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Abstract

The problem of pavement maintenance management at the network level is one of maintaining as high a
level of serviceability as possible for a pavement network system through reactive and proactive repair
actions, whilst optimising the use of available resources. This problem has traditionally been solved using
techniques like mathematical programming and heuristic methods. Lately, the use of genetic algorithms
(GAs) to solve resource allocation problems like the network pavement maintenance problem has received
increased attention from researchers. GAs have been demonstrated to be better than traditional techniques
in terms of solution quality and diversity. However, the performance of the GAs is a�ected by the method
used to handle the many constraints present in the formulation of such resource allocation methods.
Penalty as well as generate and repair methods are the usual techniques used to handle constraints, but
these have their drawbacks in terms of computational e�ciency and tendency to get trapped in sub-optimal
solution spaces. The paper proposes a third method that is computationally more e�cient than the previous
methods. The method is based on prioritised allocation of resources to maintenance activities and the
maximum utilisation of resources. Constraints on maximum resource availability are no longer used
passively to check on solution feasibility (as in the previous methods) but are used to help generate feasible
solutions during the resource allocation phase of the algorithm itself. It is demonstrated that the GA with
the prioritised resource allocation method (PRAM) outperforms the traditional GA with repair or penalty
methods. PRAM was able to consistently outperform the other two GA based methods, both in terms of
solution quality as well as computational time. It is concluded that PRAM can be used as the basis of
more e�cient resource allocation procedures in the area of pavement maintenance management. Ó 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of pavement maintenance management at the network level is one of maintaining
as high a level of serviceability as possible for a pavement network system through reactive and
proactive repair actions, whilst optimising the use of available resources. Optimisation techniques
like priority ranking, linear programming, dynamic programming and heuristic search have an
important role to play in determining the quality and cost-e�ectiveness of the maintenance pro-
gram. Many of these optimisation methods have been described in the pavement maintenance
literature. The priority ranking method (Fwa and Chan, 1993; Hajek and Phang, 1989), in par-
ticular, has been the traditional favourite among practitioners because of its intuitive appeal and
ease of application. Lately, the genetic algorithm (GA) has emerged as a successful general
purpose and robust alternative, even in the face of the Ôcombinatorial explosionÕ due to the large
number of maintenance programming combinations (Chan et al., 1994; Fwa et al., 1994a,b).

The following elements need to be identi®ed in any optimisation problem:
1. a set of decisions, with alternatives for each decision;
2. a set of constraints which collectively (and implicitly) describe the set of feasible combinations

of choices for the decisions; these usually take the form of limits on the feasible values for the
decisions; and

3. an objective function which measures the aggregated consequence of the decision choices made;
this is expressed in terms of maximising or minimising a criterion like cost or service level.
An optimisation procedure is a systematic means of generating candidate solutions, distin-

guishing the promising from the mediocre, as well as improving the current best solution in order
to attain the optimal solution. There are two key di�culties in the process of generating promising
candidate solutions, namely, (1) directing the search for new solutions to the more promising
regions of the search space, and (2) making sure that the solutions generated are within the
feasible search space de®ned by the constraints.

In the GA-based approach to pavement maintenance programming, each solution is expressed
as a set of decision choices called a chromosome. The choices are encoded (by position) in the
ÔgenesÕ that make up the chromosome. Typically, there would be many such solutions in a pop-
ulation pool; GAs work with a succession of solution populations. The search is conducted by
constructing new solutions through the traditional GA operators of crossover and mutation. In
crossover, two candidate solutions (represented as chromosome strings of Ô1sÕ and Ô0sÕ) mutually
exchange corresponding parts of themselves to form two new strings. These new strings represent
new solutions that potentially have characteristics of both parents. In mutation, a new chromo-
some string is obtained by changing some of the bits in the string at random. This causes the
search to be directed to new regions of the search space. Selection pressure is applied to these new
strings by evaluating them with the objective function; this evaluation determines their chances of
participating in the next round of crossover and mutation operations (with the better solutions
being awarded more chances). The premise is that good traits lead to better evaluations of the
individual in which they appear, thus favouring those individuals in the selection process and
increasing the chances that the same traits survive to the next round.

GAs have traditionally worked well for unconstrained optimisation problems for if there are no
constraints, then all new solutions generated by the GA are feasible solutions to the optimisation
problem. However, real world problems like the pavement maintenance programming problem
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have a multitude of constraints. These typically arise either from technological considerations (the
particular work practices or technology adopted) or from limits on the availability of resources.
Constraints pose a considerable challenge to GAs because of the way in which a GA generates
new candidate solutions. The crossover and mutation process introduces the possibility that the
new chromosomes produced will violate some of the constraints. For linear constraints and a
convex feasible region, it is well known that linear combinations of points within the feasible space
will always remain within the feasible space; it is therefore possible to modify the crossover
process so that only linear combinations of the solution vectors are formed. However, this ex-
pedient solution does not carry over to the case of non-linear constraints and non-convex feasible
regions. If constraints are not handled properly, much e�ort will be wasted in generating and
evaluating infeasible solutions. There is also the strong likelihood that the search will not converge
on the global optimum but get trapped instead in a sub-optimal part of the search space. It is for
these reasons that constraints are said to pose considerable challenges to GAs in practical ap-
plication. In this paper, we will review the performance of two popular constraint handling
methods and introduce a new method developed by the authors which shows much promise.

All three methods are tested on a practical pavement maintenance problem described by Fwa
et al. (1988) in order to evaluate their relative performance and merits. The rest of the paper is
organised as follows: the pavement maintenance problem used for comparison is brie¯y described,
followed by a review of existing constraint handling methods and a description of the proposed
method. We then present the results of an experiment that compares the performance of the
various methods on the chosen problem, as well as our observations on these results. The paper
concludes with a summary of the key points made in the paper.

2. Pavement maintenance at network level

The problem of pavement maintenance at the network level was ®rst described by Fwa et al.
(1988) and solved using an integer programming approach. It was later solved again using genetic
algorithms (Fwa et al., 1994b) with slightly better results being obtained. This problem is inter-
esting for the present study because of the many constraints involved. The problem formulation is
presented below in Eqs. (1)±(7). Table 1 de®nes the variables used in Eqs. (1)±(7). The objective is
to maximise the total weighted work production resulting from undertaking a programme of
maintenance activities (Eq. (1)). There are six constraints, namely production requirements,
budget, manpower, equipment, material and rehabilitation constraints (2)±(7). However, it is
assumed that there are enough materials for all types of maintenance work and the material
constraint (6) is therefore relaxed. Except for production requirements and rehabilitation con-
straints, all the other three (budget, manpower and equipment) are considered as constraints on
resource availability. The constraint on production requirements ensures that the required
maintenance work is within their maximum limits. The rehabilitation constraint accounts for
possible interference between routine and rehabilitative maintenance. The problem parameters are
the highway types, urgency levels and the type of maintenance activities. Four highway types are
considered: urban interstate, urban arterial, rural interstate and rural primary pavement seg-
ments. Four types of maintenance action are selected ± crack sealing, premix levelling, shallow
patching and deep patching. Maintenance urgency levels are a function of the extent and severity
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of the pavement distress. High, medium and low urgency levels are considered for each of the
maintenance activities. The maintenance work requirement for any urgency level of a highway
pavement segment is expressed in terms of equivalent workdays. The problem is to decide the
number of equivalent workdays for each decision variable (representing a maintenance action for
a particular class of pavement segment at a certain urgency level). There are 48 (4 ´ 4 ´ 3) decision
variables in the problem and each decision variable can have any value from 0 to 45. A value of 0
represents no action being assigned, whilst the upper limit of 45 comes from an analysis of the
maximum value that can be assigned given the resource utilisation rates of the various pavement
maintenance activities and the resource limits. The actual input data are not reproduced here and
can be obtained from Fwa et al. (1988).

Maximise
XN1

i

XN2

j

XN3

k

WijkFijk; �1�

where i � 1; 2; . . . ;N1, j � 1; 2; . . . ;N2, k � 1; 2; . . . ;N3.

Table 1

De®nitions of variables in Eqs. (1)±(7)

Variable De®nition

Wijk Equivalent workload units in number of workdays of pavement repair activity j of need

urgency level k performed on highway i

Fijk Priority weighting factor for pavement repair activity j of need urgency level k on highway i

N1 Total number of highways considered

N2 Total number of pavement repair activities considered

N3 Total number of need urgency level considered

Tijk Total workload of pavement repair needs expressed in work measurement units for pavement

repair activity j of need urgency level k on highway i

/ijk Rehabilitation constraint factor for pavement repair activity j of need urgency level k,

06/ijk 6 1

Uijk Work productivity for pavement repair activity j of need urgency level k on highway i

Cijk Cost per production unit of pavement repair activity j of need urgency level k on highway i

B Total budget amount allocated for the analysis period considered

bj Budgeted fund for pavement repair activity j

hjg Number of mandays of work crew type g required for each unit of pavement repair activity j

Hg Total available number of mandays of work crew type g

G Total number of crew type

qjr Number of equipment days of equipment type r required for each production day of pavement

repair activity j

Qr Total available number of equipment days of equipment type r

R Total number of equipment type

mjs Quantity of material type s required for each production day of pavement repair activity j

Ms Total available quantity of material type s

S Total number of material types

dijk Number of working days before a scheduled rehabilitation during which no pavement repair

activity j of need urgency level k would be performed on highway i

D Total number of working days in the analysis period

178 W.T. Chan et al. / Transportation Research Part C 9 (2001) 175±190



(a) Production requirements:

06Wijk 6
Tijk/ijk

Uijk
: �2�

(b) Budget constraint:XN1

i

XN2

j

XN3

k

WijkUijkCijk 6B: �3a�

XN1

i

XN3

k

WijkUijkCijk 6 bj j � 1; 2; . . . ;N2: �3b�

(c) Manpower constraint:XN1

i

XN2

j

XN3

k

Wijkhjg6Hg g � 1; 2; . . . ;G: �4�

(d) Equipment constraint:XN1

i

XN2

j

XN3

k

Wijkqjr6Qr r � 1; 2; . . . ;R: �5�

(e) Material constraint:XN1

i

XN2

j

XN3

k

Wijkmjs6Ms s � 1; 2; . . . ; S: �6�

(f) Rehabilitation constraint:

/ijk �
Dÿ dijk

D
: �7�

3. Constraint handling methods in GAs

The original GA formulation (Holland, 1975) had no explicit means of handling constraints.
Indeed, constraints were conspicuously absent from the early problems handled by GAs. When
practitioners interested in the application of GAs to real world problems added consideration of
constraints to the formulation, many di�erent ad hoc methods were introduced into the basic GA
mechanism. It soon became apparent that the e�ciency of GAs, when applied to constrained
optimisation problems, is largely determined by how well constraints are handled in the algo-
rithm.

The common constraint handling methods are: (1) the penalty method (PM), (2) the decode and
repair method (DRAM), and (3) the genetic algorithms for numerical for constrained problems
(GENOCOP) system. The ®rst two methods have been in use for quite some time while the
GENOCOP system (Michalewicz and Janikow, 1991) is the most recent.
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3.1. Penalty method

In this method, a constrained problem is converted into an unconstrained problem by asso-
ciating a penalty function with the evaluation function for each constraint violation. If a candi-
date solution violates any constraint, its evaluation value is penalised (reduced or increased) by a
selected amount (depending on whether it is a maximisation or minimisation problem). Although
this method is easy to use, careful consideration has to be given to the selection of an appropriate
penalty value. There are no hard and fast rules on how to do this; the penalty value has to be large
enough to prevent feasible solutions from being dominated by infeasible solutions, yet not too
large as to trap the search in a local optimum.

3.2. Decode and repair method

This name is given to a class of methods that avoid the creation of invalid individuals or at-
tempt to repair invalid individuals when they are created. Decode methods use special solution
mapping representations that ensure that only feasible solutions are generated. Repair methods
attempt to correct any invalid (infeasible) solutions that may be produced by the GA operations.
This class of methods has been used for a long time but has not found wide usage because of
several di�culties associated with their use. Firstly, these methods are computationally intensive
because of the special representation used and the e�ort needed to repair infeasible solutions.
Secondly, it is often not easy to code the repair algorithms, especially when several constraints are
involved. Lastly, the special representations and repair algorithms are very problem speci®c and
do not translate readily to another problem.

3.3. GENOCOP system

Michalewicz and Janikow (1991) introduced GENOCOP which was a generic system for
handling both linear and non-linear constraints in a problem independent way. Equalities are ®rst
used to simplify the constraints, thus reducing the total number of problem variables and the
resulting search space. Initial feasible solutions are then generated from the modi®ed inequalities.
This technique works well for convex search spaces formed by linear constraints but encounters
di�culty with solution generation in non-convex search spaces. We dropped the method from
further consideration after initial trials on our example problem revealed this.

4. Prioritised resource allocation method

From the insights gained in experimenting with the various constraint handling methods on our
example, we developed a new method called the prioritised resource allocation method (PRAM).
We believe PRAM is more e�cient than any of the earlier methods reviewed and is based on the
following insights:
1. As far as possible, the basic GA mechanism should not be tampered with ± in particular, the

selection pressure which drives the search into more promising parts of the solution space. The
main problem with penalty methods is that the penalty term introduced into the objective func-
tion distorts the feedback received from the evaluation of the solutions.
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2. As far as possible, the GA should avoid generating illegal solutions; otherwise, the GA could
expend a great deal of computational e�ort generating illegal solutions, only to have to repair
or discard them. It is also di�cult to come up with special problem representations and oper-
ators that avoid constraint violations. Repair methods also distort the feedback given by the
selection pressure.

3. When resource allocation involves several resources, local optimisations involving a single re-
source often lead to sub-optimal decisions. It is better to consider all active constraints simul-
taneously when making decisions.

4. Good solutions occur when several resources are stretched to the limit; indeed, a valuable in-
sight from linear programming says that the optimal solution lies at the intersection of several
constraints.

5. Whilst GAs perform admirably in searching globally for promising sub-regions of the search
space, they are notoriously slow in converging to the local optimum in any sub-region. Fortu-
nately, insight (4) also allowed us to overcome this limitation of GAs.
PRAM di�ers from the traditional GAs in several respects. Firstly, the chromosome string

encodes more than the value of the decision variables ± there are additional genes representing
each of the resources appearing in the problem. Secondly, in PRAM the GA does not work on the
value of the decision variable directly. Instead, the gene values represent priorities with which
decision variables are allocated resources. The actual amount of resources to be allocated is de-
termined dynamically from the constraints by another procedure. Lastly, the extra genes repre-
senting resources is used to optimise the performance of a separate resource allocation routine.

4.1. Description of the PRAM algorithm

The chromosome string representation used in PRAM is shown in Fig. 1 for a problem in-
volving 48 decision variables. Besides the genes representing these decision variables (numbered
from 1 to 48), there are three additional genes for the percentage of the requested budget,
manpower and equipment that can be allocated each time (denoted with roman numerals (i)±(iii)),
thus making a total of 51 genes in all. In Fig. 1, the integers inside the ®rst 48 positions of the
string represent the priority of the corresponding maintenance activity to receive its requested
allocation. The purpose of having resource genes is to restrict the resource consumption by any
single decision variable (even those with high priority).

All the strings in the pool are initialised randomly with each maintenance activity gene getting
an integer in the range of 0±100. When a string is decoded, a sorted list of all the maintenance
activities is constructed based on the values encoded by the genes. The maintenance activity with
the highest priority receives a rank of 1 and the lowest is ranked 48.

Fig. 1. String representation in PRAM.
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Resource distribution is then performed in the order speci®ed by the ranked list. An attempt is
®rst made to allocate as many resources as are requested by the activity, subject to resource
availability and the percentage limit imposed by the resource genes. If there are not enough
available resources, the demand is adjusted proportionally to ®t within the allowable resources.
Allowable resource amounts are obtained simply by multiplying the resource limiting factors
(obtained from the resource genes) by the amount of remaining available resources. If the min-
imum demand for the current activity still cannot be met, it is not allocated any and the process
continues with the next decision variable on the list until all the activities have been considered.

PRAM does interfere with any of the normal GA operations but instead uses these operations
on the chromosome strings to evolve the best combination of priority and resource limit values for
the resource allocation algorithm. It is also obvious that PRAM always satis®es the resource
constraints within the resource allocation algorithm itself ± it does not need to make a trial guess,
check on its validity and then either discard or repair the invalid trials.

5. Setting GA parameters

In the study, three constraint handling methods were implemented and their performance
compared through an experiment. As far as possible, we tried to standardise the values of the GA
parameters across the di�erent constraint handling methods.

Population size. The penalty and DRAM methods required relatively large populations (P400
numbers in order) whereas PRAM was able to produce equivalent results with only a fraction of
the pool size (about 100). In order not to disadvantage PM and DRAM, the population size was
set at 400 for these two methods but set to 100 for PRAM. Our experiments indicated that larger
population sizes did not lead to much improvement in PRAMÕs results. Hence, the population size
was limited to 100.

Population initialisation. PM did not require that all solutions in the initial pool be valid so-
lutions, so the initialisation was straightforward. Each gene could be assigned a random number
within the domain range. In contrast, DRAM required that all population members had to be
valid solutions. This was achieved by applying the repair algorithm on a randomly initialised
population until all strings are valid solutions. It was relatively easy to form the initial population
for PRAM method since the genes could be randomly initialised.

Genetic operators. Although there are a number of variants of the crossover and mutation
operators to choose from, we chose to use the basic two-point crossover and a simple bit mutation
operator for all the constraint handling methods.

Stopping criterion. The quality of the solutions achieved in a GA run can depend on the
stopping criterion used since this determines the number of solution trials allowed. We chose to
use a simple criterion based on maximum number of iterations allowed. This maximum was set at
250 for all methods after some experimentation. This value strikes a balance between allowing
enough trials for the slower methods to reach asymptotic performance and a reasonable amount
of computational time for each run.

Penalty value. This parameter is only applicable to PM. We found that a penalty of between
500 and 1000 for each constraint violation could be used without adversely a�ecting the results
obtained. If the penalty value was too small, few valid solutions would be produced because
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invalid solutions achieved very high evaluations and the population tended to be dominated by
infeasible solutions. On the other hand, too big a penalty value traps the GA in sub-optimal
parts of the search space as a single valid (though poor) solution will quickly dominate the
population.

6. Results and discussion

The performance of the various constraint handling methods (PRAM, DRAM and PM) can be
compared in various ways. The most obvious is to look at the schedules produced by each of these
methods at di�erent points in time. From Table 2, it is obvious that PM fares the worst, both in
terms of the best and average performances. Since there is no restriction on the validity of the
solutions generated by PM (infeasible solutions were merely penalised), all the solutions in the
initial pool for PM turned out to be invalid. This resulted in a large negative objective function
value and it took more than 50 iterations for the ®rst valid schedule to be produced. The best
schedule produced by PM is only marginally better than the average of the schedules and by far,
inferior to the best that PRAM and DRAM could produce. From the large negative average
performance of PM throughout the run, it is evident that a signi®cant portion of the population
pool consists of infeasible schedules.

DRAM and PRAM start out about equal (since their initial average performances are com-
parable) but PRAM rapidly draws ahead of DRAM both in terms of best performance as well as
average performance. Although the performances of the initial pool for PRAM and DRAM are
comparable, DRAM requires more computational e�ort to decode and repair infeasible schedules.
The contrast between the rate of improvement for all three methods is more evident from Fig. 2.
PRAM is always ahead of the other two methods in achieving objective function values and the
solutions in the PRAM pool are always better compared to those in the DRAM pool. Although the
®gures in Table 2 and Fig. 2 are obtained from a single run, all the runs we made showed quali-
tatively similar results. PM was never able to produce a schedule with an evaluation better than
4000 no matter how the pool size and the number of iterations were adjusted. Similarly, DRAM

Table 2

Best and average objective function values by the three methodsa

After iteration Objective function (OF) values

PRAM DRAM PM

Best Average Best Average Best Average

1 3632.0 2672.3 3309.5 2610.5 )232421.5 )305950.0

50 4245.0 3754.6 4049.5 3372.9 )2967.5 )48221.0

100 4304.5 3876.8 4141.0 3464.6 2667.0 )34965.0

150 4315.0 3854.7 4153.5 3483.2 3235.5 )49091.0

200 4315.0 3849.0 4153.5 3457.4 3510.5 )44892.0

250 4323.5 3901.7 4176.0 3497.4 3622.5 )48482.0
a All these values are from a particular run that produced best OF values. Various combination of pool sizes and

number of iterations were tried. But PM never produced an OF value >4000. Similarly, DRAM never reached the best

OF values obtained by PRAM in any combination applied to both.
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was never able to reach the best value obtained by PRAM indicating that the former gets trapped
easily in some sub-optimal local solution. For comparison purposes, the best evaluation values for
the same problem was 3865.5 using an integer programming solution method (Fwa et al., 1988) and
4056.0 using a conventional GA solution method (Fwa et al., 1994b).

The three methods can also be compared by the diversity of the solutions produced. We
analysed the maintenance actions suggested by the best 10% of the solutions in the ®nal pool
returned by each method. Table 3, which shows the results of our analysis, suggests that in all
three methods, the top 10% of the schedules are largely homogeneous. In DRAM, there were two
distinct solutions di�ering only by the value of two variables. One of these solutions (the second
best) made up 90% of the top 10% of solutions in the pool. PRAM also produced two unique
solutions di�ering by the values of four variables. In PRAM, one solution was present in 85% of
the top 10% of solutions. PM produced three unique (and valid) solutions in the top 10% range;
these solutions di�ered by the values of ®ve variables.

We can also compare the three methods by the way they utilise resources. Table 4(a) compares
the utilisation rates of the budget, manpower and equipment resources. All three methods use
budget and manpower more heavily than equipment although PRAM achieves the highest util-
isation factor. Despite the similarities in resource utilisation rates, the results produced by the
three methods are signi®cantly di�erent, as we have previously discussed. PRAM achieves the
highest equivalent work production of the three (the non-weighted total number of workdays for
all three methods is roughly the same). It comes as no surprise that PRAM was able to maximise
the use of the resources since it is designed to do just that. Surprisingly, DRAM also did well but
further analysis points to a plausible reason: the repair algorithm in DRAM also used the concept
of maximising resource utilisation. Table 4(b) shows the range of values obtained by the best 10%
of solutions in the ®nal population pool produced by the three methods. The ®gures show that

Fig. 2. Convergence pattern of the three methods.
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Table 3

Suggested decision values in equivalent workdays and their occurrence in the ®nal pool of solutions

Highway

type

Need urgency

level

Repair

strategy

Equivalent workdays

PRAM DRAM PM

(i� 1) k� 1 j� 1 3 (100%) 3 (100%) 3 (100%)

j� 2 4 (100%) 4 (100%) 3 (95%), 4 (5%)

j� 3 8 (100%) 7 (100%) 8 (100%)

j� 4 1 (100%) 0 (100%) 0 (100%)

k� 2 j� 1 4 (100%) 4 (100%) 2 (10%), 4 (90%)

j� 2 3 (15%), 2 (85%) 1 (100%) 1 (100%)

j� 3 1 (100%) 1 (100%) 0 (100%)

j� 4 3 (100%) 0 (100%) 1 (100%)

k� 3 j� 1 3 (100%) 2 (100%) 2 (100%)

j� 2 0 (100%) 0 (100%) 1 (100%)

j� 3 0 (100%) 0 (100%) 0 (100%)

j� 4 0 (100%) 0 (100%) 0 (100%)

(i� 2) k� 1 j� 1 1 (100%) 1 (100%) 1 (100%)

j� 2 0 (100%) 0 (100%) 0 (100%)

j� 3 0 (15%), 1 (85%) 7 (100%) 6 (10%), 4 (90%)

j� 4 1 (100%) 0 (100%) 0 (100%)

k� 2 j� 1 1 (100%) 0 (100%) 1 (100%)

j� 2 0 (100%) 0 (100%) 1 (100%)

j� 3 0 (100%) 0 (100%) 0 (100%)

j� 4 0 (100%) 0 (100%) 0 (100%)

k� 3 j� 1 3 (100%) 3 (100%) 1 (100%)

j� 2 0 (100%) 0 (100%) 1 (100%)

j� 3 0 (100%) 0 (100%) 0 (100%)

j� 4 0 (100%) 0 (100%) 1 (100%)

(i� 3) k� 1 j� 1 4 (100%) 4 (100%) 4 (100%)

j� 2 6 (15%), 7 (85%) 8 (100%) 0 (100%)

j� 3 6 (15 %), 5 (85%) 0 (100%) 1 (100%)

j� 4 4 (100%) 0 (100%) 2 (100%)

k� 2 j� 1 3 (100%) 3 (10%), 2 (90%) 1 (100%)

j� 2 0 (100%) 0 (100%) 1 (5%), 2 (95%)

j� 3 1 (100%) 0 (100%) 0 (100%)

j� 4 1 (100%) 9 (100%) 0 (100%)

k� 3 j� 1 1 (100%) 3 (100%) 3 (100%)

j� 2 0 (100%) 0 (100%) 0 (100%)

j� 3 0 (100%) 0 (100%) 0 (100%)

j� 4 0 (100%) 0 (100%) 0 (100%)

(i� 4) k� 1 j� 1 3 (100%) 3 (100%) 3 (100%)

j� 2 0 (100%) 0 (100%) 1 (100%)

j� 3 0 (100%) 0 (100%) 1 (5%), 3 (95%)

j� 4 0 (100%) 0 (100%) 0 (100%)
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these ranges do not overlap, perhaps indicating di�erent rates of improvement in the objective
function.

Finally, the proposed work schedules by the three methods are presented in Figs. 3(a)±(c). Both
PRAM and DRAM schedules show a great deal of similarity with each other and seem to indicate
a preference to assign work to road types that are high in priority, and to road defects that are
severe (and rightly so!). Urban interstate and rural interstate with urgency levels 1 and 2 got the
maximum repair work allocation, whilst other roads got very little or none at all. However,
DRAM also assigned jobs to less important roads, which might account for less work production
in the DRAM schedule. The PM schedule showed that it assigned values for even the least im-
portant roads with the least severity; this could be the main reason that PM failed to produce
results as good as that of PRAM and DRAM. Close examination of the schedules produced by
each of the three methods also indicates that the PRAM schedule operates closer to the upper
limit of the work requirements as compared to the other two schedules, especially for the more
heavily weighted decision variables.

Table 3 (continued)

Highway

type

Need urgency

level

Repair

strategy

Equivalent workdays

PRAM DRAM PM

k� 2 j� 1 0 (100%) 2 (10%), 3 (90%) 1 (100%)

j� 2 0 (100%) 0 (100%) 4 (100%)

j� 3 0 (100%) 0 (100%) 1 (100%)

j� 4 0 (100%) 0 (100%) 1 (100%)

k� 3 j� 1 0 (100%) 0 (100%) 0 (100%)

j� 2 0 (100%) 0 (100%) 1 (100%)

j� 3 0 (100%) 0 (100%) 1 (100%)

j� 4 0 (100%) 0 (100%) 3 (100%)

Table 4

Comparison on the results of the three methods

Item Constraint handling methods

PRAM DRAM PM

(a) Comparison on the basis of work production and resource utilization of the best solutions

Work production 4323.5 4176 3622.5

Budget utilized 54581.7 (90.9%) 52500.8 (87.5%) 52224.8 (87%)

Manpower utilized 526 (89.91%) 518 (88.54%) 522 (89.23%)

Equipment utilized 243 (67.5%) 234 (65.0 %) 247 (68.61%)

Total workdays 65 65 63

(b) Comparison on the basis of top 10% solutions in the pool

Range of OFa values 4315.0±4323.5 4153.5±4176.0 3587.5±3622.5

Unique solutions 2 2 3
a OF ± Objective function.
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Fig. 3. (a) Proposed work schedule by PRAM, (b) proposed work schedule by DRAM, (c) proposed work schedule by

PM.
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Fig. 3. (continued ).
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Fig. 3. (continued ).
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7. Conclusions

In this paper, a new constraint handling method named PRAM was introduced for handling
resource constraints when optimising pavement network maintenance programmes. Its perfor-
mance was compared against two common constraint handling methods namely, the PM and the
DRAM. PRAM showed great promise ± it returned the best performance measures of the three
methods as well as being the fastest computationally. The key concept behind PRAM is that of
maximum resource utilisation. When we employed this same concept in the repair part of DRAM,
it also worked very well. The traditional penalty method fared the worst.
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