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Abstract|The results obtained from the application of a ge-


netic algorithm, GENEsYs, to the NP-complete maximum


independent set problem are reported in this work. In con-


trast to many other genetic algorithm based approaches that


use domain-speci�c knowledge, the approach presented here


relies on a graded penalty term component of the �tness


function to penalize infeasible solutions. The method is ap-


plied to several large problem instances of the maximum


independent set problem. The results clearly indicate that


genetic algorithms can be successfully used as heuristics for


�nding good approximative solutions for this highly con-


strained optimization problem.


I. Introduction


Once the NP-hardness of a combinatorial optimization


problem is established, the search for an optimal solution


is abandoned. The goal then becomes one of �nding a


good heuristic, i.e. a polynomial running time algorithm


that can �nd solutions close to the optimal. In most cases,


traditional heuristics are problem dependent; a heuristic is


tailored to the speci�c problem it is trying to solve.


In this work, we present an alternative approach that


uses genetic algorithms as a generalized heuristic for solv-


ing NP-hard combinatorial optimization problems. The


application of a genetic algorithm is demonstrated here for


the maximum independent set problem. These algorithms


have been successfully applied to a broad range of prob-


lems. This wide range can be tackled by genetic algorithms


mainly due to the fact that they work with an encoding of


the domain rather than with the problem domain itself.


The interested reader is refered to chapter 5 of [5] for more


applications.


This robustness concerning the application domain is


achieved by working with the coding of the parameter set


rather than with the input data itself, such that genetic


algorithms are nowadays used in a variety of problem do-


mains.


The outline of the paper is as follows: Section II gives a


short introduction to genetic algorithms. In section III, the


maximum independent set problem and its representation


for an application of the genetic algorithm are explained,


and section IV presents the experimental results.


II. Genetic Algorithms


Genetic algorithms (GAs) [7; 9] are the best known rep-


resentative of a class of direct random search algorithms


based on the model of organic evolution, so-called evolu-
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tionary algorithms (see e.g. [17]). Canonical genetic algo-


rithms represent the individuals (search points) of a popu-


lation as binary vectors ~x = (x


1


; : : : ; x


n


) 2 f0; 1g


n


of �xed


length n. A �tness function f : f0; 1g


n


! IR that charac-


terizes the actual optimization problem provides the qual-


ity measure for individuals. The �tness values are used by


the selection procedure to direct the search towards regions


of higher �tness, hopefully leading to an optimal solution.


The classical probabilistic proportional selection opera-


tor uses the relative �tness p


s


(~x


i


) = f(~x


i


)=


P


�


j=1


f(~x


j


) to


serve as selection probabilities (� denotes the population


size). In case of minimization tasks or negative �tness val-


ues f(~x


i


) is usually linearly transformed before calculating


selection probabilities. This technique is known as linear


dynamic scaling (see [7], pp. 123{124, or [8]).


Innovation, i.e. new information, is introduced into the


population by means of mutation, which works by invert-


ing bits with a small probability p


m


(e.g. p


m


� 0:001 [10]).


Though mutation is often interpreted as a rather unimpor-


tant operator in genetic algorithms [9], recent theoretical


work gives strong evidence for an appropriate choice of a


mutation rate p


m


= 1=n on many problems [2; 12].


The recombination (crossover) operator allows for the


exchange of information between di�erent individuals. The


original one-point crossover [9] works on two parent indi-


viduals (which are randomly chosen from the population)


by choosing a crossover point � 2 f1; : : : ; n � 1g at ran-


dom and exchanging all bits after the �


th


one between


both individuals. The crossover rate p


c


(e.g., p


c


� 0:6


[10]) determines the probability per individual to undergo


crossover. The crossover operator can be extended to a


generalized multi-point crossover [10] or even to uniform


crossover, where an operator randomly decides for each bit


whether to exchange it or not [19]. The strong mixing ef-


fect introduced by uniform crossover is sometimes helpful


to overcome local optima.


After a random initialization of the population, the ge-


netic algorithm proceeds by iterating the steps �tness eval-


uation, selection, recombination, and mutation until a ter-


mination criterion is ful�lled. Usually, the algorithm is


terminated after a prede�ned number of iterations of the


basic cycle, and the best individual in the �nal population


serves as the result of the optimization process.


For the experiments reported in section IV the genetic


algorithm software package GENEsYs is used [1]. This im-


plementation is based on the widely used GENESIS soft-


ware by Grefenstette (see [3], pp. 374{377), but allows for







more exibility concerning genetic operators and data mon-


itoring. The parameter settings for our experiments are


given in section IV, where the experimental results are pre-


sented. First, however, section III presents an introduction


to the maximum independent set problem and the repre-


sentation of solution candidates as binary strings.


III. The Maximum Independent Set Problem


The maximum independent set problem consists of �nding


the largest subset of vertices of a graph such that none of


these vertices are connected by an edge (i.e., all vertices are


independent of each other). Thus, if G = (V;E) denotes a


graph where V is the set of nodes andE the set of edges, the


problem is to determine a set V


0


� V such that 8i; j 2 V


0


the edge hi; ji 62 E and jV


0


j is maximum. This problem is


NP-complete (see [6], pp. 53{56).


In the following, we present a formal de�nition of the


maximum independent set problem by making use of Stin-


son's terminology for combinatorial optimization problems


[18]:


Problem instance: A graph G = (V;E), where V =


f1; 2; : : :; ng is the set of vertices and E � V � V the


set of edges. An edge between vertices i, j is denoted


by the pair hi; ji 2 E, and we de�ne the adjacency


matrix (e


ij


) according to


e


ij


=


�


1 ; if hi; ji 2 E


0 ; otherwise :


Feasible solution: A set V


0


of nodes such that 8i; j 2


V


0


: hi; ji 62 E (i.e., e


ij


= 0).


Objective function: The size jV


0


j of the independent set


V


0


.


Optimal solution: An independent set V


0


that maximi-


zes jV


0


j.


In order to encode the problem to use a genetic algo-


rithm, we choose the following representation of a candi-


date solution as a binary string (x


1


; x


2


; : : : ; x


n


): x


i


= 1,


i 2 V


0


. This way, the i


th


bit indicates the presence (x


i


= 1)


or absence (x


i


= 0) of vertex i in the candidate solution.


Note that a particular bitstring may (and will often hap-


pen to) represent an infeasible solution. Instead of trying


to prevent this, we allow infeasible strings to join the pop-


ulation and use a penalty function approach to guide the


search towards the feasible region [13]. The penalty term


in the objective function has to be graded in the sense that


the farther away from feasibility the string is, the larger its


penalty term should be. The exact nature of the penalty


function, however, is not of high importance if it ful�lls the


property of being graded (see [16]).


Taking this design rule for a penalty function into con-


sideration, we developed the following �tness function to


be maximized by the genetic algorithm:


f(~x) =


n


X


i=1


0


@


x


i


� n � x


i


�


n


X


j=i


x


j


e


ij


1


A


: (1)


This �tness function penalizes infeasible strings ~x by a


penalty of n for every node j in the candidate solution


V


0


represented by ~x that is connected to a node i 2 V


0


.


For feasible strings ~x, f(~x) � 0 and the �tness value is


just given by the number of nodes in the independent set


represented by ~x.


In solving the maximum independent set problem, we


also have a solution for two other graph problems: The


minimum vertex cover problem (given G = (V;E), �nd


the smallest subset V


0


� V such that 8hi; ji 2 E : i 2


V


0


_ j 2 V


0


) and the maximum clique problem (given G =


(V;E), �nd the largest subset V


0


� V such that 8i; j 2 V


0


:


hi; ji 2 E). The close relationship between these problems


is characterized by the following lemma (see e.g. [6]):


Lemma 1


For any graph G = (V;E) and V


0


� V , the following state-


ments are equivalent:


� V


0


is the maximum independent set in G.


� V � V


0


is the minimum vertex cover of G.


� V �V


0


is the maximumclique in G


C


= (V;E


C


), where


E


C


= f hi; ji j i; j 2 V ^ hi; ji 62 E g.


Consequently, one can obtain a solution of the minimum


vertex cover problem by taking the complement of the solu-


tion to the maximum independent set problem. A solution


to the maximum clique problem is obtained by applying


the maximum independent set heuristic to G


C


= (V;E


C


).


IV. Experimental Results


The experiments reported in this section are performed by


using a genetic algorithm with a population size � = 50,


a mutation rate p


m


= 1=n, crossover rate p


c


= 0:6, pro-


portional selection, and two-point crossover (which is, ac-


cording to the experimental results reported in [4; 15], ex-


pected to perform better than the traditional one-point


crossover). In order to become applicable to the maximum


independent set problem, no component of this general ge-


netic algorithm | except, of course, the �tness function


| has to be modi�ed. This fact reects the wide applica-


bility and robustness of genetic algorithms in contrast to


problem-speci�c heuristics.


1 2 3 4 5


6 7 8 9 10


Fig. 1: Example graph \misp10" with n = 10 nodes. The in-


dependent set V


0


= f1;3;5; 6;8;10g, represented by the bitstring


(1010110101), is indicated by the dashed lines. Notice that the inde-


pendent set f2;4; 7;9g, represented by the bitstring (0101001010), is


a local maximum.


In order to obtain large test problems for an applica-







misp102 misp100-01 misp100-02 misp100-03 misp100-04 misp100-05


f


2�10


4
(~x) N f


2�10


4
(~x) N f


2�10


4
(~x) N f


2�10


4
(~x) N f


2�10


4
(~x) N f


2�10


4
(~x) N


52 | 47 1 45 34 45 77 45 96 45 99


50 1 46 1 43 3 44 1 33 1 17 1


48 14 45 3 41 2 41 6 32 1


46 32 44 6 40 3 37 3 25 1


44 40 43 4 39 10 36 3 10 1


42 10 42 4 38 1 34 1


40 3 41 9 37 8 33 1


40 4 36 1 32 1


39 6 35 1 30 1


38 12 34 6 29 1


37 5 33 6 26 1


< 37 45 < 33 25 < 26 4


�


f = 44:94


�


f = 37:39


�


f = 37:25


�


f = 42:38


�


f = 44:20


�


f = 44:72


Table 1: Experimental results for the regular graph \misp102" with n = 102 vertices and �ve random graphs with edge density d = 0:1


(\misp100-01"), d = 0:2 (\misp100-02"), d = 0:3 (\misp100-03"), d = 0:4 (\misp100-04") and d = 0:5 (\misp100-05"). An independent set


size k = 45 was chosen for the random graphs, but for the graph with d = 0:1 the genetic algorithm identi�ed a larger independent set.


tion of the genetic algorithm to the maximum independent


set problem, we make use of the scalable graph shown in


�gure 1, which can be constructed for an even number of


nodes n (n � 6). If n is a multiple of 4, two equivalent


global maxima of �tness value jV


0


j = n=2 are obtained by


partitioning the set of vertices into those of even (respec-


tively odd) node numbers. Otherwise, the unique global


maximum is given by V


0


= f1; 3; : : :; n=2; n=2 + 1; n=2 +


3; : : : ; ng, with �tness value n=2+1, and a local maximumis


obtained from V �V


0


with �tness value n=2�1. For n = 10,


the corresponding bitstrings are ~x


0


= (1010110101) and its


inverted form (0101001010) (see �gure 1).


In addition to this graph, which has a highly regular


structure, we use randomly constructed graphs which are


created according to the following algorithm with input


k 2 f1; : : : ; ng (number of nodes in V


0


) and d 2 [0; 1] (edge


density of the graph):


randomly select V


0


= fi


1


; : : : ; i


k


g � V = f1; : : : ; ng


for i = 1 to n do


for j = i + 1 to n do


if ((Random(0; 1) < d) and


((i 62 V


0


) or (j 62 V


0


)))


then e


ij


= 1


else e


ij


= 0


The algorithm at random preselects k nodes i


1


; : : : ; i


k


that are guaranteed to form an independent set (the graph


may, however, contain di�erent larger independent sets by


chance, especially when the edge density is low). Edges


are placed at random, according to the density parameter


d, such that it is guaranteed that a member of V


0


is never


connected to another member of V


0


(note that, according


to the construction method, only loop-free graphs are gen-


erated).


For the experimental test regular graphs of size n =


102, respectively n = 202 (with a maximum independent


set of size 52, respectively 102) and random graphs with


n = 100, k = 45, respectively n = 200, k = 90 and


d 2 f0:1; 0:2; 0:3;0:4;0:5g are used. For each of these prob-


lems, a total of N = 100 runs of the genetic algorithm


are performed. These runs are evaluated according to the


number of runs that yield solutions of identical quality.


The results are summarized in table 1 (for the graphs with


102 respectively 100 vertices) and table 2 (for the graphs


with 202 respectively 200 vertices) for the best results that


were encountered during the 100 runs for each test prob-


lem. For each experiment, the average �nal best �tness


value


�


f over all 100 runs is indicated at the bottom of the


table. The total number of function evaluations performed


for each single run is indicated as an index t in the notation


f


t


(~x); for n = 100 we use a value of t = 2 �10


4


, while this is


doubled for n = 200. Consequently, only a small fraction


of the search space (about 1:6 � 10


�24


% for n = 100 respec-


tively 2:5 � 10


�54


% for n = 200) is tested by the genetic


algorithm.


For the regular graphs \misp102" and \misp202", none


of the runs of the genetic algorithm identi�ed the globally


optimal solution of quality 52 respectively 102, but for all


runs a solution quality between 40 and 50 respectively 82


and 96 is obtained, i.e., solutions close to the optimal one


are found. Finding the global optimum in case of these


regular graphs becomes an extremely di�cult problem due


to large Hamming distances between local optima of sim-


ilar quality (e.g. consider f(101001010101001010) = 8,


f(101010101101010101) = 10, and the Hamming distance


between both strings is 10).


A comparison of the results for the random graphs re-


veals that the edge density is the major factor which de-


termines the complexity of the maximum independent set







misp202 misp200-01 misp200-02 misp200-03 misp200-04 misp200-05


f


4�10


4
(~x) N f


4�10


4
(~x) N f


4�10


4
(~x) N f


4�10


4
(~x) N f


4�10


4
(~x) N f


4�10


4
(~x) N


102 | 90 4 90 54 90 93 90 100 90 100


96 3 88 1 89 1 72 1


94 3 85 2 80 4 70 2


92 11 84 3 79 6 65 1


90 33 82 2 78 3 62 2


88 30 81 2 77 5 51 1


86 12 80 4 75 4


84 5 79 1 74 2


82 3 78 5 73 3


77 5 71 1


76 1 70 1


< 76 70 < 70 16


�


f = 88:90


�


f = 68:75


�


f = 81:05


�


f = 88:22


�


f = 90:00


�


f = 90:00


Table 2: Experimental results for the regular graph \misp202" with n = 202 vertices and �ve random graphs with edge density d = 0:1


(\misp200-01"), d = 0:2 (\misp200-02"), d = 0:3 (\misp200-03"), d = 0:4 (\misp200-04") and d = 0:5 (\misp200-05"). An independent set


size k = 90 was chosen for the random graphs.


problem. The smaller (larger) the edge density, the fewer


(more) runs succeed in �nding a solution of quality k = 45


respectively k = 90 or better (which is possible in case of


small edge density, e.g. for d = 0:1). For small edge density,


the number of local optima grows due to the possibility of


exchanges of groups of vertices and the existence of iso-


lated vertices. As the edge density increases to a value of


0:5, the frequency of runs that identify the solution with


45 respectively 90 vertices grows steadily. For the smaller


graphs, the genetic algorithm always found the best solu-


tion for an edge density above d = 0:5, while this property


holds for the larger graphs already for d = 0:4.


Notice that, according to the construction mechanism,


the edge density of the regular graph amounts to


4�(n�2)


n�(n�1)


�


4=n (the regular graph has 2n�4 edges, and the maximum


number of edges is n � (n� 1)=2 if no loops are permitted).


From the experience with random graphs, it is clear that


this small value provides further evidence for the complex-


ity of the regular graph problems.


All runs of the genetic algorithm are characterized by


the following properties, independently of the problem in-


stance the algorithm is applied to: The initial phase of the


search is used for �nding feasible solutions from a com-


pletely infeasible initial popluation. The genetic algorithm


quickly succeeds in leaving the infeasible region in each of


the runs reported here, thus demonstrating the appropri-


ateness of our graded panalty function approach. After at


most 200 respectively 400 generations (1 � 10


4


respectively


2 � 10


4


function evaluations) each run has settled in a lo-


cal optimum and does not show further improvement. The


quality of the optima found, however, clari�es the genetic


algorithms' reliability for identifying good approximative


solutions for the maximum independent set problem.


To illustrate the typical behavior of genetic algorithm


Fig. 2: Some representative courses of evolution for the maximum


independent set problem (using the \misp100-01" example).


runs, �gure 2 shows the course of evolution for three dif-


ferent runs on the \misp100-01" problem. The best �tness


value that occurred in the population is plotted over the


generation number for each of the three runs. Each run is


labeled by its �nal solution quality, and the ordinate axis is


restricted to a smaller range of values than really observed


(initially best �tness values are found around �3:5 � 10


3


).


Note that only about 50 generations are required to enter


the feasible region (which corresponds with nonnegative







�tness values). Further progress is observed until approxi-


mately generation 100, and afterwards the search stagnates


in local optima.


Figure 3 shows a magni�cation of the marked region from


�gure 2. This closer look reveals that between generations


50 and 100 a steady period of further improvement of fea-


sible solutions takes place. During this stage of the search,


the algorithm �ne-tunes solutions towards one of the local


optima of the search space.


Fig. 3: Magni�cation of the marked region in �gure 2.


V. Conclusion


We have shown in this work that genetic algorithms can


be used in a fairly straightforward way to �nd good ap-


proximative solutions of the NP-hard maximum indepen-


dent set problem. The robustness of our approach based on


a graded penalty function for infeasible strings is demon-


strated by the fact that no changes to the genetic algo-


rithm are required. Thus, rather than having to construct


tailored heuristics to handle the problem under considera-


tion, we advocate the use of genetic algorithms where the


only change to perform is the formulation of a new �tness


function.
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