A Novel Model of Artificial Immune System for
Solving Constrained Optimization Problems
with Dynamic Tolerance Factor

Victoria S. Aragén, Susana C. Esquivel' and Carlos A. Coello Coello?

! Laboratorio de Investigacién y Desarrollo en Inteligencia Computacional® * *
Universidad Nacional de San Luis

Ejército de los Andes 950

(5700) San Luis, ARGENTINA

{vsaragon, esquivel}@unsl.edu.ar
2 CINVESTAV-IPN (Evolutionary Computation Group)®
Departamento de Computacién
Av. IPN No. 2508, Col. San Pedro Zacatenco

México D.F. 07300, MEXICO

ccoello@cs.cinvestav.mx

Abstract. In this paper, we present a novel model of an artificial im-
mune system (AIS), based on the process that suffers the T-Cell. The
proposed model is used for solving constrained (numerical) optimization
problems. The model operates on three populations: Virgins, Effectors
and Memory. Each of them has a different role. Also, the model dynam-
ically adapts the tolerance factor in order to improve the exploration
capabilities of the algorithm. We also develop a new mutation operator
which incorporates knowledge of the problem. We validate our proposed
approach with a set of test functions taken from the specialized literature
and we compare our results with respect to Stochastic Ranking (which is
an approach representative of the state-of-the-art in the area) and with
respect to an AIS previously proposed.

1 Introduction

In many real-world problems, the decision variables are subject to a set of con-
straints, and the search has to be bounded accordingly. Constrained optimization
problems are very common, for example, in engineering applications, and there-
fore the importance of being able to deal with them efficiently.

Many bio-inspired algorithms (particularly evolutionary algorithms) have
been very successful in the solution of a wide variety of optimization problems
[1]. But, when they are used to solve constrained optimization problems, they
need a special method to incorporate the problem’s constraints into their fitness

*** LIDIC is financed by Universidad Nacional de San Luis and ANPCyT (Agencia
Nacional para promover la Ciencia y Tecnologia).
T The third author acknowledges support from CONACyT project no. 45683-Y.

function. Evolutionary algorithms (EAs) often use exterior penalty functions in
order to do this [2]. However, penalty functions require the definition of accurate
penalty factors and performance is highly dependent on them.

The main motivation of the work presented in this paper is to explore the
capabilities of a new AIS model in the context of constrained global optimization.
The proposed model is based on the process that suffers the T-Cell. We also
propose a dynamic tolerance factor and several mutation operators that allow
us to deal with different types of constraints.

2 Statement of the Problem

We are interested in solving the general nonlinear programming problem which
is defined as follows:
Find « = (21, ..., 2,) which optimizes f(z1,...,z,) subject to:

hi(@r,.an) =00=1,....1
gj(@1, o xn) S0 =1,...,p

where (z1,...,zy) is the vector of solutions (or decision variables), [is the num-
ber of equality constraints and p is the number of inequality constraints (in both
cases, constraints could be linear or nonlinear).

3 Previous Work

According to [3] the main models of Artificial Immune System are: Negative
Selection, Clonal Selection and Immune Network Models. They are briefly de-
scribed next.

Forrest et al. [4] proposed the Negative Selection model for detection of
changes. This model is based on the discrimination principle that the immune
system adopts to distinguish between self and nonself. This model generates ran-
dom detectors and discards the detectors that are unable of recognizing them-
selves. Thus, it maintains the detectors that identify any nonself. It performs
a probabilistic detection and it is robust because it searches any foreign action
instead of a particular action.

The Immune Network Model was proposed by Jerne [5], and it is a mathemat-
ical model of the immune system. In this case, the dynamics of the lymphocytes
are simulated by differential equations. This model assumes that lymphocytes
are an interconnected network. Several models have been derived from it [6, 7].

Clonal Selection is based on the way in which both B-cells and T-cells adapt
in order to match and kill the foreign cells [3]. Clonal Selection involves: 1) the
AIS’ ability to adapt its B-cells to new types of antigens and 2) the affinity
maturation by hypermutation. CLONALG proposed by Nunes de Castro and
Von Zuben [8] was originally used to solve pattern recognition and multimodal
optimization problems, and there are a few extensions of this algorithm for con-
strained optimization. CLONALG works in the following way: first, it creates a

random population of antibodies, it sorts it according to some fitness function,
it clones them, it mutates each clone, it selects the fittest antibody and clones it
and replaces the worst antibodies for antibodies that are randomly generated.

Those models have been used in several types of problems, but particularly,
the use of artificial immune systems to solve constrained (numerical) optimiza-
tion problems is scarce. The only previous related work that we found in the
specialized literature is the following:

Hajela and Yoo [1] have proposed a hybrid between a Genetic Algorithm
(GA) and an AIS for solving constrained optimization problems. This approach
works on two populations. The first is composed by the antigens (which are the
best solutions), and the other by the antibodies (which are the worst solutions).
The idea is to have a GA embedded into another GA. The outer GA performs
the optimization of the original (constrained) problem. The second GA uses as
its fitness function a Hamming distance so that the antibodies are evolved to
become very similar to the antigens, without becoming identical. An interesting
aspect of this work was that the infeasible individuals would normally become
feasible as a consequence of the evolutionary process performed.

Kelsey and Timmis [9] proposed an immune inspired algorithm based on
the clonal selection theory to solve multimodal optimization problems. Its high-
light is the mutation operator called Somatic Contiguous Hypermutation, where
mutation is applied on a subset of contiguous bits. The length and beginning of
this subset is determined randomly.

Coello Coello and Cruz-Cortés [10] have proposed an extension of Hajela and
Yoo’s algorithm. In this proposal, no penalty function is needed, and some extra
mechanisms are defined to allow the approach to work in cases in which there
are no feasible solutions in the initial population.

Luh and Chueh [11] have proposed an algorithm (called CMOIA, or Con-
strained Multi Objective Immune Algorithm) for solving constrained multiob-
jective optimization problems. In this case, the antibodies are the potential so-
lutions to the problem, whereas antigens are the objective functions. CMOIA
transforms the constrained problem into an unconstrained one by associating an
interleukine (IL) value with all the constraints violated. IL is a function of both
the number of constraints violated and the total magnitude of this constraint
violation. Then, feasible individuals are rewarded and infeasible individuals are
penalized.

Coello Coello and Cruz-Cortés [12] have proposed an algorithm based on
the clonal selection theory for solving constrained optimization problems. The
authors experimented with both binary and real-value representation, consider-
ing Gaussian-distributed and Cauchy-distributed mutations. Furthermore, they
proposed a controlled and uniform mutation operator.

4 Our Proposed Model

This paper presents a novel bio-inspired model based on the T-Cells; appro-
priately, it is called “T-Cell Model”. In a very simple way, the processes that

suffer the T-Cells are the following: first, they are divided in three groups (Vir-
gin Cells, Effector Cells and Memory Cells). Then, the natural immune system
generates a huge number of virgin cells. During the immunological response, the
T-cells pass through different phases: initiation, reaction and elimination. After
the initiation phase, the virgin cells become effector cells. These react (the cells
change in order to improve) and undergo a process called apoptosis. This process
eliminates any undesirable cells. The surviving cells become memory cells.

Thus, this model operates on three populations, corresponding to the three
groups in which the T-cells are divided: (1) Virgin Cells (VC), (2) Effector Cells
(EC) and (3) Memory Cells (MC). Each of them has a specific function. VC has
as its main goal to provide diversity. EC tries to explore the conflicting zones
of the search space. MC has to explore the neighborhood of the best solutions
found so far. The apoptosis is modeled through the insertion of VC’s cells into
EC and EC’s cells into MC. VC and EC represent their cells with binary strings
using Gray coding and MC does the same, but adopting vectors of real numbers.
The general structure of this model is the following:

Repeat a predetermined number of times
1. Generate (in a random way) Virgin Cells
2. Insert a percentage of Virgin Cells in Effector Cells
3. Repeat a predetermined number of times
3.1. Make the Effector Cells React
End repeat
4. Insert a percentage of Effectors Cells in Memory Cells
5. Repeat a predetermined number of times
5.1. Make the Memory Cells React
End repeat
End repeat

4.1 Handling Constraints

In our proposed model, the constraint-handling method needs to calculate, for
each cell (solution), regardless of the population to which it belongs, the follow-
ing: 1) the value of each constraint function, 2) the sum of constraints violation
(sum_res)? and 3) the value of the objective function (only if the cell is feasible).

When the search process is driven by the value of each constraint function
and the sum of constraints violation, then the selection mechanism favors feasi-
ble solutions over the infeasible ones. In this case, it is probable that, in some
functions, the search falls into a local optimum. For this reason, we developed
a dynamic tolerance factor (DTF), which changes with each new population,
since it depends on the value of sum_res specific of the cells of the population
considered (VC or EC). The DTF is calculated by adding the value of each con-
straint violated in each cell from a particular population (VC or EC). Then, this

3 This is a positive value determined by gi(x)™ for i = 1,...,p and |hs(z)| for k =
1.1

value is divided by the number of Virgin Cells (for DTF’s VC) or three times
the number of Effector Cells (for DTF’s EC).

When we evaluate the population using the DTF, it will be easier to generate
solutions that are considered “feasible” (although they may be really infeasible
if evaluated with the actual precision required). DTF relaxes the tolerance factor
in order to adapt it to the particular cell into a population. This allows the explo-
ration of each solution’s neighborhood, which otherwise, would not be possible.
This DTF is used by both VC and EC. In contrast, MC adopts a traditional
tolerance factor, which is set to 0.0001.

4.2 Incorporating Domain Knowledge

In order to explore the frontier between the feasible and the infeasible region, EC
is divided in EC_f and EC_inf. The first is composed of feasible solutions and the
other of infeasible solutions. Also, we introduce domain knowledge through the
mutation operators, which modify the decision variables involved in a particular
constraint (either the constraint with the highest violation, or the one with the
most negative value, depending if the cell is infeasible or not, respectively).

4.3 Mutation Operators

Each population that reacts (EC_f, EC_inf and MC) has its own mutation oper-
ator. These operators are described next.

The mutation operator for EC_inf works in the following way: first, it iden-
tifies the most violated constraint, say c. If this constraint value (¢) is larger
than sum_res divided by the total number of constraints, then we change each
bit from each decision variable involved in ¢ with probability 0.05. Otherwise,
we change each bit from one decision variable involved in ¢, randomly selected,
with probability 0.05.

The mutation operator for EC_f generates two mutated cells, and the best
of them passes to the following iteration. This operator works in the following
way:

First operator: it identifies the constraint with the most negative value (let’s
keep in mind that this population only has feasible cells), and changes each bit
from each decision variable involved in that constraint, with probability 0.05.
This operator tries to reduce the distance between the cell and the frontier with
the infeasible region.

Second operator: it changes each bit from all the decision variables, with prob-
ability 0.05. If after applying mutation, a cell becomes feasible, it is inserted in
EC_f according to an elitist selection. Otherwise, if after applying mutation, a
cell becomes infeasible, it is inserted in EC_inf according to an elitist selection.

The mutation operator for MC applies the following equation:

: NO Diw—1 \NO?
T =x+ (0,)i (1)
1000000gen|const||dv|

where z and z' are the original and mutated decision variables, respectively.
N(0,1) and N(0,2) refer to a randomly generated number, produced with a
uniform distribution between (0,1) and (0,2), respectively. lu and Il are the
upper and lower limits of x. |const| refers to the number of constraints of the
problem. |dv| refers to the number of decision variables of the problem and gen
is the current generation number.

4.4 Replacement Mechanisms

The replacement mechanisms are always applied in an elitist way, both within
a population and between different populations. They take into account the
value of the objective function or the sum of constraints violation, depending
on whether the cell is feasible or infeasible, respectively. Additionally, we always
consider a feasible cell as better than an infeasible one. Note that before a cell
is inserted into another population, it is first evaluated with the tolerance factor
of the receptor population.

Therefore, the general structure of our proposed model for constrained prob-
lems is the following:

Repeat a predetermined number of times
1. Randomly generate Virgin Cells
2. Calculate DTF’s VC
3. Evaluate VC with its own DTF
4. Insert a percentage of Virgin Cells into the Effector Cells population
5. Repeat a predetermined number of times
5.1. Make the Effector Cells React
5.2. Calculate DTF’s EC’s
5.3. Evaluate ECs with its own DTF
End Repeat
6. Insert a percentage of Effector Cells into the Memory Cells population
7. Repeat a predetermined number of times
7.1. Make the Memory Cells React
7.2. Evaluate MC
End Repeat
End Repeat

The most relevant aspects of our proposed model are the following:

— The fitness of a cell is determined by the value of the objective function and
the value for the constrained functions.

— The size of each population is fixed. But, at first, EC_f, EC_inf and MC are
empty. Step 4 is the responsible for fill EC_fand EC_inf. If at the beginning
EC_f can not be filled with feasible cells from VC, the size of EC_f must to be

less than the fixed value for EC_{f, the following applications of step 4 could be
completed it. This situation occurs for EC_inf too, but considering infeasible
cells from VC. Step 6 is in charge to complete MC. First are considered the
cells from EC_f and then the cells from EC_inf, if it is necessary.

— The model returns the best and worst feasible solutions in MC and the mean
of the best feasible solution found in each run.

— All the equality constraints are transformed into inequality constraints, using
a tolerance factor d: |h(x)| — 0 < 0.

— VC’s cells and MC'’s cell are sorted using the following criterion: the feasible
cell whose objective function values are the best are placed first. Then, we
place the infeasible cells that have the lowest sum of constraint violation.

— EC_f’s cells are sorted in ascending order based on their objective function
values.

— EC_inf’s cells are sorted in ascending order based on their sum of constraint
violation.

4.5 Differences Among the Models

After the explanation of our proposed model, we have described the main dif-
ferences between T-Cell and the models in Section 3. Those models are based
on different immunological theories. Clonal Selection is based on the replica-
tion of antibodies according to their affinity. The Immune Network Model is
a probabilistic approach to idiotypic networks. Negative Selection is based on
the principles of self and nonself discrimination that takes place in the immune
system. Aditionally, Negative Selection and the T-Cell Model are both based on
the mechanisms of the T-Cell. However, these models give a completely different
treatment to the cells (in the T-Cell Model) and the detectors (in the Nega-
tive Selection model). The Negative Selection model tries to detect a change,
whereas the T-Cell Model categorizes the T-cells and it uses their phases in
order to achieve different goals.

5 Experimental Setup

In order to validate our proposed model, we tested it with a benchmark of 19
test functions taken from the specialized literature [13]. The test functions g02,
g03, g08 and gl2 are maximization problems (for simplicity, these problems
were transformed into minimization problems using —f(z)) and the rest are
minimization problems.

Our results are compared with respect to Stochastic Ranking [14], which is a
constraint handling technique representative of the state-of-the-art in the area.
Additionally, we also compared our results with respect to the AIS approach
reported in [12]. 25 independents runs were performed for each test problem,
each consisting of 350,000 fitness function evaluations. We used a population
size, for EC and MC, of 20 cells. And for VC we used 100 cells for all the test
functions, except for g03 and gl1, in which we used only 10 cells. We adopted

a 100% and 50% replacement policy for the cells in EC and MC, respectively.
All the statistical measures reported are taken only with respect to the runs in
which a feasible solution was reached at the end.

6 Discussion of Results

Tables 1, 2 and 3 show the results obtained with the AIS proposed in [12],
Stochastic Ranking and our T-Cell Model, respectively.

From Table 3, we can see that our model was able to reach the global optimum
in 8 test functions (g01, g04, g06, g08, gl1, ¢g12, ¢16 and g18). Additionally, our
model reached feasible solutions close to the global optimum in 7 more test
functions (g02, g03, g05, g09, 10, g13 and g15) and it found acceptable (but
not too close to the global optimum) feasible solutions for the rest of the test
functions.

Comparing our T-Cell Model with respect to Stochastic Ranking (see Ta-
bles 2 and 3), our T-Cell Model obtained better results in 9 test functions (g02,
g03, g04, g06, g10, gl1, gl4, gl6 and g18). Both approaches found similar so-
lutions for g01, g08 and gl2. Our proposed model was outperformed in 5 test
functions (g05, g07, g09, g13 and gl5). With respect to the mean and worst
found solutions, our model was outperformed in all functions, except for g02,
g04, g06, g16 and g18.

Comparing our T-Cell Model with respect to the AIS proposed in [12] (see
Tables 1 and 3), our T-Cell Model obtained better results in 9 test functions
(g01, g02, g03, g05, g06, g07, ¢10, g1l and gl13). However, for g05, our model
only converged to a feasible solution in 68% of the runs while the AIS from [12]
converged to a feasible solution in 90% of the runs. Both approaches found similar
solutions for g04, g08 and gl2. Finally, our proposed model was outperformed
in g09. With respect to the mean and worst found solutions, our model was
outperformed only in g07, g09 and gl1.

We also conducted an analysis of variance (ANOVA) of the results obtained
by our T-Cell Model and of the results obtained by Stochastic Ranking [15].
This analysis indicated that the means between the results of the algorithms had
significant differences except for g01, g03 and gl2. The details of the analysis
were, however, omitted, due to space restrictions.

We argue that our proposed model is capable of performing an efficient local
search over each cell, which allows the model to improve the feasible solutions
found. In cases in which no feasible solutions are found in the initial population,
the mutation operators applied are capable of reaching the feasible region even
when dealing with very small feasible regions.

Although there is clearly room for improvements to our proposed model,
we have empirically shown that this approach is able of dealing with a vari-
ety of constrained optimization problems (i.e., with both linear and nonlinear
constraints, and with both equality and inequality constraints). The benchmark
adopted includes test functions with both small and large feasible regions, as
well as a disjoint feasible region.

Function| Optimum Best Mean Worst Std.Dev
g01 -15 -14.9874 -14.7264 -12.9171 0.6070
g02 -0.803619 -0.8017 -0.7434 -0.6268 0.0414
g03 -1.0005 -1.0 -1.0 -1.0 0.0000
g04 |-30665.5386||-30665.5387(-30665.5386|-30665.5386| 0.0000
g05™ | 5126.4967 | 5126.9990 | 5436.1278 | 6111.1714 | 300.8854
g06 |-6961.81387|| -6961.8105 | -6961.8065 | -6961.7981 | 0.0027
g07 24.306 24.5059 25.4167 26.4223 0.4637
g08 -0.095825 || -0.095825 | -0.095825 | -0.095825 | 0.0000
g09 680.63 680.6309 680.6521 680.6965 0.0176
g10 7049.33 7127.9502 | 8453.7902 |12155.1358 {1231.3762
gll 0.799 0.75 0.75 0.75 0.0000
gl2 -1.0 -1.0 -1.0 -1.0 0.0000
gl3 0.05395 0.05466 0.45782 1.49449 0.3790

Table 1. Results obtained by the AIS proposed in [12]. The asterisk (*) indicates a
case in which only 90% of the runs converged to a feasible solution

Function| Optimum Best Mean Worst
g01 -15 -15.0 -15.0 -15.0
g02 -0.803619 -0.803 -0.784 -0.734
g03 -1.0005 -1.0 -1.0 -1.0
g04 -30665.539 ||-30665.539|-30665.480|-30664.216
g05 5126.4967 || 5126.497 | 5130.752 | 5153.757
g06 |-6961.81387|| -6961.814 | -6863.645 | -6267.787
g07 24.306 24.310 24.417 24.830
g08 -0.095825 || -0.095825 | -0.095825 | -0.095825
g09 680.63 680.63 680.646 680.697
gl10 7049.33 7050.194 | 7423.434 | 8867.844
gll 0.799 0.750 0.750 0.751
gl2 -1.0 -1.0 -1.0 -1.0
gl3 0.05395 0.053 0.061 0.128
gld -47.7648 -41.551 -41.551 -40.125
glb 961.71502 961.715 961.731 962.008
gl6 -1.905155 -1.905 -1.703 -1.587
gl7 8853.539 8811.692 | 8805.99 | 8559.613
gl8 -0.86602 -0.866 -0.786 -0.457
gl19 32.655 33.147 34.337 37.477

Table 2. Results obtained by Stochastic Ranking [15]

7 Conclusions and Future Work

This paper has presented a new AIS model for solving constrained optimization
problems in which novel mutation operators are adopted. One of the opera-
tors incorporates knowledge of the problem, by modifying the decision variables
involved in the most violated constraint. In order to get close to the frontier
between the feasible and infeasible regions, it modifies the decision variables
involved in the constraint farthest from zero. For some problems, the feasible
region is very small, which makes it difficult to find good solutions. For this rea-
son, we were motivated to develop a dynamic tolerance factor. Such a tolerance
factor allows to explore regions of the search space that, otherwise, would be
unreachable.

Function| Optimum Best Worst Mean Std.Dev
g01 -15.0 -15.0 -15.0 -15.0 0.0
g02 -0.803619 || -0.803102 | -0.752690 | -0.783593 | 0.013761
g03 -1.0005 -1.00041 | -0.984513 | -0.998627 | 0.004208

g04 |-30665.5386||-30665.5386 |-30665.5386|-30665.5386 0.0
g05™ 5126.4967| 5126.4982 | 5572.0024 | 5231.7186 | 143.0598
g06 |-6961.81387((-6961.81387|-6961.81387|-6961.81387 0.0
g07 24.3062 24.3503 28.8553 25.3877 1.2839

g08 -0.095825 || -0.095825 | -0.095825 | -0.095825 0.0
g09 680.63 680.63701 | 680.94299 | 680.74652 | 0.078017
gl0 7049.24 7086.7891 | 9592.7752 | 7955.0428 |766.493969
gll 0.7499 0.7499 0.7983 0.7553 0.010717
gl2 -1.0 -1.0 -1.0 -1.0 0.0

gl3 0.05394 0.054448 0.94019 0.2232 0.25325

gl4 -47.7648 -44.7974 -35.6762 -41.0041 | 2.328270

gld 961.71502 || 961.72159 |972.126254 | 964.405444 | 2.575551

gl6 -1.905155 || -1.905155 | -1.905150 | -1.905155 | 0.000001
gl7 ** | 8853.539 8878.387 9206.116 8981.072 | 97.022811

gl8 -0.86602 -0.86602 | -0.665288 | -0.811528 | 0.079574

g19 32.655 ||37.74956696| 50.439198 | 43.997730 | 3.714058
Table 3. Results obtained by our proposed T-Cell Model. The single asterisk (*) and
double asterisk (**) indicate cases in which only 68% and 92% of the runs converged
to a feasible solution, respectively

Our proposed model was found to be competitive in a well-known benchmark
commonly adopted in the specialized literature on constrained evolutionary op-
timization. The approach was also found to be robust and able to converge to
feasible solutions in most cases. Our analysis of the benchmark adopted made
us realize that these test functions require small step sizes. Obviously, a lot of
work remains to be done in order to improve the quality of the solutions found,
so that the approach can be competitive with respect to the algorithms repre-

sentative of the state-of-the-art in the area. For example, we plan to improve
the mutation operators in order to find more quickly the frontier between the
feasible and infeasible regions.

References

1.

10.

11.

12.

13.

14.

15.

Yoo, J., Hajela, P.: Immune network modelling in design optimization. In Corne,
D., Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill, London
(1999) 167-183

. Smith, A.E., Coit, D.W.: Constraint Handling Techniques—Penalty Functions. In

Back, T., Fogel, D.B., Michalewicz, Z., eds.: Handbook of Evolutionary Computa-
tion. Oxford University Press and Institute of Physics Publishing (1997)

Garrett, S.M.: How do we evaluate artificial immune systems? Evolutionary Com-
putation 13 (2005) 145-177

S. Forrest, A. Perelson, L.A., Cherukuri, R.: Self-nonself discrimination in a com-
puter. IEEE Symposium on Research in Security and Privacy (1994) 202-212
Jerne, N.K.: The immune system. Scientific American 229 (1973) 52-60

Hunt, J.E., Cooke, D.E.: An adaptative, distributed learning system based on the
immune system. In: Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, IEEE Press (1995) 24942499

A. Ishiguru, Y.W., Uchikawa, Y.: Fault diagnosis of plant system using immune
network. In: Proceedings of the 1994 IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems (MFI’94), Las Vegas, Nevada, USA
(1994)

Nunes de Castro, L., Von Zuben, F.: Learning and optimization using the clonal
selection principle. IEEE Transactions on Evolutionary Computation 6 (2002)
239-251

Kelsey, J., Timmis, J.: Immune inspired somatic contiguous hypermutation for
function optimisation. In: Proceedings of the 2003 Genetic and Evolutionary Com-
putation Conference (GECCO’2003). (2003) 207218

Coello Coello, C.A., Cruz-Cortés, N.: Hybridizing a genetic algorithm with an
artificial immune system for global optimization. Engineering Optimization 36
(2004) 607-634

Luh, G.C., Chueh, H.: Multi-objective optimal design of truss structure with
immune algorithm. Computers and Structures 82 (2004) 829-844

Cruz Cortés, N., Trejo-Pérez, D., Coello Coello, C.A.: Handling constrained in
global optimization using artificial immune system. In Jacob, C., Pilat, M.L.,
Bentley, P.J., Timmis, J., eds.: Artificial Immune Systems. 4th International Con-
ference, ICARIS 2005. Springer. Lecture Notes in Computer Science Vol. 3627,
Banff, Canada (2005) 234-247

Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello,
C.C., Deb, K.: Problem definitions and evaluation criteria for the cec 2006 special
session on constrained real-parameter optimization. Technical report, Nanyang
Technological University, Singapore (2006)

Runarsson, T.P., Yao, X.: Stochastic Ranking for Constrained Evolutionary Opti-
mization. IEEE Transactions on Evolutionary Computation 4 (2000) 284-294
Cagnina, L., Esquivel, S., Coello, C.C.: A bi-population PSO with a shake-
mechanism for solving numerical optimization. In: Proceedings of the 2007 IEEE
Congress on Evolutionary Computation, Singapore, IEEE Press (2007)

