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Abstract - A criticism of Evolutionary Algorithms 

(EAs) might be the lack of efficient and robust generic 

methods to handle constraints. The most widespread 

approach for constrained search problems is to use 

penalty methods. EAs have received increased interest 

during the last decade due to the ease of handling 

multiple objectives. A constrained optimization 

problem or an unconstrained multiobjective problem 

may in principle be two different ways to pose the same 

underlying problem. In this paper an alternative 

approach for the constrained optimization problem is 

presented. The method is a variant of a multiobjective 

real coded Genetic Algorithm (GA) inspired by the 

penalty approach. It is evaluated on six different 

constrained single objective problems found in the 

literature. The results show that the proposed method 

performs well in terms of efficiency, and that it is 

robust for a majority of the test problems. 

1 Introduction 

During the last decades Evolutionary Algorithms (EAs) 

have proved to become an important tool for difficult 

search and optimization problems. Most real-world 

problems are however constrained and a possible criticism 

of EAs has been the lack of efficient and generic constraint 

handling techniques. A comprehensive survey of existing 

constraint handling methods for EAs is done by Coello 

Coello in [1]. The frequently most used methods are based 

on various penalty functions for which some guidelines are 

given in [2]. Penalty methods are generic but may however 

distort the cost surface and introduce false optima. Most 

penalty methods also require additional parameters, which 

are problem-dependent and increase the complexity of the 

problem. 

 The constrained optimization problem may be handled 

as a multiobjective optimization problem as indicated by 

Coello Coello in [3], Michalewicz in [4] and Fonseca and 

Fleming in [5]. Furthermore, EAs based on non-dominated 

sorting for multiobjective problems have received 

increased interest during the past decade. Therefore it 

seems natural to look upon the constrained optimization 

problem as a multiobjective problem. Multiobjective 

approaches of constrained problems based on Shaffers 

VEGA [6] is found in [7] and [8]. Another interesting 

constraint handling method based on non-domination is 

presented by Deb et al. in [9]. To directly apply a 

multiobjective EA based on non-domination on a 

constrained optimization problem leads to a search of the 

best compromises of the objective value and constraint 

satisfaction. This whole set of solutions is usually not 

interesting since it is the optimal and feasible solution that 

is searched. Therefore it will not be efficient to directly 

apply a multiobjective EA on a constrained problem. Still 

the idea to handle the constrained problem with some 

variant of a multiobjective EA is interesting. 

 One of the most crucial steps in a multiobjective EA is 

how to rank individuals. In this paper an alternative 

ranking scheme for the constrained single objective 

problem is introduced. This ranking scheme is generic and 

no new parameters are introduced. The ideas of the 

ranking scheme are borrowed from the non-domination 

ranking for multiple objectives by Goldberg in [10] and 

penalty based methods for constrained problems.  

 The paper first defines the constrained optimization 

problem, and thereafter the proposed method is presented 

in more detail. Then the performance for a real coded 

Genetic Algorithm with the proposed ranking scheme 

implemented is tested on six different test problems used 

by Michalewicz in [11] and Deb in [12]. Finally, the result 

for this proposed method is compared to the result for 

other methods evaluated in [11] and [12].  

2 The constrained optimization problem 

In this section the constrained optimization problem and 

its terminology is defined. The constrained optimization 

problem or non-linear programming problem (NLP) with k

inequality constraints and m equality constraints is 

formulated as 
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x = [x1, x2,�, xn] is a vector of the n design variables such 

that nSx . The search space S is here defined as an 

n-dimensional rectangle by the upper and lower bounds for 

the design variables,    1...l u

i i ix x x i n . The feasible 

region SF  is the region of S for which the inequality 

and equality constraints are satisfied. The optimal solution 

is denoted x*. A constraint is said to be active at the point 

x
* if gi(x

*) = 0. By default all equality constraints are 

active at all points of the feasible space. Equality 

constraints may be transformed to inequality constraints 

[1] via 
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where  is a small tolerance. Since the algorithm that will 

be discussed does not use gradient information it does not 

matter if (2) is non-differentiable. 

3 The proposed EA approach for 

constrained optimization 

In this section the proposed ranking scheme is introduced. 

The non-dominated ranking by Goldberg [10] is used in a 

new way to formulate a scalar valued function that is used 

to rank individuals in the current population. Then 

selection, crossover, mutation and reinsertion are used in a 

standard manner for a real coded GA in this paper. This is 

described later since the focus for this section is to define 

the ranking scheme. 

 It is first assumed that all equality constraints are 

transformed by (2) so the problem is now 

pig
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where p = k + m.

Now, the objective function is given index 1, f1(x) = f(x). 

Then the constraints gi(x) are reformulated into new 

objectives f1+i(x). These objectives are defined as 

pigf ii ...,,1,)(,0max)(1 xx    (4) 

A natural approach would be to apply a Pareto based 

multiobjective GA to solve the problem. This might not be 

the best idea since the Pareto optimal set with respect to 

the new objectives f1(x) to fp+1(x) is generally not the same 

as the optimal solution x
*. The idea here is to treat the 

objective f1(x) and the objectives f2(x) to fp+1(x) separately. 

The approach is based on the following criteria 

If no feasible individual exists in the current 

population, the search should be directed towards the 

feasible region. 

If a majority of the individuals in the current population 

are feasible, the search should be directed towards the 

unconstrained optimum. 

A feasible individual closer to the optimum is always 

better than a feasible individual further from the 

optimum. 

An infeasible individual might be a better individual 

than a feasible individual if the number of feasible 

individuals is high. 

From the above statements it is clear that the search 

direction should be dependent upon the number of feasible 

individuals in the current population. The reason for the 

fourth statement is that an infeasible individual with a 

good objective value (f1(x)) should not be rejected as it 

might guide the search towards the true optimum by 

improving the diversity of the population. 

 Now P is defined to be the population size and N the 

number of feasible solutions in the current population. xj is 

the jth individual in the current population. Then, rank1(xj)

is defined as the ranking according to the first objective 

f1(x). The best individual gets rank1 = 1.  

rank2(xj) is defined to be the non-dominated ranking 

with respect to f2(x) to fp+1(x) as defined by Goldberg [10]. 

In the ranking the first non-dominated individuals in the 

population receive rank2 = 1. Then these individuals are 

removed from the population and the ranking is repeated 

for the remaining individuals, but now the non-dominated 

individuals get rank2 = 2. This is repeated until all 

individuals in the current population have received a value 

for rank2. In [9] Deb shows a method with computational 

complexity O((p+1)P2) to perform the non-dominated 

ranking.  

 Now a new objective function ( )jx  is formulated as 
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Each individual is then ranked according to its value for 

Equation 5 and fitness is assigned in a regular manner. 

Note that if no feasible solution is present in the 

population (N = 0), the ranking according to the objective 

(rank1) becomes inactive and the population is ranked 

according to the constraints (rank2), i.e. the search is 

guided towards the feasible region. On the other hand, if 

all individuals are feasible (N = P), the population is 

ranked according to the objective (rank1), and the search is 

directed towards the unconstrained optimum. Among two 

feasible individuals, the most fit is the one with lower 

value for rank1 (the objective) since all feasible individuals 

receive rank2 = 1. All these observations are consistent 

with the previously listed criteria. 

 An interesting feature for the new ranking is that the 

search direction depends on the number of feasible 

solutions. If many feasible solutions exist, the search is 

directed towards the unconstrained optimal solution. If 

now it is assumed that the unconstrained optimum is 

located outside the feasible region, the population may 

tend to oscillate over the boundary to the feasible region. 

This variation of the search direction gives a positive 

effect of the diversity in the population.  

 Equation 5 has a similar structure as a penalty based 

approach but it should be pointed out that no parameter 

that requires problem dependent fine-tuning is introduced. 

The �weights� for the two objectives in Equation 5 only 

depend on the population size and the number of feasible 

individuals in the current population. 

 The new ranking procedure for a NLP problem is 

summarized below 

1. Reformulate the problem according to Equation 3 and 

Equation 4 

2. Rank the population with respect to the objective (f1(x)) 

and assign it to rank1

3. Rank the population with respect to the constraints 

(f2(x) to fp+1(x)) based on non-dominance according to 

Goldberg [10] and assign it to rank2

4. Calculate the objective ( )(x ) according to Equation 5 



5. Rank the population according to the single objective 

)(x

Until now, only the ranking has been described. This 

ranking scheme may be used with any type of GA. In the 

rest of this paper a real coded GA with the proposed 

ranking scheme is used. All the GA operations and 

parameters are chosen as simple as possible. Therefore a 

more advanced algorithm, such as an adaptive GA for 

example, might improve the results presented in this paper. 

Linear fitness assignment according to the ranking for the 

new objective (Equation 5) is used. The selective pressure 

is set to 1.9. The selection method is the roulette wheel 

selection. The number of selected individuals are defined 

by the generation gap that is set to 95%. Thus 95% of the 

population is selected for mating and the worst parents are 

replaced by all the offspring. Hence, an elitist GA is used. 

Blend crossover, BLX, see [13], is used with a probability 

equal to 1. The mutation operator by Mühlenbein and 

Schlierkamp-Voosen [14] which produces a small 

mutation step with high probability and a large step with 

small probability is used. The mutation probability is set to 

1/n where n is the number of design variables. The 

maximum mutation step is defined in the result section. 

4 An illustrative example 

In this section the ranking based on Equation 5 is 

discussed for a simple NLP problem. It should be clear 

that the purpose of this section is to show the important 

effects of the ranking and not to solve the simple NLP 

problem. First the result of an actual search is presented. 

Then the imposed search direction is discussed with the 

help of two hypothetical populations. 

 The problem is as follows. A quadratic function is to be 

minimized and the feasible solutions are constrained by 

three circles. The problem is stated as 
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For the unconstrained problem the optimal solution is x* = 

[0, 0]. For the constrained problem (6) the optimal solution 

is x
* = [0, 1.5]. The first constraint is active at the optimal 

solution. The population size is set to 10, the maximum 

number of generations is 50 and the maximum mutation 

step is set to 0.1 of the range for the design variables. The 

mutation probability is set to 0.2 in this case.  

The initial and the final generation are shown in Figure 1. 

The rank of the initial generation according to Equation 5 

is also given in the figure. 
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Figure 1: Initial generation (the smaller rings) and final 

generation (the �dot� near the optimum) shown in design variable 

space. The numbers indicate the rank according to Equation (5). 

The best individual in the initial generation correspond to 

ranking 1. Figure 1 shows clearly that the search direction 

is towards the feasible region in the initial generation. 

 Figure 2 shows the ratio of feasible solutions, the mean 

normalized Euclidian distance and the ratio between the 

true optimum and the best-found feasible objective value. 

To avoid premature convergence it is crucial to have 

sufficient diversity in the population. An indication of the 

diversity in the population is given by the distance 

between the members of the population. The distance 

between two individuals is calculated using the normalized 

Euclidian distance. The mean Euclidian distance is 

obtained by calculating the mean distance between all 

individuals in the population, and hence is a measure of 

the diversity in the population. 
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Figure 2: Search results for problem (6). 

The first feasible solution is found in generation 4. In the 

early generations (~ 5 to 10) the number of feasible 

individuals increases rapidly. In generations 13 to 24 all 

individuals are feasible and the improvement in the 



objective function is very small since the population has 

converged too fast. In generation 25 an infeasible 

individual is created by a mutation. This individual is 

better than all the feasible individuals in terms of the 

objective value, f(x). Due to the �weights� in Equation 5 

this infeasible individual becomes the best individual. The 

search is then directed out of the feasible region towards 

the unconstrained optimum and as a result better feasible 

solutions are found. To make this variation of the search 

direction more clear two populations with different ratio of 

feasible individuals are studied in Figure 3 and Figure 4. 
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Figure 3. Rank according to Equation 5 for a population with 

60% feasible individuals. 
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Figure 4. Rank according to Equation 5 for a population with 

20% feasible individuals. 

When the number of feasible individuals is high, the 

search is directed towards the unconstrained optimum as 

shown in Figure 3. In the later stage, when more infeasible 

individuals occur in the population the search is directed 

back to the feasible region again. This explains the 

oscillating behaviour of the ratio of feasible individuals for 

generation 26 to 50 in Figure 1. 

 This example shows the dynamic behaviour of the 

search direction. The oscillation of the search direction 

only occurs when at least one constraint is active at the 

optimum. The variation of the search direction has a 

positive effect for the population diversity. Thus, if 

mutation is used no special operation to preserve the 

diversity in the population is required for most cases. In 

the next section the method is evaluated using a set of 

selected test problems gathered from the literature. 

5 Constrained single objective test problems 

In [15], Michalewicz et al. present a test case generator to 

use in tests of algorithms for constrained optimization 

problems. This test case generator will probably be used in 

future research on constrained optimization problems. The 

results for different constraint handling methods are yet 

quite limited for this test case generator. Therefore a set of 

test problems for which there exists results for many 

different algorithms is here chosen instead. 

 It is always difficult to make fair comparisons between 

different EAs. Two different strategies may well have 

different optimal settings for the optimization algorithm 

parameters on the same problem. Another difficulty is to 

determine how to compare different algorithms. A naive 

but obvious way to compare algorithms is to compare the 

best solution found in the same number of function 

evaluations. A measure of the robustness of the algorithms 

is indicated by the spread of the best solutions found if the 

optimization is run several times independently. Here it is 

chosen to compare the results for the proposed ranking 

scheme with previously reported results for other EAs by 

other authors on a set of problems. Six test problems are 

selected. Problem #2 to #6 are found in [11] and problem 

#1 to #6 in [12]. A short summary of the test problems is 

given in Table 1. The size of the feasible region is 

estimated by the ratio ( ) of feasible solutions found in a 

random sampling of 106 solutions in the search space1. The 

six test problems are described in detail in the next 

subsections. 

Table 1: Summary of test problems. C corresponds to the number 

of constraints, A to the number of active constraints at the 

optimum and n is the number of design variables. 
Problem n Type of f  C A 

#1 5 quadratic 52.03% 6 2 

#2 13 quadratic 0.0111% 9 6 

#3 8 linear 0.0010% 6 6 

#4 7 polynomial 0.5121% 4 2 

#5 5 nonlinear 0.0000% 3 3 

#6 10 quadratic 0.0003% 8 6 

In [11], Michalewicz compares the performance of six 

different methods on the five problems #2 to #6. Most of 

the methods are based on penalty functions, The result 

here is compared to the result for the best method found in 

[11]. In [12], Deb proposes a special penalty based method 

                                                          
1 The ratio for problem #2 to problem #6 is presented in [11]. 



for which the following criteria are always enforced if a 

tournament selection operator is used: 

1. Any feasible solution is preferred to any infeasible 

solution. 

2. Among two feasible solutions, the one having better 

objective function value is preferred. 

3. Among two infeasible solutions, the one having smaller 

constraint violation is preferred. 

Deb tested his method on nine different problems of which 

test problem #1 to test problem #6 are a subset. The results 

obtained by the proposed method in this paper are 

compared to the results obtained by Deb on all these six 

test problems. Furthermore, Deb stated that �In all cases, 

the proposed approach has been able to repeatedly find 

solutions closer to the true optimum solution than that 

reported earlier�. Therefore a fair comparison to the 

results reported in [12] should give good indication of the 

performance of the method presented in this paper.  

 It is worth to notice that the effect of the ranking 

scheme introduced in this paper is similar to the above 

listed criteria only if there exist few feasible individuals in 

the current population. On the contrary, if there exist many 

feasible individuals, a good (in terms of the objective 

value) infeasible individual may well be preferred to a 

feasible individual if this is worse in terms of the objective 

value. 

5.1 Test problem 1 

This problem was first presented by Himmelblau in [16]. It 

has later been used by Coello Coello [1] and Deb [12] to 

evaluate the performance of various GAs for constrained 

optimization. The problem is stated as 
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The best-known solution to this problem [16] is x* = [78, 

33, 29.995, 45, 36.776] which gives f* = -30665.5. At this 

solution the constraints g2 and g5 are active [12]. 

5.2 Test problem 2 

The problem is stated as follows 
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The optimal objective value for this problem is f* = -15 for 

x* = [1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1]. At this solution all 

constraints except g4, g5 and g6 are active.  

5.3 Test problem 3 

The third test problem is 
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The optimum solution is x* = [579.3167, 1359.943, 

5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 

395.5979] which gives f* = 7049.330923. All six 

constraints are active at the optimal solution. 

5.4 Test problem 4 

This problem is stated as 
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The optimal solution is x
* = [2.330499, 1.951372, -

0.4775414, 4.365726, -0.6244870, 1.038131, 1.594227] 

which gives f* = 680.6300573. The constraints g1 and g4

are active at the optimal solution. 



5.5 Test problem 5 

The fifth test problem is stated as 
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The optimal solution is x
* = [-1.717143, 1.595709, 

1.827247, -0.7636413, -0.7636450]. This gives f* = 

0.053950. Since all constraints are equality type, all 

constraints are active at the optimal solution. The equality 

constraints are transformed into inequality constraints by 

Equation 2 and the tolerance is set to  = 0.001 for the 

results presented in this paper.  

5.6 Test problem 6 

The last test problem is  
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The optimal solution is x* = [2.171996, 2.363683, 

8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 

9.828726, 8.280092, 8.375927] which gives f* = 

24.3062091. All constraints except g7 and g8 are active at 

the optimal solution. 

6 Results 

First some typical search results for the first three 

problems are presented in Figure 5 to Figure 7. These 

figures show the ratio of feasible solutions, the mean 

normalized Euclidian distance and the ratio between the 

optimal solution and the best-found feasible solution. The 

GA parameters used in this study is presented in Table 3 

for each problem. Then the result for this algorithm is 

compared to the best result reported in [11] and the result 

reported in [12]. 
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Figure 5: Typical result for problem #1. 
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Figure 6: Typical result for problem #2. 
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Figure 7: Typical result for problem #3. 

Clearly the easiest problem is the first test problem. Near 

optimal solutions are found in early generations. 

Surprisingly the most difficult problem of these three 

problems for this method is test problem #2. In [11] it was 

reported that this was one of the easiest problem and only 

a few of the methods studied had any difficulties on this 

problem. 



 The results for this algorithm are now compared to the 

best results for all tested methods in [11] and summarized 

in Table 2. The population size is 70 and the maximum 

number of generations is 5000, both in this study and for 

all algorithms tested in [11]. For this algorithm the 

maximum mutation step is set to 0.1 of the range for the 

design variables. The result from [11] presented in Table 2 

are the results for the method that found the best feasible 

solution. It should be mentioned that all the results in the 

coming tables correspond to feasible solutions. 

Table 2: Result for this algorithm compared to best result in [11]. 

The number of independent runs is 10. 
Problem Study Best Median Worst 

This study -14.680 -14.570 -12.419 #2

Best in [11] -15.000 -15.000 -15.000 

This study 7079.5 7107.0 7187.8 #3

Best in [11] 7378.0 8206.2 9653.0 

This study 680.636 680.640 680.646 #4

Best in [11] 680.642 680.718 680.955 

This study 0.313 0.534 0.602 #5

Best in [11] 0.054 0.064 0.577 

This study 24.519 24.600 24.735 #6

Best in [11] 25.486 26.905 42.358 

As can be seen from Table 2 this algorithm finds better 

results in problem #3, problem #4 and problem #6 than all 

methods tested in [11]. The variation is also much less on 

these problems. 

 In Table 4 the result for this algorithm is compared to 

the results by Deb in [12]. Table 3 shows the GA 

parameters used for the results in Table 4. 

Table 3: GA parameters used for the results presented in Table 4. 
Problem Study Pop size Max gen Max 

mutation step 

This study 50 1000 0.1 #1

[12] 50 5000 - 

This study 130 2000 0.1 #2

[12] 130 N/A - 

This study 80 4000 0.1 #3

[12] 80 4000 - 

This study 70 5000 0.02 #4

[12] 70 5000 - 

This study 50 7000 0.1 #5

[12] 50 7000 - 

This study 100 3500 0.02 #6

[12] 100 3500 - 

Table 4: Result for this algorithm compared to best result in [12]. 

The independent number of runs is 50. 
Problem Study Best Median Worst 

This study -30665.5 -30665.5 -30665.4 #1

[12] -30665.5 -30665.5 -29846.7 

This study -14.276 -13.224 -11.963 #2

[12] -15.000 -15.000 -13.000 

This study 7072.4 7100.2 7256.4 #3

[12] 7060.2 7220.0 10230.8 

This study 680.632 680.636 680.645 #4

[12] 680.634 680.642 680.651 

This study 0.44678 0.56967 0.83732 #5

[12] 0.05395 0.24129 0.50776 

This study 24.375 24.426 24.512 #6

[12] 24.372 24.409 25.075 

The best found result of the 50 independent runs for this 

method is almost similar to the result reported by Deb for 

problem #1, problem #3, problem #4 and problem #6. For 

these problems the variation in the best results found is 

less for the proposed method than that reported in [12]. 

For problem #2 and problem #5 the method presented by 

Deb performs better, both in terms of best-found solution 

and variation of the best-found solution. 

 It should be mentioned however, that the results 

presented by Deb are based on tournament selection with a 

niching method that required two extra parameters. 

Furthermore, the maximum number of generations for the 

results of test problem #2 in [12] is not known. Hence it is 

difficult to make a fair comparison of the results on this 

problem. 

7 Conclusions 

A general ranking scheme without problem specific extra 

parameters for constrained optimization problem has been 

presented. The performance for an algorithm with this 

ranking scheme has also been compared to the result of 

other algorithms on six problems previously used by other 

authors. The results encourage further research since the 

method performs better than many other algorithms for the 

tested constrained single objective problems. It is also 

shown that the robustness in terms of minimum spread in 

best found solutions, is better than one of the best methods 

on a majority of the six tested problems. It was only in the 

problem containing equality constraints (problem #5) that 

this method did not perform well. It could not match up to 

the results for the other algorithms on problem #2 either. 

The cause of this is an open question for further research. 

It should also be mentioned that no effort has been made 

to study the optimal parameter settings such as population 

size, generation gap, mutation probability, etc. The 

performance of this ranking scheme may well be better in 

a more advanced GA, for example an adaptive GA. 

 An obvious extension to the presented ranking scheme 

is to address constrained multiobjective problems as well.  

By redefining rank1 as the Pareto ranking presented by 

Fonseca and Fleming in [17], the presented ranking 

scheme could handle problems with multiple objectives. 

This is an area of ongoing research and the preliminary 

results are encouraging. 
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