754.75 4.48 4.48 4.48 2.39 1.21 0.716 98.1 30.9 24.3 20.0 17.8 5.55

2.7.5 (min) -4150.4 -4150.4 6.04 2.20 1.07 0.833 0.644 0.514 138.5 57.8 34.9 28.9 21.8 18.5

2.8 (min) 15639.0 15990.0 6.86 6.86 3.08 3.08 2.85 1.98 77.2 53.8 53.8 53.8 53.8 53.8

3.1 (min) 7049.33 - 2.32 2.32 2.32 2.32 2.32 2.32 4.69 3.60 3.23 3.08 2.87 2.52

3.2 (min) -30665.5 -30665.5 0.033 0.033 0.033 0.033 0.033 0.033 1.76 0.43 0.28 0.23 0.23 0.23

3.3 (min) -310.0 -310.0 1.30 1.30 0.229 0.126 0.075 0.0488 3.04 0.41 0.40 0.40 0.39 0.36

3.4 (min) -4.0 -4.0 0.0875 0.0875 0.0875 0.0875 0.078 0.078 0.86 0.24 0.039 0.0063 0.0028 0.0022

4.3 (min) -4.51 -4.51 0.0844 0.0844 0.0844 0.0844 0.0844 0.0818 1.51 0.65 0.62 0.62 0.62 0.62

4.4 (min) -2.217 -2.217 0.186 0.186 0.118 0.118 0.118 0.118 1.83 0.643 0.535 0.515 0.51 0.50

4.5 (min) -13.40 -13.40 1.55 1.55 1.55 1.03 1.03 1.03 3.63 2.62 2.61 2.61 2.60 2.60

4.6 (min) -5.51 -5.51 0.043 0.043 0.043 0.043 0.029 0.015 0.538 0.068 0.0071 0.0033 0.0028 0.0022

4.7 (min) -16.74 -16.74 0.012 0.012 0.012 0.012 0.012 0.012 0.481 0.21 0.203 0.203 0.203 0.203

5.2 (min) 1.567 - 457.5 457.5 166.3 114.4 107.6 107.6 48510 24548 2140 656.8 464.5 390.5

5.4 (min) 1.86 - 8.50 8.50 8.50 8.50 8.39 8.39 8805 3360 615.2 255.9 159.5 159.5

6.2 (max) 400.0 400.0 0.064 0.060 0.059 0.059 0.059 0.059 4.71 3.77 3.77 3.75 3.75 3.75

6.3 (max) 600.0 600.0 0.062 0.062 0.061 0.061 0.061 0.061 5.48 3.90 3.88 3.81 3.81 3.81

6.4 (max) 750.0 750.0 0.073 0.072 0.072 0.072 0.072 0.072 5.95 4.47 4.47 4.47 4.47 4.47

7.2 (min) 1.0 - 4.71 4.71 0.569 0.569 0.569 0.569 - - 2251 492.2 106.7 36.8

7.3 (min) 1.0 - 15.8 6.14 6.14 3.88 2.95 2.95 - - - 13540 6740 564.8

7.4 (min) 1.0 - 31.4 28.3 10.9 10.9 10.9 10.9 - - 6438 2881 1835 651.1

104

exact solutions to continuous NLPs. EAs were only able to find the best solutions in three

of the ten NLPs in G1-G10 despite extensive tuning.

Second, DONLP2 generally works better than CSA because SQP fully utilizes the deriva-

tive information in solving continuous constrained NLPs, whereas CSA depends only on

sampling. Hence, each run of SQP is usually much shorter (one- to two-order faster) than

CSA although SQP has lower success ratio Pr than CSA. In this situation, CSA can win over

SQP only for those problems with huge numbers of local minima, such as G2. In 100 runs

of DONLP2 to solve G2, only one run was able to find the best solution of 0.59701, which is

much worse than those obtained by CSA (0.80362). Even with 10,000 runs, DONLP2 was

only able to find the best solution of 0.736554.

The limitation of DONLP2 is that it requires the differentiability of the Lagrangian

function; hence, it will not be able to solve NLPs whose derivatives are hard to calculate

or are unavailable (such as discrete and mixed-integer NLPs). However, we must point

out that CSA is generally not competitive with SQP in terms of execution time in solving

continuous constrained NLPs with differentiable objective and constraint functions. Closed-

form derivatives in these problems are very effective in SQP for finding feasible solutions.

Third, interval methods, such as Epperly’s implementation [64], have difficulties in solving

problems with nonlinear constraints whose lower bounds are difficult to determine. Examples

include Problems 5.2, 5.4, 7.2, 7.3 and 7.4 in which feasible points were not found.

Last, our current CSA implementation is weak in solving problems with a large number

of equality constraints, such as Problems 5.2, 5.4, 7.2, 7.3 and 7.4. Since CSA is sampling

based, it has difficulty or takes a long time to exactly hit points that satisfy a lot of equality

constraints.

105

5.3 Experimental Results on CUTE Benchmarks

Table 5.7 and Table 5.8, respectively, report comparison results in solving discrete and mixed-

integer NLPs derived from some selected CUTE benchmarks [37] using the given starting

point in each problem. The first column shows the problem IDs, and the next two columns

give the number (nv = n) of variables and the number (nc = m + k) of constraints. The

next five columns show the type of the objective function (linear, quadratic, or nonlinear),

the number of linear equality constraints (nle), the number of nonlinear equality constraints

(nne), the number of linear inequality constraints (nli), and the number of nonlinear in-

equality constraints (nni). The next six columns show the solutions and CPU times that we

obtain by using LANCELOT [48, 121], DONLP2 [179], and CSA, respectively. For discrete

and mixed-integer problems, both DONLP2 and LANCELOT first solve the corresponding

continuous problems with relaxed equality constraints (see section 5.1), and then discretize

their continuous solutions to the nearest discrete points defined by (5.1).

CSA is much better than two SQP packages, LANCELOT and DONLP2, in terms of

its ability to solve discrete and mixed-integer NLPs. Both LANCELOT and DONLP2 are

unable to find feasible solutions for most of the problems tested.

Table 5.9 shows comparison results in solving a large set of selected CUTE benchmarks

[37] (with continuous variables) using the given starting point in each problem. Here,

DONLP2 is of version 10/21/1997, and for LANCELOT, we use both the public version

(01/05/2000) and the commercial version (by submitting problems through the Internet,

http://www-neos.mcs.anl.gov/neos/solvers/NCO:LANCELOT/).

The running times of CSA are not competitive with those of LANCELOT and DONLP2

for solving continuous constrained NLPs, because CSA is sample-based whereas the latter

two use information on derivatives. CSA, however, is much better in terms of solution quality.

106

Both LANCELOT and DONLP2 could not find feasible solutions for some problems, but

CSA was able to solve all the problems and obtained better solutions than LANCELOT

and DONLP2 in many problems. For example, CSA found a solution of 0.872 for Problem

CRESC4, whereas both LANCELOT and DONLP2 could not find feasible solutions. For

Problem HS20, LANCELOT found a solution of 40.2, DONLP2 found a better solution of

39.17, and CSA found the best solution of 38.19.

Table 5.11 shows the results of applying LANCELOT to solve the CUTE problems that

cannot be solved by CSA at this time. These problems either are too large for CSA or have

nonlinear constraints that make it very difficult for the sample-based CSA procedure to find

feasible points.

Figure 5.1 depicts normalized solution quality and normalized CPU time of CSA with

respect to LANCELOT for those CUTE benchmarks that are solvable by both CSA and

LANCELOT. The smaller the value, the shorter the CPU time or the better solution of

quality. The CPU time of CSA is always longer than that of LANCELOT, but the overall

solution quality of CSA is better.

107

Table 5.7: Comparison results of LANCELOT, DONLP2, and CSA in solving discrete con-

strained NLPs that are derived from selected continuous problems from CUTE using the

starting point specified in each problem. CSA is based on (Cauchy1, S-uniform, M) and

α = 0.8. All times are in seconds on a Pentium-III 500-MHz computer running Solaris 7.
′−′ means that no feasible solution can be found by both the public version (01/05/2000)

and the commercial version of LANCELOT (by submitting problems through the Internet,

http://www-neos.mcs.anl.gov/neos/solvers/NCO:LANCELOT/), and that no feasible solu-

tion can be found by DONLP2. Numbers in bold represent the best solutions among the

three methods if they have different solutions.

Problem
nv nc f(x)

h(x) g(x) LANCELOT DONLP2 CSA

IDs nle nne nli nni solution CPU time solution CPU time solution CPU time

HS62 3 1 nonlinear 1 0 0 0 -26273 0.61 -25698 0.03 -26273 2.43

HS87 6 4 nonlinear 0 4 0 0 - - - - 8926 7.32

HS99 7 2 nonlinear 0 2 0 0 - - - - −8.31× 108 11.8

HS101 7 5 nonlinear 0 0 0 5 - - - - 1809.7 69.3

HS102 7 5 nonlinear 0 0 0 5 - - - - 911.9 73.7

HS103 7 5 nonlinear 0 0 0 5 - - 543.7 0.13 543.7 67.8

HS104 8 5 nonlinear 0 0 0 5 - - 3.95 0.03 3.95 30.1

NET1 48 57 nonlinear 21 17 16 3 - - - - - -

NET2 144 160 nonlinear 64 59 32 5 - - - - 1.187× 106 209559

108

Table 5.8: Comparison results of LANCELOT, DONLP2, and CSA in solving mixed-

integer constrained NLPs that are derived from selected continuous problems from CUTE

using the starting point specified in each problem. CSA is based on (Cauchy1, S-uniform,

M) and α = 0.8. All times are in seconds on a Pentium-III 500-MHz computer running

Solaris 7. ′−′ means that no feasible solution can be found by both the public version

(01/05/2000) and the commercial version of LANCELOT (by submitting problems through

the Internet, http://www-neos.mcs.anl.gov/neos/solvers/NCO:LANCELOT/), and that no

feasible solution can be found by DONLP2. Numbers in bold represent the best solutions

among the three methods if they have different solutions.

Problem
nv nc f(x)

h(x) g(x) LANCELOT DONLP2 CSA

IDs nle nne nli nni solution CPU time solution CPU time solution CPU time

HS62 3 1 nonlinear 1 0 0 0 -26273 0.61 -25698 0.03 -26273 2.28

HS87 6 4 nonlinear 0 4 0 0 - - - - 8926 8.56

HS99 7 2 nonlinear 0 2 0 0 - - - - −8.31× 108 11.8

HS101 7 5 nonlinear 0 0 0 5 - - - - 1809.7 74.9

HS102 7 5 nonlinear 0 0 0 5 - - - - 911.9 75.1

HS103 7 5 nonlinear 0 0 0 5 - - 543.7 0.13 543.7 75.2

HS104 8 5 nonlinear 0 0 0 5 - - 3.95 0.03 3.95 30.6

NET1 48 57 nonlinear 21 17 16 3 - - - - 9.41 × 105 6349

NET2 144 160 nonlinear 64 59 32 5 - - - - 1.187× 106 196847

109

Table 5.9: Comparison results of LANCELOT, DONLP2, and CSA in solving selected

continuous problems from CUTE using the starting point specified in each problem. CSA

is based on (Cauchy1, S-uniform, M) and α = 0.8, and does not use derivative information

in each run. All times are in seconds on a Pentium-III 500-MHz computer running Solaris

7. ′−′ means that no feasible solution can be found by both the public version (01/05/2000)

and the commercial version of LANCELOT (by submitting problems through the Internet,

http://www-neos.mcs.anl.gov/neos/solvers/NCO:LANCELOT/), and that no feasible solu-

tion can be found by DONLP2. ′∗′ means that solutions are obtained by the commercial

version (no CPU time is available) but cannot be solved by the public version. Numbers in

bold represent the best solutions among the three methods if they have different solutions.

Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT DONLP2 CSA

nle nne nli nni solution CPU time solution CPU time solution CPU time

ALJAZZAF 3 1 quadratic 0 1 0 0 75.0 0.46 - - 75.0 1.38

ALLINITC 4 1 nonlinear 0 0 0 1 30.44 * 31.75 0.02 30.44 4.76

ALSOTAME 2 1 nonlinear 0 1 0 0 0.082 0.57 0.082 0.03 0.082 0.80

AVION2 49 15 nonlinear 15 0 0 0 - - - - 9.47 × 107 946.7

BATCH 46 73 nonlinear 12 0 60 1 - - - - 2.59 × 105 12465

BT11 5 3 nonlinear 1 2 0 0 0.825 0.62 0.825 0.02 0.825 3.73

BT12 5 3 quadratic 0 3 0 0 6.188 0.47 6.188 0.02 6.188 3.25

BT6 5 2 nonlinear 0 2 0 0 0.277 0.56 0.277 0.03 0.277 4.61

BT7 5 3 nonlinear 0 3 0 0 306.5 0.51 360.4 0.03 306.5 3.38

BT8 5 2 quadratic 0 2 0 0 1.0 0.57 1.0 0.02 1.0 2.93

CB2 3 3 linear 0 0 0 3 1.952 0.60 1.952 0.03 1.952 2.49

CRESC4 6 8 nonlinear 0 0 0 8 - - - - 0.872 37.9

CSFI1 5 4 linear 0 2 0 2 -49.07 0.63 0.0 0.02 -49.07 4.56

DEMBO7 16 20 quadratic 0 0 0 20 174.9 * - - 174.9 342.9

DIPIGRI 7 4 nonlinear 0 0 0 4 680.6 0.68 680.6 0.03 680.6 9.19

DIXCHLNG 10 5 nonlinear 0 5 0 0 0.0 1.12 2471.9 0.04 0.0 44.12

DNIEPER 61 24 nonlinear 0 24 0 0 1.87× 104 0.83 - - 1.87 × 104 3703

ERRINBAR 18 9 linear 0 8 1 0 28.05 * - - 28.05 83.3

EXPFITA 5 22 nonlinear 0 0 22 0 1.13 × 10−3 0.65 1.13 × 10−3 0.07 1.13 × 10−3 89.44

FLETCHER 4 4 quadratic 0 1 3 0 19.53 0.57 - - 12.18 3.46

GAUSSELM 14 11 linear 0 5 6 0 -2.25 0.55 - - -2.007 56.19

GIGOMEZ2 3 3 linear 0 0 0 3 1.952 0.59 1.952 0.03 1.952 2.35

HIMMELBI 100 12 nonlinear 0 0 12 0 -1735.6 1.23 - - -1735.6 14114

HIMMELBJ 45 14 nonlinear 14 0 0 0 - - - - -1910.3 2001

HIMMELP2 2 1 nonlinear 0 0 0 1 -62.05 0.63 -62.05 0.03 -62.05 1.76

continued on next page

110

continued from previous page

Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT DONLP2 CSA

nle nne nli nni solution CPU time solution CPU time solution CPU time

HIMMELP6 2 5 nonlinear 0 0 2 3 -59.01 0.69 -57.85 0.02 -59.01 2.88

HONG 4 1 nonlinear 1 0 0 0 22.57 0.50 22.57 0.03 22.57 2.90

HS100 7 4 nonlinear 0 0 0 4 680.6 0.72 680.6 0.03 680.6 9.19

HS101 7 5 nonlinear 0 0 0 5 1809.7 * - - 1809.7 75.9

HS102 7 5 nonlinear 0 0 0 5 911.9 * - - 911.9 74.2

HS103 7 5 nonlinear 0 0 0 5 - - 543.7 0.13 543.7 75.0

HS104 8 5 nonlinear 0 0 0 5 3.95 0.58 3.95 0.03 3.95 30.62

HS107 9 6 nonlinear 0 6 0 0 5055 0.59 5085.5 0.04 5055 42.6

HS108 9 13 quadratic 0 0 0 13 -0.866 0.58 -0.675 0.1 -0.866 52.69

HS109 9 10 nonlinear 0 6 2 2 - - - - 5362 48.38

HS111 10 3 nonlinear 0 3 0 0 -47.76 0.83 -47.76 0.05 -47.76 79.4

HS114 10 11 quadratic 1 2 4 4 -1768.8 1.64 - - -1768.8 43.4

HS117 15 5 nonlinear 0 0 0 5 32.35 0.60 2400.0 0.04 32.35 54.7

HS119 16 8 nonlinear 8 0 0 0 244.9 0.54 - - 244.9 421

HS12 2 1 quadratic 0 0 0 1 -30.0 0.46 -30.0 0.03 -30.0 0.95

HS18 2 2 nonlinear 0 0 0 2 5.0 0.65 5.0 0.03 5.0 0.96

HS19 2 2 nonlinear 0 0 0 2 -6961.8 0.58 -6961.8 0.03 -6961.8 1.27

HS20 2 3 nonlinear 0 0 0 3 40.2 0.52 39.17 0.03 38.19 1.64

HS23 2 5 quadratic 0 0 0 5 2.0 0.54 9.47 0.03 2.0 1.94

HS24 2 3 nonlinear 0 0 3 0 -1.0 0.55 -1.0 0.03 -1.0 1.33

HS26 3 1 nonlinear 0 1 0 0 0.0 0.65 0.0 0.03 0.0 1.28

HS27 3 1 nonlinear 0 1 0 0 0.04 0.49 0.04 0.03 0.04 1.27

HS29 3 1 nonlinear 0 0 0 1 -22.6 0.53 -22.6 0.03 -22.6 1.34

HS30 3 1 quadratic 0 0 0 1 1.0 0.52 3.0 0.02 1.0 1.44

HS32 3 2 nonlinear 1 0 0 1 1.0 0.54 1.02 0.03 1.0 1.72

HS33 3 2 nonlinear 0 0 0 2 -4.0 0.55 -3.0 0.03 -4.59 2.05

HS34 3 2 linear 0 0 0 2 -0.834 0.38 -0.834 0.03 -0.834 2.12

HS36 3 1 nonlinear 0 0 1 0 -3300 0.55 -1000 0.03 -3300 1.26

HS37 3 2 nonlinear 0 0 2 0 -3456 0.48 -3456 0.02 -3456 1.54

HS39 4 2 linear 0 2 0 0 -1.0 0.52 -1.0 0.03 -1.0 2.11

HS40 4 3 nonlinear 0 3 0 0 -0.25 0.58 -0.25 0.03 -0.25 2.83

HS41 4 1 nonlinear 1 0 0 0 1.926 0.52 1.926 0.03 1.926 1.37

HS42 4 2 nonlinear 1 1 0 0 13.86 0.56 13.86 0.02 13.86 2.36

HS43 4 3 quadratic 0 0 0 3 -44.0 0.49 -44.0 0.03 -44.0 4.48

HS46 5 2 nonlinear 0 2 0 0 0.0 0.54 0.0 0.02 0.0 4.28

HS54 6 1 nonlinear 1 0 0 0 0.0 0.58 -0.156 0.03 -0.908 3.87

HS55 6 6 nonlinear 6 0 0 0 6.667 0.49 - - 6.333 6.91

HS56 7 4 nonlinear 0 4 0 0 -3.456 0.55 -3.456 0.06 -3.31 8.35

HS57 2 1 nonlinear 0 0 0 1 0.03065 0.57 0.02846 0.03 0.02846 20.45

HS59 2 3 nonlinear 0 0 0 3 -7.803 0.88 -6.75 0.03 -7.803 5.45

HS60 3 1 nonlinear 0 1 0 0 0.0326 0.62 0.0326 0.03 0.0326 1.65

continued on next page

111

continued from previous page

Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT DONLP2 CSA

nle nne nli nni solution CPU time solution CPU time solution CPU time

HS61 3 2 quadratic 0 2 0 0 -143.65 0.57 -143.65 0.04 -143.65 1.54

HS62 3 1 nonlinear 1 0 0 0 -26273 0.61 -26273 0.03 -26273 2.20

HS63 3 2 quadratic 1 1 0 0 961.72 0.55 961.72 0.03 961.72 1.87

HS64 3 1 nonlinear 0 0 0 1 6299.8 0.43 6299.8 0.03 6299.8 1.68

HS68 4 2 nonlinear 0 2 0 0 -0.9204 0.72 -0.7804 0.04 -0.9204 6.76

HS69 4 2 nonlinear 0 2 0 0 -956.71 0.80 -956.71 0.04 -956.71 4.95

HS7 2 1 nonlinear 0 1 0 0 -1.732 0.56 -1.732 0.03 -1.732 0.94

HS71 4 2 nonlinear 0 1 0 1 17.01 0.62 31.64 0.04 17.01 2.60

HS73 4 3 linear 1 0 1 1 29.9 0.52 29.98 0.03 29.9 3.12

HS74 4 5 nonlinear 0 3 2 0 5126.5 0.50 5126.5 0.04 5126.5 5.25

HS75 4 5 nonlinear 0 3 2 0 5174.4 0.56 5174.4 0.04 5174.4 5.30

HS77 5 2 nonlinear 0 2 0 0 0.2415 0.56 0.2415 0.03 0.2415 4.09

HS78 5 3 nonlinear 0 3 0 0 -2.92 0.58 -2.92 0.03 -2.92 3.79

HS79 5 3 nonlinear 0 3 0 0 0.0788 0.57 0.0788 0.03 0.0788 4.10

HS80 5 3 nonlinear 0 3 0 0 0.054 0.58 0.054 0.03 0.054 4.25

HS83 5 3 quadratic 0 0 0 3 -30666 0.52 - - -30666 5.68

HS84 5 3 quadratic 0 0 0 3 - - −2.35 × 106 0.03 −5.28× 106 7.69

HS87 6 4 nonlinear 0 4 0 0 - - 8997 0.04 8926 8.43

HS93 6 2 nonlinear 0 0 0 2 - - 135.1 0.03 135.1 4.96

HS99 7 2 nonlinear 0 2 0 0 - - −8.31 × 108 0.06 −8.31× 108 12.8

HUBFIT 2 1 nonlinear 0 0 1 0 0.0169 0.46 0.0169 0.02 0.0169 1.21

LAUNCH 25 28 nonlinear 6 3 12 7 - - - - 9.0 1941

LIN 4 2 nonlinear 2 0 0 0 -0.02 0.70 -0.0176 0.02 -0.02 6.69

LOADBAL 31 31 nonlinear 11 0 20 0 0.453 0.69 1.546 0.08 1.546 1712

LOOTSMA 3 2 nonlinear 0 0 0 2 - - - - 1.414 2.10

MADSEN 3 6 linear 0 0 0 6 0.616 0.55 0.616 0.03 0.616 5.13

MARATOS 2 1 quadratic 0 1 0 0 -1.0 0.40 -1.0 0.02 -1.0 0.839

MATRIX2 6 2 quadratic 0 0 0 2 0.0 0.52 0.0 0.04 0.0 3.93

MESH 41 48 nonlinear 4 20 24 0 - - 0.0 0.16 −1.0 × 105 4009

MISTAKE 9 13 quadratic 0 0 0 13 -1.0 0.58 -1.0 0.06 -1.0 55.0

MRIBASIS 36 55 linear 1 8 43 3 18.218 1.88 - - 18.218 7612

MWRIGHT 5 3 nonlinear 0 3 0 0 24.97 0.56 24.97 0.02 1.318 3.92

NET1 48 57 nonlinear 21 17 16 3 - - - - 9.41 × 105 6776

NET2 144 160 nonlinear 64 59 32 5 - - - - 1.187× 106 226271

NGONE 8 8 quadratic 0 0 2 6 -0.5 0.51 0.0 0.03 -0.5 24.7

ODFITS 10 6 nonlinear 6 0 0 0 -2380 0.50 -2380 0.04 -2380 26.8

OPTCNTRL 32 20 quadratic 10 10 0 0 550 0.51 - - 550 432

OPTPRLOC 30 30 quadratic 0 0 5 25 -16.42 4.02 - - -16.42 1674

ORTHREGB 27 6 quadratic 0 6 0 0 0.0 0.76 0.0 0.04 0.0 218.3

PENTAGON 6 15 nonlinear 0 0 15 0 1.509 × 10−4 0.56 1.365× 10−4 0.03 1.365× 10−4 32.1

POLAK1 3 2 linear 0 0 0 2 2.718 0.53 2.718 0.03 2.718 2.02

continued on next page

112

continued from previous page

Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT DONLP2 CSA

nle nne nli nni solution CPU time solution CPU time solution CPU time

POLAK3 12 10 linear 0 0 0 10 5.933 0.82 - - 5.933 417.2

POLAK5 3 2 linear 0 0 0 2 50.0 0.52 50.0 0.02 50.0 1.87

POLAK6 5 4 linear 0 0 0 4 -44.0 0.74 -44.0 0.04 -44.0 11.8

QC 9 4 nonlinear 0 0 4 0 -956.5 0.58 - - -956.5 28.5

READING6 102 50 nonlinear 0 50 0 0 - - - - -132.3 28530

RK23 17 11 linear 4 7 0 0 0.0833 0.75 - - 0.675 96.1

ROBOT 14 2 quadratic 0 2 0 0 5.463 0.55 - - 5.463 34.8

S316-322 2 1 quadratic 0 1 0 0 334.3 0.48 334.3 0.02 334.3 0.83

SINROSNB 2 1 nonlinear 0 0 0 1 0.0 0.56 0.0 0.04 0.0 1.36

SNAKE 2 2 linear 0 0 0 2 - - 0.0 0.02 0.0 1.43

SPIRAL 3 2 linear 0 0 0 2 0.0 0.71 0.121 0.31 0.0 3.46

STANCMIN 3 2 nonlinear 0 0 2 0 4.25 0.58 - - 4.25 1.72

SVANBERG 10 10 nonlinear 0 0 0 10 15.73 0.59 16.5 0.03 15.73 85.3

SYNTHES1 6 6 nonlinear 0 0 4 2 0.759 0.55 10.0 0.04 0.759 9.97

SYNTHES2 11 14 nonlinear 1 0 10 3 -0.554 0.60 - - -0.554 94.3

SYNTHES3 17 23 nonlinear 2 0 17 4 15.08 0.51 - - 15.08 261.7

TENBARS4 18 9 linear 0 8 1 0 368.5 * - - 368.5 84.9

TWOBARS 2 2 nonlinear 0 0 0 2 1.51 0.53 1.51 0.03 1.51 1.36

WOMFLET 3 3 linear 0 0 0 3 0.0 0.51 0.0 0.02 0.0 2.5

ZAMB2-8 138 48 nonlinear 0 48 0 0 -0.153 1.20 - - -0.153 46156

ZECEVIC3 2 2 quadratic 0 0 0 2 97.31 0.54 97.31 0.03 97.31 1.32

ZECEVIC4 2 2 quadratic 0 0 1 1 7.558 0.59 7.558 0.02 7.558 1.23

ZY2 3 2 nonlinear 0 0 0 2 2.0 0.46 7.165 0.03 2.0 2.35

113

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

no
rm

al
iz

ed
 C

PU
 ti

m
e

normalized solution quality

CSA vs LANCELOT

Figure 5.1: Normalized solution quality and normalized CPU time of CSA with respect to

LANCELOT for those CUTE benchmarks that are solvable by both CSA and LANCELOT,

where normalized CPU time is in log scale.

114

Table 5.11: Experimental Results of applying LANCELOT on selected CUTE problems

that cannot be solved by CSA at this time. All times are in seconds on a Pentium-III 500-

MHz computer running Solaris 7. ′−′ means that no feasible solution can be found by both

the public version (01/05/2000) and the commercial version of LANCELOT.

Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT

nle nne nli nni solution CPU time

BRAINPC0 6907 6900 nonlinear 0 6900 0 0 1.5E-3 55.5

BRAINPC1 6907 6900 nonlinear 0 6900 0 0 0.0 84.8

BRAINPC2 13807 13800 nonlinear 0 13800 0 0 4.1E-8 93.2

BRAINPC3 6907 6900 nonlinear 0 6900 0 0 1.687E-4 89.4

BRAINPC4 6907 6900 nonlinear 0 6900 0 0 1.288E-3 79.1

BRAINPC5 6907 6900 nonlinear 0 6900 0 0 1.362E-3 143.7

BRAINPC6 6907 6900 nonlinear 0 6900 0 0 5.931E-5 85.2

BRAINPC7 6907 6900 nonlinear 0 6900 0 0 3.82E-5 109.4

BRAINPC8 6907 6900 nonlinear 0 6900 0 0 1.652E-4 112.8

BRAINPC9 6907 6900 nonlinear 0 6900 0 0 8.27E-4 68.2

BRIDGEND 2734 2727 linear 1304 1423 0 0 - -

BRITGAS 450 360 nonlinear 0 360 0 0 0.0 8.3

C-RELOAD 342 284 linear 26 174 0 84 -1.027 51.1

FEEDLOC 90 259 linear 4 15 166 74 0.0 251.7

HELSBY 1408 1399 linear 658 741 0 0 - -

HYDROELL 1009 1008 nonlinear 0 0 1008 0 -3.586E6 70.5

HYDROELM 505 504 nonlinear 0 0 504 0 -3.582E6 29.3

HYDROELS 169 168 nonlinear 0 0 168 0 -3.582E6 2.7

LAKES 90 78 quadratic 60 18 0 0 - -

LEAKNET 156 153 linear 73 80 0 0 8.0 25.7

LHAIFAM 99 150 nonlinear 0 0 0 150 - -

continued on next page

115

continued from previous page

Problem

IDs

nv nc f(x)
h(x) g(x) LANCELOT

nle nne nli nni solution CPU time

NET3 464 521 nonlinear 195 199 110 17 - -

READING7 1002 500 nonlinear 0 500 0 0 - -

READING8 2002 1000 nonlinear 0 1000 0 0 - -

SARO 4754 4015 linear 0 4015 0 0 252.3 3739.0

SAROMM 5120 5110 linear 365 4015 730 0 57.35 9147.5

TWIRISM1 343 313 nonlinear 50 174 5 84 -1.01 136.1

TWIRIMD1 1247 544 nonlinear 143 378 5 186 -1.034 10158

TWIRIBG1 3127 1239 nonlinear 292 630 5 312 - -

ZAMB2-10 270 96 nonlinear 0 96 0 0 -1.58 2.99

ZAMB2-11 270 96 nonlinear 0 96 0 0 -1.116 1.83

5.4 Summary

In this chapter, we have applied CSA to solve many discrete, mixed-integer, and continuous

constrained NLPs. Although CSA is able to solve problems without differentiability, the

benchmarks that we evaluated here are all differentiable, making it possible to compare the

performance of CSA with those methods that require derivatives such as SQP.

For discrete and mixed-integer problems, CSA shows much more advantages over SQP.

Even though SQP can quickly solve continuous benchmarks, discretization of its continuous

solutions sometimes may lead to either infeasible discrete solutions or worse solutions than

CSA. Besides, because of the requirement of differentiability, SQP cannot be used to solve

those problems whose derivatives are difficult to evaluate or are unavailable.

116

For continuous problems with differentiability, CSA is not competitive with SQP in terms

of CPU time unless the problems have huge numbers of local minima such as G2. By using

derivatives efficiently, SQP is normally one- to two-order faster than CSA in one run. Hence,

one of future work is to develop some strategies to have CSA efficiently use derivatives

without loss of its global convergence property.

117

Chapter 6

Filter-Bank Design for Subband

Image Coding

Digital image processing has an enormous impact on a variety of industrial and real-life

applications, especially for multimedia computing environments. To reduce image storage,

image coding (or compression) has been a subject of great interest in both academia and

industry. Subband/wavelet image coding has recently become a cutting edge technology for

image compression [12, 54, 97, 192].

In this chapter, we address filter design issue in subband image coding, whose goal is to

achieve a better objective measure called peak signal-to-noise ratio (PSNR) for compressed

images. Because it is very time-consuming to directly compute this image-dependent PSNR,

many heuristic objectives have been used in the literature [12, 54, 66, 188]. These include cod-

ing gain, frequency selectivity, perfect reconstruction (PR), linear phase (LP), and wavelet

regularity. Hence, filter designs become multi-objective optimization problems.

We study different formulations for filter design, including two constrained NLPs and

one unconstrained NLP, and then solve them using such optimization algorithms as FSQP

[226] and CSA developed in Chapters 3 and 4. We demonstrate the performance of CSA

118

(z)

(z)

2

2

F

F

0

1
x(n)

x(n) y (n)

y (n)
H

(z)

(z)

H0

1

0

1

2

2

Figure 6.1: The structure of a two-band filter bank.

by improving the coding quality in terms of PSNRs, when compared with that of some

best-known subband or wavelet filters.

6.1 Subband Transforms

Transform-based coding techniques have been the de facto standard for image compression,

whose philosophy is that transformed images are easier to compress than original images.

Such transforms can be either linear or nonlinear, but are usually linear due to their invert-

ibility. Two commonly-used linear transforms are the discrete cosine transform (DCT) and

subband transform.

JPEG [207], as an image coding standard, partitions images into nonoverlapping blocks.

These image blocks are then transformed by DCT independently. When the transform

coefficients are coded under low-bit-rate methods, blocking effects occur because the effects

of adjacent image blocks are generally ignored.

Subband transform entails the overlapping of image data to avoid blocking artifacts.

1-D subband transform can be represented by a filter bank as shown in Figure 6.1. It is

composed of an analysis subsystem, including filters H0(z), H1(z) and decimator, followed by

a synthesis subsystem, including filters F0(z), F1(z) and interpolator. The analysis subsystem

is used for image encoding, whereas the synthesis subsystem is used for image decoding.

119

Transformed subband signals y0(n) and y1(n) are obtained by first convoluting filters

h0(n) and h1(n) with input signal x(n), followed by down-sampling the signals. The sampling

rates of y0(n) and y1(n) are half of that of the original signal x(n). In general, filters h0(n)

and h1(n) are carefully designed in such a way that subband signals y0(n) and y1(n) have

better energy compaction and decorrelation than original signal x(n).

In addition to subband transforms, wavelet transforms also use the filter bank shown in

Figure 6.1, but were brought out from totally different perspectives [6]. Subband transforms

are multi-rate digital signal processing systems, having three elements of filters, decima-

tors and interpolators. They divide signals into different frequency bands or subbands, for

example, low-pass and high-pass bands. Wavelet transforms, however, were motivated by

approximation theory. This theory views images as locally smooth functions, and analyzes

them using the notion of a multiresolution analysis or function approximations. Wavelet

transforms work in spatial domains instead of frequency domains.

In the literature, filters used in subband transforms are called subband filters, whereas

filters used in wavelet transforms are called wavelet filters. Subband filters are designed to

optimize behavior in the frequency domain, whereas wavelet filters are designed to emphasize

continuity or smoothness. When they are used in image coding, there is no big difference

between them, except in the characteristics of the filters. We integrate them to establish the

criteria of filter design in this chapter.

6.2 Procedure of Subband Image Coding

Subband image coding consists of the following phases: subband transform based on the

filter bank, bit allocation and quantization, and lossless coding such as entropy coding.

120

6.2.1 Two-Dimensional Subband Transforms

Subband transforms usually require h0(n) and f0(n) to be low-pass filters, and h1(n) and

f1(n) to be high-pass filters [97, 192]. Subband y0(n), obtained by filtering signal x(n) with

low-pass filter h0(n), is known as a reference signal. Subband y1(n), obtained by filtering

signal x(n) with high-pass filter h1(n), is known as a detail signal.

For any image I(x, y), its 2-D subband transform is accomplished by two separate 1-D

transforms shown in Figure 6.1, where (x, y) only takes values on integers defined on an

image plane M × N . Image I(x, y) is first filtered along the x dimension, resulting in low-

pass image IL(x, y) and high-pass image IH(x, y). Because down-sampling drops every other

filtered value, the size of these two images is M/2 × N . Both images IL(x, y) and IH(x, y)

are then filtered along the y dimension, resulting in four subimages (or subbands): ILL(x, y),

ILH(x, y), IHL(x, y), and IHH(x, y). Therefore, we have one reference image ILL(x, y) and

three detail images that are directionally sensitive: ILH(x, y) emphasizing horizontal image

features, IHL(x, y) vertical features, and IHH(x, y) diagonal features.

It is customary in subband image coding to recursively transform the reference image

[97, 54]. In general, the number of such splits ranges from 3 to 5, depending on the com-

pression ratio, the size of the original image I(x, y), and the length of filters. The higher the

compression ratio, the more times that subband transforms are performed. If the number

of splits is L, then the total number of subimages obtained by recursive transforming the

original image is NI = 3L+ 1.

Recursive applications of subband transform form a splitting tree structure, whose shape

is determined by the splitting scheme. The above splitting scheme only constructs one

of these trees, called the dyadic tree structure, and may not be the best for any images.

After this sequence of subband transforms, one obtains a set of transform coefficients that

121

comprise the reference subimage and detail subimages of various levels. No compression of

the original image has been achieved yet, and further processing, such as quantization and

coding, is needed.

6.2.2 Bit Allocation and Quantization

The purpose of subband transforms is to have different subimages embed different important

information used by the human visual system [54]. If filters h0(n) and h1(n) are correctly

determined, the subband transform decorrelates pixel values of original image I(x, y) and

concentrates most image information into a relatively small number of coefficients, such as

those in reference subimages. These important coefficients have to be finerly quantized than

others in order to efficiently compress images, while keeping most image information in en-

coded images. Hence, designing good filters is very important in subband image compression.

Given a total bit budget, bit allocation tries to assign different numbers of bits to different

subimages based on their relative importance. More formally, the bit allocation problem

entails finding the optimal distribution of the available bits among all subimages. To fit

every subimage into the available bits, quantization is required that causes some distortion.

In general, quantization is characterized by a quantization step. A larger quantization step

causes a larger distortion but a smaller number of bits, whereas a smaller quantization step

causes a smaller distortion but a larger number of bits.

6.2.3 Coding Quantized Coefficients

After bit allocation and quantization, these quantized coefficients are efficiently coded to

achieve a high compression ratio [54, 97, 192]. Entropy coding achieves smaller images on

average by assigning shorter code words to more likely values and longer code words to less

likely values, where likeliness is usually measured by histograms. Arithmetic coding provides

122

a near-optimal entropy coding for quantized coefficients. It estimates the distribution of these

coefficients that is approximated by a generalized Gaussian or Laplacian distribution density.

Most of the time, the density is estimated online, allowing the exploitation of local changes

in image statistics.

Many efficient methods have recently been proposed to greatly reduce the number of bits

needed for encoding quantized coefficients. The basic idea is to exploit the relationship of

these coefficients across subbands, for example, some significant coefficients are similar in

shape and location across different subbands. Embedded zero-tree [176] combines this idea

with the notion of coding zeros jointly by encoding and decoding an image progressively,

whereas set partitioning in hierarchical tree (SPHIT) [168] further enhances its implemen-

tation. The rate-distortion of bit allocation can also be incorporated into a zero-tree [220]

to get better performance. Instead of using a priori knowledge about transform coefficients,

finding an optimized significance tree (or map) is obtained from a set of training images [53].

Note that all these approaches improve coding quality a lot by reducing the number of bits

for coding transform coefficients, instead of improving the filters by changing their coefficient

distribution.

6.3 Subband-Filter Design Criteria

There are two strategies of filter design [17, 18]. The first one is to design subband filters

that are independent of individual input images (but depend on general image statistics),

splitting tree structure, and quantization. Only one pair of low-pass and high-pass filters

h0 and h1 need to be determined. Its major advantages are (a) that the design procedure,

the image encoder, and the image decoder are simple, (b) that the subband filters obtained

can be applicable to any image, any tree structure, and any quantization method, and (c)

123

that if filter design criteria are carefully chosen, the filters will perform well in general, such

as Daubechies’ 9/7 wavelet filter [12, 193]. The disadvantage is that such filters may not

perform the best for any given image.

The second design strategy is to optimize a design by jointly designing subband filters,

splitting tree structure, and quantizers [149]. This design procedure is usually image depen-

dent. An engineering approach to solve such dependence is to design subband filters using

some training images [149]. Its success, however, depends heavily on the training images

selected, and may only work well for a small set of images. Independent of quantizers and

images, subband filters and tree structures are jointly designed by maximizing coding gain

[17, 19], where different stages of subband decomposition employ different subband filters.

Such image-dependent designs are usually computationally expensive. They achieve high

coding quality for a given image, but may not be generalized to other images.

In this thesis, we adopt the first design strategy and expect to get better coding results

from two aspects: (a) Proper filter design criteria from subband coding, coding theory, and

wavelet theory are integrated into our design criteria. (b) Since the filter design is formulated

as NLPs, our global optimization method may find better solutions.

6.3.1 Choice of Filter-Bank Types

For the application of subband image coding, we select a filter bank based on two criteria:

perfect reconstruction (PR) and linear phase (LP) of filters. While the former precludes any

errors caused by the filter bank itself, the latter avoids introducing any phase errors into

transform coefficients, since phase distortions around edges are very visible. A biorthogonal

filter bank [66, 188] can meet both requirements if its filter parameters were chosen carefully.

Therefore, we use biorthogonal filter banks for image coding to have both PR and LP.

124

6.3.2 Performance Metrics for Filter-Bank Design

In a biorthogonal filter bank, synthesis filters F0(z) and F1(z) relate to analysis filters H0(z)

and H1(z) by setting F0(z) = 2H1(−z) and F1(z) = −2H0(−z) in order to cancel alias-

ing errors [188]. Hence, only two filters H0(z) and H1(z) need to be determined. In this

subsection, we investigate the performance metrics for designing these two filters.

6.3.2.1 Criteria for Filter Bank

To achieve both perfect reconstruction (PR) and linear phase (LP), it is required that the

sum of the lengths of filters H0(z) and H1(z) be a multiple of 4, N0 + N1 = 4m, where N0

and N1 are, respectively, the lengths of filters H0(z) and H1(z). Type-B filters [139] are used

here for which both filters H0(z) and H1(z) are of odd length and are symmetric (namely,

LP). Because of the symmetry of the filters,

h0(n) = h0(N0 + 1− n), n = 1, 2, · · · , (N0 − 1)/2

h1(n) = h1(N1 + 1− n), n = 1, 2, · · · , (N1 − 1)/2,

the number of the filter coefficients is reduced by almost half. The filter parameters are

denoted by h0 = {h0(n), n = 1, 2, · · · , (N0 + 1)/2} and h1 = {h1(n), n = 1, 2, · · · ,(N1 +

1)/2}.

To avoid any errors caused by the filter bank itself, we require the filter bank to be PR,

which is enforced by a set of quadratic equations [103], called PR condition,

1

2
θ

(

i−
N0 +N1

4

)

=
2i

∑

k=1

(−1)k−1h0(2i+ 1− k)h1(k), i = 1, 2, · · · ,
N0 +N1

4
, (6.1)

where θ(x) = 1 if x = 0, and 0 otherwise.

125

1−δ

1+δ
1

δ ω

p

p

s

π0

|H(ejω)|

ωspω

Εp

sΕ

Figure 6.2: Performance metrics of a low-pass filter.

6.3.2.2 Individual Filter Criteria

As mentioned before, some important subimages containing low frequencies of the original

image are finerly quantized than others containing high frequencies. If they are separated

well by the analysis filters, one may achieve good quality of image coding. Otherwise, some

important information may leak into unimportant subimages and may be degraded or lost

by coarse quantization, leading to poor image quality.

To perfectly divide the frequency band into low and high frequencies, we require ideal

filters. For low-pass filter h0, its amplitude response |H0(ω)| = 1 if 0 ≤ ω ≤ π/2, and

|H0(ω)| = 0 if π/2 ≤ ω ≤ π. For high-pass filter h1, its amplitude response |H1(ω)| = 0 if

0 ≤ ω ≤ π/2, and |H1(ω)| = 1 if π/2 ≤ ω ≤ π. Since it is impossible to achieve these ideal

filters using finite-length filters, we want to maximize their proximity to these ideal filters

that is measured by frequency metrics (or frequency selectivity).

The frequency metrics of individual filters to approximate ideal filters include their stop-

band energies Es(h0) and Es(h1), stopband ripples δs(h0) and δs(h1), passband energies

126

Ep(h0) and Ep(h1), passband ripples δp(h0) and δp(h1), and transition widths τ(h0) and

τ(h1). Their meanings are depicted in Figure 6.2.

These performance metrics evaluate the degree of approximation to an ideal filter. How-

ever, they are time-consuming to evaluate, especially for metrics without closed-forms and

are evaluated by numerical methods, such as stopband ripples δs(h0) and δs(h1), passband

ripples δp(h0) and δp(h1), and transition widths τ(h0) and τ(h1). To greatly reduce compu-

tational costs, we only use passband and stopband energies given passband and stopband

cut-off frequencies ωp and ωs [103, 188]. Let the Fourier transforms of filters h0 and h1 be,

respectively,

FT0(e
jω) = H0(ω)e−j

N0−1

2
ω FT1(e

jω) = H1(ω)e−j
N1−1

2
ω

where the term e−j
N0−1

2
ω is the linear phase of filterH0(z) with delay (N0−1)/2, and e−j

N1−1

2
ω

is the linear phase of H1(z) with delay (N1 − 1)/2, and

H0(ω) = h0((N0 + 1)/2) +

(N0−1)/2
∑

n=1

2h0(n)cos

(

N0 + 1

2
− n

)

ω

H1(ω) = h1((N1 + 1)/2) +

(N1−1)/2
∑

n=1

2h1(n)cos

(

N1 + 1

2
− n

)

ω (6.2)

Here we only show the equations of stopband energy Es(h0) and passband energy Ep(h0)

for low-pass filter h0, given its stopband and passband cut-off frequencies ωs0 and ωp0. The

127

stopband energy Es(h0) is:

Es(h0) =

∫ π

ωs0

H2
0 (ω) dω (6.3)

= h2
0((N0 + 1)/2)(π − ωs0)− 4h0((N0 + 1)/2)

(N0−1)/2
∑

n=1

h0(n)
sin

(

N0+1
2
− n

)

ωs0

N0+1
2
− n

+2

(N0−1)/2
∑

n=1

h2
0(n)

[

(π − ωs0)−
sin(N0 + 1− 2n)ωs0

N0 + 1− 2n

]

−2

(N0−1)/2
∑

n=1

(N0−1)/2
∑

m=1,m6=n

h0(n)h0(m)

[

sin(n−m)ωs0

n−m
+
sin(N0 + 1− n−m)ωs0

N0 + 1− n−m

]

and the passband energy Ep(h0) is:

Ep(h0) =

∫ ωp0

0

(H0(ω)− 1)2 dω (6.4)

= [h0((N0 + 1)/2)− 1]2ωp0 + 4[h0((N0 + 1)/2)− 1]

(N0−1)/2
∑

n=1

h0(n)
sin

(

N0+1
2
− n

)

ωp0

N0+1
2
− n

+2

(N0−1)/2
∑

n=1

h2
0(n)

[

ωp0 +
sin(N0 + 1− 2n)ωp0

N0 + 1− 2n

]

+2

(N0−1)/2
∑

n=1

(N0−1)/2
∑

m=1,m6=n

h0(n)h0(m)

[

sin(n−m)ωp0

n−m
+
sin(N0 + 1− n−m)ωp0

N0 + 1− n−m

]

For high-pass filter h1, we first transform it into a low-pass filter H1(ω+ π), and then follow

the same steps from H1(ω + π) to obtain its stopband energy Es(h1) and passband energy

Ep(h1), given its stopband and passband cut-off frequencies ωs1 and ωp1.

128

6.3.2.3 Wavelet Criteria

Wavelet properties [54, 192] that are of particular interest in image coding are the accuracy

of approximation, regularity, as well as the support of the wavelet basis. Approximation

accuracy, as characterized by the number of vanishing moments, is not a problem here since

the filter bank is guaranteed to be PR. The size of the support of wavelet basis should be

small that can also be achieved by limiting filter lengths (i.e. N0 and N1) to be short. Very

long filters tend to spread coding errors.

Regularity requires that iterated low-pass filters converge to continuous functions [193].

Intuitively, it can be understood to be smoothness and, thus, is also referred to as a smooth-

ness constraint. If this is true, then any discontinuity in transform coefficients is caused

by the input signal itself. Hence, regular basis functions lead to a better representation of

the signal. In addition, quantization errors in transform coefficients produce reconstruction

errors, and their smoothness is related to that of a wavelet transform, i.e., filters. An argu-

ment for better regularity is that a smooth error signal is less annoying to the human eye

than a discontinuous error signal, even if their actual distortion is the same [12].

Therefore, the concept of regularity seems to be a good criteria for subband image coding.

The regularity order of function φ(x) is defined to be r if it is r times differentiable and its

r-th derivative drφ(x)/dxr is continuous, where r is an integer. In practice, r is between one

and two, and additional smoothness does not appear to yield significant improvements for

coding quality.

For low-pass filter h0, the regularity of order r requires at least r zeros of its amplitude

response H0(ω) at ω = π. Similarly, for high-pass filter h1, the regularity of order r requires

at least r zeros of its amplitude response H1(ω) at ω = 0. Hence, the regularity constraint

129

can be written as

H0(ω)|ω=π = 0

dnH0(ω)/dωn|ω=π = 0 for n = 1, 2, · · · , r − 1 (6.5)

for low-pass filter H0(ω). Similar conditions can be defined for high-pass filters H1(ω) except

that it is evaluated at ω = 0.

The number of zeros determines the number of equalities in (6.5). Here we use regularity

of order 2 because it is sufficient for subband coding [17, 19]. Because zeros appear in pairs,

the 2-order regularity can be enforced by letting H0(ω = π) = 0 for low-pass filter h0 and

H1(ω = 0) = 0 for high-pass filter h1. Substituting them into (6.2), we get two equations,

h0((N0 + 1)/2) + 2

(N0−1)/2
∑

n=1

(−1)(
N0+1

2
−n)h0(n) = 0

h1((N1 + 1)/2) + 2

(N1−1)/2
∑

n=1

h1(n) = 0. (6.6)

There is one important point that needs to be emphasized. In the domain of signal

processing, filter bank design [188, 66, 103] tries to achieve PR condition and approximate

an ideal filter on every frequency. But in wavelet theory, filter design emphasizes smoothness

near ω = 0 or ω = π [12, 17, 52, 47]. Here, we formulate regularity as simple equations in

(6.6) for 2-order regularity.

6.3.2.4 Coding Gain

Coding gain measures energy compaction, and high coding gains correlate consistently with

high objective values [17, 19, 114, 193, 11]. However, it is image dependent and too expensive

to be evaluated in filter designs. To greatly reduce its computation, one needs to make some

130

simplifying assumptions. For instance, by modeling a natural image as a Markovian source

with the nearest sample correlation ρ and by assuming uncorrelated quantization errors and

high bit budget, Katto and Yasuda [114] derived a filter-dependent coding gain,

G(ρ, h0, h1) =
1

∏M−1
k=0 (AkBk)1/M

(6.7)

for one level of subband decomposition, where M is the number of subbands (M = 2 here),

and

Ak =
∑

i

∑

j

hk(i)hk(j)ρ
|j−i| and Bk =

∑

i

fk(i)
2 = 4

∑

i

hk(i)
2

where ρ = 0.95 for general images. For images that have low-pass characteristics, the Marko-

vian source model for coding gain fits well. But this assumption is hardly valid [3] for those

images that exhibit strong non-stationarities in the sense of varying local characteristics. In

addition, a high-rate budget is violated for compression at a low-bit rate.

6.4 Optimization Formulations for Filter-Bank Design

To design analysis filters h0 and h1, we have identified four sets of performance metrics, PR

condition (6.1) for the filter bank, frequency metrics of stopband and passband energies (6.3)

and (6.4) for individual filters, wavelet 2-order regularity (6.6), and coding gain (6.7). In

summary, it is a multi-objective problem with the following objectives:

• obj1: satisfy PR condition (6.1);

• obj2: minimize Es(h0), Es(h1), Ep(h0), and Ep(h1);

• obj3: satisfy 2-order regularity (6.6);

131

• obj4: maximize coding gain (6.7).

To solve this multi-objective problem, we reformulate it into three different formulations

to see how they can achieve better PSNRs. The first one is a constrained formulation with

the objective being a weighted sum of obj2 and obj4 and the constraints being obj1 and obj3,

minh0,h1
wf (Es(h0) + Ep(h0) + Es(h1) + Ep(h1)) + wc G̃(ρ, h0, h1)

subject to
1

2
θ

(

i−
N0 +N1

4

)

=

2i
∑

k=1

(−1)k−1h0(2i+ 1− k)h1(k) i = 1, 2, · · · ,
N0 +N1

4

h0((N0 + 1)/2) + 2

(N0−1)/2
∑

n=1

(−1)(
N0+1

2
−n)h0(n) = 0

h1((N1 + 1)/2) + 2

(N1−1)/2
∑

n=1

h1(n) = 0 (6.8)

where G̃(ρ, h0, h1) =
(

1
G(ρ,h0,h1)

)M

, and wf and wc are relative weights between frequency

metrics and the coding gain. This is a constrained NLP with a nonlinear objective, two linear

equality constraint, and N0+N1

4
quadratic equality constraints. We denote this formulation

by A(wf/wc).

132

The second formulation is also a constrained formulation, whose objective function is

obj2 and whose constraints are obj1, obj3 and obj4.

minh0,h1
Es(h0) + Ep(h0) + Es(h1) + Ep(h1)

subject to
1

2
θ

(

i−
N0 +N1

4

)

=

2i
∑

k=1

(−1)k−1h0(2i+ 1− k)h1(k) i = 1, 2, · · · ,
N0 +N1

4

h0((N0 + 1)/2) + 2

(N0−1)/2
∑

n=1

(−1)(
N0+1

2
−n)h0(n) = 0

h1((N1 + 1)/2) + 2

(N1−1)/2
∑

n=1

h1(n) = 0

G(ρ, h0, h1) ≥ Gref + β (6.9)

where Gref is the coding gain of a baseline filter, and β is an offset. We can obtain a

filter with higher coding gain than Gref , if β > 0 and (6.9) is solved successfully. This is a

constrained NLP with a nonlinear objective, two linear equality constraint, N0+N1

4
quadratic

equality constraints and one nonlinear constraint. This formulation is denoted by B(β).

The third formulation is an unconstrained formulation, whose objective is defined as:

minh0,h1
Es(h0) + Ep(h0) + Es(h1) + Ep(h1) + G̃(ρ, h0, h1)

+
γ

2

(N0+N1)/4
∑

i=1

[

1

2
θ(i− (N0 +N1)/4)−

2i
∑

k=1

(−1)k−1h0(2i+ 1− k)h1(k)

]2

+
γ

2

h0((N0 + 1)/2) + 2

(N0−1)/2
∑

n=1

(−1)(
N0+1

2
−n)h0(n)

2

+
γ

2

h1((N1 + 1)/2) + 2

(N1−1)/2
∑

n=1

h1(n)

2

(6.10)

133

where γ is the penalty to penalize the violations of PR condition (6.1) and 2-order regularity

(6.6). This is an unconstrained NLP, denoted by C(γ).

6.5 Implementation Issues

In this section, we discuss two approaches to solve optimization problems (6.8)-(6.10), and

briefly review a wavelet image coding package [55] used to measure PSNRs of subband filters.

6.5.1 Solution Methods for Filter-Bank Design

We solve filter design problems (6.8)-(6.10) by two optimization methods.

• CSA with (Cauchy1,S-uniform,M): The strategies used in CSA consist of generat-

ing trial points (x′, λ) by the Cauchy1 distribution, generating trial points (x, λ′) by

the symmetric uniform (S-uniform) distribution, and accepting trial points based on

Metropolis rule (3.11). The cooling rate used in geometric cooling schedule (3.12) is

α = 0.8. See Chapter 4 for details on CSA.

• FSQP: Feasible SQP (FSQP) is one of the popular SQP packages [226]. It first converts

nonlinear equality constraints into relaxed inequality constraints and adds penalties to

the objective in order to penalize violations of these equality constrains. Afterwards,

given a starting point, FSQP first generates a feasible point that satisfies all inequality

as well as linear equality constraints, and then maintains feasibility of these inequal-

ity and linear equality constraints in successive iterations. Because it needs to use

derivatives, FSQP can only be applied to solve continuous problems.

134

6.5.2 Wavelet Image Coding Package

To show the performance of filters on image coding, we use a wavelet image compression

construction kit [55] that consists of the following three stages.

• Invertible transform: Invertible transforms allow a variety of transforms such as DCT,

wavelets and wavelet packets. Since an image is finite, a symmetric extension is im-

plemented in the package to cope with image boundaries. Some best-known filters,

widely used in current wavelet image coding, are also included. This helps us compare

the performance of our designed filters with that of existing ones.

• Quantization: Transform coefficients are uniformly discretized using a form of scalar

quantization, and bit allocation is based on integer programming for near-optimal

allocation in a simple quantization scheme.

• Entropy coding: Quantized coefficients are finally entropy coded to produce compressed

images. The entropy coding uses simple histogram adaptation with escape codes.

Although this basic wavelet image coder employs simple strategies in each step, instead of

state-of-the-art techniques, it is modular and easy to modify its quantizer, entropy coder, and

wavelet filters. Therefore, we only need to change the wavelet-filter part in our experiments

and comparisons.

6.5.3 Measurements of Coding Quality

There are two performance measures for image coding, compression ratio and peak signal-

to-noise ratio (PSNR). The compression ratio is defined as:

number of bits in the original image

number of bits in the compressed image
.

135

Here, we confine our experiments to 8 bit-per-pixel (bpp) grey-scale images. Thus, PSNR in

decibels (dB) is computed as:

PSNR = 20 log10

255

RMSE

where RMSE is the root mean-squared error defined as:

RMSE =

√

√

√

√

1

NM

N
∑

i=1

M
∑

j=1

[f(i, j)− f̂(i, j)]2

where N and M are the width and height of an image in pixels, f is the original image, and

f̂ is the decoded (or reconstructed) image.

6.6 Experimental Results

Two types of filters with different lengths N0/N1 are designed: 9/7 and 13/11 filters. Cut-off

frequencies ωs and ωp control how close the designed filters are to the ideal filters. For 9/7

filter, we set ωs = 0.7π and ωp = 0.3π, and for 13/11 filter, we set ωs = 0.6π and ωp = 0.4π.

For the purpose of comparison, we compare the coding quality of our designed 9/7 and 13/11

filters with that of Daubechies’ 9/7 filter [12] and Villasenor’s 13/11 filter [193], respectively.

Both Daubechies’ 9/7 and Villasenor’s 13/11 filters were reported to perform very well for

subband image coding [193].

We tested the performance of filters on four images shown in Figure 6.3: Lena is smooth,

Barbara and Goldhill are more detailed with some textures, and Mandrill is totally of texture

style. For a given test image, five compression ratios, 4:1, 8:1, 16:1, 32:1 and 64:1, are

experimented.

136

(a) Lena image (b) Barbara image

(c) Goldhill image (d) Mandrill image

Figure 6.3: Four test images.

137

6.6.1 Control Parameters for Optimization Formulations

For constrained formulation A(wf/wc), we study the effects of frequency metrics and coding

gain on image coding quality by three choices of weights for wf and wc: (a) coding gain

G and frequency metrics are equally weighted, namely, wf = wc = 1; (b) only frequency

metrics are considered, namely, wf = 1 and wc = 0, and (c) only coding gain G is optimized,

namely, wf = 0 and wc = 1.

For constrained formulation B(β), we evaluate how the required minimum coding gain

affects coding quality. In designing 9/7 filter, we select baseline Gref to be the coding gain

of Daubechies’ 9/7 filter, and three choices of β = 0 dB, 0.5 dB and -0.5 dB are respectively

tested. In designing 13/11 filter, we set baseline Gref to be the coding gain of Villasenor’

13/11 filter, and examine three choices of β = 0 dB, 0.5 dB and -0.5 dB.

For unconstrained formulation C(γ), we test three different values of penalty γ = 1, 100,

10000 that penalize the violations of PR condition (6.1) and 2-order regularity (6.6).

Due to the nonlinear objective and constraints, filter-design problems (6.8)-(6.10) may

have many local minima with different objective values. To compare FSQP with CSA, we

randomly generate 100 starting points h0(n), h1(n) ∈ [−1,+1], and for each starting point

(

h
(t=0)
0 , h

(t=0)
1

)

, we solve these optimization problems using both FSQP and CSA.

6.6.2 Experimental Results on 9/7 Filters

Table 6.1 reports the results of applying FSQP and CSA to design 9/7 filters with respect

to different problem formulations and their control parameters. The first column shows the

problem formulations and their control parameters. For unconstrained formulation C(γ),

we only show the result for γ = 100, because it is almost the same as those for γ = 1 and

γ = 10000. The next four columns show the best solutions obtained by FSQP and CSA,

138

Table 6.1: Comparison results of applying FSQP and CSA to design 9/7 filters using different problem formulations and

their control parameters. All runs were done on a Pentium-III 450-Mhz computer under Solaris 7. Numbers in bold represent

the best solution in terms of average improved PSNR.

Methods Formulations

best

sol’n

coding

gain (dB)

average

time (sec.)

average

imp’d PSNR

Average Improved PSNRs (dB)

compression ratio

4:1 8:1 16:1 32:1 64:1

FSQP

(100 runs)

A(wf/wc = 1.0/1.0) 0.0174 5.822 0.095 0.063 dB 0.066 0.041 0.132 0.047 0.029

A(wf/wc = 1.0/0.0) 0.0131 5.816 0.150 0.059 dB 0.048 0.039 0.131 0.048 0.031

A(wf/wc = 0.0/1.0) 0.00314 6.496 2.11 -1.49 dB -1.84 -1.74 -1.59 -1.29 -0.99

B(β = 0.0 dB) 0.015 5.916 0.28 0.008 dB 0.012 0.029 0.008 0.008 -0.019

B(β = +0.5 dB) 0.0546 6.416 0.51 -0.94 dB -1.22 -1.28 -0.94 -0.74 -0.49

B(β = −0.5 dB) 0.0131 5.816 0.12 0.06 dB 0.049 0.040 0.131 0.046 0.032

C(γ = 100) 0.00805 6.139 0.028 -1.01 dB -2.97 -1.03 -0.541 -0.305 -0.213

CSA

(100 runs)

A(wf/wc = 1.0/1.0) 0.0174 5.822 132.4 0.063 dB 0.066 0.041 0.132 0.047 0.029

A(wf/wc = 1.0/0.0) 0.0131 5.816 115.3 0.059 dB 0.048 0.039 0.131 0.048 0.031

A(wf/wc = 0.0/1.0) 0.00314 6.496 44.5 -1.49 dB -1.84 -1.74 -1.59 -1.29 -0.99

B(β = 0.0 dB) 0.015 5.916 138.7 0.008 dB 0.012 0.029 0.008 0.008 -0.019

B(β = +0.5 dB) 0.0546 6.416 153.6 -0.94 dB -1.22 -1.28 -0.94 -0.74 -0.49

B(β = −0.5 dB) 0.0131 5.816 154.1 0.06 dB 0.049 0.040 0.131 0.046 0.032

C(γ = 100) 0.00805 6.139 85.35 -1.01 dB -2.97 -1.03 -0.541 -0.305 -0.213

139

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

A
m

pl
itu

de

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

A
m

pl
itu

de

Frequency

(a) Daubechies’ 9/7 filter (b) A(wf/wc = 1.0/1.0)

Figure 6.4: Frequency amplitudes of Daubechies’ 9/7 filter and our best 9/7 filter obtained

using formulation A(wf/wc = 1.0/1.0).

the corresponding coding gains, average running time, and average improved PSNR over the

four images and five compression ratios with respect to those of Daubechies’ 9/7 filter. The

next four columns detail average improved PSNRs at five compression ratios over the four

test images.

For every problem formulation and every set of control parameters, FSQP and CSA

locate the same best solutions. CSA is much slower than FSQP because CSA utilizes only

sampling whereas FSQP utilizes derivatives. The best improved PSNR (0.063 dB) is achieved

by the 9/7 filter designed using formulation A(wf/wc = 1.0/1.0), whose coding gain is

5.822 dB. Here we call this filter our best 9/7 filter. Although the 9/7 filter obtained from

A(wf/wc = 0.0/1.0) has higher coding gain (6.496 dB) than our best 9/7 filter, its coding

quality is much worse. This means that coding gain may not be the most important factor

in subband image coding.

The amplitude responses of Daubechies’ 9/7 filter and our best 9/7 filter are shown in

Figure 6.4. Since Daubechies’ 9/7 filter is designed based on wavelet theory, it has the most

smoothness enforced by a high-order regularity. Our best 9/7 filter, however, has narrower

140

transition bandwidths and is closer to the ideal filter, partly due to the optimization of

frequency metrics. From the point of view of signal processing, the frequency response of

our best 9/7 filter is better than Daubechies’ 9/7 filter. Besides, the amplitude value of our

filter equals zero at ω = π for low-pass filter h0, and equals zero at ω = 0 for high-pass filter

h1, showing some smoothness around ω = π and ω = 0. This is enforced by the equality

constraints of 2-order wavelet regularity.

Table 6.2 shows the coding quality on four images using Daubechies’ 9/7 filter whose

coding gain is 5.916 dB and our best 9/7 filter. For every image, we give PSNRs for both

Daubechies’ 9/7 and our best 9/7 filters and their difference. For Lena, Goldhill, and Man-

drill, our filter has similar performance as Daubechies’ 9/7 filter with the maximum improve-

ment of 0.14 dB and the maximum degradation of -0.5 dB. For Barbara, our filter performs

better, improving 0.58 dB at compression ratio 16:1.

6.6.3 Experimental Results on 13/11 Filters

Table 6.3 reports the comparison results of applying FSQP and CSA to design 13/11 filters

with respect to different problem formulations and their control parameters. The first column

shows the problem formulations and their control parameters. For unconstrained formulation

C(γ), we only show the result for γ = 100, since results for γ = 1 and γ = 10000 are almost

the same. The next four columns show the best solutions obtained, the corresponding values

of coding gain, average running time, and average improved PSNR over the four images and

five compression ratios with respect to that obtained by Villasenor’ 13/11 filter. The next

four columns detail average improved PSNRs at five compression ratios over the four test

images.

CSA is able to find better solutions than FSQP in terms of the objective values using

formulation A(wf/wc) of different weights wf and wc and for formulation B(β = −1.0 dB).

141

Table 6.2: PSNRs (dB) for Daubechies’ 9/7 and our best 9/7 filters. Numbers in bold represent improved PSNRs.

Compression

Ratio

Lena image Barbara image Goldhill image Mandrill image

D’s 9/7 our 9/7 Diff D’s 9/7 our 9/7 Diff D’s 9/7 our 9/7 Diff D’s 9/7 our 9/7 Diff

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

4:1 43.71 43.75 0.04 40.60 40.90 0.30 41.12 41.10 -0.02 35.35 35.30 -0.05

8:1 39.42 39.43 0.01 34.56 34.70 0.14 35.94 35.93 -0.01 29.76 29.78 0.02

16:1 36.18 36.19 0.01 29.54 30.12 0.58 32.62 32.58 -0.04 26.37 26.35 -0.02

32:1 33.17 33.19 0.02 26.65 26.69 0.04 30.08 30.07 -0.01 24.18 24.32 0.14

64:1 30.23 30.33 0.10 24.31 24.40 0.09 28.22 28.20 -0.02 22.94 22.89 -0.05

142

Table 6.3: Comparison results of applying FSQP and CSA to design 13/11 filters with respect to different problem formulations

and their control parameters. All runs were done on a Pentium-III 450-Mhz computer under Solaris 7. Numbers in bold

represent the best solution in terms of average improved PSNR.

Methods Formulations

best

sol’n

coding

gain (dB)

average

time (sec.)

average

imp’d PSNR

Average Improved PSNRs (dB)

compression ratio

4:1 8:1 16:1 32:1 64:1

FSQP

(100 runs)

A(wf/wc = 1.0/1.0) 0.0514 5.961 0.39 0.029 dB 0.072 0.042 0.078 -0.006 -0.042

A(wf/wc = 1.0/0.0) 0.0474 5.957 0.38 0.028 dB 0.068 0.041 0.079 -0.004 -0.043

A(wf/wc = 0.0/1.0) 0.00326 6.414 5.08 -4.21 dB -5.32 -4.57 -4.32 -3.52 -3.29

B(β = 0.0 dB) 0.0474 5.957 0.59 0.028 dB 0.068 0.041 0.079 -0.004 -0.043

B(β = +1.0 dB) 0.189 6.639 1.99 -0.54 dB -0.49 -0.87 -0.54 -0.52 -0.30

B(β = −1.0 dB) 0.0474 5.957 0.47 0.028 dB 0.068 0.041 0.079 -0.004 -0.043

C(γ = 100) 0.0165 6.045 0.143 -2.69 dB -6.69 -3.33 -1.74 -1.06 -0.649

CSA

(100 runs)

A(wf/wc = 1.0/1.0) 0.0488 5.923 610.9 0.10 dB 0.185 0.141 0.123 0.028 0.026

A(wf/wc = 1.0/0.0) 0.0453 5.908 530.8 0.106 dB 0.186 0.138 0.139 0.027 0.039

A(wf/wc = 0.0/1.0) 0.00259 6.912 125.0 -2.18 dB -2.44 -2.38 -2.40 -1.98 -1.71

B(β = 0.0 dB) 0.0474 5.957 797.9 0.028 dB 0.068 0.041 0.079 -0.004 -0.043

B(β = +1.0 dB) 0.189 6.639 792.7 -0.54 dB -0.49 -0.87 -0.54 -0.52 -0.30

B(β = −1.0 dB) 0.0459 5.904 791.1 0.103 dB 0.186 0.132 0.139 0.019 0.041

C(γ = 100) 0.0165 6.045 423.0 -2.69 dB -6.69 -3.33 -1.74 -1.06 -0.649

143

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

A
m

pl
itu

de

Frequency

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

A
m

pl
itu

de

Frequency

(a) Villasenor’ 13/11 filter (b) A(wf/wc = 1.0/0.0)

Figure 6.5: Frequency amplitudes of Villasenor’s 13/11 filter and our best 13/11 filter

obtained by solving A(wf/wc = 1.0/0.0) using CSA.

The best improved PSNR (0.106 dB) is achieved by the 13/11 filter designed by CSA based

on formulation A(wf/wc = 1.0/0.0), whose coding gain is 5.908 dB. We call this filter our

best 13/11 filter. Although the 13/11 filter obtained by CSA solving A(wf/wc = 0.0/1.0)

has much higher coding gain (6.912 dB), its coding quality is much worse.

The amplitude responses of Villasenor’s 13/11 filter and our best 13/11 filter are shown

in Figure 6.5. Table 6.4 shows the coding quality on four images using Villasenor’s 13/11

filter whose coding gain is 5.639 dB and our best 13/11 filter. For every image, we give

PSNRs for both Villasenor’s 13/11 and our best 13/11 filters and their difference. Our best

13/11 filter is almost constantly better than Villasenor’s 13/11 filter with improvement up

to 0.25 dB.

6.7 Summary

In this chapter, we have studied filter design issue in subband image coding, whose goal is to

achieve a better objective measure PSNR for compressed images. We integrated the design

criteria from both signal processing and wavelet theory. Those criteria consist of coding gain,

144

Table 6.4: PSNRs (dB) for Villasenor’s 13/11 and our best 13/11 filters. Numbers in bold represent improved PSNRs.

Compression

Ratio

Lena image Barbara image Goldhill image Mandrill image

V’s 13/11 our 13/11 Diff V’s 13/11 our 13/11 Diff V’s 13/11 our 13/11 Diff V’s 13/11 our 13/11 Diff

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

4:1 43.72 43.93 0.21 40.96 41.12 0.16 40.86 41.05 0.19 35.21 35.40 0.19

8:1 39.40 39.44 0.04 34.82 35.02 0.20 35.67 35.92 0.25 29.87 29.94 0.07

16:1 36.16 36.16 0.00 30.18 30.37 0.19 32.48 32.61 0.13 26.17 26.41 0.24

32:1 33.14 33.11 -0.03 26.76 26.89 0.13 29.93 30.05 0.12 24.30 24.19 -0.11

64:1 30.14 30.24 0.10 24.43 24.36 -0.07 28.14 28.21 0.07 22.89 22.94 0.05

145

frequency selectivity, perfect reconstruction (PR), linear phase (LP), and wavelet regularity.

Hence, filter designs are multi-objective optimization problems.

We have investigated different formulations for filter design that include two constrained

NLPs and one unconstrained NLP, and then have solved them using FSQP [226] and CSA

developed in Chapters 3 and 4. We have demonstrated the performance of CSA by improving

the coding quality in terms of PSNRs, when compared with that of some best-known subband

or wavelet filters.

146

Chapter 7

Conclusions and Future Work

7.1 Summary of Accomplished Research

A large number of applications in engineering, decision science, and operations research can

be formulated as constrained nonlinear programming problems (NLPs). Improved solutions

to these applications have significant impacts on system performances. The major work of

this thesis is on the development of a stochastic global optimization method, called con-

strained simulated annealing (CSA), with asymptotic convergence for solving continuous,

discrete, and mixed-integer constrained NLPs. Using this method, we have improved ex-

isting optimization methods in terms of solution quality for solving continuous NLPs and

have also solved derived discrete and mixed-integer NLPs that cannot be solved efficiently

by existing methods. We summarize the major contributions of this thesis as follows.

• We have developed constrained simulated annealing (CSA), a stochastic global opti-

mization algorithm that converges to a CGMdn with probability one in solving discrete

constrained NLPs. This algorithm is based on the first-order necessary and sufficient

conditions in the theory of discrete constrained optimization using Lagrange multipli-

ers. These conditions are important because they establish a one-to-one correspon-

147

dence between CLMdn and discrete saddle points, thereby allowing constrained global

optimization to be accomplished by finding a saddle point with the minimum objec-

tive value. To find such a saddle point, CSA carries out both probabilistic descents

of the discrete augmented-Lagrangian function in the original-variable subspace and

probabilistic ascents in the Lagrange-multiplier subspace. By modeling CSA as an

inhomogeneous Markov chain, we have proved that CSA converges asymptotically to

a CGMdn with probability one. By achieving asymptotic convergence, CSA is one of

the major developments in nonlinear constrained global optimization today and com-

plements simulated annealing (SA) in nonlinear unconstrained global optimization.

• We have investigated various strategies used in CSA, consisting of neighborhood sizes

and types, distributions to control the way that samples are drawn, acceptance prob-

abilities, as well as cooling schedules, and have studied their tradeoffs for solving dis-

crete, continuous, and mixed-integer constrained NLPs. Finally, we have implemented

an optimization software package based on CSA and the best combination of strategies

found in our evaluations.

• Finally, we have applied CSA to solve three sets of nonlinear constrained benchmarks

and found improved solutions over existing optimization methods. We have also applied

CSA to design filters in subband image coding and have obtained better quality in

coding real images when compared with the results of some best-known filters.

7.2 Future Work

In this section, we describe some possible improvements and work for CSA in the future.

• Handling difficult equality constraints. As mentioned before, CSA is weak in solving

problems with a large number of equality constraints. Since CSA randomly generates

148

trial points and is sampling based, it has difficulty or takes a long time to exactly

hit points that satisfy many equality constraints. We plan to address this issue by

studying techniques to generate better samples using Bayesian analysis, incorporating

derivative information into sampling, and combining techniques in SQP into CSA.

• Development of any time algorithms. Another difficulty in using CSA is to determine

an optimal cooling schedule that allows a CGMdn to be found in the shortest average

amount of time. Such a schedule does not generally correspond to the case in which

the success probability in one run of CSA is the highest, because the highest success

probability in one run requires a cooling schedule that approaches infinity. Rather,

the optimal schedule happens when CSA is allowed to be run multiple times, and the

average total time of the multiple runs is the shortest. If each run is too short, it will

have very little chance of finding a CGMdn. This leads to a very large number of runs

in order to find a CGMdn and, thus, a long average total completion time. In contrast,

if each run is too long, it will have a high probability of finding a CGMdn but a very

long completion time. Hence, the average total completion time of a few long runs of

CSA will be still very long. An optimal cooling schedule is one that has a cooling rate

in between and leads to the shortest average total completion time when CSA is run

multiple times.

We plan to design cooling schedules for CSA in such a ways that the average time spent

in generating a solution of certain quality is of the same order of magnitude as that

of multiple run of the original CSA with an optimal cooling schedule. We also plan to

design a set of solution targets that allow CSA to generate improved solutions as more

time is spent, eventually finding a CGMdn. Both leads to an any time version of CSA.

Wah and Chen [198] have developed one version of any-time CSA, called CSAAT−ID,

149

by applying iterative deepening to the cooling schedule. They proved that the total

time spent on CSAAT−ID is of the same order as the time of one CSA run with the

optimal cooling schedule.

• Extensions to optimization problems with noisy observations. Up to now, it is implicitly

assumed that the objective and constraint functions are evaluated accurately without

noise. This, however, may not be the case in real applications whose observations

of both the objective and constraints may be noisy. We plan to investigate different

ways of generating trial points and accepting these points in such a way that the new

algorithm will also converge asymptotically to optimal solutions.

150

Appendix A

Enhancing First-Order Methods for

Continuous Constrained NLPs

In this appendix, we propose two strategies to improve the local search behavior of the

first-order method, which is characterized by (2.7), for solving continuous constrained NLPs.

The objective and constraint functions are assumed to be differentiable. In such a situation,

we have B ⊆ C ⊆ A, where A is the set of CLMcn, B is the set of points satisfying the

first-order necessary and second-order sufficient conditions, and C is the set of saddle points

(see Section 2.1.3 for details). The first-order method aims to find a solution in B.

First, we discuss methods to transform inequality constraints into equality constraints,

since first-order methods cannot directly solve those NLPs with inequality constraints. A

common method, called the slack-variable method [125], adds a slack variable to each inequal-

ity constraint to transform it into an equality constraint. Its main disadvantage is that, when

a search trajectory is inside a feasible region, some satisfied constraints may still pose some

effect on the Lagrangian function, leading to possible oscillations or even divergence when a

CLMcn lies on the boundary of the feasible region. To overcome this problem, we propose

the MaxQ method that carries no effect on satisfied constraints. Hence, minimizing the La-

151

grangian function in the feasible region always leads to a CLMcn of the objective function.

We also study some techniques to speed up convergence of the MaxQ method.

Second, we develop a dynamic weighting strategy to improve the convergence speed

of first-order methods without affecting their solution quality. First-order methods find

CLMcn in the Lagrangian space. When constraints are satisfied, they rely on gradient de-

scents in the objective to find high-quality solutions. In contrats, when constraints are

violated, these methods rely on gradient ascents in the Lagrange-multiplier space in order

to increase the penalties on unsatisfied constraints and to force the constraints into satisfac-

tion. The balance between gradient descents and ascents depends upon the relative weights

between the objective and the constraints, which indirectly control the convergence speed

and solution quality of first-order methods. Because the choice of proper weights depends

on the problem instance and its initial starting points, it is difficult or impossible to de-

termine them in advance. Our dynamic weighting algorithm monitors search progress and

adaptively adjusts the weights once imbalance is detected. Using such a strategy, we are

able to eliminate divergence, reduce oscillations, and speed up convergence.

A.1 Handling Inequality Constraints

The general approach in Lagrangian methods to handle inequality constraints is to transform

them into equivalent equality constraints [31, 125]. A general continuous constrained NLP

is defined as

minimize f(x)

subject to h(x) = 0 x = (x1, . . . , xn) ∈ Rn (A.1)

g(x) ≤ 0

152

where x is a vector of n continuous variables, h(x) = [h1(x), · · · , hm(x)]T is a vector of m

equality constraints, and g(x) = [g1(x), · · · , gk(x)]
T is a vector of k inequality constraints.

The objective and constraint functions are assumed to be all differentiable.

A.1.1 Transformations Using Slack Variables

One possible transformation [31, 125] to handle inequality constraint gi(x) ≤ 0 is to add a

slack variable zi and transform it into an equality constraint gi(x)+z2
i = 0. The correspond-

ing augmented Lagrangian function is

Lz(x, z, λ, µ) = f(x) + λTh(x) +
1

2
||h(x)||2 +

k
∑

i=1

µi(gi(x) + z2
i) +

1

2

k
∑

i=1

[gi(x) + z2
i]

2 (A.2)

where slack variables z = [z1, z2, · · · , zk]
T , λ = [λ1, λ2, · · · , λm]T is the set of Lagrange mul-

tipliers for equality constraints, and µ = [µ1, µ2, · · · , µk]
T is the set of Lagrange multipliers

for inequality constraints. ||h(x)||2 =
∑m

i=1 h
2
i (x).

According to the first-order necessary conditions (2.6), given x and µ, the local minimum

condition of Lz with respect to zi, i.e., ∇zi
Lz(x, z, λ, µ) = 0, yields [31, 125]:

z2
i = max(0,−gi(x)− µi). (A.3)

After substituting it into (A.2) and simplifying it, we obtain

Lz(x, λ, µ) = f(x) + λTh(x) +
1

2
||h(x)||2 +

1

2

k
∑

i=1

[

max2(0, µi + gi(x))− µ
2
i

]

(A.4)

where slack variables z have been removed.

Another possible transformation is to convert gi(x) ≤ 0 into gi(x) + zi = 0 with zi > 0.

Such a transformation is seldom used since the number of variables is increased and another

form of inequality for slack variable zi is produced. Therefore, we employ the former in the

thesis.

153

Search Trajectories of the Slack-Variable Method. First-order methods find CLMcn by

performing descents in the x subspace and ascents in the λ and µ subspace. The balance

between descents and ascents depends on the relative magnitudes of the Lagrange multipliers

λ and µ with respect to the objective value. They play a role in balancing the objective f(x)

and constraints h(x) and g(x), and accordingly in controlling the convergence speed and the

solution quality of first-order methods. At an equilibrium point, the forces due to descents

and ascents reach a balance through appropriate Lagrange-multiplier values.

To emphasize how the relative weights affect the convergence speed and solution quality,

we introduce an additional weight w into (A.4) and have

Lo(x, λ, µ) = w f(x) + λTh(x) +
1

2
||h(x)||2 +

1

2

k
∑

i=1

[

max2(0, µi + gi(x))− µ
2
i

]

(A.5)

where w > 0 is a weight on the objective. When w = 1, Lo(x, λ, µ) = Lz(x, λ, µ), which is

the original Lagrangian function. The dynamic system used to solve (A.5) is as follows,

d

dt
x(t) = −∇xLo(x(t), λ(t), µ(t))

d

dt
λ(t) = ∇λLo(x(t), λ(t), µ(t)) (A.6)

d

dt
µ(t) = ∇µLo(x(t), λ(t), µ(t))

Starting from an initial point (x(t = 0), µ(t = 0)), we solve (A.6) using the ordinary

differential equation solver LSODE [98] and obtain a search trajectory (x(t), µ(t)). When

a CLMcn is on the boundary of a feasible region, the dynamic equations (A.6) approach it

from both the inside and outside of the feasible region. We observe three behaviors of the

search trajectory:

• The trajectory gradually reduces its oscillations and eventually converges;

154

• The trajectory oscillates within some range but never converges;

• The magnitude of oscillations increases, and the trajectory finally diverges.

Example A.1 To illustrate these three behaviors, consider Problem 2.3 in [68], which is

given as follows,

Minimize 5x2 + 5x3 + 5x4 + 5x5 − x6 − x7 − x8 − x9 − x10 − 8x11 − 8x12 (A.7)

−8x13 − x14 − 5x2
2 − 5x2

3 − 5x2
4 − 5x2

5

subject to 2x2 + 2x3 + 8x11 + 8x12 ≤ 10.0, 0 ≤ xi ≤ 1.0, i = 2, 3, · · · , 14,

2x2 + 2x4 + 8x11 + 8x13 ≤ 10.0, 2x3 + 2x4 + 8x12 + 8x13 ≤ 10.0,

8x11 − 8x2 ≤ 0.0, 8x12 − 8x3 ≤ 0.0,

8x13 − 8x4 ≤ 0.0, −2x5 − x6 + 8x11 ≤ 0.0,

−2x7 − x8 + 8x12 ≤ 0.0, −2x9 − x10 + 8x13 ≤ 0.0

It is a quadratic problem with linear inequality constraints.

We set the initial point at t = 0 as follows: x(t = 0) is at the middle of the search space,

i.e., xi(t = 0) = 0.5 and µ(t = 0) = 0. The total logical time used for LSODE is tmax = 105,

and is divided into small units of δt = 1.0, resulting in the maximum number of iterations

to be 105 (= tmax/δt). The stopping condition for (A.6) is the Lyupunov condition,

||dx(t)/dt||2 + ||dµ(t)/dt||2 ≤ δ = 10−25 (A.8)

The dynamic system stops as it converges or reaches the maximum number of iterations.

When w = 1, (A.6) diverges quickly into infinity. If we scale the objective by 10 and set

w = 1/10, then the objective value f(x(t)) oscillates within the range −17 and −10, while

the maximum violation vmax(t) is between 0 and 0.4, as shown in Figure A.1. Here, vmax(t)

155

-20

-18

-16

-14

-12

-10

-8

0 0.2 0.4 0.6 0.8 1

O
bj

ec
tiv

e

Iterations (*1000)

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

M
ax

 V
io

la
tio

n

Iterations (*1000)

Figure A.1: The objective and maximum violation oscillate using the slack-variable method
(w = 1/10).

-12.2

-12

-11.8

-11.6

-11.4

-11.2

-11

-10.8

-10.6

-10.4

-10.2

-10

0 0.05 0.1 0.15 0.2 0.25

O
bj

ec
tiv

e

Iterations (*1000)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.05 0.1 0.15 0.2 0.25

M
ax

 V
io

la
tio

n

Iterations (*1000)

Figure A.2: The objective and maximum violation converge after oscillations subside using
the slack-variable method (w = 1/15).

at time t is defined as

vmax(t) = max
1≤i≤m,1≤j≤k

{|hi(x(t))|,max [0, gj(x(t))]}. (A.9)

If we further reduce w to 1/15, then the oscillations subside, and the trajectory eventually

converges (see Figure A.2).

Intuitively, occurrence of oscillations can be explained as follows. Suppose we start from

an infeasible point initially (t = 0) where inequality constraint gi(x(t = 0)) is violated, i.e.,

gi(x(t = 0)) > 0. As the search progresses, the corresponding µi(t) increases and pushes the

trajectory towards a feasible region. At some time t, inequality constraint gi(x(t)) ≤ 0 is

satisfied for current point x(t). At this point, dµi(t)
dt

= max(0, gi(x)+µi)−µi, and is negative

156

when gi(x) < 0. Hence, the trajectory decelerates but continues to move into the feasible

region even when constraint gi(x(t)) is satisfied. The movement of the trajectory inside

the feasible region eventually stops because the CLMcn is on the boundary, and the force

due to descents in the objective pushes the trajectory outside the feasible region. Likewise,

when the trajectory is outside the feasible region, a force due to the constraints pushes the

trajectory inside the feasible region. If these two forces are not well balanced, the search

may diverge or oscillate without convergence.

A.1.2 Transformations Using the MaxQ Method

To avoid oscillations in the slack variable method, we like the search to converge to a

CLMcn without oscillations when it is on the boundary of a feasible region and when the

trajectory is outside the feasible region. This is done by our proposed MaxQ method that

transforms an inequality constraint using

gi(x) ≤ 0 ⇐⇒ pi(x) = maxqi(0, gi(x)) = 0 qi > 1, i = 1, · · · , k (A.10)

where qi are control parameters to be determined later. For a given x, if gi(x) > 0,

maxqi(0, gi(x)) = [gi(x)]
qi > 0. Otherwise, maxqi(0, gi(x)) = 0. The augmented Lagrangian

function then becomes

Lq(x, λ, µ) = w f(x) + λTh(x) +
1

2
||h(x)||2 + µTp(x) +

1

2
||p(x)||2

= w f(x) + λTh(x) +
1

2
||h(x)||2 +

k
∑

i=1

[

µipi(x) +
1

2
p2

i (x)

]

(A.11)

where p(x) = [p1(x), p2(x), · · · , pk(x)]
T , and w is an additional weight.

Choice of Parameter qi. It is important to choose suitable control parameters qi (i =

1, 2, · · · , k), because they affect the convergence speed of first-order methods. One can easily

157

show that, when qi ≥ 1, inequality constraint gi(x) ≤ 0 is equivalent to equality constraint

pi(x) = maxqi(0, gi(x)) = 0. Suppose that qi is a constant. When solving (A.11), we need

to evaluate partial derivative ▽xpi(x) where

▽xpi(x) = qimax
qi−1(0, gi(x))▽x gi(x) = p′i(x)▽x gi(x)

If qi ≤ 1, p′i(x) is not continuous, and the derivative of Lq(x, λ, µ) is then not continuous

at gi(x) = 0. Because the continuity of derivatives is required by most differential-equation

solvers such as LSODE, we set qi > 1 in (A.10).

One way of selecting qi is to have it very close to 1, namely, qi → 1. At this time, the

dynamic system will approach a feasible region slowly because p′i(x) ≃ 1 if gi(x) > 0. It is

independent of how far the current point x is away from the feasible region. Thus, a larger

control parameter qi is needed for fast convergence if the current point x is far from the

feasible region. In contrast, if we choose qi ≫ 1, then p′i(x) ≃ 0 as gi(x)→ 0, meaning slow

convergence towards a CLMcn on the boundary of the feasible region.

Taking these facts into account, in order to have fast convergence, we should adapt qi

dynamically as the search goes to a CLMcn. Since different inequality constraints may

have different convergence rates to a CLMcn, we associate with each inequality constraint

gi(x) ≤ 0 its own control parameter qi. Parameter qi is updated adaptively based on the

value of gi(x): qi is large if gi(x) ≫ 0, and qi is gradually reduced to a value approaching 1

when the search is close to a CLMcn. One possible choice of qi is as follows,

qi(gi(x)) =
s0

1 + exp(−s1gi(x))
(A.12)

where s0 = 2 and s1 > 0 are two parameters that control the shape of function qi(x). When

gi(x) approaches 0, qi will approach 1. The dynamic equations to solve (A.11) are defined

158

as

d

dt
x(t) = −∇xLq(x(t), λ(t), µ(t))

= − w∇xf(x)−
m

∑

i=1

(λi + hi(x))∇xhi(x)−
k

∑

i=1

(µi + pi(x))∇xpi(x)

d

dt
λi(t) = ∇λi

Lq(x(t), λ(t), µ(t)) = hi(x) (A.13)

d

dt
µi(t) = ∇µi

Lq(x(t), λ(t), µ(t)) = pi(x)

where

▽xpi(x) =
[

q′i(gi(x))pi(x)Ln max(0, gi(x)) + qi(gi(x))max
qi(gi(x))−1(0, gi(x))

]

▽xgi(x)

Note that (A.11) is similar to (A.5) in the sense that both use themax function. The main

difference is that (A.11) avoids the case of (A.5) in which inequality constraint gi(x(t)) ≤ 0

is satisfied at time t but gi(x(t)) still appears in the Lagrangian function. When gi(x(t)) is

satisfied, it is meaningful to minimize f(x) independent of the value of gi(x(t)).

Convergence Properties. There are two kinds of CLMcn x∗ as shown in Figure A.3

based on their locations. When CLMcn x
∗ is within a feasible region, i.e., gi(x

∗) < 0 (see

Figure A.3a), pi(x
∗) = 0, and ▽xf(x∗) = 0. This implies that x∗, an equilibrium point of

dynamic system (A.13), is given by

d

dt
x(t) = 0 and

d

dt
λ(t) = 0 and

d

dt
µ(t) = 0 (A.14)

Thus, the trajectory controlled by (A.13) converges to this CLMcn x
∗.

When CLMcn x
∗ is on the boundary of the feasible region, as shown in Figure A.3b, it

will be approached asymptotically from outside the feasible region (e.g. from the right side

159

X Xfeasible region feasible region

f(X)

f(X)

X X* *

(a) (b)

Figure A.3: Relationship between CLMcn and feasible region. (a) CLMcn is within the
feasible region; (b) CLMcn is on the boundary of feasible region.

of Figure A.3b). To prove this, we only need to show that x∗ is asymptotically a regular

point of constraints pi(x) = 0 [31, 125], because inequality constraint gi(x) ≤ 0 has been

transformed into an equivalent equality constraint pi(x) = 0.

Because x∗ is on the boundary of the feasible region, gi(x
∗) = 0 and pi(x

∗) = 0. In

addition, when x −→ x∗, gi(x) −→ gi(x
∗) = 0, and qi(gi(x)) −→ qi(gi(x

∗)) = 1. By taking

limits, we obtain

lim
x→x∗

q′i(gi(x))pi(x)Ln max(0, gi(x)) = 0

lim
x→x∗

qi(gi(x))max
qi(gi(x))−1(0, gi(x)) = 1.

Therefore, limx→x∗▽xpi(x) = ▽xgi(x
∗), which means that asymptotically regular point x∗ of

pi(x) is the same as that of the original constraint gi(x) ≤ 0. Since a CLMcn, if exists, must

be a regular point of gi(x) [125], x∗ can be asymptotically reached by dynamic system (A.13).

Choice of Control Parameter for LSODE. When we prove convergence to a CLMcn of

the MaxQ method, we assume that qi takes the form in (A.12) where s0 = 2. With this choice,

∇xpi(x) changes very quickly from 1 to 0 near the CLMcn as gi(x) −→ 0, making it difficult

for LSODE to find a suitable step size in order to reach the CLMcn. To make the gradient

160

change smoothly, we set s0 = 2.5 or s0 = 3.0, and set s1 to satisfy qi(gi(x)) = 2 when

gi(x) = 1. Hence, s1 = −Ln[s0/2− 1].

Dynamic Switch of Inequality Constraints to Equality Constraints. As discussed

above, if solution x∗ is on the boundary of a feasible region, i.e., when some gi(x
∗) equals zero,

then dynamic system (A.13) is unable to be at this point exactly. Although this solution can

be approached with any precision, it may take a long time even if qi is changed dynamically.

This happens because the violation of constraint gi(x
∗) is small when current point x(t) is

close to x∗. Consequently, increments of Lagrange multiplier µi will be small, leading to slow

convergence towards the CLMcn.

Suppose we know that some gj(x
∗) = 0 for a given solution x∗. In this case, faster

convergence can be achieved if we treat gj(x) as an equality constraint, i.e., gj(x) = 0, rather

than an inequality constraint, gj(x) ≤ 0. The difficulty, however, is that it is impossible to

know in advance which inequality constraints gj(x) ≤ 0 will satisfy the boundary condition,

gj(x) = 0, for the solution on the boundary.

This suggests a good heuristic that, if x(t) is very close to the boundary of a particular

inequality constraint gj(x(t)), i.e. gj(x(t)) is positive and close to zero, and if the convergence

of this constraint is slow, it is very likely that the CLMcn is on the boundary of this constraint

gj(x) ≤ 0. At this point, we can use equality constraint gj(x) = 0 to replace inequality

constraint gj(x) ≤ 0 to improve the convergence rate. This scheme is more than the concept

of active sets [31, 125] because specific features of the MaxQ method are utilized.

Assuming that we solve the dynamic system using LSODE, let x and x0 be the points

of two successive iterations. Switching inequality constraint gj(x) ≤ 0 to equality constraint

gj(x) = 0 takes place if the following two conditions are satisfied.

161

• Point x changes very little for a window of iterations in the dynamic system. This can

be measured by #{maxi|xi − x0i|/maxj |xj | < δ} ≥ 10 (δ = 10−4 in our experiments).

• The dynamic system converges to the boundary when gj(x) is very close to zero; that

is, 0 < gj(x) < ǫ = 10−4.

Both conditions are very important. (a) Without the first condition, trajectory x(t) that

occasionally passes the boundary of gj(x(t)) may cause some inequality constraints to be

switched erroneously. Hence, it is important to make sure that the trajectory really changes

by very little during a period of time. (b) The second condition guarantees that only those

inequality constraints very close to the boundary can be switched into equality ones. Note

that a dynamic switch may happen to many inequality constraints at the same time as long

as they satisfy these two conditions.

Once inequality constraint gj(x) ≤ 0 is switched to an equality constraint, the terrain

of the Lagrangian function Lq(x, λ, µ) is changed and may be totally different. In order to

maintain the search direction in the x subspace at the right time of switch, we have to adjust

Lagrange multiplier µj. Let the point just before the switch be (x, µj), and the Lagrangian

term associated with inequality constraint gj(x) ≤ 0 is

Lj(x, µj) = µjmax
qj (0, gj(x)) +

1

2
max2qj (0, gj(x)) = µjg

qj

j (x) +
1

2
g

2qj

j (x)

based on the second switch conditions. The derivative of Lj(x, µj) with respect to x and µj

are

∇xLj(x, µj) =
[

µjg
qj−1
j (x) + g

2qj−1
j (x)

]

[

qj + q′j(x)gj(x)Ln gj(x)
]

∇xgj(x)

∇µj
Lj(x, µj) = g

qj

j (x)

162

Let (x, µ̂j) be the point after the switch. This means that we apply equality constraint

gj(x) = 0 at the current point (x, µ̂j) where inequality constraint gj(x) ≤ 0 was before. The

Lagrangian term related to gj(x) = 0 is

L̂j(x, µ̂j) = µ̂jgj(x) +
1

2
g2

j (x)

and the derivative of L̂j(x, µ̂j) with respect to x and µ̂j are

∇xL̂j(x, µ̂j) = (µ̂j + gj(x))∇xgj(x)

∇µ̂j
L̂j(x, µ̂j) = gj(x)

The search direction in the Lagrange-multiplier space changes very little, because control

parameter qj is close to 1 at the time of the switch, and then ∇µj
Lj(x, µj) ≃ ∇µ̂j

L̂j(x, µ̂j),

independent of the value µj . To retain the search direction in the x subspace, we set

∇xLj(x, µj) = ∇xL̂j(x, µ̂j) and get

µ̂j =
[

µjg
qj−1
j (x) + g

2qj−1
j (x)

]

[

qj + q′j(x)gj(x)Ln gj(x)
]

− gj(x). (A.15)

Illustration of the MaxQ Method. To show how MaxQ avoids divergence and oscilla-

tions that occur in the slack-variable method, we consider the same problem 2.3 in [68]. The

starting point is in the middle of the search space, the same as that used in the slack-variable

method. The same three cases were tested here: no scaling, scaling the objective by 10 (i.e.,

w = 1/10), and scaling the objective by 15. All of them converge with similar behavior.

Figure A.4 shows the second case. Obviously, the MaxQ method has smoother and better

convergence property as compared to the slack-variable method.

The solution to Problem 2.3 is on the boundary of a feasible region as shown in Figure

A.3b. Since all the Lagrange multipliers are zero initially, only objective function f(x) has

163

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

O
bj

ec
tiv

e

Iterations (*1000)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
ax

 V
io

la
tio

n

Iterations (*1000)

Figure A.4: The objective and maximum violation converge smoothly using MaxQ for
Problem 2.3 with w = 1/10.

effect in the Lagrangian function, causing the trajectory to move away from the feasible

region. The Lagrange multipliers then increase, pushing the trajectory back towards the

boundary. Hence, the objective value increases, and the value of the maximum violation

decreases (see Figure A.4).

Note that there is a gap between our current implementation of the MaxQ method and

its theoretic result, in the sense that the analytic proof requires s0 = 2 in (A.12) but LSODE

uses s0 = 2.5 or 3.0. This gap causes the MaxQ method to converge slowly sometimes,

like the case shown in Figure A.4 that requires about 94,000 iterations. In this example,

the MaxQ method reduces constraint violations very quickly in the beginning but slowly

afterwards.

This problem can be solved by two approaches. The first is to use another differential

equation solver that is insensitive to quick changes of gradients, making the analytic result

hold during the search. But no such solver can be found. The second is to adaptively adjust

the relative weight w between the objective and the constraints during the search. As soon

as we detect slow convergence, w is adjusted accordingly.

164

A.1.3 Comparisons of the Slack-variable and MaxQ Methods

Two approaches have been investigated to cope with inequality constraints in first-order

methods. For a general continuous constrained NLP (A.1), the augmented Lagrangian func-

tion using the slack-variable method is defined as

Lslack(x, λ, µ) = w f(x) + λTh(x) +
1

2
||h(x)||2 +

1

2

k
∑

i=1

[

max2(0, µi + gi(x))− µ
2
i

]

(A.16)

and that using the MaxQ method is defined as

Lmaxq(x, λ, µ) = w f(x) + λTh(x) +
1

2
||h(x)||2 + µTp(x) +

1

2
||p(x)||2 (A.17)

where p(x) = [p1(x), p2(x), · · · , pk(x)]
T , and pi(x) is given by (A.10).

The dynamic system searches solutions by performing descents in the variable x subspace

and ascents in the Lagrange-multiplier λ and µ subspace. This search is governed by a system

of ordinary differential equations,

d

dt
x(t) = −∇xLb(x(t), λ(t), µ(t))

d

dt
λ(t) = ∇λLb(x(t), λ(t), µ(t)) (A.18)

d

dt
µ(t) = ∇µLb(x(t), λ(t), µ(t))

where augmented Lagrangian function Lb(x, λ, µ) can be either Lslack(x, λ, µ) or Lmaxq(x, λ, µ).

The stopping condition is

||dx(t)/dt||2 + ||dλ(t)/dt||2 + ||dµ(t)/dt||2 ≤ δ = 10−25 (A.19)

Therefore, dynamic system (A.18) stops when stopping condition (A.19) is satisfied or when

it reaches the maximum number of iterations.

165

saddle point
x

f(x)

Feasible region

Search trajectory

saddle point
x

f(x)

Feasible region

Search trajectory

saddle point
x

f(x)

Feasible region

Search trajectory

(b) Oscillation around a saddle point (c) Divergence to infinity(a) Convergence to a saddle point

Figure A.5: Illustration of the search trajectories of the slack-variable method when
CLMcn is on the boundary of a feasible region. The search may (a) converge to a CLMcn,
(b) oscillate around a CLMcn, or (c) diverge to infinity.

saddle point
x

f(x)

Feasible region

saddle point
x

f(x)

Feasible region

Search trajectory Search trajectory

(a) Starting from inside the feasible region (b) Starting from outside the feasible region

Figure A.6: Illustration of the search trajectory of the MaxQ method when CLMcn is on
the boundary of a feasible region. The search starts from inside (left) or outside (right) the
feasible region. In both cases, the search trajectory eventually approaches the CLMcn from
outside the feasible region.

166

The convergence behavior of the slack-variable method is different from that of the MaxQ

method when the CLMcn is on the boundary of a feasible region, even if they use the same

starting point (x(t = 0), λ(t = 0), µ(t = 0)). The slack-variable method approaches the

CLMcn from both inside and outside the feasible region. The search trajectory oscillates

around the CLMcn and converges if the magnitude of oscillations dies down. In some situa-

tions, the magnitude of oscillations does not reduce, or even increases, causing the search to

diverge eventually. Depending on the initial point and the relative magnitude of the objec-

tive function and the constraints, the search trajectory could end up in one of three different

states as illustrated in Figure A.5.

The MaxQ method, however, avoid the problems of oscillations and divergence when

the CLMcn is on the boundary of a feasible region. The MaxQ method approaches this

CLMcn asymptotically from outside the feasible region. The closer it gets to the boundary,

the slower it goes. Figure A.6 illustrates the situations when the search starts from either

inside or outside a feasible region. In both cases, the search trajectory eventually approaches

the CLMcn from outside the feasible region. The MaxQ method may converge slowly when

the search is very close to the CLMcn on the boundary of a feasible region.

We will show comparison results of the slack-variable method and the MaxQ method in

Section A.3.

A.2 Dynamic Weighting Strategy

In the last section, we have studied two methods to handle inequality constraints. The slack-

variable method is sensitive to the relative weights between the objective and the constraints,

and may diverge, oscillate or converge. Although the MaxQ method does not diverge and

167

oscillate, it may converge slowly. To solve the problems of divergence, oscillation, and slow

convergence, we propose a dynamic weighting strategy in this section.

Combining Lagrangian functions (A.16) and (A.17), we have a general Lagrangian func-

tion as follows:

Lb(x, λ, µ) = w f(x) + λTh(x) +
1

2
||h(x)||2 + Lineq(µ, x) (A.20)

where w is the relative weight, λ is the Lagrange multiplier for equality constraints, and µ for

inequality constraints. Lineq(µ, x) depends on the way to deal with inequality constraints. It

can be either the slack-variable method or the MaxQ method. The corresponding dynamic

system is defined by (A.18).

The convergence behavior can be affected significantly by the choice of w. The best

choice is problem-instance dependent, and seems impossible to select a priori. Even for the

same problem, it is depends on starting points. The dynamic weighting strategy tries to

adapt w based on the behavior of dynamic system (A.18) in order to obtain high-quality

solutions with short convergence time.

In general, before a trajectory reaches an equilibrium point, changing the weight of

the objective may speed up or delay convergence. Further, when the trajectory is at an

equilibrium point, changing the weight of the objective may bring the trajectory out of

the equilibrium point. In this section, we exploit the first property by designing weight

adaptation methods in order to speed up convergence without affecting solution quality.

A.2.1 General Weight-Adaptation Strategy

Figure A.7 outlines the algorithm, whose basic idea is to first estimate the initial weight

w(t = 0) (Step 1), measure the performance metrics of the search trajectory (x(t), λ(t), µ(t))

periodically, and adapt w(t) to improve convergence time or solution quality.

168

1. Set control parameters:

time interval δt,

initial weight w(t = 0),

maximum number of iterations imax;

2. Set window size Nw = 100 or 10;

3. j := 1; /* j is the iteration number */

4. while j ≤ imax and stopping condition is not satisfied do

5. advance search trajectory by δt to get to (xj , λj , µj);

6. if trajectory diverges then

reduce w; restart the algorithm by going to Step 2;

end if

7. record useful information for calculating performance metrics;

8. if ((j mod Nw) == 0) then

/* Test whether w should be modified at the end of a window */

9. compute performance metrics based on data collected;

10. change w when the conditions defined in Figure A.8 are satisfied;

end if

11. end while

Figure A.7: Pseudo code for a new dynamic weight-adaptation algorithm

Let tmax be the total (logical) time for the search, and tmax be divided into small units

of time δt so that the maximum number of iterations is tmax/δt. Further, assume a stopping

condition if the search were to stop before tmax (Step 4). Given a starting point x(t = 0),

we set the initial values of the Lagrange multipliers to be zero, i.e., λ(t = 0) = µ(t = 0) = 0.

Let (xi, λi, µi) be the point of the ith iteration, and vmax,i be its maximum violation defined

by (A.9).

To monitor the progress of the search trajectory, we divide time into non-overlapping

windows of size Nw iterations each (Step 2). In each window, we compute some metrics to

169

measure the progress of the search relative to that of previous windows. For the uth window

(u = 1, 2, · · ·), we calculate the average (or median) of vmax,i over all the iterations in the

window,

v̄u =
1

Nw

uNw
∑

j=(u−1)Nw+1

vmax,j or v̄u = median
(u−1)Nw+1
≤ j ≤ uNw

{vmax,j} (A.21)

and the average (or median) of the objective f(x).

f̄u =
1

Nw

uNw
∑

j=(u−1)Nw+1

f(xj) or f̄u = median
(u−1)Nw+1
≤ j ≤ uNw

{f(xj)} (A.22)

During the search, we apply an algorithm (e.g. LSODE) to solve dynamic system (A.18),

and advance the trajectory by time interval δt in each iteration in order to arrive at point

(xj , λj, µj) (Step 5).

At this point, we test whether the trajectory diverges or not (Step 6). Divergence happens

when the maximum violation vmax,j is larger than an extremely large value (e.g. 1020). If

it happens, we reduce w by a large amount, say w ⇐= w/10, and restart the algorithm. In

each iteration, we also record some statistics, such as vmax,j and f(xj), which will be used

to calculate the performance metrics for each window (Step 7). At the end of each window

or every Nw iterations (Step 8), we decide whether to update w based on the performance

metrics (A.21) and (A.22) (Step 9). In our current implementation, we use the averages (or

medians) of maximum violation vmax,i and objective f(xj). In general, other application-

specific metrics can be used, such as the number of oscillations of the trajectory in continuous

NLPs. Based on these measurements, we adjust w accordingly (Step 10).

170

A.2.2 Dynamic Weight Adaptation for Continuous Constrained

NLPs

To understand how weights should be updated in Step 10, we examine all the possible

behaviors of the resulting search trajectory in successive windows. We have identified three

possible cases.

First, the trajectory does not stay within a feasible region, but goes from one feasible

region to another through an infeasible region. During this time, the maximum violation

vmax,i is zero when the trajectory is in a feasible region, increased when it travels to an

infeasible region, and decreased when entering another feasible region. No oscillations or

very small number of oscillations will be observed because oscillations usually occur around

an equilibrium point of the dynamic system. In this case, no change of w is required.

Second, the search trajectory oscillates around an equilibrium point of a feasible region

for the slack variable method. This can be detected when the number of oscillations in

each window is larger than some threshold. Figures A.1 and A.2 show two typical types

of oscillations. To determine whether the oscillations will subside eventually, we compute

v̄u − v̄u+1, the reduction of the average values of the maximum violation vmax,i, for two

successive windows u and u + 1. If the difference is not reduced reasonably, we assume

that the trajectory does not converge, and decrease w to give the constraints more weights

accordingly. For the case of using the MaxQ method, there is no oscillation (see Figure A.4

for example), and its slow convergence can be detected by measuring v̄u − v̄u+1.

Third, the search trajectory moves very slowly within a feasible region. This happens

when w is very small, and the constraints dominate the search process. As a result, the

objective value is improved very slowly and may eventually converge to a poor value. This

situation is identified if the trajectory remains within a feasible region in two successive

171

Given performance measurements for the mth window

average (or median) of the maximum violation: v̄m

average (or median) of the objective: f̄m

number of oscillations: NOm

and application-specific constants α0, α1, β0, β1, β2, δ, ǫ;

1. Increase weight w ⇐= w/α0 if

(c1,1) v̄m−1, v̄m < δ

(c1,2) β0|fm−1| > fm−1 − fm > β1|fm−1|;

2. Decrease weight w ⇐= α1w if

(c2,1) v̄m ≥ δ

(c2,2) v̄m−1 − v̄m ≤ β2v̄m−1

(c2,3) NOm ≥ ǫ (for slack variable method).

Figure A.8: Weight-adaptation rules (Step 10 of Figure A.7).

windows, and there is little improvement in the objective. Obviously, we need to increase w

in order to speed up the improvement of the objective. If the objective remains unchanged,

then the trajectory has converged, and no further modification of w is necessary.

Given the above three search behaviors, Figure A.8 shows a comprehensive list of rules

to adapt weight w (Step 10). Scaling factors 0 < α0, α1 < 1 control how fast w is updated.

Because we use numerical methods to solve the dynamic system defined in (A.18), a trajec-

tory in the uth window is said to satisfy all the constraints when v̄u < δ, where δ is related to

the convergence condition and the required precision. Parameters 0 < β0, β1, β2 < 1 control,

respectively, the degree of improvement over the objective and the degree of reduction of the

maximum violation. The number of allowed oscillations is represented by ǫ.

There are two points that need to be emphasized. First, when comparing these metrics

between two successive windows u− 1 and u, both must use the same weight w. Otherwise,

172

the comparison is not meaningful because the terrain may be totally different. Hence, after

adapting w, we have to wait at least two windows before changing it again. Second, the

weight-adaptation scheme can be applied to dynamic system (A.18) using either the slack-

variable method or the MaxQ method to handle inequality constraints. The only difference

lies in the testing of oscillations, because there are no oscillations in the MaxQ method.

Weight w should be increased (Rule 1) when the third convergence behavior occurs. In

this case, the trajectory is within a feasible region, and the objective is improved in successive

windows. Weight w will be increased when the improvement of the objective in a feasible

region is not fast enough, but will remain unchanged when the improvement is beyond an

upper bound.

Weight w should be decreased (Rule 2) when we observe the second convergence behavior.

The trajectory oscillates around a CLMcn (only for the slack-variable method), while the

maximum violation is not reduced quickly or may even have increased.

A.2.3 Illustrative Examples

In this subsection, we show how the dynamic weighting scheme is capable of reducing oscil-

lations and speed up convergence in both the slack-variable and MaxQ methods.

Slack-variable method. Recall in Figure A.1 that the trajectory oscillates when w = 1
10

for Problem 2.3 in [68]. Figure A.9 shows the resulting trajectory and the maximum violation

when the dynamic weight-adaptation algorithm is applied on the same problem. We started

with w(t = 0) = 1
5
, α0 = α1 = 1

2
, δ = 10−8, β0 = 10−2, β1 = 10−3, and β2 = 10−2. In

the first window (first Nw = 100 iterations), the average v̄1 = 4.11 that increases slightly

to v̄2 = 4.2 in the second window. In addition, v̄2 ≥ δ and NO2 ≥ 5. According to the

conditions in Figure A.8, w is updated to 1
10

. This change in w leads to significant reduction

173

-400

-350

-300

-250

-200

-150

-100

-50

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
bj

ec
tiv

e

Iterations (*1000)

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
ax

 V
io

la
tio

n

Iterations (*1000)

Figure A.9: The objective function and maximum violation first oscillate and then converge
using dynamic weight adaptation.

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

O
bj

ec
tiv

e

Iterations (*1000)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
ax

 V
io

la
tio

n

Iterations (*1000)

Figure A.10: The objective and maximum violation converge after 756 iterations for MaxQ
using dynamic weight adaptation (initial w = 1

10
).

in the maximum violation in the third window. Weight w remains unchanged between the

third and the fifth windows. At the end of the fifth window, the maximum violation changes

very little. Hence, the algorithm reduces w to 1
20

, causing the trajectory to converge quickly.

MaxQ method. Corresponding to Figure A.4, we start from the initial weight w(t = 0) =

1/10 and the same starting point (x(0), λ(0), µ(0)). Figure A.10 shows the resulting search

profile, in which the search converges using only 756 iterations, which is significantly better

than the 94,000 iterations without weight adaptation. It is important to note that solution

quality is the same as that in Figure A.4, and both obtain the objective value −11.25 when

the search converges.

174

A.2.4 Comparison of Static and Dynamic Weighting

In a continuous constrained benchmark suite [68], we selected five problems with identifiers

2.6, 3.4, 4.6, 5.4 and 6.4 from different classes to test our algorithm. In each problem, we

randomly generated 20 starting points x(t = 0) uniformly distributed in its search range, and

set the initial values for the Lagrange multipliers to be zero, i.e. λ(t = 0) = µ(t = 0) = 0.

For each starting point, we applied the first-order methods using both static weights and

dynamically changed weights under the same convergence condition defined in (A.19).

We chose the static weights in the range between 10−6 to 102, which were also used as

initial weights w(t = 0) in the adaptive algorithm. The weights were chosen from a wide

range in order to test the robustness of our weight-adaptation algorithm. We would like our

algorithm to adjust the weight so that the search will converge faster with a solution that

is at least as good as that with static weights. In our experiments, we used the following

control parameters: time unit δt = 1, window size Nw = 100, α0 = α1 = 1
2
, δ = 10−8,

β0 = 10−2, β1 = 10−3, and β2 = 10−2.

We used two performance metrics, convergence time and solution quality, in our experi-

ments, where convergence time was measured by the average convergence time (in seconds)

from 20 starting points, and solution quality was measured by the average objective value

when the search converged.

From the experimental results shown in Figure A.11, we have the following observations.

First, different problems require different ranges of static weights in order to get fast con-

vergence. For example, Problem 2.6 (Figure A.11a) converges the fastest using w = 10−4,

whereas Problem 5.4 (Figure A.11d) converges the fastest using w = 1. These weights differ

by four orders of magnitude. Hence, it is difficult to choose a good static weight for a given

problem instance in advance.

175

0

100

200

300

400

500

600

700

800

10-6 10-5 10-4 10-3 10-2 10-1

T
im

e(
se

c.
)

Weight

adaptive weight
fixed weight

-34

-33

-32

-31

-30

-29

-28

-27

-26

-25

-24

-23

10-6 10-5 10-4 10-3 10-2 10-1

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

Weight

adaptive weight
fixed weight

(a) Problem 2.6

0

20

40

60

80

100

120

140

10-5 10-4 10-3 10-2 10-1 100

T
im

e(
se

c.
)

Weight

adaptive weight
fixed weight

-5

-4.8

-4.6

-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

10-5 10-4 10-3 10-2 10-1 100

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

Weight

adaptive weight
fixed weight

(b) Problem 3.4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10-4 10-3 10-2 10-1 100 101

T
im

e(
se

c.
)

Weight

adaptive weight
fixed weight

-5

-4.95

-4.9

-4.85

-4.8

-4.75

-4.7

-4.65

-4.6

-4.55

-4.5

10-4 10-3 10-2 10-1 100 101

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

Weight

adaptive weight
fixed weight

(c) Problem 4.6

550

600

650

700

750

800

850

10-3 10-2 10-1 100 101 102

T
im

e(
se

c.
)

Weight

adaptive weight
fixed weight

0

20

40

60

80

100

120

140

160

10-3 10-2 10-1 100 101 102

T
im

e(
se

c.
)

Weight

adaptive weight
fixed weight

(d) Problem 5.4 (e) Problem 6.4

Figure A.11: Comparison of the first-order method with static weights and the adaptive
first-order method in terms of convergence time and solution quality. All runs were done on
a Sparc-10 computer under SunOS.

176

Second, our adaptive algorithm outperforms the first-order method with static weights.

For example, in Problem 2.6 (Figure A.11a), the first-order method with a static weight is

unable to converge (either diverge or oscillate forever) when w = 10−2 or larger. However,

our adaptive algorithm can detect this misbehavior and adjust w to allow the search to

converge in 27.62 seconds on the average. Likewise, the first-order method with static weight

w = 10−6 converges using an average of 765.0 seconds, but the adaptive algorithm converges

using an average of 5.64 seconds and with the same solution quality. These results show that

our weight-adaptation algorithm is robust and insensitive to the initial weights w(t = 0) in

comparison to the first-order method with a static weight. In fact, our adaptive algorithm

can get even better solutions in shorter time when the initial weight is small.

Third, when all the constraints are equality constraints, w is unchanged in the adaptive

algorithm, resulting in the same performance for both methods. This is demonstrated in

Problem 5.4 (Figure A.11d). In some cases, w is unchanged in the adaptive algorithm when

there are both inequality and equality constraints, such as Problem 6.4 (Figure A.11e).

This happens when the Lagrange multipliers already take care of the balance between the

objective and the constraints.

A.3 Experimental Results

Table A.1 presents the comparison results of solving a collection of constrained NLP bench-

marks [68]. The first and second columns show the problem IDs and the best-known results.

The next three columns give the solutions, running times (S-Time) of the slack-variable

method with static weight w = 1, and running times (D-Time) of the slack-variable method

using dynamic weighting strategy with initial weight w(t = 0) = 1, respectively. The next

177

Table A.1: Results on a collection of constrained optimization benchmarks [68] comparing

the MaxQ and the slack-variable methods. All times are in CPU seconds on a Pentium-III

500MHz computer under Solaris 7. Symbol ‘-’ means that the method was not able to find

a solution for the corresponding problem.

Problem Best Known Slack Variable MaxQ Method SQP: DONLP2

ID Solutions Solutions S-Time D-Time Solutions S-Time D-Time Solutions Time

2.1 -17.0 -17.0 - 0.40 -17.0 0.42 0.29 -17.0 0.017

2.2 -213.0 -213.0 0.034 0.034 -213.0 0.34 0.29 -213.0 0.022

2.3 -15.0 -15.0 0.17 0.17 -15.0 1.07 0.80 -15.0 0.124

2.4 -11.0 -11.0 - 1.24 -11.0 0.347 0.347 -11.0 0.039

2.5 -268.0 -268.0 0.13 0.13 -268.0 0.79 0.79 -268.0 0.085

2.6 -39.0 -39.0 - 13.8 -39.0 20.7 0.784 -39.0 0.095

2.7.1 -394.75 -394.75 1.35 1.35 -394.75 2.66 1.66 -394.75 0.702

2.7.2 -884.75 -884.75 1.51 1.51 -884.75 4.45 2.21 -884.75 0.744

2.7.3 -8695.0 -8695.0 1.33 1.33 -8695.0 2.58 1.58 -8695.0 0.516

2.7.4 -754.75 -754.75 1.46 1.46 -754.75 3.24 2.20 -754.75 0.716

2.7.5 -4150.4 -4150.4 1.53 1.53 -4150.4 2.76 1.70 -4150.4 0.483

2.8 15639.0 15639.0 1.59 1.59 15639.0 3.77 1.93 15639.0 1.51

3.2 -30665.5 -30665.5 0.128 0.126 -30665.5 0.167 0.114 -30665.5 0.022

3.3 -310.0 -310.0 0.047 0.047 -310.0 0.38 0.23 -310.0 0.039

3.4 -4.0 -4.0 0.031 0.031 -4.0 0.202 0.159 -4.0 0.021

4.3 -4.51 -4.51 0.022 0.022 -4.51 0.264 0.061 -4.51 0.027

4.4 -2.217 -2.217 0.018 0.018 -2.217 0.27 0.046 -2.217 0.026

4.5 -13.40 -13.40 0.030 0.030 -13.40 0.35 0.069 -13.40 0.031

4.6 -5.51 -5.51 0.01 0.01 -5.51 1.02 0.032 -5.51 0.012

4.7 -16.74 -16.74 0.01 0.01 -16.74 0.01 0.01 -16.74 0.012

5.2 1.567 1.567 31.3 31.3 1.567 15.9 15.9 1.567 18.3

5.4 1.86 1.86 11.4 11.4 1.86 7.49 7.49 1.86 6.63

6.2 400.0 400.0 0.105 0.105 400.0 0.40 0.249 400.0 0.056

6.3 600.0 600.0 0.124 0.124 600.0 0.57 0.405 600.0 0.055

6.4 750.0 750.0 0.084 0.084 750.0 0.392 0.216 750.0 0.058

7.2 56825.0 56825.0 2.08 2.08 56825.0 2.61 1.85 56825.0 0.33

7.3 44903.0 44903.0 4.39 4.39 44903.0 11.5 8.26 44903.0 2.21

7.4 35920.0 35920.0 12.2 12.2 35920.0 15.6 13.8 35920.0 5.65

178

three columns report the results for the MaxQ method, and the last two columns for a

popular SQP package called DONLP2 [179].

From this table, we have the following observations. First, the slack-variable method may

not converge if static weight w is not chosen correctly, as in Problems 2.1, 2.4 and 2.6. The

MaxQ method can always converge, but is generally slower than the slack-variable method

when the latter can converge. Second, dynamic weighting is able to avoid oscillations and

divergence of the slack-variable method, and to greatly speed up the MaxQ methods. Last,

all three methods find the same best solutions, but DONLP2 is the best in terms of solution

time. This is because the first two methods converge linearly, whereas DONLP2 converges

at least superlinearly by fully using Hessian information.

179

Bibliography

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. J. Wiley and

Sons, 1989.

[2] E. H. L. Aarts. A new polynomial-time cooling schedule. Proc. of the IEEE Int. Conf.

on CAD-85, pages 206–208, 1985.

[3] S. O. Aase. Image Subband Coding Artifacts: Analysis and Remedies. PhD thesis,

Norwegian Institute of Technology, 1993.

[4] M. M. Ali and C. Storey. Modified controlled random search algorithms. Int. Journal

of Computer Mathematics, 53:229–235, 1994.

[5] M. M. Ali and C. Storey. Aspiration based simulated annealing algorithms. Journal

of Global Optimization, 11:181–191, 1997.

[6] M. M. Ali, A. Torn, and S. Viitanen. A direct search simulated annealing algorithms

for optimization involving continuous variables. Technical report, Turku Centre for

Computer Science, Abo Akademi University, Finland, 1997.

[7] M. M. Ali, A. Torn, and S. Viitanen. A numerical comparison of some modified

controlled random search algorithms. Journal of Global Optimization, 11:377–385,

1997.

[8] I. Andricioaei and J. E. Straub. Generalized simulated annealing algorithms using

tsallis statistics: Application to conformational optimization of a tetrapeptide. Physical

Review E, 53(4):R3055–R3058, 1996.

180

[9] S. Anily and A. Federgruen. Ergodicity in parametric nonstationary Markov chains:

An application to simulated annealing methods. Operations Research, 35(6):867–874,

1987.

[10] S. Anily and A Federgruen. Simulated annealing methods with general acceptance

probabilities. Journal of Appl. Prob., 24:657–667, 1987.

[11] M. Anitescu and F. A. Potra. An efficient procedure for maximizing the coding gain

for PR filter banks. IEEE Trans. on Circuits and Systems - II Analog and Digital

Signal Processing, page to appear, 1999.

[12] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image coding using wavelet

transform. IEEE Trans. on Image Processing, 1(2):205–220, 1992.

[13] ASA. http://www.ingber.com.

[14] T. Back, F. Hoffmeister, and H. P. Schwefel. A survey of evolution strategies. In Proc.

of 4th Int’l Conf. on Genetic Algorithms, pages 2–9, 1991.

[15] T. Back and H. P. Schwefel. An overview of evolutionary algorithms for parameter

optimization. Evolutionary Computation, 1(1):1–23, 1993.

[16] E. Balas. Minimax and Duality for Linear and Nonlinear Mixed-Integer Programming.

North-Holland, Amsterdam, Netherlands, 1970.

[17] I. Balasingham and T. A. Ramstad. On the relevance of the regularity constraint

in subband image coding. In Proc. of 31st Asilomar Conf. on Signals, Systems, and

Computers, 1997.

[18] I. Balasingham, T. A. Ramstad, and J. M. Lervik. Survey of odd and even length

filters in tree-structured filter banks for subband image compression. In Proc. of Int.

Conf. on Acoustics, Speech, and Signal Proc., pages 3073–3076, 1997.

[19] Ilangko Balasingham. On Optimal Perfect Reconstruction Filter Banks for Image Com-

pression. PhD thesis, Norwegian University of Science and Technology, 1998.

181

[20] S. Baluja. An empirical comparison of seven iterative and evolutionary function op-

timization heuristics. Technical report, CMU-CS-95-193, Carnegie Mellon University,

Pittsburgh, PA, 1995.

[21] S. Baluja and S. Davies. Using optimal dependency-trees for combinatorial optimiza-

tion: Learning the structure of the search space. In Proc. of Int. Conf. on Machine

Learning, pages 30–38, 1997.

[22] S. Baluja and S. Davies. Fast probabilistic modeling for combinatorial optimization.

In Proc. of 15th National Conf. on Artificial Intelligence (AAAI), 1998.

[23] W. Baritompa. Accelerations for a variety of global optimization methods. Journal of

Global Optimization, 4:37–45, 1994.

[24] W. Baritompa and A. Cutler. Accelerations for global optimization covering methods

using second derivatives. Journal of Global Optimization, 4:329–341, 1994.

[25] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on Computing,

6(2):126–140, 1994.

[26] M. S. Bazaraa and J. J. Goode. A survey of various tactics for generating Lagrangian

multipliers in the context of Lagrangian duality. European Journal of Operational

Research, 3:322–338, 1979.

[27] J. C. Bean and A. B. Hadj-Alouane. A dual genetic algorithm for bounded integer pro-

grams. Technical Report 92-53, Department of Industrial and Operations Engineering,

1992.

[28] C. J. Belisle. Convergence theorems for a class of simulated annealing algorithms in

Rn. Journal of Applied Prob., 29:885–895, 1992.

[29] J. F. Benders. Partitioning procedures for solving mixed-variables programming prob-

lems. Numer. Math, pages 238–242, 1962.

[30] J. Bernasconi. Low autocorrelation binary sequences: Statistical mechanics and con-

figuration space analysis. J. Physique, 48(4):559–567, 1987.

182

[31] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic

Press, 1982.

[32] G. L. Bilbro and W. E. Snyder. Optimization of function with many minima. IEEE

Trans. on Systems, Man, and Cybern., 21(4):840–849, 1991.

[33] G. L. Bilbro, M. B. Steer, R. J. Trew, C. R. Chang, and S. G. Skaggs. Extraction

of the parameters of equivalent circuits of microwave transistors using tree annealing.

IEEE Trans. on Microwave Theory Technol., 38(11):1711–1718, 1990.

[34] K. D. Boese, A. B. Kahng, and S. Muddu. A new adaptive multi-start technique for

combinatorial global optimizations. Operations Research Letters, 16(2):101–113, 1994.

[35] P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta Numerica,

pages 1–52, 1995.

[36] J. S. De Bonet, C. L. Isbell, and J. Paul Viola. MIMIC: Finding optima by estimating

probability densities. In Advances in Neural Information Processing Systems, 1997.

[37] I. Bongartz, A. R. Conn, N. Gould, and Ph. L. Toint. Cute: Constrained and uncon-

strained testing environment. ACM Trans. on Mathematical Software, 21(1):123–160,

1995.

[38] J. A. Boyan and A. W. Moore. Using prediction to improve combinatorial optimization

search. In Proc. of 6th Int’l Workshop on Artificial Intelligence and Statistics, 1997.

[39] J. A. Boyan and A. W. Moore. Learning evaluation functions for global optimization

and Boolean satisfiability. In Proc. of 15th National Conf. on Artificial Intelligence

(AAAI), 1998.

[40] D. W. Bulger and G. R. Wood. Hesitant adaptive search for global optimization.

Mathematical Programming, 81:89–102, 1998.

[41] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large

scale nonlinear programming. Technical Report OTC97/05, Optimization Technology

Center, 1997.

183

[42] M. F. Cardoso, R. L. Salcedo, and S. F. de Azevedo. Non-equilibrium simulated

annealing: A faster approach to combinatorial minimization. Industrial Eng. Chemical

Research, 33:1908–1918, 1994.

[43] V. Cerny. Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. Journal of Optimization Theory and Applications, 45:41–51,

1985.

[44] B. C. Cetin, J. Barben, and J. W. Burdick. Terminal repeller unconstrained subenergy

tunneling (TRUST) for fast global optimization. Journal of Optimization Theory and

Applications, 77, April 1993.

[45] K. M. Cheh, J. B. Goldberg, and R. G. Askin. A note on the effect of neighborhood

structure in simulated annealing. Computers and Operations Research, 18:537–547,

1991.

[46] A. Cichocki and R. Unbehauen. Neural Networks for Optimization and Signal Pro-

cessing. John Wiley & Sons, 1993.

[47] A. Cohen, I. Daubechies, and J. C. Feauveau. Biorthogonal bases of compactly sup-

ported wavelets. Communications on Pure and Applied Mathematics, XLV:485–560,

1992.

[48] A.R. Conn, N. Gould, and Ph. L. Toint. LANCELOT, A Fortran Package for Large-

Scale Nonlinear Optimization. Springer Verlag, 1992.

[49] A. Corana, M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodal func-

tions of continuous variables with the simulated annealing algorithm. ACM Trans. on

Mathematical Software, 13(3):262–280, 1987.

[50] J. P. Courat, G. Raynaud, I. Mrad, and P. Siarry. Electronic component model mini-

mization based on log simulated annealing. IEEE Trans. on Circuits and Systems - I

Fundamental Theory and Applications, 41(12):790–795, 1994.

[51] P. Courrieu. The hyperbell algorithm for global optimization: A random walk using

cauchy densities. Journal of Global Optimization, 10:37–55, 1997.

184

[52] I. Daubechies. Orthonormal bases of compactly supported wavelets. Communications

on Pure and Applied Mathematics, XLI:909–996, 1988.

[53] G. Davis and S. Chawla. Image coding using optimized significance tree quantization.

In Proc. of Data Compression Conf., pages 387–396, 1997.

[54] G. Davis and A. Nosratinia. Wavelet-based image coding: An overview. Applied and

Computational Control, Signals, and Circuits, 1(1), 1998.

[55] G. M. Davis. The wavelet image compression construction kit.

http://www.cs.dartmouth.edu/gdavis/wavelet/wavelet.html, 1997.

[56] A. Dekkers and E. Aarts. Global optimization and simulated annealing. Mathematical

Programming, 50:367–393, 1991.

[57] I. Diener and R. Schaback. An extended continuous Newton method. Journal of

Optimization Theory and Applications, 67(1):57–77, October 1990.

[58] DONLP2. Spellucci’s mixed SQP/ECQP method for general continuous nonlinear

programming problems. ftp://plato.la.asu.edu/pub/donlp2, 2000.

[59] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning ap-

proach to the traveling salesman problem. IEEE Trans. on Evolutionary Computation,

1(1):53–66, 1997.

[60] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony of

cooperating agents. IEEE Trans. Systems, Man, and Cybernetics-Part B, 26(1):29–41,

1996.

[61] M. A. Duran and I. E. Grossmann. A mixed-integer nonlinear programming algorithm

for process systems synthesis. Chemical Engineering J., pages 592–596, 1986.

[62] M. A. Duran and I. E. Grossmann. An outer approximation algorithm for a class of

mixed-integer nonlinear programs. Mathematical Programming, pages 306–307, 1986.

[63] R. W. Eglese. Simulated annealing: A tool for operational research. European Journal

of Operational Research, 46:271–281, 1990.

185

[64] T. Epperly. Global Optimization of Nonconvex Nonolinear Programs Using Parallel

Branch And Bound. PhD thesis, University of Wisconsin-Madison, 1995.

[65] Y. G. Evtushenko, M. A. Potapov, and V. V. Korotkich. Numerical methods for global

optimization. In C. A. Floudas and P. M. Pardalos, editors, Recent Advances in Global

Optimization, pages 274–297. Princeton University Press, 1992.

[66] N. J. Fliege. Multirate Digital Signal Processing. John Wiley and Sons, 1994.

[67] C. A. Floudas. Nonlinear and Mixed-Integer Optimization. Topics in Chemical Engi-

neering. Oxford University Press, 1995.

[68] C. A. Floudas and P. M. Pardalos. A Collection of Test Problems for Constrained

Global Optimization Algorithms, volume 455 of Lecture Notes in Computer Science.

Springer-Verlag, 1990.

[69] C. A. Floudas and P. M. Pardalos, editors. Recent Advances in Global Optimization.

Princeton University Press, 1992.

[70] D. B. Fogel. An analysis of evolutionary programming. In Proc. of First Annual Conf.

on Evolutionary Programming, pages 43–51, 1992.

[71] D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE Trans. on

Neural Networks, 5(1):3–14, January 1994.

[72] M. I. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems. New

York : Springer, 1984, 1984.

[73] FSQP. http://www.isr.umd.edu/labs/cacse/fsqp/fsqp.html.

[74] B. Gavish. On obtaining the ‘best’ multilpliers for a Lagrangean relaxation for integer

programming. Comput. & Ops. Res., 5:55–71, 1978.

[75] R. P. Ge and Y. F. Qin. A class of filled functions for finding global minimizers

of a function of several variables. Journal of Optimization Theory and Applications,

54(2):241–252, 1987.

[76] GENOCOP. http://www.coe.uncc.edu/ zbyszek/evol-systems.html.

186

[77] A. M. Geoffrion. Generalized Benders decomposition. J. Optim. Theory and Appl.,

pages 237–241, 1972.

[78] B. Gidas. Non-stationary Markov chains and convergence of the annealing algorithm.

J. Statist. Phys., 39:73–131, 1985.

[79] J. C. Gilbert, R. H. Byrd, and J. Nocedal. A trust region method based on interior point

techniques for nonlinear programming. Technical Report OTC 96/02, Optimization

Technology Center, 1996.

[80] GlobSol. http://www.mscs.mu.edu/ globsol/.

[81] F. Glover and G. Kochenberger. Critical event tabu search for multidimensional knap-

sack problems. In Proc. of Int’l Conf. on Metaheuristics for Optimization, pages 113–

133, 1995.

[82] F. Glover and M. Laguna. Tabu search. In Modern Heuristic Techniques for Combi-

natorial Problems (C. R. Reeves ed.), 1993.

[83] F. Glover and E. Woolsey. Further reduction of zero-one polynomial programs to

zero-one linear programming. Operations Research, 1(21):156–161, 1973.

[84] F. Glover and E. Woolsey. Converting the 0-1 polynomial programming problem to a

0-1 linear program. Operations Research, 22:180–182, 1975.

[85] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Pub. Co., 1989.

[86] D. Granot, F. Granot, and J. Kallberg. Covering relaxation for positive 0-1 polynomial

programs. Management Science, 3(25):264–273, 1979.

[87] D. Granot, F. Granot, and W. Vaessen. An accelerated covering relaxation algorithm

for solving positive 0-1 polynomial programs. Mathematical Programming, 22:350–357,

1982.

[88] A. O. Griewank. Generalized descent for global optimization. Journal of Optimization

Theory and Applications, 34:11–39, 1981.

187

[89] A. B. Hadj-Alouane and J. C. Bean. Genetic algorithm for the multiple-choice integer

program. Technical Report 92-50, Department of Industrial and Operations Engineer-

ing, 1992.

[90] B. Hajek. Cooling schedules for optimal annealing. Mathematics of Operations Re-

search, 13(2):311–329, 1988.

[91] E. R. Hansen. Global optimization using interval analysis. M. Dekker, New York, 1992.

[92] P. Hansen, B. Jaumard, and V. Mathon. Constrained nonlinear 0-1 programming.

ORSA Journal on Computing, 5(2):97–119, 1993.

[93] U. H. E. Hansmann. Simulated annealing with tsallis weights: A numerical comparison.

Physica A, 242:250–257, 1997.

[94] W. E. Hart. A theoretical comparison of evolutionary algorithms and simulated an-

nealing. In Proc. of 5th Annual Conf. on Evolutionary Programming (EP96), pages

147–154, 1996.

[95] W. Hastings. Monte Carlo sampling methods using Markov chains and their applica-

tions. Biometrika, 57:97–109, 1970.

[96] L He and E. Polak. Multistart method with estimation scheme for global satisfying

problems. Journal of Global Optimization, 3:139–156, 1993.

[97] M. L. Hilton, B. D. Jawerth, and A. Sengupta. Compression still and moving images

with wavelets. Multimedia Systems, 2(2):218–227, 1994.

[98] A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In R. S.

Stepleman, editor, Scientific Computing, pages 55–64. North Holland, Amsterdam,

1983.

[99] K. Holmberg. On the convergence of the cross decomposition. Mathematical Program-

ming, pages 269–316, 1990.

[100] K. Holmberg. Generalized cross decomposition applied to nonlinear integer program-

ming problems. Optimization J., pages 341–364, 1992.

188

[101] A. Homaifar, S. H. Y. Lai, and X. Qi. Constrained optimization via genetic algorithms.

Simulation, 62:242–254, 1994.

[102] J. J. Hopfield and D. M. Tank. Neural computation of decisions in optimization.

Biological Cybern., 52:141–152, 1985.

[103] B. R. Horng and A. N. Willson Jr. Lagrange multiplier approaches to the design

of two-channel perfect-reconstruction linear-phase FIR filter banks. IEEE Trans. on

Signal Processing, 40(2):364–374, February 1992.

[104] R. Horst and P. M. Pardalos. Handbook of Global Optimization. Kluwer Academic

Publishers, 1995.

[105] R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to Global Optimization.

Kluwer Academic Publishers, Amsterdam, 1995.

[106] R. Horst and H. Tuy. Global optimization: Deterministic approaches. Springer-Verlag,

Berlin, 1993.

[107] M. E. Hribar. Large-Scale Constrained Optimization. PhD thesis, Northwestern Uni-

versity, 1996.

[108] ILOG. http://www.ilog.com/.

[109] L. Ingber. Very fast simulated re-annealing. J. Math. Comput. Modelling, 12:967–973,

1989.

[110] L. Ingber. Adaptive Simulated Annealing (ASA). Lester Ingber Research, 1995.

[111] L. Ingber and N. Rosen. Genetic algorithms and very fast simulated re-annealing: A

comparison. J. Math. Comput. Modelling, 16:87–100, 1992.

[112] J. Joines and C. Houck. On the use of non-stationary penalty functions to solve

nonlinear constrained optimization problems. In Proc. of the First IEEE Int’l Conf.

on Evolutionary Computation, pages 579–584, 1994.

[113] A. E. W. Jones and G. W. Forbes. An adaptive simulated annealing algorithm for

global optimization over continuous variables. Journal of Optimization Theory and

Applications, 6:1–37, 1995.

189

[114] J. Katto and Y. Yasuda. Performance evaluation of subband coding and optimization

of its filter coefficients. In Proc. of SPIE Visual Communications and Image Processing,

pages 95–106, 1991.

[115] R. B. Kearfott. On proving existence of feasible points in equality constrained opti-

mization problems. Mathematical Programming, 83:89–100, 1998.

[116] R. R. Kearfott. A review of techniques in the verified solution of constrained global

optimization problems. In Applications of Interval Computations, R. B. Kearfott and

V. Kreinovich (Eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pages

23–60, 1996.

[117] J. Kim and H. Myung. Evolutionary programming techniques for constrained opti-

mization problems. IEEE Trans. on Evolutionary Computation, 1(2):129–140, 1997.

[118] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated an-

nealing. Science, 220(4598):671–680, May 1983.

[119] S. Koziel and Z. Michalewicz. Evolutionary algorithms, homomorphous mappings, and

constrained parameter optimization. Evolutionary Computation, 7(1):19–44, 1999.

[120] V. Kvasnicka and J. Pospichal. A hybrid of simplex method and simulated annealing.

Chemometrics and Intelligent Laboratory Systems, 39:161–173, 1997.

[121] LANCELOT. http://www.dci.clrc.ac.uk/activity/lancelot.

[122] L. S. Lasdon, A. D. Warren, A. Jain, and M. Ratner. Design and testing a generalized

reduced gradient code for nonlinear programming. ACM Trans. Math. Software, 4:34–

50, 1978.

[123] W. E. Lillo, M. H. Loh, S. Hui, and S. H. Zak. On solving constrained optimization

problems with neural networks: A penalty method approach. IEEE Trans. on Neural

Networks, 4(6):931–940, 1993.

[124] S. Lucidi and M. Piccioni. Random tunneling by means of acceptance-rejection

sampling for global optimization. Journal of Optimization Theory and Applications,

62:255–277, 1989.

190

[125] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publishing

Company, Reading, MA, 1984.

[126] C. Y. Maa and M. A. Shanblatt. A two-phase optimization neural network. IEEE

Trans. on Neural Networks, 3(6):1003–1009, 1992.

[127] Z. Michalewicz. Genetic Algorithms + Data Structure = Evolution Programs. Springer-

Verlag, Berlin, 1994.

[128] Z. Michalewicz. Genetic algorithsm, numerical optimization and constraints. In L. J.

Eshelman, editor, Proc. Int’l Conf. on Genetic Algorithms, pages 98–108. Morgan

Kaufmann, 1995.

[129] Z. Michalewicz. A survey of constraint handling techniques in evolutionary compu-

tation methods. In Proc. of 4th Annual Conf. on Evolutionary Programming, pages

135–155, 1995.

[130] Z. Michalewicz, D. Dasgupta, R. G. LeRiche, and M. Schoenauer. Evolutionary algo-

rithms for constrained engineering problems. Computers and Industrial Engineering

Journal, 30(2):851–870, 1996.

[131] Z. Michalewicz and C. Z. Janikow. Handling constraints in genetic algorithms. In

Proc. of 4th Int’l Conf. on Genetic Algorithms, pages 151–157, 1991.

[132] Z. Michalewicz and G. Nazhiyath. GENOCOP III: A co-evolutionary algorithm for

numerical optimization problems with nonlinear constraints. In Proc. of 2nd IEEE

Int’l Conf. on Evolutionary Computation, pages 647–651, 1995.

[133] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained parameter

optimization problems. Evolutionary Computation, 4(1):1–32, 1996.

[134] J. Mockus. Bayesian Approach to Global Optimization. Kluwer Academic Publishers,

Dordrecht-London-Boston, 1989.

[135] J. Mockus. Application of Bayesian approach to numerical methods of global and

stochastic optimization. Journal of Global Optimization, 4:347–365, 1994.

191

[136] P. Molitor. Layer assignment by simulated annealing. Microprocessing and Micropro-

gramming, 16(4-5):345–349, 1985.

[137] R. Moore and E. Hansen amd A. Leclerc. Rigorous methods for global optimization.

In C. A. Floudas and P. M. Pardalos, editors, Recent Advances in Global Optimization,

pages 321–342. Princeton University Press, 1992.

[138] J. A. Nelder and R. Mead. Simplex method for function minimization. Computer

Journal, 7:308–313, 1965.

[139] T. Q. Nguyen and P. P. Vaidyanathan. Two-channel perfect reconstruction FIR QMF

structure which yield linear-phase analysis and synthesis filters. IEEE Trans. on

Acoutics, Speech, and Signal Processing, 37(5):676–690, May 1989.

[140] A. E. Nix and M. D. Vose. Modeling genetic algorithms with Markov chains. Annals

of Math. and Artificial Intel., 5:79–88, 1992.

[141] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag New York, Inc.,

1999.

[142] D. Orvosh and L. Davis. Shall we repair? genetic algorithms, combinatorial optimiza-

tion, and feasibility constraints. In Proc. of 5th Int’l Conf. on Genetic Algorithms,

1993.

[143] E. R. Panier and A. L. Tits. A superlinearly convergence feasible method for the

solution of inequality constrained optimization problems. SIAM Journal on control

and Optimization, 25(4):934–950, 1987.

[144] E. R. Panier and A. L. Tits. On combining feasibility, descent and superlinear conver-

gence in inequlaity constrained optimization. Mathematical Programming, 59(2):261–

276, 1993.

[145] P. M. Pardalos and J. B. Rosen. Constrained Global Optimization: Algorithms and Ap-

plications, volume 268 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,

1987.

[146] J. Paredis. Co-evolutionary constraint satisfaction. In Proc. of 3rd Conf. on Parallel

Problem Solving from Nature, pages 46–55, 1994.

192

[147] K. Park and B. Carter. On the effectiveness of genetic search in combinatorial optimiza-

tion. In Proc. of 10th ACM Symposium on Applied Computing, Genetic Algorithms

and Optimization Track, pages 329–336, 1995.

[148] N. R. Patel, R. L. Smith, and Z. B. Zabinsky. Pure adaptive search in Monte Carlo

optimization. Mathematical Programming, 43:317–328, 1988.

[149] V. Pavlovic, P. Moulin, and K. Ramchandran. An integrated framework for adaptive

subband image coding. IEEE Trans. on Signal Processing, page revised.

[150] M. Peng, N. K. Gupta, and A. F. Armitage. An investigation into improvement of

local minima of the hopfield network. Neural Network, 9(7):1241–1253, 1996.

[151] V. Petridis, S. Kazarlis, and A. Bakirtzis. Varying fitness functions in genetic algorithm

constarined optimization: The cutting stock and unit commitment problems. IEEE

Trans. on System, Man, and Cybern. - Part B: Cybernetics, 28(5):629–640, 1998.

[152] M. Piccioni. A combined multistart-annealing algorithm for continuous global opti-

mization. Technical Report 87-45, Systems and Research Center, The University of

Maryland, College Park MD, 1987.

[153] C. N. Potts and L. N. Van Wassenhove. Single machine tardiness sequencing heuristics.

IIE Transactions, 23:346–354, 1991.

[154] D. Powell and M. M. Skolnick. Using genetic algorithms in engineering design opti-

mization with non-linear constraints. In Proc. of 5th Int’l Conf. on Genetic Algorithms,

pages 424–431, 1993.

[155] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in Fortran 77. Cambridge University Press, 1992.

[156] W. L. Price. A controlled random search procedure for global optimization. In L. C.

Dixon and G. P. Szego, editors, Towards Global Optimization 2, pages 71–84. North-

Holland, Amsterdam, Holland, 1978.

[157] R. L. Rardin. Optimization in Operations Research. Upper Saddle River, N.J. : Pren-

tice Hall, 1998.

193

[158] V. Ravi, B. S. N. Murty, and J. Reddy. Nonequilibrium simulated annealing algorithm

applied to reliability optimization of complex systems. IEEE Trans. on Reliability,

46(2):233–239, 1997.

[159] S. Rees and B. C. Ball. Citeria for an optimal simulated annealing schedule for problems

of the traveling salesman type. J. Physics, 20(5):1239–1249, 1987.

[160] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard. Some guidelines for

genetic algorithms with penalty functions. In Proc. of 3rd Int’l Conf. on Genetic

Algorithms, pages 191–197, 1989.

[161] H. E. Romeijn and R. L. Smith. Simulated annealing for constrained global optimiza-

tion. Journal of Global Optimization, 5(2):101–126, September 1994.

[162] H. E. Romeijn and R. L. Smith. Simulated annealing for constrained global optimiza-

tion. Journal of Global Optimization, 5:101–126, 1994.

[163] F. Romeo and A. L. Sangiovanni-Vincentelli. Probabilistic hill climbing algorithms:

Properties and applications. In Proc. of Chapel Hill Conf. on VLSI, pages 393–417,

1985.

[164] F. Romeo and A. L. Sangiovanni-Vincentelli. A theoretical framework for simulated

annealing. Algorithmica, 6:302–345, 1991.

[165] I. Rosenberg. Minimization of pseudo-Boolean functions by binary development. Dis-

crete Mathematics, 7:151–165, 1974.

[166] T. J. Van Roy. Cross decomposition for mixed integer programming. Mathematical

Programming, pages 25–46, 1983.

[167] G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Trans. on

Neural Networks, 5(1):96–101, 1994.

[168] A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on set

partitioning in hierarchical tress. IEEE Trans. on Circuits and Systems for Video

Technology, 6:243–250, 1996.

194

[169] M. S. Sarma. On the convergence of the Baba and Dorea random optimization methods.

Journal of Optimization Theory and Applications, 66:337–343, 1990.

[170] S. Schäffler and H. Warsitz. A trajectory-following method for unconstrained opti-

mization. Journal of Optimization Theory and Applications, 67(1):133–140, October

1990.

[171] F. Schoen. Stochastic techniques for global optimization: A survey on recent advances.

Journal of Global Optimization, 1(3):207–228, 1991.

[172] M. Schoenauer and Z. Michalewicz. Evolutionary computation at the edge of feasibility.

In Proc. of 4th Parallel Problem Solving from Nature, 1996.

[173] M. Schoenauer and S. Xanthakis. Constrained GA optimization. In Proc. of 5th Int’l

Conf. on Genetic Algorithms, 1993.

[174] Y. Shang. Global Search Methods for Solving Nonlinear Optimization Problems. Ph.D.

Thesis, Dept. of Computer Science, Univ. of Illinois, Urbana, IL, August 1997.

[175] Y. Shang and B. W. Wah. A discrete Lagrangian based global search method for

solving satisfiability problems. J. of Global Optimization, 12(1):61–99, January 1998.

[176] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE

Trans. on Signal Processing, 41, 1993.

[177] R. Spaans and R. Luus. Importance of search-domain reduction in random optimiza-

tion. Journal of Optimization Theory and Applications, 75(3):635–638, December 1992.

[178] P. Spellucci. An SQP method for general nonlinear programs using only equality

constrained subproblems. Preprint, Department of Mathematics, 1993.

[179] P. Spellucci. An SQP method for general nonlinear programs using only equality

constrained subproblems. Mathematical Programming, 82:413–448, 1998.

[180] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application.

Krieger Publishing Company, 1989.

[181] R. Storn and K. Price. Differential evolution - a simple and efficient heuristic for global

optimization over continuous spaces. Journal of Global Optimization, 11:341–359, 1997.

195

[182] E. G. Sturua and S. K. Zavriev. A trajectory algorithm based on the gradient

method I. the search on the quasioptimal trajectories. Journal of Global Optimiza-

tion, 1991(4):375–388, 1991.

[183] H. Szu and R. Hartley. Fast simulated annealing. Phys. Lett. A, 122(3-4):157–162,

1987.

[184] J. Tind and L. A. Wolsey. An elementary survey of general duality theory in mathe-

matical programming. Mathematical Programming, pages 241–261, 1981.

[185] A. Törn and A. Žilinskas. Global Optimization. Springer-Verlag, Berlin, 1989.

[186] A. Trouve. Rough large deviation estimates for the optimal convergence speed exponent

of generalized simulated annealing algorithms. Technical report, LMENS-94-8, Ecole

Normale Superieure, France, 1994.

[187] A. Trouve. Cycle decomposition and simulated annealing. SIAM Journal on Control

and Optimization, 34(3):966–986, 1996.

[188] P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall, Englewood Cliffs,

New Jersey, 1993.

[189] J. van Den Berg and J. C. Bioch. Constrained optimization with the Hopfield-Lagrange

model. In Proc. of 14th IMACS World Congress, pages 470–473, 1994.

[190] D. Vanderbilt and S. G. Louie. A Monte Carlo simulated annealing approach to

optimization over continuous variables. Journal of Computational Physics, 56:259–

271, 1984.

[191] S. A. Vavasis. Nonlinear Optimization, Complexity Issues. Oxford Univerusity Press,

Oxford, 1991.

[192] M. Vetterli and J. Kovacevic. Wavelets and Subband Coding. Englewood Cliffs, NJ:

Prentice Hall, 1995.

[193] J. D. Villasenor, B. Belzer, and J. Liao. Wavelet filter evaluation for image compression.

IEEE Trans. on Image Processing, 2:1053–1060, 1995.

196

[194] T. L. Vincent, B. S. Goh, and K. L. Teo. Trajectory-following algorithms for min-max

optimization problems. Journal of Optimization Theory and Applications, 75(3):501–

519, December 1992.

[195] C. Voudouris and E. Tsang. Guided local search and its application to the traveling

salesman problem. European Journal of Operational Research, 113:469–499, 1999.

[196] A. Žilinskas. A review of statistical models for global optimization. Journal of Global

Optimization, 2:145–153, 1992.

[197] B. W. Wah and Y.-J. Chang. Trace-based methods for solving nonlinear global opti-

mization problems. J. of Global Optimization, 10(2):107–141, March 1997.

[198] B. W. Wah and Y. X. Chen. Optimal anytime constrained simulated annealing for con-

strained global optimization. Sixth Int’l Conf. on Principles and Practice of Constraint

Programming, September 2000.

[199] B. W. Wah, A. Ieumwananonthachai, L. C. Chu, and A. Aizawa. Genetics-based

learning of new heuristics: Rational scheduling of experiments and generalization.

IEEE Trans. on Knowledge and Data Engineering, 7(5):763–785, October 1995.

[200] B. W. Wah and T. Wang. Constrained simulated annealing with applications in non-

linear constrained global optimization. In Proc. Int’l Conf. on Tools with Artificial

Intelligence, pages 381–388. IEEE, November 1999.

[201] B. W. Wah and T. Wang. Efficient and adaptive Lagrange-multiplier methods for non-

linear continuous global optimization. J. of Global Optimization, 14(1):1–25, January

1999.

[202] B. W. Wah and T. Wang. Simulated annealing with asymptotic convergence for non-

linear constrained global optimization. Principles and Practice of Constraint Program-

ming, pages 461–475, October 1999.

[203] B. W. Wah and T. Wang. Tuning strategies in constrained simulated annealing for

nonlinear global optimization. Int’l J. of Artificial Intelligence Tools, 9(1):3–25, 2000.

197

[204] B. W. Wah, T. Wang, Y. Shang, and Z. Wu. Improving the performance of weighted

Lagrange-multiple methods for constrained nonlinear optimization. In Proc. 9th Int’l

Conf. on Tools for Artificial Intelligence, pages 224–231. IEEE, November 1997.

[205] B. W. Wah, T. Wang, Y. Shang, and Z. Wu. Improving the performance of weighted

Lagrange-multiplier methods for nonlinear constrained optimization. Information Sci-

ences, 124(1-4):241–272, May 2000.

[206] B. W. Wah and Z. Wu. The theory of discrete Lagrange multipliers for nonlinear

discrete optimization. Principles and Practice of Constraint Programming, pages 28–

42, October 1999.

[207] G. K. Wallace. The JPEG still picture compression standard. Communications of

ACM, 34(4):30–44, 1991.

[208] T. Wang and B. W. Wah. Adaptive Lagrange-Multiplier methods for continuous non-

linear optimization. In Proc. Symposium on Applied Computing, pages 361–365, At-

lanta, GA, February 1998. ACM.

[209] T. Wang and B. W. Wah. Constrained optimization of filter banks in subband image

coding. In Workshop on Multimedia Signal Processing, pages 432–437, Monterey, CA,

December 1998. IEEE Signal Processing Society.

[210] T. Wang and B. W. Wah. Handling inequality constraints in continuous nonlinear

global optimization. J. of Integrated Design and Process Science, 2(3):1–10, 1998.

[211] X. D. Wang. An algorithm for nonlinear 0-1 programming and its application in struc-

tural optimization. Journal of Numerical Method and Computational Applications,

1(9):22–31, 1988.

[212] Y. Wang, W. Yan, and G. Zhang. Adaptive simulated annealing for optimal design of

electromagnetic devices. IEEE Trans. on Magnetics, 32(3):1214–1217, 1996.

[213] V. Wilson and G. S. Pawley. On the stability of the traveling salesman problem

algorithm of hopfield and tank. Biological Cybern., 58:63–70, 1988.

[214] M. H. Wright. Interior methods for constrained optimization. In A. Iserles, editor,

Acta Numerica 1992, pages 341–407. Cambridge University Press, 1992.

198

[215] S. J. Wright. Primal-dual interior-point methods. Philadelphia: Society for Industrial

and Applied Mathematics, 1997.

[216] Z. Wu. Discrete Lagrangian Methods for Solving Nonlinear Discrete Constrained Opti-

mization Problems. M.Sc. Thesis, Dept. of Computer Science, Univ. of Illinois, Urbana,

IL, May 1998.

[217] Z. Wu. The Theory and Applications of Nonlinear Constrained Optimization using

Lagrange Multipliers. Ph.D. Thesis, Dept. of Computer Science, Univ. of Illinois,

Urbana, IL, May 2001.

[218] Z. Wu and B. W. Wah. Solving hard satisfiability problems: A unified algorithm

based on discrete Lagrange multipliers. In Proc. Int’l Conf. on Tools with Artificial

Intelligence, pages 210–217. IEEE, November 1999.

[219] Z. Wu and B. W. Wah. Trap escaping strategies in discrete Lagrangian methods for

solving hard satisfiability and maximum satisfiability problems. In Proc. 1999 National

Conf. on Artificial Intelligence, pages 673–678. AAAI, July 1999.

[220] Z. Xiong, K. Ramchandran, and M. T. Orchard. Space-frequency quantization for

wavelet image coding. IEEE Trans. on Image Processing, 6:677–693, 1997.

[221] X. Yao. Simulated annealing with extended neighborhood. Int. Journal of Computer

Mathematics, 40:169–189, 1991.

[222] X. Yao, Y. Liu, and G. Lin. Evolutionary programming made faster. IEEE Trans. on

Evolutionary Computation, 3(2):82–102, 1999.

[223] Z. B. Zabinsky. Stochastic methods for practical global optimization. Journal of Global

Optimization, 13:433–444, 1998.

[224] S. Zhang and A. G. Constantinides. Lagrange programming neural networks. IEEE

Trans. on Circuits and Systems - II Analog and Digital Signal Processing, 39(7):441–

452, 1992.

[225] A. A. Zhigliavskii. Theory of Global Random Search. Kluwer Academic Publishers,

Boston, 1991.

199

[226] J. L. Zhou, A. L. Tits, and C. T. Lawrence. User’s guide for FFSQP version 3.7: A For-

tran code for solving optimization programs, possibly minimax, with general inequality

constraints and linear equality constraints, generating feasible iterates. Technical Re-

port SRC-TR-92-107r5, Institute for Systems Research, 1997.

200

Vita

Tao Wang received his B.E and M.E. degress in computer science from Zhejiang Univer-

sity, China, 1989 and 1991, respectively. He worked as a research assistant at Computer

Vision Lab, Zhejiang University from Sept. 1989 to July 1991. He developed robust motion

estimation algorithms of 3-D moving objects for scene analysis in computer vision. From

Sept. 1991 to Dec. 1994, he worked as both a research assistant and lecturer for graduate

courses Computer Vision and Neural Networks. During this period, he proposed some learn-

ing algorithms for associative neural networks, developed robust image processing methods

for image segmentation and restoration of real images and dynamic object recognition and

track schemes, and designed and implemented an automatic PCB defect inspection system.

He was admitted to Computer Science Dept. of University of Illinois at Urbana-Champaign

in Spring 1995, and worked as a research assistant until Aug. 1997. From Sept. 1997, he

held one-year CSE fellowship, and worked as a research assistant since Sept. 1998. His re-

cent work is on development of efficient nonlinear constrained global optimization methods

and their applications to engineering design benchmarks, subband image coding, and robust

image transmission over Internet.

His interests include optimization, efficient algorithm design, image coding, video coding,

and computer networks.

201

