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Introduction

Realistic engineering problems always involve interaction of several disciplines like fluid
dynamics, heat transfer, elasticity, electromagnetism, dynamics, etc. Thus, realistic
problems are always multidisciplinary and the geometric space is typically arbitrarily
shaped and three-dimensional. Each of the individual disciplines is governed by its own
system of governing partial differential equations or integral equations of different degree
of non-linearity and based on often widely disparate time scales and length scales. All of
these factors make a typical multidisciplinary optimization problem highly non-linear and
interconnected. Consequently, an objective function space for a typical multidisciplinary
problem could be expected to have a number of local minimums. A typical
multidisciplinary optimization problem therefore requires the use of optimization
algorithms that can either avoid the local minimums or escape from the local minimums.
Non-gradient based optimizers have these capabilities. On the other hand, once the
neighborhood of the global minimum has been found, the non-gradient based optimizers
have difficulty converging to the global minimum. For this purpose, it is more appropriate
to use gradient-based optimizers.

Addition of constraints of both equality and inequality type to a typical multidisciplinary
optimization problem reduces significantly the feasible domain of the objective function
space. To find such often-small feasible function space, the optimizer should be able to
search as large portion of the objective function space as possible. Again, non-gradient
based optimizers are capable of performing this task. When constraints of equality type are
to be enforced, the gradient-based optimizers can perform this task very accurately.

One of the primary concerns of any optimization algorithm is the computational effort
required to achieve convergence. Except in the case of certain sensitivity based
optimization algorithms and genetic algorithms with extremely large populations, the
computer memory is not an issue. Typical constrained optimization problems in
engineering require large number of objective function evaluations. Each function
evaluation involves a very time-consuming computational analysis of the physical processes
involved. The real issue is the reduction of the overall computing time required to perform
the optimization. Therefore, an efficient optimization algorithm should require the least
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number of objective function evaluations and should utilize the most efficient disciplinary
(or multidisciplinary) analysis algorithms for the objective function evaluations.

This suggests that it might be beneficial to utilize several different optimization algorithms
during different phases of the overall optimization process. The use of several optimization
algorithms can be viewed as a backup strategy (Dulikravich, 1997) so that, if one
optimization method fails, another optimization algorithm can automatically take over. This
strategy of using a hybrid optimization approach and performing the switching among the
optimizers will be demonstrated and discussed in this text.

In addition, it might be beneficial to perform disciplinary (or multidisciplinary) analysis by
using simplified or surrogate physical models during the initial stages of optimization.
Because of their reduced degree of non-linearity, such models typically require significantly
less computing time to evaluate than the full non-linear model of the physical process. This
strategy of using progressively more accurate (and computationally expensive) objective
function evaluation models will be demonstrated and discussed.

Finally, the flexibility of the parameterization of the design variable space (for example,
parameterization of geometry in the case of shape optimization) can affect the convergence
rate of the optimization process and the quality of the final result. The effects of the degree
of inherent flexibility of the discretization algorithm on the optimization convergence rate
will be discussed in this text.

Hybrid Constrained Optimization

Various optimization algorithms have been known to provide faster convergence over
others depending upon the size and shape of the mathematical design space, the nature of
the constraints, and where they are during the optimization process. This is why we created
a hybrid constrained optimization software. Our hybrid optimizer incorporates four of the
most popular optimization modules; the Davidon-Fletcher-Powell (DFP) (Davidon, 1959;
Fletcher and Powell, 1963) gradient search method, a genetic algorithm (GA) (Goldberg,
1989), the Nelder-Mead (NM) (Nelder and Mead, 1965) simplex method, and simulated
annealing (SA) (Press et al., 1986) algorithm. Each algorithm provides a unique approach
to optimization with varying degrees of convergence, reliability, and robustness at different
stages during the iterative optimization process. A set of rules and heuristics were coded
into the program to switch back and forth among the different optimization algorithms as
the process proceeded. These rules will be discussed in this text.

The evolutionary hybrid optimizer handled the existence of equality and inequality
constraint functions in three ways: Rosen’s projection method, feasible searching, and
random design generation. Rosen’s projection method (Rao, 1996) provided search
directions that guided the descent direction tangent to active constraint boundaries. In the
feasible search (Foster and Dulikravich, 1997), designs that violated constraints were
automatically restored to feasibility via the minimization of the active global constraint
functions. If at any time this constraint minimization failed, random designs were generated
about the current design until a new feasible design was reached.

Gradients of the objective and constraint functions with respect to the design variables, also
called design sensitivities, were calculated using either finite differencing formulas, or by
the much more efficient method of implicit differentiation of the governing equations
(Hafka and Malkus, 1991). The population matrix was updated every iteration with new
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designs and ranked according to the value of the objective function. During the
optimization process, local minimums can occur and halt the process before achieving an
optimal solution. In order to overcome such a situation, a simple technique has been
devised (Dulikravich and Martin, 1994; 1996). Whenever the optimization stalls, the
formulation of the objective function is automatically switched between two or more
functions that can have a similar purpose. The new objective function provides a departure
from the local minimums and further convergence towards the global minimum.

As the optimization process converges, the population evolves towards the global
minimum. The optimization problem was completed when one of several stopping criterion
was met; (1) the maximum number of iterations or objective function evaluations was
exceeded, (2) the best design in the population was equivalent to a target design, or (3) the
optimization program tried all four algorithms but failed to produce a non-negligible
decrease in the objective function. The latter criterion was the primary qualification of g is
convergence and it usually indicated that a global minimum had been found.
Following is a brief discussion of the most important features of each optimization module
that was used in our hybrid constrained optimizer.

Gradient Search Algorithm

Optimizers based on a gradient search concept require that the negative gradient of a scalar
function in the design variable space be multiplied by the optimum line search step size,

*α  before adding it to the vector of design variables, V
r

. Unfortunately, the search
direction is only first-order accurate and it is slow in minimizing the objective function,
especially near a local or global minimum. Also, this method alone does not support logic
to ensure that the constraints are not violated. The simplest way to introduce this capability
would be to ensure that the line search does not extend into an infeasible region. Such a
technique is very simple, but it can often stall at a stationary point located on a constraint
boundary before reaching the global minimum.

The following several sections describe how one can improve convergence and handle
constrained gradient-based optimization problems.

Improving Convergence of Gradient Based Optimizers

The DFP algorithm uses quasi-Newtonian or rank-two updates and yields second-order
accuracy without excessive calling of the analysis program. The DFP is the most
computationally expensive method in our hybrid optimization algorithm, but its
convergence is both maximized and guaranteed. This algorithm is susceptible to local
minimums and it can get stuck on a constraint boundary. Depending on how this procedure
stalls, the hybrid optimizer switches to another optimization routine.

The optimal line search parameter, α*, is that value that minimizes the objective function
along the line search direction. Many one-dimensional minimization algorithms have been
published for the purposes of line searching (Golden Search, Fibonacci, quadratic
interpolation,etc.). practically all of these line search techniques have difficulties with the
constrained non-linear optimization when the objective function variation along the line
search direction can have multiple local minimums.
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Therefore, a more effective method has been developed for this sub-optimization procedure
(Dulikravich and Martin, 1994). A small number (five to ten) of design points are generated
between the current design (α = 0) and the end of the line search in the searching direction,
s
r

. The end of the line search is determined by calculating the distance to the closest design
variable bound in the parametric space. The objective (or constraint) function is evaluated
at each of these points. Then, a spline is passed through these control points and
interpolated at a large number (for example, 1000) equidistantly spaced points. By sorting
these interpolated values, the minimum of this new curve is found and the corresponding α*
is determined. The minimum of the interpolated spline is, in general, different from the true
objective function minimum. Therefore, the newly found point, (α*, F*), is added to the
original set of design points, a new spline curve is fitted and interpolated through this
enlarged set, the minimum of this new curve is found, and the corresponding α∗ is
determined. The process is repeated several times until the new value of α* is very close to
the previous one indicating that the optimal α* has been found in the particular search
direction.

Enforcement of Constraints

A common method of dealing with constraints is to use a penalty function. Penalty
functions are added to the scalar objective function with appropriate weighting factors for
scaling of the constraint functions with respect to the objective function value. The use of
penalty functions is highly discouraged. Not only do they waste the computing time on
evaluating the objective function for infeasible designs, they also change the nature of the
design space, often converging to minimums that are nowhere near the global minimum.
Penalty methods were not used in the constrained hybrid optimization system because
other, more effective procedures were implemented (Rosen’s projection method and
feasible search).

Rosen’s projection method is a constraining approach that was designed to handle the
existence of inequality and equality constraint functions (Rao, 1996). It is based on the idea
of projecting the search direction into the subspace tangent to any active constraints. After
the new search direction has been determined, any standard line search can be performed to
update the design. After a line search has been employed and the design updated, the
resulting design may become infeasible. A restoration move is then required from the new
design point, back to the constraint boundary at the point. The effect of this restoration is to
reduce all active constraint functions to zero.

Rosen’s restoration is valid only for simple problems that have a local linear behavior. This
formula tends to become unstable when nonlinear optimization problems are attempted. In
these cases and for the multidisciplinary optimization problems, the feasible search method
is highly recommended to restore an infeasible design back to the boundary of the feasible
domain. The simplest way to accomplish this task is to employ a sub-optimization problem
that minimizes the sum of active constraint functions. Notice that the equality constraints
are always active. The evolutionary hybrid optimization algorithm uses DFP method to
minimize this function.

Genetic Algorithm
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The GA’s evolutionary approach utilizes its random nature to escape local minimums.
When the average cost function of the new generation is not improved, the GA becomes an
inefficient optimizer. This most often occurs when its random nature is prevalent,
producing several bad and infeasible designs. The GA will be switched to the NM
algorithm because the NM works efficiently upon these worst designs. When the variance
in the objective function values of the population are very small, the population begins to
contract around a possible global minimum. At this point, the optimization switches to the
DFP gradient-based algorithm because DFP has the ability to quickly zoom in on that
minimum. The GA develops new population members with each iteration, but only those
members whose fitness is higher than that of the worst member will be allowed to enter the
population.

The GA can handle constraints on the design variable bounds, but it is inherently unable to
handle constraint functions. The new set of designs may not, in general, be feasible.
Therefore, the feasibility of each generated design is checked and, if any constraints are
violated, a feasible search is performed on the new design. If the feasible search fails, a new
design is generated randomly about the best design in the population until a satisfactory one
is found. Random designs were generated using a Gaussian shape probability density cloud

centered on the current design, 0V
r

, with a randomly generated number 0 < R < 1.

( ) RlnVV22ViV min,imax,i
0
i −σ−±=

The non-dimensional variance, σ2, in this function was determined by the conditions of the
optimization process. For example, the user specifies the maximum variance in the input of
the optimization algorithm.

Nelder-Mead Simplex Algorithm

For high-dimensional problems, it is known that the sequential simplex-type algorithms are
more efficient and robust than gradient based algorithms in minimizing classical
unconstrained test functions. The NM method is a zeroth order method that utilizes a
simplex generated by the population of previously generated designs. The NM begins by
defining a group of solution sets, which, when mapped, form a geometric figure in the Nvar-
dimensional design space, called a simplex. The simplex does not need to be geometrically
regular, so long as the distribution of the vertices remains fairly balanced. The NM then
becomes a downhill method by obtaining a search direction which points from the worst
design in the population through the centroid of the best designs. This algorithm is very
easy to program and it has the least amount of objective function evaluations per
optimization cycle. The existing population matrix of previously generated feasible designs
makes the NM even cheaper to employ. It improves only the worst design in the population
with each iteration.

The population of feasible designs, which has been ranked in ascending order according to
its objective function values, is utilized such that the centroid of the best designs (omitting
the worst design in the population) is computed
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A search direction can now be defined as the vector from the worst design to the centroid of
the remaining best designs

varNmean

varN

VV

VV
S rr

rr
r

−

−
=

Once this search direction is computed, it is projected into the subspace tangent to the
active constraints using Rosen’s projection method, and then a line search is employed. The
initial guess step size of the line search should be set to the average design variable range in
the current population. If the line search succeeds, the new design may not be feasible.
Then, a restoration move is employed. Eventually, a new feasible design will be obtained
that should improve the worst design in the population.

Simulated Annealing Algorithm

The SA method is analogous with thermodynamic annealing. As a liquid is slowly cooled,
thermal mobility of the molecules is slowly lost so that the atoms are able to line themselves
up and form a pure crystal without defects. A pure crystal is the state of minimum energy
for this system. SA provides a slow reduction in its random searching capabilities that it
uses to produce search directions. The continuous minimization SA algorithm uses a
modification to the downhill NM simplex method. This SA wanders freely through the local
minimum neighborhood so it is used when the optimization slows down or stalls.
Unfortunately, it can worsen the objective function in the later optimization cycles. The SA
is suitable for large scale optimization problems, especially when the desired global
minimum is hidden among many, poorer local extrema. The nature of the SA lends itself to
the early optimization cycles. It is also useful for escaping from a local minimum after the
DFP algorithm gets stuck in a local minimum. The basic idea of continuous minimization of
an objective function using SA is to find an appropriate design variable change, like that of
a steepest descent or downhill simplex method. The NM algorithm is used to obtain a
search direction. Logarithmically distributed random numbers, proportional to the cooling

temperature, T
~

, are added to the function values at the vertices of the simplex.

)Rln(T
~
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Here, R is a random number between 0.0 and 1.0. Another random variable is subtracted
from the objective function value of every new point that is tried as a replacement design.
The simplex will expand to a size that can be reached at this temperature and then executes
a stochastic, tumbling Brownian motion within that region. The efficiency with which the
region is explored is independent of its narrowness or aspect ratio. If the temperature is
reduced slowly enough, it is likely that the simplex will contract about the lowest minimum
encountered.
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The cooling scheme that was employed in the hybrid optimizer reduced the temperature T
~

to (1-γ) T
~

 every K
~

 optimization cycles, where the optimum γ and K
~

 are determined
empirically for each problem. When the cooling temperature has reduced to a significantly
small value, the program switches to a different optimizer.

Automated Switching Among the Optimizers

A set of rules has been added to the hybrid constrained optimization system in order to
make the switching among the algorithms automatic, as well as to utilize some of the
heuristic understanding of each algorithm’s behavior. The purpose of this switching was to
increase the hybrid optimizer’s robustness and improve upon its convergence. Each rule was
based upon and incorporated with the unique behavior of each numerical optimization
algorithm. The timing of the switching among the algorithms was forced to occur during
those instances in which the particular algorithm performed badly, stalled, or failed. The
first algorithm that the optimization process chose to switch to was determined by reasoning
and by trial and error. If the subsequent algorithm also failed in its processes, the
opportunity was made for every one of the algorithms in the system to have a try at the
problem. When all the available algorithms had been tried on a particular population of
feasible designs, and all failed at their given tasks, then the program was terminated. The
rules for switching will now be discussed for each algorithm in the hybrid optimization
system. Figure 1 demonstrates the major characteristics of this switching process in
flowchart form.

Rules for Switching Optimization Modules

Local Minimum Rule

This rule has been developed for gradient-based methods. The gradient search optimization
algorithm is switched whenever the change in the objective is less than a user-specified

tolerance, F∆ .

F
F*F

F*F

0

K ∆<
−
−

Here, F* is the value of the objective function at the new optimum, F0 is the value of the
objective function for the design at the start of the gradient search, and FK is the value of
the objective function from the previous optimization cycle. The GA is the first algorithm
chosen, then comes the SA and finally the NM. The genetic algorithm is chosen first
because its random searching capabilities are useful in escaping local minimums. This rule
is also applicable whenever the program stalls on a constraint boundary.

Descent Direction Rule

When the DFP search direction is not a descent direction, the dot product of the search

direction, S
r

, and the gradient, F∇ , is greater than zero. The search direction may be
different from the negative gradient direction because of the DFP update formula and
because that search direction is projected onto the subspace of active constraints (Rosen’s
projection method).
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When this condition is met, the inverse Hessian matrix is re-initialized to the identity
matrix. If the inverse Hessian is already equal to the identity due to re-initialization, the
program is switched to simulated annealing (SA – NM – GA). The randomness and simplex
searching methods of the simulated annealing process provide quick and effective ways of
navigating through the irregular design spaces. New designs (optimum along the line search
direction) created by the DFP are added to the population matrix and the DFP always works
on the best member in the population matrix.

The GA has several criterions that can qualify its performance and so several switching
rules have been developed. The most often used switching criterion is based upon the
variance in the population. As the GA proceeds, it tends to select members in the
population with like qualities to breed more often. The result is that the population tends to
acquire a similar set of characteristics and the variation in the population reduces. This can
happen too quickly when the specified mutation is too infrequent. In the ideal situation, the
design variables of the population will tend to collect around the global minimum, but may
have difficulty in finding it.

Design Variance Limit Rule

This is the first rule for switching from the GA. It is defined as
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In this equation, the non-dimensional standard deviation, Vσ , for all design variables in the

population is measured with respect to the average design variable in the population.
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When the design variance in the population becomes less than the limit, the GA is switched
to the DFP. The reasoning is that the population variance is contracting around a minimum
and the DFP can be used to quickly home in on that minimum. The order of the switching is
DFP – NM – SA.

Objective RMS Limit Rule

This is similar to the aforementioned rule, except that the variance in the objective function
is computed rather than the variance in the design variables.
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Here, the Fj is the objective function value of the jth population member and the average
objective function of the population is computed from them.
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The difference between this rule and the design variance limit is that the population may be
dispersed over a wide design space but each may have very similar objective function
values. This can occur is the objective function space is a large flat area with little or no
gradient. The program is then switched first to the SA method (SA – NM – DFP).

Bad Mutation Rule

The average objective function value of the population is also used as a switching criterion
of its own for the GA. The bad mutation rule causes the GA to switch to the NM if the
average objective function increases from the previous optimization cycle with the GA.
This will most likely occur if the random mutation rate is too large or if it produces one or
more really bad designs. Since the NM specializes in bringing the poorest design within the
centroid of the best designs, it is the most obvious first choice (NM – SA – DFP).

Lost Generation Rule

The GA develops sequential populations of new 'child' designs that are entered into the
population only if the population size is allowed to increase, or if the 'child' design is better
than the worst member in the population. If no new designs are entered into the population,
the GA fails. This lost generation causes the program to switch to the SA algorithm (SA –
NM – DFP).

Stall Rule

The NM simplex searching algorithm has only one failure mode, stalled. The NM is said to
stall whenever the line search (produced by the direction from the worst design in the
population through the centroid of the best designs) fails to improve itself so that it is better
than the second worst member in the population.

1NN POPPOP
F*F −≥

This rule causes the hybrid optimizer to switch to the DFP method (DFP – GA – SA). If the
best design in the population was generated by the DFP, then the DFP is passed by and the
GA takes over.

Insufficient Random Energy Rule
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The purpose of the SA algorithm is to add energy into the optimization system and allow it
to escape the local minimums. The objective functions of the design variables in the
population might get worse. Also, the random energy added to the system allows for the
modification of any member in the population. Therefore, the capabilities of the SA would
be wasted if the optimization process was switched to some other algorithm in case when
any one objective function value became worse. It was also found that the SA terminates
prematurely when the worse average objective criterion was met. The SA has, therefore,
been programmed to end whenever the cooling protocol did not add sufficient energy into
the system. The insufficient random energy criterion can be stated as follows.

( ) min

Npop

1j

2
j FFF

~ ∆<−∑
=

Here, the algorithm ends whenever the variance of the objective function values with added

random energy, F
~

, are less than a user-specified limit. The program is switched from the
SA to the DFP method (DFP – GA – NM). After several cycles, the random energy in the
SA may have been reduced to a negligible amount, while the insufficient random energy
criterion might not be met because of the large variance in the population. Therefore, the

SA switches to the NM method (NM – GA – DFP) after maxK
~

optimization cycles.
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Figure 1.  Flowchart of automatic switching among modules in a hybrid optimizer.

Aero-Thermal Optimization of a Gas Turbine Blade

Internal cooling schemes of modern turbojet and turbofan engines bleed air from the
compressor and pass this air into the serpentine coolant flow passages within the turbine
blades. The maximum temperature within a turbine blade must be maintained below a
certain value in order to avoid thermal creep, melting, and oxidation problems. Increased
coolant heat transfer and increased coolant flow rate directly decrease the amount of air
delivered to the combustor and increase specific fuel consumption. Thus, the coolant mass
flow rate and the coolant supply pressure should be minimized, while maintaining the inlet
temperature of hot gases as high as possible and temperature in the blade material below a
specified limit. These objectives can be met (Dulikravich and Martin, 1995; 1996; Martin
and Dulikravich, 1997; Dulikravich et al. 1998; Martin et al., 1999) by the constrained
optimization of the coolant passage shapes inside the turbine blade.

Geometry Model of the Turbine Blade Coating and Coolant Flow Passages

Design Variance →  0

DFP

GA NM

SA

Local
Minimum

Bad Mutation

Stalls

Objective Function
Variance →  0

# Iterations
Exceeded

Insufficient
Random Energy

Lost Generation
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The outer shape of the blade was assumed to be already defined by aerodynamic inverse
shape design or optimization. It was kept fixed during the entire thermal optimization
procedure. The thermal barrier coating thickness was described by a wall thickness
function versus the airfoil contour following coordinate, s. The metal wall thickness
variation around the blade was also defined by a piecewise-continuous beta-spline
(Barsky, 1988). The number of coolant flow passages in the turbine blade was kept fixed.

(a) (b)

Figure 2.  (a) A sketch of turbine airfoil, coating and coolant passage geometry. (b)
Temperature field computed on the initial guess geometry used for the minimization of
coolant temperature at the triling edge ejection location.

The x-coordinates of the intersections of the centerlines of each of the internal struts with
the outer turbine airfoil shape were defined as xSsi and xSpi, for the suction and pressure
sides of the blade, respectively. The range over which each strut could vary was specified.
In addition to the coordinates of the strut intersections, the strut thickness, tSi, and a
filleting exponent on either the trailing or leading edge sides, eSti and eSli, respectively,
were used to complete the geometric modeling of each strut (Figure 2a). The strut fillets
were described by a super-elliptic function that varied from a circular fillet (eSi = 2) to an
almost sharp right angle ( ∞→sie ).

The boundary conditions and constraints were: hot gas pressure at the inlet to the blade
row (588131 Pa), hot gas pressure at the exit of the blade row (134115 Pa), hot gas inlet
Mach number (0.1772), initial guess for the coolant mass flow rate (0.025 kg/s), initial
guess for the hot gas inlet temperature (1592.6 K), thermal conductivity of thermal barrier
coating (1.0 W/m K), thermal conductivity of the blade metal (30.0 W/m K), thermal
barrier coating thickness (100 microns), maximum allowable temperature in the blade
material (1250.0 K).
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Total number of design variables per section of a three-dimensional blade was 27. These
variables were: eight beta-spline control points defining coolant passage wall thickness,
six strut end-coordinates (two per strut), three strut thicknesses (one per strut), six strut
filleting exponents (two per strut), four relative wall roughnesses (one per each coolant
flow passage). Two additional global variables were: one mass flow rate, and one inlet
turbine hot gas temperature. The initial guess geometry is depicted in Figure 2b.

Turbine Cooling Scheme Optimization for Minimum Coolant Ejection Temperature

The uniform temperature and heat flux extrema objectives were not entirely successful
(Dulikravich et al. 1998a; Martin et al., 1999) at producing internal blade geometry that
would be considered economical or even physically realizable. The minimization of the
integrated hot surface heat flux objective tried to eliminate the coolant passages (Martin
and Dulikravich, 1997). The maximization of the integrated hot surface heat flux thinned
the walls and produced an extreme range of temperatures that questioned the validity of the
use of heat transfer coefficients on the outer surface of the blade.

Therefore, another objective was formulated (Martin et al., 1999) that minimizes the
coolant temperature at the very end of the coolant flow passage (the ejection slot at the
blade trailing edge). This is an indirectly formulated objective since mass flow rate was
used as a design variable and could not be simultaneously used as the objective function.
The reasoning was that reduced heat transfer coefficients require lower surface roughness
on coolant passage walls therefore resulting in lower coolant supply pressure requirements.
Thus, compressor bleed air can be extracted from lower compressor stages in which the air
is cooler. This in turn should lead to the lower coolant mass flow rate requirement.

First, a turbulent compressible flow Navier-Stokes solver was used to predict the hot gas
flow-field outside of the blade subject to specified realistic hot surface temperature
distribution. As a byproduct, this analysis provides hot surface normal temperature
gradients thus defining the hot surface convection heat transfer coefficient distribution. This
and the guessed coolant bulk temperature and the coolant passage wall convection heat
transfer coefficients creates boundary conditions for the steady temperature field prediction
in the blade and thermal barrier coating materials using fast boundary element technique.
The quasi-one-dimensional flow analysis (with heat addition and friction) of the coolant
fluid dynamics was coupled to the detailed steady heat conduction analysis in the turbine
blade material. By perturbing the design variables (especially the variables defining the
internal blade geometry) the predicted thermal boundary conditions on the interior of the
blade will be changing together with the coolant flow parameters. As the optimization
algorithm ran, it also modified the turbine inlet temperature. Once the turbine inlet
temperature changed significantly, the entire iterative procedure between the thermal field
analysis in the blade material and the computational fluid dynamic analysis of the external
hot gas flow-field was performed again to find a better estimate for thermal boundary
conditions on the blade hot surface. This global coupling process was performed only a
small number of times during the course of the entire optimization. This semi-conjugate
optimization uses sectional two-dimensional blade hot flow-field analysis and a simple
quasi one-dimensional coolant flow-field analysis. Consequently, it requires considerably
less computing time than would be needed if a full three-dimensional hot gas flow-field and
coolant flow-field analysis (Stephens and Shih, 1997) would be used.
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Two different minimizations of the coolant ejection temperature were performed; one with
the maximum temperature equality constraint, maxmax TT = , and the other with the

inequality constraint maxmax TT < . The design sensitivity gradients were calculated using

finite differencing and the optimization program was initiated with the DFP. The
optimization with the equality constraint required 15 cycles and 794 objective function
evaluations. The large number of function evaluations was needed because forward finite
differencing was used to obtain the sensitivity gradients. After 4 optimization cycles, the
program switched to the GA, switching finally to the NM in the 14th cycle.

 
(a) (b)

Figure 3.  Evolution of optimum bulk coolant temperatures (a) and the coolant passage wall
heat transfer coefficients (b) in each of the four coolant flow passages for the minimization
of coolant ejection temperature when using the maximum temperature equality constraint.

      
(a) (b)

Figure 4.  Evolution of coolant mass flow rate for the minimization of coolant ejection
temperature using: a) the maximum temperature equality constraint, and b) the maximum
temperature inequality constraint.
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The reduction in coolant bulk temperatures (Figure 3a) also significantly reduced the
coolant pressure losses and the coolant convection heat transfer coefficients (Figure 3b).
This suggests that it might be possible to remove the heat transfer enhancements
(mechanical wall turbulators) such as trip strips and impingement schemes from the coolant
passages thus leading to a substantial reduction in turbine blade manufacturing costs. The
ultimate goal (reduction in the coolant mass flow rate) was achieved (Figure 4a) by
reducing the heat transfer coefficients and by making the passage walls thinner (Figure 5a).
It should be pointed out that the turbine inlet temperature changed very little when the
maximum temperature equality constraint was enforced with this objective.

     
(a) (b)

Figure 5.  Optimized blade interior geometries and temperatures for minimized coolant
ejection temperature design of an internally cooled turbine blade using; a) the maximum
temperature equality constraint, and b) the maximum temperature inequality constraint.

But, when the maximum temperature inequality constraint was enforced, the coolant mass
flow rate was reduced even more dramatically (Figure 4b) but the turbine inlet temperature
decreased from 1600 K down to 1340 K which is unacceptable. The final optimized
configuration had extremely thin walls and struts (Figure 5b) which were nearly at the lower
limits enforced by the bounds on their design variables. This configuration is clearly
unacceptable because of the reasonable doubts that such a thin walled blade could sustain
the mechanical stresses. It is interesting to note that the optimization with the maximum
temperature inequality constraint ran for more cycles (40), but required fewer objective
function evaluations (521). This was because of the fewer number of gradients needed of
the inequality constraint functions. That is, the equality constraint was always active, but
the inequality constraint was only active when the maximum temperature in the blade was

equal to or greater than the target maximum temperature, maxT .
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It can be concluded that even a seemingly minor change in the constrained multidisciplinary
(aero-thermal) optimization can have a profound influence on the acceptability of the
optimized design. It can also be concluded that the hybrid constrained optimizer switching
logic proved to be robust and efficient when solving a realistic multidisciplinary problem.

Hypersonic Shape Optimization

 Two main objectives during shape optimization of hypersonic missile shapes are lowering
of the aerodynamic drag and lowering of the aerodynamic surface heating. The
aerodynamic analysis was performed using an extremely simple model known as modified
Newtonian impact theory (MNIT). This is an algebraic equation which states that the local
coefficient of aerodynamic pressure on a body surface is linearly proportional to the square
of the sine of the angle between the body tangent at that point and the free stream velocity
vector. The MNIT is known to give embarrassingly accurate predictions of integrated
aerodynamic lift and drag forces for simple body shapes at hypersonic speeds. It is often
used instead of more appropriate (and orders of magnitude more computationally
expensive) physical models based on a system of non-linear partial differential equations
known as Navier-Stokes equations. In the following examples, the MNIT was used for the
flow field analyses. Two optimization techniques were included: the constrained DFP and
the constrained GA technique, both using Rosen’s projection methodology for improved
equality constraint treatment.
 
 Optimum Ogive Shaped Missile
 
 First, results from the program were verified against analytically known solutions.
Specifically, the geometry of an axisymmetric body was optimized to reduce compression
wave drag at zero angle of attack. Optimal bodies of revolution that minimize drag have
previously been analytically determined. Two such solutions are known as the Von-Karman
and Sears-Haack bodies (Ashley and Landahl, 1965). These two bodies yield the minimum
wave drag under two different sets of constraints. The Von-Karman body assumes that the
body terminates with a flat plane, that the base area in this plane is known, and that the total
length of the body is specified. The Sears-Haack body assumes that the body is pointed at
both ends, and that the total volume and length of the body are given.

 

 
 Figure 6.  Initial cone configuration (a) and optimized ogive shape (b) at the onset of
longitudinal ‘ridges’. Constrained DFP optimizer was used with MNIT as the analysis code.
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 The constrained DFP optimizer was used to determine computationally the body of
revolution that minimizes wave drag at Mach = 10 and an altitude of 18 km. Initially, the
body was specified to be a 10-meter-long, 15-degree angle right-circular cone (Figure 6a).
The design variables for this exercise were specified to be the radii of the body at 10 cross
sections. Each design variable (the cross sectional radii) was allowed to vary from 0 to 10
meters. During the optimization process, the length was kept fixed and the total volume of
the body was constrained (with an equality constraint) not to change by more than 1.0 cubic
meter from its initial value of 75.185 cubic meters. The constrained optimization process
converged to the ‘bulged’ axisymmetric body called an ogive (Figure 6b). The base area of
the optimized body, and the total volume (fixed) were then used to compute Von-Karman
and Sears-Haack bodies from analytical expressions (Anderson, 1989). The numerically
optimized body was in excellent agreement with the analytically optimized body shapes
(Foster and Dulikravich, 1997).

 
 Optimum Star Shaped Missile

 
All of the body surface nodes on the first cross section could move together radially and
were controlled by one design variable. On the other five cross section planes, all of the 38
surface nodes had two degrees of freedom except for the two ‘seam’ points whose x-
coordinate is zero (the points on the vertical plane of symmetry). These ‘seam’ points were
allowed to move only vertically (in the y-direction) in their plane. Thus, there were 78
design variables per each of the five cross sections and one design variable (radius) at the
sixth cross section giving a total of 391 design variable in this test case.
 

(a) (b)

 Figure 7.  The star shaped hypersonic missile obtained when using a constrained GA
optimizer and MNIT as a flow-field analysis code: a) front view, and b) axiomatic view.

The constrained DFP algorithm could not converge to anything better than the smooth
surface ogive shape which happened around 30th iteration. Therefore, the optimization was
switched to a constrained GA algorithm. After the completion of the 45th design cycle
which is towards the end of the ‘leveled-off’ portion of the convergence history
(approximately from design cycle 25 to cycle 48), a slightly perturbed ogive geometry was
obtained (Figure 7a). Due to the use of GA, the convergence after that point again
dramatically increased leading to the deepening of the body surface ‘ridges’, or ‘channels’,
and the narrowing of the spiked nose. It is understandable that these channels appeared
because the flow solver that was used for the optimization process was the MNIT.
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According to the MNIT, the pressure on the surface of the body is solely a function of the
local inclination angle with respect to the free stream. Therefore, the optimizer was able to
reduce the pressure on all of the body surface panels (after the first cross section) by
creating the star-shaped body (Figure 7b) which caused the outward normal vectors on each
panel to rotate away from the free stream direction.

Since the use of MNIT in this shape optimization example causes every second point
defining the body cross section to become a ‘ridge’, the number of optimized ‘ridges’ will
always equal the half of the grid points defining the body cross section. This is strictly the
result of the fact that an oversimplifying flow-field analysis model (MNIT) was used. It is
interesting to note that star-shaped hypersonic projectile shapes have been studied
experimentally for several decades, but the number of ‘ridges’ or ‘fins’ on these bodies was
considerably smaller. That is, a more physically appropriate non-linear flow-field analysis
code would have created a number of optimized ‘ridges’ that is considerably smaller than
half the number of all the grid points defining a body cross section. This illustrates the
possible dangers of using overly simplistic surrogate models for the evaluation of the
objective function in the latter stages of the optimization process.
 
 The final star cross section missile configuration obtained with the MNIT reduced the
aerodynamic drag by 77 percent. When the optimized star missile shape was analyzed using
the parabolized Navier-Stokes flow-field analysis code, the total drag of the optimized body
was found to be 53 percent lower than the drag of the initial conical geometry. The
difference between 77 and 53 percent in the reduction of the missile drag can be
represented as a relative error of (77 – 53)/53 = 45.3 percent that is strictly due to the use of
an overly simplistic surrogate model (MNIT) for the flow-field analysis. The shape
optimization effort took 75 optimization cycles, and called the MNIT flow solver 60001
times. The execution took 4282 seconds on a Cray C-90 computer.
 
 Maximizing Aerodynamic Lift/Drag
 
 Next, an initial 10-meter long 15-degree cone was optimized to maximize the lift-to-drag
(L/D) ratio at zero angle of attack using the hybrid gradient optimizer and the MNIT flow
solver. The shape was optimized holding its length and volume fixed. Six cross sectional
planes with forty surface nodes described the geometry. Every surface node was allowed to
vary only radially on its cross sectional plane thus creating a total of 240 design variables.
The DFP optimizer was executed until convergence was reached. Execution terminated
after 40 design iterations that consumed 1458 CPU seconds on a Cray C-90 and required
19961 objective function analyses. The converged optimal lift-to-drag ratio was L/D =
1.29. Figure 8a shows the final optimized body that is cambered and has ridges that have
formed on its upper surface. The optimizer cambered the body so that a greater surface area
on the underside faced the free stream so as to increase lift, and formed ridges on top of the
body so that downward pressure was minimized. Yet the body still has an ogive
appearance, which helps to reduce overall drag. At this point (after the DFP optimizer had
converged), the optimization method was changed to the GA optimizer which continued to
further reduce the cost function. The execution of the GA was stopped after it had
performed an additional 52 design cycles that required only an additional 748 objective
function analyses. The converged optimized lift-to-drag ratio was L/D = 1.54. The
important fact learned from this case is that the constrained GA optimization technique was
able to significantly reduce the cost function after the gradient based constrained DFP had
converged and could go no further. Not only did the constrained GA optimizer reduce the
cost function, but also it did so while performing fewer objective function analyses.
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(a) (b)

 Figure 8.  Maximum lift/drag hypersonic body shapes obtained with MINT as the
aerodynamic analysis code and: a) constrained DFP, and b) constrained GA.
 
 The final optimized geometry is obviously aerodynamically nonsensical (Figure 8b). The
reason why the hybrid genetic optimizer produced such a nonsensical-looking geometry is a
consequence of the flow-field analysis method that was used. The MNIT flow solver is
extremely simple and can yield inaccurate results for complex and undulating geometries
such as the one in Figure 6. Specifically, MNIT cannot account for the viscous forces or the
complex shock wave interactions that would occur in the flow-field around such geometry.
Therefore, the geometry depicted in Figure 6 is certainly not optimal in light of a correctly
modeled flow.

Aerodynamic Shape Optimization of Turbomachinery Cascades

In the case of a turbomachinery aerodynamics, sources of entropy production other than
viscous dissipation and heat transfer could be neglected. For a given set of inlet and exit
flow boundary conditions, the shape of the turbomachinery blade row determines the
amount of entropy generated in the blade row flow-field. Minimization of the entropy
generation (flow losses) can therefore be achieved by the proper reshaping of the blade
row. Besides the task of designing an entirely new turbomachine, designers frequently face
a task of retrofitting an existing compressor or a turbine with a new, more efficient, rotor or
a stator. This is a challenging task since it has a number of constraints. Specifically, the
axial chord of the new row of blades must be the same or slightly smaller than the axial
chord length of the original blade row. Otherwise, the new blade row will not be able to fit
in the existing turbomachine. Inlet and exit flow angles must be the same in the redesigned
blade row as in the original blade row or the velocity triangles will not match with the
neighboring blade rows. Mass flow rate through the new blade row must be the same as
through the original blade row or the entire machine will perform at an off-design mass
flow rate which can lead to serious unsteady flow problems. Torque created on the new
rotor blade row must be the same as on the old rotor blade row or the new rotor will rotate
at the wrong angular speed. To make certain that the new blades will be structurally sound,
the cross section area of the new blade should be the same or slightly larger than the cross
section area of the original rotor blade. In case of a turbine blade, trailing edge thickness
should not be smaller than a user specified value or it will overheat and burn.
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This amounts to four very stringent equality constraints and one inequality constraint. An
additional equality constraint is the gap-to-axial chord ratio that will be kept fixed. In this
work we will keep the total number of blades fixed and will optimize only a two-
dimensional planar cascade of airfoils subject to a steady transonic turbulent flow. The
method used for calculating the shape of an airfoil in a turbomachinery cascade was chosen
to require only nine parameters. These variables include the tangential and axial chord, the
inlet and exit half wedge angle, the inlet and outlet blade angle, the throat, unguided turning
angle, and the leading and trailing edge radii (Pritchard, 1985; Dulikravich et al., 1998;
Dulikravich, Martin, and Han, 1998).

A GA based optimizer was used to design a turbine airfoil cascade shape by varying these
nine parameters. The objective of the optimization was to determine the airfoil shape that
gives the minimum total pressure loss while conforming to the specified constraints of
producing 22,000.0 N of lift, an average exit flow angle of –63.0 degrees, a mass flow rate
of 15.50 kg s-1, a cross-sectional area of 2.23E-3 m2, and an axial chord of 0.1 m. The
mathematical form of this objective function is:
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where L is the lift, PO is the total pressure, θ is the average exit flow angle, m&  is the mass
flow rate, and A is the cross-sectional area of the airfoil. The variable tde is the largest
relative error in the airfoil thickness distribution compared to an airfoil with a thickness
distribution that is considered to be minimum allowable. This constraint prevents airfoil
from becoming too thin so that it would not be mechanically or thermally infeasible. The
constants ci are user specified penalty terms. The inlet total pressure, total temperature, and
inlet flow angle were set to 440,000 Pa, 1600.0 K, and 30.0o, respectively. The exit static
pressure was specified as 101,330 Pa. Adiabatic wall conditions were enforced along the
airfoil surface.

The genetic algorithm based optimizer used the micro-GA technique (Krishnakumar, 1989)
with no mutation. A binary string that used nine bits for each design variable represented
each design in the population. A tournament selection was used to determine the mating
pairs (Goldberg, 1992). Each pair produced two children who then replaced the parents in
the population. Uniform crossover with a 50% probability of crossover was used to produce
the children. Elitism was also implemented in the optimizer; the best individual found from
the previous generations was placed in the current generation. Two runs were made; each
used a different method for enforcing the constraints.

Penalty Method for Constraints

This run used penalty terms alone to enforce the constraints. A constant penalty term of
4.0E6 was applied to each normalized constraint. The calculation consumed 70 hours of
CPU time on a 350 MHz Pentium II based PC. The genetic optimizer was run for 30
generations with a population of 20. The best airfoil designs from generation 1 and
generation 30 are shown in Figure 9a. The best design from the GA generation 1 had a total
pressure loss of 8200 Pa, which was after 30 generations reduced to 6850 Pa (Figure 10).
The maximum fitness for this method increased monotonically, although somewhat slowly
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(Figure 11). Also, after 30 generations, a 3.5% violation of the lift constraint, a 1%
violation in the exit flow angle constraint, a 3.3% violation of the mass flow rate constraint,
a 3.1% violation of the area constraint, and a 4% violation in the thickness distribution
constraint were achieved (Figure 12).

(a) (b)
Figure 9. Shapes of the best members of the population after the generations number 1 and
30: a) when constraints were enforced via penalty function only, b) when constraints were
enforced via SQP and the penalty function.

Figure 10. Evolution of the total
pressure loss for both methods of
enforcing constraints.

Figure 11. Fitness function evolution for
both methods of enforcing constraints.

Gene Correction SQP Method for Constraints

In this run, a gene correction method based on sequential quadratic programming (SQP)
(Rao, 1996) was used to enforce the cross sectional area and thickness distribution
constraints while penalty terms were used to enforce the lift, mass flow rate, and average
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exit angle constraints with a penalty constant of 4.0E6. The SQP was used to minimize the
thickness distribution error with the specified cross sectional area of the airfoil as an
equality constraint. This was done to every individual in the population for each generation.

Figure 12. Violation of the constraints for
the best design of each generation when
enforcing constraints via penalty function
only.

Figure 13. Violation of the constraints for
the best design of each generation when
enforcing constraints via SQP and the
penalty function.

With this method, essentially all the designs become geometrically feasible before the
expensive flow-field analysis is performed. This allows the genetic algorithm to focus on
satisfying the lift, mass flow rate, and exit angle constraints only. The combined genetic and
SQP optimizer was then run for 30 generations with a population of 15 and consumed 50
hours of computing time on a 550 MHz AlphaPC workstation. The best airfoil designs from
the GA generation 1 and generation 30 are shown in Figure 9b. The best design from
generation 1 had a total pressure loss of 7800 Pa, which was reduced after 30 generations to
6546 Pa (Figure 10). The maximum fitness for this method increased rapidly during the
initial stages of the optimization process (Figure 11). Also, after 30 generations, the design
had a 5.8% violation of the lift constraint, a 1% violation in the exit flow angle constraint, a
1.9% violation of the mass flow rate constraint, a 0% violation of the area constraint, and a
0% violation in the thickness distribution constraint. Figure 13 shows the violation of the
constraints for the best design of each generation. This method consistently produced higher
fitness designs over the previous method that enforces all constraints via a composite
penalty function.

There was an attempt to use SQP to minimize all the constraint violations in lift, mass flow
rate, exit angle, area, and thickness for each design in each generation, but this proved to be
too computationally expensive. Besides, for every new design generated by the GA, the
SQP code failed to find a feasible solution before converging to a local minimum. However,
with just the area and thickness distribution constraints, the SQP was able to find a design
meeting those constraints most of the time. Also, the computations required to find area and
thickness distributions are very inexpensive. This proved to be more economical than trying
to use SQP to satisfy all the constraints simultaneously. It was also more effective than
treating all the constraints with just a penalty function.
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Maximizing Multistage Axial Gas Turbine Efficiency

Instead of using an extremely computationally demanding three-dimensional multistage
viscous transonic flow-field analysis code based on Navier-Stokes equations, we have used
a well established fast through-flow analysis code (Petrovic and Dulikravich, 1999). When
combined with our hybrid constrained optimization algorithm, it can efficiently optimize
hub and shroud geometry and inlet and exit flow-field parameters for each blade row of a
multistage axial flow turbine. The compressible steady state inviscid through-flow code with
high fidelity loss and mixing models, based on stream function method and finite element
solution procedure, is suitable for fast and accurate flow calculation and performance
prediction of multistage axial flow turbines at design and significant off-design conditions.

An analysis of the loss correlations was made to find parameters that have influence on the
multistage turbine performance. By varying seventeen variables per each turbine stage it is
possible to find an optimal radial distribution of flow parameters at the inlet and outlet of
every blade row. Simultaneously, an optimized meridional flow path is found that is defined
by the optimized shape of the hub and shroud.

The design system has been demonstrated (Petrovic and Dulikravich, 1999) using an
example of a single stage transonic axial gas turbine, although the method is directly
applicable to multistage turbine optimization. The comparison of computed performance of
initial and optimized design shows significant improvement in the multistage efficiency at
design and off-design conditions. The optimization was performed while keeping constant
rotational speed; mass flow rate, total enthalpy drop, number of blades, rotor tip clearance,
blade chord lengths, and blade trailing edge thicknesses. There was only one geometric
constraint in this test case: blade tip radius was allowed to change up to a prescribed value.
It was assumed that both blade count and chord lengths have been already determined by
some preliminary design procedure. In principle, it is possible to include both of these
parameters (and other parameters deemed to be influential) in this optimization method.

To find the turbine configuration that gives the maximum total-to-total efficiency, only 15
minutes on an SGI R10000 workstation were necessary with the constrained hybrid
optimizer, which mainly utilized DFP algorithm. Figure 14 shows a comparison of
meridional flow paths for the initial and for the optimized configuration. The geometric
changes are relatively small. However, these changes of hub and shroud shapes together
with the optimized radial distribution of flow angles at inlet and outlet of the stator and the
rotor have as a result a significant decrease in the flow losses and the entropy generation. In
the particular single stage transonic turbine the total-to-total efficiency was improved by
2%.

Figure 14. Predicted entropy distribution in a meridional plane of the initial and the
optimized single stage axial gas turbine configuration.

Summary

A cluster of standard optimization algorithms was assembled in a hybrid optimization tool
where a set of heuristic rules was used to perform automatic switching among the individual
optimizers in order to avoid local minimums, escape from the local minimums, converge on
a minimum, and reduce the overall computing time. The constraints were enforced either
via penalty function or via Rosen’s projection method. The hybrid optimizer was applied in
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aero-thermal optimization of internally cooled blades, aerodynamic shape optimization of
hypersonic projectiles, and efficiency optimization of a retrofit turbine airfoil cascade.
Lessons learned from these efforts are valuable. Most importantly, hybrid optimization is a
very robust and cost-effective optimization concept. Automatic switching among the
individual optimizers can be further improved by incorporating certain aspects of neural
networks. Use of simplified models (surrogates) for evaluation of the object function is
highly cost effective, although progressively more complete physical models should be used
as the global optimization process starts converging. Otherwise, ludicrous results are
possible where the deficiencies of the surrogate models are fully exploited by the optimizer.
Parameterization of the design space plays a crucial role in the hybrid constrained
optimization. Coarse parameterization usually, but not always, leads to a converged result
at an acceptable cost in computing time. A refined parameterization definitely widens the
feasible region in the case of a highly constrained optimization. Finally, a gene correction
method based on sequential quadratic programming could be effectively used to enforce
certain inexpensive constraints while penalty terms could be used to enforce the remaining
constraints. The complex multidisciplinary optimization problems seem to call for a
multiobjective automated decision making process, which could involve weighting the
objective functions or alternating between the objectives and the constraints.
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