
Constrained Optimization based on a Multiobjective Evolutionary

Algorithm

Anders Angantyr
Dept. of Applied Physics and

Mechanical Eng.

Luleå University of Technology

SE-97187 Luleå

anders.angantyr@cad.luth.se

Johan Andersson
Dept. of Mechanical Engineering

Linköping University

SE-581 83 Linköping

johan@ikp.liu.se

Jan-Olov Aidanpaa
Dept. of Applied Physics and

Mechanical Eng.

Luleå University of Technology

SE-97187 Luleå

joa@cad.luth.se

Abstract - A criticism of Evolutionary Algorithms

(EAs) might be the lack of efficient and robust generic

methods to handle constraints. The most widespread

approach for constrained search problems is to use

penalty methods. EAs have received increased interest

during the last decade due to the ease of handling

multiple objectives. A constrained optimization

problem or an unconstrained multiobjective problem

may in principle be two different ways to pose the same

underlying problem. In this paper an alternative

approach for the constrained optimization problem is

presented. The method is a variant of a multiobjective

real coded Genetic Algorithm (GA) inspired by the

penalty approach. It is evaluated on six different

constrained single objective problems found in the

literature. The results show that the proposed method

performs well in terms of efficiency, and that it is

robust for a majority of the test problems.

1 Introduction

During the last decades Evolutionary Algorithms (EAs)

have proved to become an important tool for difficult

search and optimization problems. Most real-world

problems are however constrained and a possible criticism

of EAs has been the lack of efficient and generic constraint

handling techniques. A comprehensive survey of existing

constraint handling methods for EAs is done by Coello

Coello in [1]. The frequently most used methods are based

on various penalty functions for which some guidelines are

given in [2]. Penalty methods are generic but may however

distort the cost surface and introduce false optima. Most

penalty methods also require additional parameters, which

are problem-dependent and increase the complexity of the

problem.

 The constrained optimization problem may be handled

as a multiobjective optimization problem as indicated by

Coello Coello in [3], Michalewicz in [4] and Fonseca and

Fleming in [5]. Furthermore, EAs based on non-dominated

sorting for multiobjective problems have received

increased interest during the past decade. Therefore it

seems natural to look upon the constrained optimization

problem as a multiobjective problem. Multiobjective

approaches of constrained problems based on Shaffers

VEGA [6] is found in [7] and [8]. Another interesting

constraint handling method based on non-domination is

presented by Deb et al. in [9]. To directly apply a

multiobjective EA based on non-domination on a

constrained optimization problem leads to a search of the

best compromises of the objective value and constraint

satisfaction. This whole set of solutions is usually not

interesting since it is the optimal and feasible solution that

is searched. Therefore it will not be efficient to directly

apply a multiobjective EA on a constrained problem. Still

the idea to handle the constrained problem with some

variant of a multiobjective EA is interesting.

 One of the most crucial steps in a multiobjective EA is

how to rank individuals. In this paper an alternative

ranking scheme for the constrained single objective

problem is introduced. This ranking scheme is generic and

no new parameters are introduced. The ideas of the

ranking scheme are borrowed from the non-domination

ranking for multiple objectives by Goldberg in [10] and

penalty based methods for constrained problems.

 The paper first defines the constrained optimization

problem, and thereafter the proposed method is presented

in more detail. Then the performance for a real coded

Genetic Algorithm with the proposed ranking scheme

implemented is tested on six different test problems used

by Michalewicz in [11] and Deb in [12]. Finally, the result

for this proposed method is compared to the result for

other methods evaluated in [11] and [12].

2 The constrained optimization problem

In this section the constrained optimization problem and

its terminology is defined. The constrained optimization

problem or non-linear programming problem (NLP) with k

inequality constraints and m equality constraints is

formulated as

.,...,10)(

,,...,10)(

)(

mih

kig

tosubject

fMinimize

i

i

x

x

x

 (1)

x = [x1, x2,�, xn] is a vector of the n design variables such

that nSx . The search space S is here defined as an

n-dimensional rectangle by the upper and lower bounds for

the design variables, 1...l u

i i ix x x i n . The feasible

region SF is the region of S for which the inequality

and equality constraints are satisfied. The optimal solution

is denoted x*. A constraint is said to be active at the point

x
* if gi(x

*) = 0. By default all equality constraints are

active at all points of the feasible space. Equality

constraints may be transformed to inequality constraints

[1] via

0)(xih (2)

where is a small tolerance. Since the algorithm that will

be discussed does not use gradient information it does not

matter if (2) is non-differentiable.

3 The proposed EA approach for

constrained optimization

In this section the proposed ranking scheme is introduced.

The non-dominated ranking by Goldberg [10] is used in a

new way to formulate a scalar valued function that is used

to rank individuals in the current population. Then

selection, crossover, mutation and reinsertion are used in a

standard manner for a real coded GA in this paper. This is

described later since the focus for this section is to define

the ranking scheme.

 It is first assumed that all equality constraints are

transformed by (2) so the problem is now

pig

tosubject

fMinimize

i ,...,10)(

)(

x

x
 (3)

where p = k + m.

Now, the objective function is given index 1, f1(x) = f(x).

Then the constraints gi(x) are reformulated into new

objectives f1+i(x). These objectives are defined as

pigf ii ...,,1,)(,0max)(1 xx (4)

A natural approach would be to apply a Pareto based

multiobjective GA to solve the problem. This might not be

the best idea since the Pareto optimal set with respect to

the new objectives f1(x) to fp+1(x) is generally not the same

as the optimal solution x
*. The idea here is to treat the

objective f1(x) and the objectives f2(x) to fp+1(x) separately.

The approach is based on the following criteria

If no feasible individual exists in the current

population, the search should be directed towards the

feasible region.

If a majority of the individuals in the current population

are feasible, the search should be directed towards the

unconstrained optimum.

A feasible individual closer to the optimum is always

better than a feasible individual further from the

optimum.

An infeasible individual might be a better individual

than a feasible individual if the number of feasible

individuals is high.

From the above statements it is clear that the search

direction should be dependent upon the number of feasible

individuals in the current population. The reason for the

fourth statement is that an infeasible individual with a

good objective value (f1(x)) should not be rejected as it

might guide the search towards the true optimum by

improving the diversity of the population.

 Now P is defined to be the population size and N the

number of feasible solutions in the current population. xj is

the jth individual in the current population. Then, rank1(xj)

is defined as the ranking according to the first objective

f1(x). The best individual gets rank1 = 1.

rank2(xj) is defined to be the non-dominated ranking

with respect to f2(x) to fp+1(x) as defined by Goldberg [10].

In the ranking the first non-dominated individuals in the

population receive rank2 = 1. Then these individuals are

removed from the population and the ranking is repeated

for the remaining individuals, but now the non-dominated

individuals get rank2 = 2. This is repeated until all

individuals in the current population have received a value

for rank2. In [9] Deb shows a method with computational

complexity O((p+1)P2) to perform the non-dominated

ranking.

 Now a new objective function ()jx is formulated as

)(
P

NP
)(

P

N
)(21 jjj rankrank xxx . (5)

Each individual is then ranked according to its value for

Equation 5 and fitness is assigned in a regular manner.

Note that if no feasible solution is present in the

population (N = 0), the ranking according to the objective

(rank1) becomes inactive and the population is ranked

according to the constraints (rank2), i.e. the search is

guided towards the feasible region. On the other hand, if

all individuals are feasible (N = P), the population is

ranked according to the objective (rank1), and the search is

directed towards the unconstrained optimum. Among two

feasible individuals, the most fit is the one with lower

value for rank1 (the objective) since all feasible individuals

receive rank2 = 1. All these observations are consistent

with the previously listed criteria.

 An interesting feature for the new ranking is that the

search direction depends on the number of feasible

solutions. If many feasible solutions exist, the search is

directed towards the unconstrained optimal solution. If

now it is assumed that the unconstrained optimum is

located outside the feasible region, the population may

tend to oscillate over the boundary to the feasible region.

This variation of the search direction gives a positive

effect of the diversity in the population.

 Equation 5 has a similar structure as a penalty based

approach but it should be pointed out that no parameter

that requires problem dependent fine-tuning is introduced.

The �weights� for the two objectives in Equation 5 only

depend on the population size and the number of feasible

individuals in the current population.

 The new ranking procedure for a NLP problem is

summarized below

1. Reformulate the problem according to Equation 3 and

Equation 4

2. Rank the population with respect to the objective (f1(x))

and assign it to rank1

3. Rank the population with respect to the constraints

(f2(x) to fp+1(x)) based on non-dominance according to

Goldberg [10] and assign it to rank2

4. Calculate the objective ()(x) according to Equation 5

5. Rank the population according to the single objective

)(x

Until now, only the ranking has been described. This

ranking scheme may be used with any type of GA. In the

rest of this paper a real coded GA with the proposed

ranking scheme is used. All the GA operations and

parameters are chosen as simple as possible. Therefore a

more advanced algorithm, such as an adaptive GA for

example, might improve the results presented in this paper.

Linear fitness assignment according to the ranking for the

new objective (Equation 5) is used. The selective pressure

is set to 1.9. The selection method is the roulette wheel

selection. The number of selected individuals are defined

by the generation gap that is set to 95%. Thus 95% of the

population is selected for mating and the worst parents are

replaced by all the offspring. Hence, an elitist GA is used.

Blend crossover, BLX, see [13], is used with a probability

equal to 1. The mutation operator by Mühlenbein and

Schlierkamp-Voosen [14] which produces a small

mutation step with high probability and a large step with

small probability is used. The mutation probability is set to

1/n where n is the number of design variables. The

maximum mutation step is defined in the result section.

4 An illustrative example

In this section the ranking based on Equation 5 is

discussed for a simple NLP problem. It should be clear

that the purpose of this section is to show the important

effects of the ranking and not to solve the simple NLP

problem. First the result of an actual search is presented.

Then the imposed search direction is discussed with the

help of two hypothetical populations.

 The problem is as follows. A quadratic function is to be

minimized and the feasible solutions are constrained by

three circles. The problem is stated as

.73

,55

,5.1)1()1()(

,5.1)1()1()(

,5.1)3()(

)(

2

1

22

2

2

13

22

2

2

12

22

2

2

11

2

2

2

1

x

x

xxg

xxg

xxg

tosubject

xxfMinimize

x

x

x

x

 (6)

For the unconstrained problem the optimal solution is x* =

[0, 0]. For the constrained problem (6) the optimal solution

is x
* = [0, 1.5]. The first constraint is active at the optimal

solution. The population size is set to 10, the maximum

number of generations is 50 and the maximum mutation

step is set to 0.1 of the range for the design variables. The

mutation probability is set to 0.2 in this case.

The initial and the final generation are shown in Figure 1.

The rank of the initial generation according to Equation 5

is also given in the figure.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

6

7

3

2

2

34

3

3

1

2

4

x
1

x 2

Figure 1: Initial generation (the smaller rings) and final

generation (the �dot� near the optimum) shown in design variable

space. The numbers indicate the rank according to Equation (5).

The best individual in the initial generation correspond to

ranking 1. Figure 1 shows clearly that the search direction

is towards the feasible region in the initial generation.

 Figure 2 shows the ratio of feasible solutions, the mean

normalized Euclidian distance and the ratio between the

true optimum and the best-found feasible objective value.

To avoid premature convergence it is crucial to have

sufficient diversity in the population. An indication of the

diversity in the population is given by the distance

between the members of the population. The distance

between two individuals is calculated using the normalized

Euclidian distance. The mean Euclidian distance is

obtained by calculating the mean distance between all

individuals in the population, and hence is a measure of

the diversity in the population.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

Generation

Ratio of feasible solutions
Mean normalized Euclidian distance
Ratio f* / f

best found

Figure 2: Search results for problem (6).

The first feasible solution is found in generation 4. In the

early generations (~ 5 to 10) the number of feasible

individuals increases rapidly. In generations 13 to 24 all

individuals are feasible and the improvement in the

objective function is very small since the population has

converged too fast. In generation 25 an infeasible

individual is created by a mutation. This individual is

better than all the feasible individuals in terms of the

objective value, f(x). Due to the �weights� in Equation 5

this infeasible individual becomes the best individual. The

search is then directed out of the feasible region towards

the unconstrained optimum and as a result better feasible

solutions are found. To make this variation of the search

direction more clear two populations with different ratio of

feasible individuals are studied in Figure 3 and Figure 4.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
1

1.2

1.4

1.6

1.8

2

2.2

10

9

8

7

6

5

4

3

2

1

x
1

x 2

Figure 3. Rank according to Equation 5 for a population with

60% feasible individuals.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
1

1.2

1.4

1.6

1.8

2

2.2

8

9

10

2

4

1

3

5

6

7

x
1

x 2

Figure 4. Rank according to Equation 5 for a population with

20% feasible individuals.

When the number of feasible individuals is high, the

search is directed towards the unconstrained optimum as

shown in Figure 3. In the later stage, when more infeasible

individuals occur in the population the search is directed

back to the feasible region again. This explains the

oscillating behaviour of the ratio of feasible individuals for

generation 26 to 50 in Figure 1.

 This example shows the dynamic behaviour of the

search direction. The oscillation of the search direction

only occurs when at least one constraint is active at the

optimum. The variation of the search direction has a

positive effect for the population diversity. Thus, if

mutation is used no special operation to preserve the

diversity in the population is required for most cases. In

the next section the method is evaluated using a set of

selected test problems gathered from the literature.

5 Constrained single objective test problems

In [15], Michalewicz et al. present a test case generator to

use in tests of algorithms for constrained optimization

problems. This test case generator will probably be used in

future research on constrained optimization problems. The

results for different constraint handling methods are yet

quite limited for this test case generator. Therefore a set of

test problems for which there exists results for many

different algorithms is here chosen instead.

 It is always difficult to make fair comparisons between

different EAs. Two different strategies may well have

different optimal settings for the optimization algorithm

parameters on the same problem. Another difficulty is to

determine how to compare different algorithms. A naive

but obvious way to compare algorithms is to compare the

best solution found in the same number of function

evaluations. A measure of the robustness of the algorithms

is indicated by the spread of the best solutions found if the

optimization is run several times independently. Here it is

chosen to compare the results for the proposed ranking

scheme with previously reported results for other EAs by

other authors on a set of problems. Six test problems are

selected. Problem #2 to #6 are found in [11] and problem

#1 to #6 in [12]. A short summary of the test problems is

given in Table 1. The size of the feasible region is

estimated by the ratio () of feasible solutions found in a

random sampling of 106 solutions in the search space1. The

six test problems are described in detail in the next

subsections.

Table 1: Summary of test problems. C corresponds to the number

of constraints, A to the number of active constraints at the

optimum and n is the number of design variables.
Problem n Type of f C A

#1 5 quadratic 52.03% 6 2

#2 13 quadratic 0.0111% 9 6

#3 8 linear 0.0010% 6 6

#4 7 polynomial 0.5121% 4 2

#5 5 nonlinear 0.0000% 3 3

#6 10 quadratic 0.0003% 8 6

In [11], Michalewicz compares the performance of six

different methods on the five problems #2 to #6. Most of

the methods are based on penalty functions, The result

here is compared to the result for the best method found in

[11]. In [12], Deb proposes a special penalty based method

1 The ratio for problem #2 to problem #6 is presented in [11].

for which the following criteria are always enforced if a

tournament selection operator is used:

1. Any feasible solution is preferred to any infeasible

solution.

2. Among two feasible solutions, the one having better

objective function value is preferred.

3. Among two infeasible solutions, the one having smaller

constraint violation is preferred.

Deb tested his method on nine different problems of which

test problem #1 to test problem #6 are a subset. The results

obtained by the proposed method in this paper are

compared to the results obtained by Deb on all these six

test problems. Furthermore, Deb stated that �In all cases,

the proposed approach has been able to repeatedly find

solutions closer to the true optimum solution than that

reported earlier�. Therefore a fair comparison to the

results reported in [12] should give good indication of the

performance of the method presented in this paper.

 It is worth to notice that the effect of the ranking

scheme introduced in this paper is similar to the above

listed criteria only if there exist few feasible individuals in

the current population. On the contrary, if there exist many

feasible individuals, a good (in terms of the objective

value) infeasible individual may well be preferred to a

feasible individual if this is worse in terms of the objective

value.

5.1 Test problem 1

This problem was first presented by Himmelblau in [16]. It

has later been used by Coello Coello [1] and Deb [12] to

evaluate the performance of various GAs for constrained

optimization. The problem is stated as

.5,4,3,4527

,4533

,10278

,250019085.00012547.00047026.0300961.9)(

,200019085.00012547.00047026.0300961.9)(

,1100021813.00029955.00071317.051249.80)(

,900021813.00029955.00071317.051249.80)(

,920022053.00006262.00056858.0334407.85)(

,00022053.00006262.00056858.0334407.85)(

141.40792293239.378356891.03578547.5)(

2

1

4331536

4331535

2

321524

2

321523

5341522

5341521

151

2

3

ix

x

x

xxxxxxg

xxxxxxg

xxxxxg

xxxxxg

xxxxxxg

xxxxxxg

tosubject

xxxxfMinimize

i

x

x

x

x

x

x

x

The best-known solution to this problem [16] is x* = [78,

33, 29.995, 45, 36.776] which gives f* = -30665.5. At this

solution the constraints g2 and g5 are active [12].

5.2 Test problem 2

The problem is stated as follows

.10

,12,11,10,1000

,9,...,1,10

,02)(

,02)(

,02)(

,08)(

,08)(

,08)(

,1022)(

,1022)(

,1022)(

55)(

13

12989

11768

10547

1236

1125

1014

1211323

1210312

1110211

4

1

13

5

2
4

1

x

ix

ix

xxxg

xxxg

xxxg

xxg

xxg

xxg

xxxxg

xxxxg

xxxxg

tosubject

xxxfMinimize

i

i

i i

ii

i

i

x

x

x

x

x

x

x

x

x

x

The optimal objective value for this problem is f* = -15 for

x* = [1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1]. At this solution all

constraints except g4, g5 and g6 are active.

5.3 Test problem 3

The third test problem is

.8,...,4,100010

,3,2,100001000

,10000100

,012500002500)(

,012501250)(

,0333.8333310033252.833)(

,0)(01.01)(

,0)(0025.01)(

,0)(0025.01)(

)(

1

553836

4425725

14614

583

4752

641

321

ix

ix

x

xxxxxg

xxxxxxg

xxxxg

xxg

xxxg

xxg

tosubject

xxxfMinimize

i

i

x

x

x

x

x

x

x

The optimum solution is x* = [579.3167, 1359.943,

5110.071, 182.0174, 295.5985, 217.9799, 286.4162,

395.5979] which gives f* = 7049.330923. All six

constraints are active at the optimal solution.

5.4 Test problem 4

This problem is stated as

.7,...,1,1010

,0115234)(

,08623196)(

,01037282)(

,05432127)(

810

4710)11(3

)12(5)10()(

76

2

321

2

2

2

14

7

2

6

2

213

54

2

3212

5

2

43

4

2

2

11

76

76

4

7

2

6

6

5

2

4

4

3

2

2

2

1

ix

xxxxxxxg

xxxxg

xxxxxg

xxxxxg

tosubject

xx

xxxxxx

xxxfMinimize

i

x

x

x

x

x

The optimal solution is x
* = [2.330499, 1.951372, -

0.4775414, 4.365726, -0.6244870, 1.038131, 1.594227]

which gives f* = 680.6300573. The constraints g1 and g4

are active at the optimal solution.

5.5 Test problem 5

The fifth test problem is stated as

.5,4,3,2.32.3

,2,1,3.23.2

,1)(

,05)(

,10)(

)(

3

2

3

13

54322

5

1

2

1

54321

ix

ix

xxh

xxxxh

xh

tosubject

efMinimize

i

i

i

i

xxxxx

x

x

x

x

The optimal solution is x
* = [-1.717143, 1.595709,

1.827247, -0.7636413, -0.7636450]. This gives f* =

0.053950. Since all constraints are equality type, all

constraints are active at the optimal solution. The equality

constraints are transformed into inequality constraints by

Equation 2 and the tolerance is set to = 0.001 for the

results presented in this paper.

5.6 Test problem 6

The last test problem is

.10,...,1,1010

,07)8(1263)(

,0303)4(2)8(5.0)(

,06142)2(2)(

,0402)6(85)(

,012072)3(4)2(3)(

,0122528)(

,0217810)(

,09354105)(

45)7()10(2)11(75)1(2

)3()5(4)10(1614)(

10

2

9218

6

2

5

2

2

2

17

6521

2

2

2

16

4

2

32

2

15

4

2

3

2

2

2

14

109213

87212

87211

2

10

2

9

2

8

2

7

2

6

2

5

2

4

2

32121

2

2

2

1

ix

xxxxg

xxxxg

xxxxxxg

xxxxg

xxxxg

xxxxg

xxxxg

xxxxg

tosubject

xxxxx

xxxxxxxxxfMinimize

i

x

x

x

x

x

x

x

x

x

The optimal solution is x* = [2.171996, 2.363683,

8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,

9.828726, 8.280092, 8.375927] which gives f* =

24.3062091. All constraints except g7 and g8 are active at

the optimal solution.

6 Results

First some typical search results for the first three

problems are presented in Figure 5 to Figure 7. These

figures show the ratio of feasible solutions, the mean

normalized Euclidian distance and the ratio between the

optimal solution and the best-found feasible solution. The

GA parameters used in this study is presented in Table 3

for each problem. Then the result for this algorithm is

compared to the best result reported in [11] and the result

reported in [12].

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

Generation

Ratio of feasible solutions
Mean normalized Euclidian distance
Ratio f

best found
 / f*

Figure 5: Typical result for problem #1.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

Generation

Ratio of feasible solutions
Mean normalized Euclidian distance
Ratio f

best found
 / f*

Figure 6: Typical result for problem #2.

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

Generation

Ratio of feasible solutions
Mean normalized Euclidian distance
Ratio f* / f

best found

Figure 7: Typical result for problem #3.

Clearly the easiest problem is the first test problem. Near

optimal solutions are found in early generations.

Surprisingly the most difficult problem of these three

problems for this method is test problem #2. In [11] it was

reported that this was one of the easiest problem and only

a few of the methods studied had any difficulties on this

problem.

 The results for this algorithm are now compared to the

best results for all tested methods in [11] and summarized

in Table 2. The population size is 70 and the maximum

number of generations is 5000, both in this study and for

all algorithms tested in [11]. For this algorithm the

maximum mutation step is set to 0.1 of the range for the

design variables. The result from [11] presented in Table 2

are the results for the method that found the best feasible

solution. It should be mentioned that all the results in the

coming tables correspond to feasible solutions.

Table 2: Result for this algorithm compared to best result in [11].

The number of independent runs is 10.
Problem Study Best Median Worst

This study -14.680 -14.570 -12.419 #2

Best in [11] -15.000 -15.000 -15.000

This study 7079.5 7107.0 7187.8 #3

Best in [11] 7378.0 8206.2 9653.0

This study 680.636 680.640 680.646 #4

Best in [11] 680.642 680.718 680.955

This study 0.313 0.534 0.602 #5

Best in [11] 0.054 0.064 0.577

This study 24.519 24.600 24.735 #6

Best in [11] 25.486 26.905 42.358

As can be seen from Table 2 this algorithm finds better

results in problem #3, problem #4 and problem #6 than all

methods tested in [11]. The variation is also much less on

these problems.

 In Table 4 the result for this algorithm is compared to

the results by Deb in [12]. Table 3 shows the GA

parameters used for the results in Table 4.

Table 3: GA parameters used for the results presented in Table 4.
Problem Study Pop size Max gen Max

mutation step

This study 50 1000 0.1 #1

[12] 50 5000 -

This study 130 2000 0.1 #2

[12] 130 N/A -

This study 80 4000 0.1 #3

[12] 80 4000 -

This study 70 5000 0.02 #4

[12] 70 5000 -

This study 50 7000 0.1 #5

[12] 50 7000 -

This study 100 3500 0.02 #6

[12] 100 3500 -

Table 4: Result for this algorithm compared to best result in [12].

The independent number of runs is 50.
Problem Study Best Median Worst

This study -30665.5 -30665.5 -30665.4 #1

[12] -30665.5 -30665.5 -29846.7

This study -14.276 -13.224 -11.963 #2

[12] -15.000 -15.000 -13.000

This study 7072.4 7100.2 7256.4 #3

[12] 7060.2 7220.0 10230.8

This study 680.632 680.636 680.645 #4

[12] 680.634 680.642 680.651

This study 0.44678 0.56967 0.83732 #5

[12] 0.05395 0.24129 0.50776

This study 24.375 24.426 24.512 #6

[12] 24.372 24.409 25.075

The best found result of the 50 independent runs for this

method is almost similar to the result reported by Deb for

problem #1, problem #3, problem #4 and problem #6. For

these problems the variation in the best results found is

less for the proposed method than that reported in [12].

For problem #2 and problem #5 the method presented by

Deb performs better, both in terms of best-found solution

and variation of the best-found solution.

 It should be mentioned however, that the results

presented by Deb are based on tournament selection with a

niching method that required two extra parameters.

Furthermore, the maximum number of generations for the

results of test problem #2 in [12] is not known. Hence it is

difficult to make a fair comparison of the results on this

problem.

7 Conclusions

A general ranking scheme without problem specific extra

parameters for constrained optimization problem has been

presented. The performance for an algorithm with this

ranking scheme has also been compared to the result of

other algorithms on six problems previously used by other

authors. The results encourage further research since the

method performs better than many other algorithms for the

tested constrained single objective problems. It is also

shown that the robustness in terms of minimum spread in

best found solutions, is better than one of the best methods

on a majority of the six tested problems. It was only in the

problem containing equality constraints (problem #5) that

this method did not perform well. It could not match up to

the results for the other algorithms on problem #2 either.

The cause of this is an open question for further research.

It should also be mentioned that no effort has been made

to study the optimal parameter settings such as population

size, generation gap, mutation probability, etc. The

performance of this ranking scheme may well be better in

a more advanced GA, for example an adaptive GA.

 An obvious extension to the presented ranking scheme

is to address constrained multiobjective problems as well.

By redefining rank1 as the Pareto ranking presented by

Fonseca and Fleming in [17], the presented ranking

scheme could handle problems with multiple objectives.

This is an area of ongoing research and the preliminary

results are encouraging.

Bibliography

[1] Coello Coello, C. A., 2002, �Theoretical and

numerical constraint-handling techniques used with

evolutionary algorithms: a survey of state of the

art�, Computer methods in applied mechanics and

engineering, 191, pp. 1245-1287.

[2] Richardson, J. T., Palmer, M. R., Liepins, G. and

Hilliard ,M., 1989, �Some Guidelines for Genetic

Algorithms with Penalty Functions�, In J. D.

Schaffer (Ed.), Proceedings of the 3rd International

Conference on Genetic Algorithms, Morgan

Kaufmann, Reading, MA, pp. 191-197.

[3] Coello Coello, C. A., 1999, �A Survey of

Constraint Handling Techniques used with

Evolutionary Algorithms�, Technical Report Lania-

RI-99-04, Laboratorio Nacional de Informática

Avanzada, Xalapa.

[4] Michalewicz, Z., 1995, �A Survey of Constraint

Handling Techniques in Evolutionary Computation

Methods�, In J. R. McDonnell, R. G. Reynolds and

D. B. Fogel (Eds.), Proceedings of the 4th Annual

Conference on Evolutionary Programming, MIT

Press, Cambridge, MA, pp. 135-155,

[5] Fonseca, C. M. and Fleming, P. J, 1995,

�Multiobjective Optimization and Multiple

Constraint Handling with Evolutionary Algorithms

I: A Unified Formulation�, Research Report 564,

University of Sheffield, Sheffield.

[6] Schaffer, J. D., 1985, �Multiple objective

optimization with vector evaluated genetic

algorithms�, In J. J. Grefensttete (Ed.) Proceedings

of the 1st Int. Conference on Genetic Algorithms,

Hillsdale, New Jersey: Lawrence Erlbaum

Associates, pp. 93-100.

[7] Surry, P., Radcliffe, N., Boyd, I., 1995, �A multi-

objective approach to constrained optimization of

gas supply networks�, In T. C. Fogarty (Ed.),

Proceedings of the AISB-95 Workshop on

Evolutionary Computing, Springer, Sheffield, pp.

166-180.

[8] Parmee, I. C. and Purchase, G., 1994, �The

development of a directed genetic search technique

for heavily constrained search spaces�, In I. C.

Parmee (Ed.), Proceedings of the Conference on

Adaptive Computing in Engineering Design and

Control, University of Plymouth, Plymouth, pp. 97-

102.

[9] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.,

2000, �A Fast and Elitist Multi-Objective Genetic

Algorithm: NSGA-II�, KanGAL Report No.

200001, Kanpur Genetic Algorithm Laboratory,

Kanpur.

[10] Goldberg, D. E., 1989, Genetic Algorithms in

Search, Optimization and Machine Learning,

Addison-Wesley, Reading.

[11] Michalewicz, Z., 1995, �Genetic Algorithms,

Numerical Optimization, and Constraints�, In L.

Eshelman (Ed.), Proceedings of the 6th

International Conference on Genetic Algorithms,

Morgan Kaufmann, San Francisco, pp. 151-158.

[12] Deb, K., 2000, �An efficient constraint handling

method for genetic algorithms�, Computer methods

in applied mechanics and engineering, 186, pp.

311-338.

[13] Eshelman L. J. and Schaffer J. D., 1993, �Real-

Coded Genetic Algorithms and Interval-Schemata�,

In L. D. Whitley (Ed.), Foundations of Genetic

Algorithms 2, Morgan Kaufmann, San Mateo, CA,

pp. 187-202.

[14] Mühlenbein, H. and Schlierkamp-Voosen, D.,

1993, �Predictive Models for the Breeder Genetic

Algorithm: I. Continuous Parameter Optimization�,

Evolutionary Computation, 1, pp. 25-49.

[15] Michalewicz, Z., Deb, K., Schmidt, M. and Stidsen,

T. J., 1999, �Towards understanding constraint-

handling methods in evolutionary algorithms�, In

Proceedings of the 1999 Congress on Evolutionary

Computation, IEEE Service Centre, Washington

DC, pp. 581-588.

[16] Himmelblau, D. M., 1972, Applied Nonlinear

Programming, McGraw-Hill, New York.

[17] Fonseca, C. M. and Fleming, P. J., 1993, �Genetic

Algorithms for Multiobjective Optimization:

Formulation, Discussion and Generalization�, In S.

Forrest (Ed.), Proceedings of the 5th International

Conference on Genetic Algorithms, Morgan

Kaufmann, San Mateo, CA, pp. 416-423.

