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Abstract

One of the most important practical considerations in the optimization of steel structures is that structural
members are generally to be selected from available steel pro®les. Furthermore, the solutions produced according to

the national speci®cations are undoubtedly valuable from the point of view of applicability in real-life practice. This
paper reports the development of a computer-based systematic approach for discrete optimal design of planar and
space structures composed of one-dimensional elements. The main characteristic of the solution methodology is the

use of a genetic algorithm (GA) as the optimizer. Applications and experience on steel frame and truss structures
are discussed. The results of comparative studies of the GA against other various discrete and continuous
optimization algorithms for a class of representative structural design problems are reported to show the e�ciency

of the former. It is observed that a GA often ®nds the region of the search space containing the global optimum,
but not the true optimum itself. Also, in this study an approach based on a proposed multilevel optimization is
tested and proved to overcome this shortcoming. # 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Optimization; Structural optimization; Steel structures; Integrated genetic algorithm; Constraint handling; Computer

program `GAOS'; Multilevel optimization

1. Introduction

This paper is concerned with a computer-based sys-

tematic approach for optimum design of planar and
space structures composed of one-dimensional el-
ements. In structural optimization it is well-known
that optimality criteria (OC) techniques and mathemat-

ical programming (MP) based methods have received
great interest and application during the last several
decades. Recently, genetic algorithms (GA), simulated

annealing and evolutionary programming have

attracted attention amongst the engineering design op-

timization community [1]. These new approaches show

certain advantages over the more classical optimization

procedures [2], e.g. they can successfully be applied to

a broad range of diverse problem areas. In this study

design optimization approach using a GA is employed.

Genetic algorithms are global search methods which

have found application in a wide spectrum of problem

areas, including optimum structural design [3±7]. Here,

discrete optimal designs of bar structures including

beams, plane and space trusses, plane and space frames

and grids is covered using a GA based procedure. Dis-

crete variable optimization refers to the case where the

design variables are to be selected from an available

list. Integer and 0±1 optimizations are easily inter-
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Fig. 1. General ¯owchart of GAOS.
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preted as two special cases of the general discrete vari-
able optimization approach. The need for more

research on discrete variable optimization is pointed
out in Thanedar and Vanderplaats [8], where the three
principal methods for discrete variable optimization

are stated as the classical branch and bound methods,
mixed linearization or approximation methods and ad-
hoc methods. Included in the ad-hoc methods are

simulated annealing and genetic algorithms.
The integrated GA approach transforms the con-

strained structural design problem into an uncon-

strained problem through the use of penalty functions.
Recent penalty functions for GA applications are dis-
cussed in Michalewicz [9]. In this paper, a slightly
modi®ed version of the Joines and Houck's method is

used. The GA is a robust optimizer. A proper treat-
ment of GA tools [11] allows both a thorough explora-
tion of the design space and a satisfactory exploitation

of the already obtained possible solutions in the search
of the optima. A global optimum is not guaranteed,
although, near-optimal solutions are found easily. In

the weight optimization problems presented in this
paper, discrete optimization is performed by selecting
discrete sections of structural elements from available

pro®le lists. Although only size optimization of bar
structures is considered, GA integrated structural op-
timization can conceivably handle other structural
types and more complex structures. For carrying out

the necessary computations, a computer program
GAOS (Genetic Algorithm Based Optimum Structural
Design) is introduced. The general ¯owchart of GAOS

is given in Fig. 1. The main components of the system
are: (1) structural modeling (displacement ®nite el-
ement structural analysis algorithm); (2) modeling for

optimum design problem (objective function, design
variables and constraints involved in size optimiz-
ation); and (3) the optimization algorithm (GA).
The paper ®rst discusses the basic working scheme

of a GA and the GA integrated structural optimiz-
ation. Then the implementation of the GAOS program
is discussed in detail with respect to discrete size op-

timization of trusses and frames with applications to
steel structures composed of ready hot-rolled sections.
Six example problems are given and fully discussed.

2. Structural optimization and GA

The main three components in the operation of a
GA are: (1) the creation of an initial pool of designs;
(2) combination of the designs in a pool in order to

produce better designs; and (3) obtaining new gener-
ations of designs. These steps are explained below in
the context of structural design optimization problems.

2.1. Creation of a pool of designs

In GA terminology a pool of designs is named a

population. Each design in a population is called an
individual and the size of a population is the number
of individuals which constitute the population. The in-

dividuals are de®ned by binary strings (there may be
other representations) which represent the design par-
ameters of a particular design. To start the algorithm,

an initial population is created randomly.

2.2. Combination of designs

If the size of the population is n, n/2 pairs of designs

are combined to produce n new designs, each pair
yielding (producing) a new pair. In this process, natu-
ral evolution of living organisms is mimicked. Prior to

the combination of individuals, there is a process of
selection. Each individual is ®rst evaluated with respect
to the objective function and then assigned a ®tness
value. Those individuals with high ®tnesses are selected

for reproduction. A very ®t individual may have sev-
eral chances to be a mate in the reproduction phase.
Selection, crossover and mutation are the most com-

mon genetic operators which are used in obtaining
improved results.

2.3. New generation of designs

The end product of combination of n/2 pairs of the
®ttest designs is a new pool of designs having n new in-
dividuals. In GA terminology this is a new generation.

The new generation has better ®t individuals as com-
pared to the previous generation. The underlying phil-
osophy in a GA is that every time by starting the

combination process with more ®t individuals, the
average ®tness of the population should increase. In
terms of a structural optimization problem, an individ-

ual represents a possible design, comprising mainly the
relevant information related to the structure. Since a
population consists of n individuals, this implies that

each generation results in n designs. As new gener-
ations are created, and as it is explained above, the
average ®tness which represents the objective function
of the optimum design problem increases which in turn

means the optimum solution is approached.

3. Structural optimization problem

A general discrete-sizing structural optimization pro-
blem is posed as,

minimize

W � F�X� �1�

F. Erbatur et al. / Computers and Structures 75 (2000) 209±224 211



satisfying

gj�X�R0, j � 1, . . . ,Nc, �2�

�Xi �minRXiR�Xi �max, i � 1, . . . ,Nd �3�
where

X � �X1,X2, . . . ,XNd

�T
and Xi 2 L �4�

In Eqs. (1)±(4), Nc and Nd represent, respectively, the
number of constraints and independent design vari-
ables, X is the vector of design variables of dimension

�Nd � 1�, W � F�X� is the objective function, gj is the
jth constraint on structural response and the inequal-
ities in Eq. (3) are side constraints on the design vari-

ables. In discrete structural engineering optimization
the vector X represents ready element sections which
are to be chosen from an available list �L). Eqs. (1)±(4)
represent a typical constrained optimization problem.
The structural response constraints considered in this
study include section stresses, nodal displacements and

buckling of elements.

3.1. Integration with GA

For GA use, the constrained problem is transformed
into an unconstrained problem (or GA is to be modi-

®ed). A new (or modi®ed) function is de®ned where
the constraints that are violated, are penalized. Some
of such approaches are studied in Michalewicz [9].

Amongst them the one proposed by Joines and Houck
(Eq. (5)) uses a dynamic penalty with respect to gener-
ation count t.

f�X� � F�X� � �r0 � t�a
Xm
j�1

gbj �X� �5�

In Eq. (5), gj is the jth constraint function, which is

zero in case of no violation, and is positive otherwise.
The �r0 � t�a component of the penalty term is the pen-
alty multiplier, where r0 stands for the penalty coe�-

cient. For r0,a and b, the values of 0.5, 2 and 2 are
recommended, respectively. In this paper, a slightly
modi®ed version of the Joines and Houck method (Eq.

(6)), is used.

f�X� � F�X� � �r0 � t�2
Xm
j�1

�
gj�X�k

� �6�

As it is noticed, the gbj �X � term in Eq. (5) is replaced
by gj�X�k in Eq. (6). In structural optimization pro-
blems, the constraints are normalized to provide an

equal and fair penalty distribution for di�erent types
of constraint violations. When the power of the con-
straints are imposed, as in Eq. (5), the penalty given to

the individuals becomes very small due to the normali-
zation of the constraints. The modi®cation in Eq. (6)

avoids this drawback observed in Eq. (5). In Eq. (6), a
value of 10 is used for k.
The handling of constraints in GA integrated struc-

tural optimization is an important issue in itself. This
problem is studied in detail elsewhere [10], It su�ces to
note here that, in Ref. [10], apart from other consider-

ations, the experience gained by employing Eq. (6) is
also utilized and a new penalty function, Eq. (7), is
proposed to obtain an improved search over the design

space. Two new parameters are introduced in Eq. (7);
a penalty parameter `p' and a control parameter `c'. In
brief, the penalty parameter is designed to adjust the
intensity of penalty imposed to constraints as gener-

ations progress and, the control parameter puts a con-
trol on the distribution of individuals in the design
space. As stated above, in this paper Eq. (6) is used.

Some of the numerical examples are also tested using
Eq. (7) with encouraging results, i.e., optimum designs
are reached in lesser number of generations. A full

treatment of the problem of constraint handling is
reported in Ref. [10].

f�X� � F�X� � c � p
Xm
j�1

�
gj�X�k

� �7�

4. Genetic algorithm based structural optimization

(GAOS)

The integrated structural optimization explained
above is implemented as the program GAOS. The
GAOS program is conceived to handle the optimal de-

sign of structures made up of 1D elements. In its pre-
sent form it handles size optimization of plane and
space trusses, plane and space frames, beams and grids

with given topology and geometry. The general charac-
teristics of the program are:

1. Constraint violations are taken care of by penalty

functions.
2. A structural analysis program is included in the

main program to achieve a shorter computation
time.

3. The program requires the preparation of an input
®le for both the structural analysis problem and the
GA required data. The GA data is user dependent.

If not prepared the program will assume default
values which make the program independent of the
GA optimization procedure. The structural data is

typical of a generally available structural analysis
program.

4. For steel structures the program selects ready sec-
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tions from particular pro®le lists speci®ed in the
input data.

Apart from these general characteristics, the GAOS
program has the following practical approaches.

1. Presently, it handles the requirements of both AISC
and Turkish codes.

2. Member grouping, as widely practical in real design
problems, is possible. This also decreases the num-

ber of design variables and thus the problem size.
3. Five di�erent pro®le lists may be considered.
4. It allows the user to impose his own constraints.

5. It allows the user to establish his own pro®le lists.
6. Multiple loading conditions can be handled.

The outline of the GAOS implementation is presented

in the following sections.

4.1. De®nition of an individual

The individuals of the populations are Pascal record
types and contain DesignString, SectionID, Fitness

and Violation ®elds, where the characteristics of indi-
viduals are stored, Fig. 2. DesignString ®eld represents
the chromosome, and holds the binary string which is

a combination of individual strings corresponding to
members in the structural system. Mapping of the
chromosomal strings to discrete sections is carried by

multiparameter mapping. Multiparameter mapping is
found to be easy to handle and implement for struc-
tural design problems. SectionID ®eld of the individ-

uals holds the discrete section numbers corresponding
to structural members. SectionID variable is an array
of integers which is found by decoding and mapping

the DesignString. Discrete sections are found by using
the entries of SectionID array as indexes into the cor-
responding pro®le list holding the discrete sections.

After the ®tness of each individual in a population is
evaluated, the value is kept in the Fitness ®eld for use
in the creation of the next generation. The Violation

®eld is a Boolean variable used to indicate whether
there is any constraint violation or not. The Violation
®eld is set to TRUE when there is a violation, and

FALSE otherwise.

4.2. Pro®le lists and database for discrete sections

GAOS can use all pro®le lists available in AISC and

Turkish codes, such as circular hollow, wide-¯ange
pro®les, etc. Any pro®le list (prepared as a DOS ®le) is
arranged to be a list of entries de®ning the character-

istics of all discrete sections of a particular pro®le. A
typical pro®le list with its ®ve entries is shown in Table
1. In GAOS, the maximum number of discrete sections
in a pro®le list is limited to 300, and a maximum ®ve

di�erent pro®le lists are allowed to be used in each run
of the program. When the program is implemented,
the pro®le lists used in the problem are read and trans-

ferred to a database within GAOS to speed up the pro-
cess. This database declared as a dynamic variable is
of Pascal record type and contains Name, Height,

Width, WebS, FlangeT, Area, UnitWeight, InertiaX,

Table 1

First ®ve discrete sections in a typical wide-¯ange discrete section database

Name Height, h

(in.)

Width,w

(in.)

WebS, s

(in.)

FlangeT, t

(in.)

Area

(in.2)

Unit weight

(lb/ft)

InertiaX

(in.4)

IX

(in.)

InertiaY

(in.4)

IY

(in.)

J

(in.4)

W44� 285 44.02 11.811 1.024 1.772 83.80 285.00 24600.0 17.10 490.0 2.42 60.0

W44� 248 43.62 11.811 0.865 1.575 72.80 248.00 21400.0 17.20 435.0 2.44 40.7

W44� 224 43.31 11.811 0.787 1.416 65.80 224.00 19200.0 17.10 391.0 2.44 30.0

W44� 198 42.91 11.811 0.709 1.220 58.00 198.00 16700.0 16.90 336.0 2.41 20.1

W40� 328 40.00 17.910 0.910 1.730 96.40 328.00 26800.0 16.70 1660.0 4.15 74.2

Fig. 2. An illustration of a typical population in GAOS.
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IX, InertiaY, IY, J ®elds, each holding a section prop-
erty for an I-beam, Fig. 3.

In this record type, Name, Area and UnitWeight
correspond, respectively, to the name, cross-sectional
area and weight per linear length of the discrete sec-

tion. Height is the height of the section, Width is the
width of the ¯ange. WebS and FlangeT refer to thick-
ness of the web and ¯ange, respectively. InertiaX and

InertiaY are used to denote the moment of inertia of
the section about the strong and weak axis, respect-
ively, while IX and IY stand for the corresponding

radii of gyration. Finally, J refers to the torsional con-
stant of the discrete section.

4.3. Structural analysis and constraints

The structural analysis part has to be compatible
with the genetic algorithm. The use of an external
analysis program is proved to be ine�cient; therefore

an analysis program is incorporated into GAOS itself.
The analysis routine handles both joint and span loads
and restraints. Three typical constraints, namely stress,

stability and displacement constraints can be imposed
in GAOS. Presently, the user has the choice of select-
ing the AISC or the Turkish code speci®cations.

4.4. Fitness and penalty function

A penalty function is to be chosen for handling con-

straint violations during the ®tness evaluation pro-
cedure. In case of violation of a constraint, a penalty
associated with the constraint is applied to the current
design. GAOS uses Eq. (6) to handle the constraint

violations.

4.5. Genetic operators

After the evaluation of current population's ®tness,

next population is created from the current one. Gen-
etic operators are involved at this stage. Selection,
reproduction and mutation operators, as implemented

in Goldberg's Simple Genetic Algorithm source code
[12], are used. Fitness Scaling is also used to help
smooth convergence by narrowing the range of popu-

lation ®tnesses to gather around population average
®tness. Individuals whose ®tnesses are below the popu-
lation average ®tness are scaled up and individuals
whose ®tnesses are above the population average ®t-

ness are scaled down. In this way, dominance by extra-
ordinary individuals is eliminated, and better
convergence and better search of design space are

established. The ®tness scaling algorithm used in
GAOS is shown below. In this algorithm, OriginalFit
and ScaledFit are the variables showing the original

and scaled ®tness values of an individual, respectively.
MinFit, AvgFit and MaxFit are the minimum, average
and maximum population original ®tness values, re-
spectively. Additionally, the Elitist Selection Scheme

(ESS) [2], is used so as not to lose the ®ttest individual
during the creation of new populations.

Algorithm:

0.1. Set FitMult=2.0 { Fitness multiple is 2 }
0.2. Evaluate MinFit, AvgFit and MaxFit of the

population

0.3. If MinFit > (FitMult�AvgFitÿMaxFit)/
(FitMultÿ1.0)
then D=MaxFitÿAvgFit {Normal Scaling }

if D=0.0 then a=1.0, b=0.0

else a=(FitMultÿ1.0)�AvgFit/D, b =

AvgFit�(MaxFitÿFitMult�AvgFit)/D

else D=AvgFitÿMinFit { Scale as much as

possible }

if D=0.0 then a=1.0, b=0.0

else a = AvgFit/D, b= ÿMinFit�Avg
Fit /D

0.4. Compute ScaledFit= a�OriginalFit + b

4.6. Termination criterion and top-ten

Considering the advantage of handling a population
of designs in each step, a general termination criterionFig. 3. I-beam.
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is not enforced in GAOS. Instead the termination is

left to the user. On termination, two valuable pieces of
information may be obtained; History-Record and a
predetermined number of feasible designs. The His-
tory-Record ®le enables the user to view what happens

during consecutive generations of the process through
statistical treatment of the individuals. It contains in-
formation on the feasible (and infeasible) best, average

and worst designs as the generations progress. Top-ten
refers to the best ten di�erent designs obtained during
the optimization process until it is terminated. Each

design includes the objective function value, the section
chosen for each element and the analysis results for
the applied loading.

5. Use of GAOS

For the operation of GAOS, one has to prepare an

input ®le where in addition to typical structural analy-
sis input options, data related to genetic operations are
also included. These are: population size, maximum

number of generations, mutation probability, and

crossover probability. Additionally, two more data are

also considered. One is a penalty coe�cient, which is

needed in tackling constraint violations and the other

one is to indicate the element group to which individ-

ual elements belong. The use of the program is facili-

tated by an interactive operation where the main

components of the optimization procedure appear on

Fig. 4. A 25-bar space truss.

Table 2

Member linking detail for 25-bar space trus

Group number Members

1 A1

2 A2±A5

3 A6±A9

4 A10, A11

5 A12, A13

6 A14±A17

7 A18±A21

8 A22±A25

F. Erbatur et al. / Computers and Structures 75 (2000) 209±224 215



the computer screen. The user chooses the input ®le
and starts the process. Appearing on the screen at any
time are current design values (with weight, volume,

and constraint status), sections of the members, and
number of generations. Additionally, input ®le name,
number of members and the chosen design code also
continuously appear on the screen.

6. Multilevel optimization

6.1. A drawback of a GA

Optimization of a structural system comprising nu-

merous design variables is a challenging problem due
to its huge size of search space. In fact, it is not easy
for any optimization algorithm to carry out an e�ec-

tive exploration without locating a local optimum. The
dimension of the search space even grows exponen-
tially either with the addition of extra design variables

or with the enlargement of pro®le lists. The tests per-
formed on various structures show that a GA is gener-
ally quite successful in locating the region of the search
space containing the global optimum, but not the true

optimum itself.

6.2. Multilevel optimization approach

Here, a multilevel optimization approach is im-

plemented and proved to eliminate the e�ect of such a
major drawback. The approach rests on reducing the
size of the search space for individual design variables

in each successive level of the optimization process. In
this approach, an initial optimization named the ®rst

Table 4

The comparison table for 25-bar space truss

Method Weight (lb) Design variables (in.2)

A1 A2 A3 A4 A5 A6 A7 A8

Rajeev [4] GA, pop. size � 20 546.76 0.20 1.80 2.30 0.20 0.10 0.80 1.80 3.00

Rajeev [4] GA, pop. size � 30 546.01 0.10 1.80 2.30 0.20 0.10 0.80 1.80 3.00

Rajeev [4] GA, pop. size � 40 546.01 0.10 1.80 2.30 0.20 0.10 0.80 1.80 3.00

Zhu [13] 562.93 0.10 1.90 2.60 0.10 0.10 0.80 2.10 2.60

GAOS-level1 515.27 0.10 1.00 3.40 0.20 0.60 1.10 0.90 3.00

GAOS-level2 493.80 0.10 1.20 3.20 0.10 1.10 0.90 0.40 3.40

Table 3

The design data for 25-bar space truss

Constraint data

Displacement constraints: DjR0:35 in. in x and y directions,

j � 1,2

Stress constraints: ÿ40 ksiR�sa�iR40 ksi i � 1, . . . ,25

Loading data

Case number Joint number x (kips) y (kips) z (kips)

1 1 1 ÿ10 ÿ10
2 0 ÿ10 ÿ10
3 0.5 0 0

6 0.6 0 0

Elements of discrete sets (in.2)

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4,

1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0,

3.2, 3.4

Material properties

Modulus of elasticity: 104 ksi

Density of material: 0.1 lb/in.3

Table 5

Member linking detail for 72-bar transmission tower

Group number Members

1 A1±A4

2 A5±A12

3 A13±A16

4 A17, A18

5 A19, A22

6 A23±A30

7 A31±A34

8 A35, A36

9 A37±A40

10 A41±A48

11 A49±A52

12 A53, A54

13 A55±A58

14 A59±A66

15 A67±A70

16 A71, A72
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level optimization is carried out with an original pro®le
list (discrete set) used by all design variables. An orig-

inal discrete set must be arranged in such a manner
that the ready sections are placed in an increasing
order of their cross-sectional areas. In other words, the
®rst entry of the discrete set is the smallest section, and

the last entry is the largest one. Following the ®rst
level optimization, the algorithm automatically divides
the original discrete set into several subsets (sub-pro®le

lists with smaller size search spaces) to be employed in
the second level optimization. The procedure used to
create these subsets is as follows; (i) the best design

obtained in the ®rst level optimization is taken as the
reference design, (ii) the original discrete set is equally
divided into a prescribed number of subsets (generally
5), (iii) individual design variables are directed to

appropriate subsets according to their values obtained
in the reference design, and (iv) the enlargement of the
subsets is performed. For this, each subset is added to

some ready sections copied from neighbour subsets,
that is the last 1/5 sections of the previous and the ®rst
1/5 sections of the following neighbour subsets are

added as the initial and ®nal entries to this subset, re-

Fig. 5. A 72-bar transmission tower.

Table 6

The design data for 72-bar transmission tower

Constraint data

Displacement constraints: DjR0:25 in. in x and y direction

j � 1, . . . ,20

Stress constraints: ÿ25 ksiR�sa�iR25 ksi i � 1, . . . ,72

Member-size constraints: 0.1 in.2 RAi, i � 1, . . . ,72

Loading data

Case number Joint number x (kips) y (kips) z (kips)

1 1 5 5 ÿ5
2 1 0 0 ÿ5

2 0 0 ÿ5
3 0 0 ÿ5
4 0 0 ÿ5

Material properties

Modulus of elasticity: 104 ksi

Density of material: 0.1 lb/in.3
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spectively. This is necessary because some design vari-
ables might be placed in a subset whose upper or

lower bound exactly matches with the value of the de-
sign variable. In such a case, the design variable is

restricted to move in one direction, and thus may
easily get trapped in a local optimum. However, such a

treatment of subsets avoids the risk of locating a local
optimum. In the second level optimization, the design
variables use smaller size subsets. Hence, the second

level optimization is performed on more restricted
regions of the search space. The process continues in a
similar fashion by dividing the subsets into new subsets
and directing the design variables to the most appro-

priate search spaces.

6.3. Characteristics of the multilevel optimization

The proposed approach has two important charac-
teristics. Firstly, it encourages the optimization process

to investigate better solutions in more restricted
favourable regions of the search space. Therefore, each

Table 7

The comparison table for 72-bar transmission tower

Design variables (in.2) Method

Linked variables Members Venkayya [14] Gellatly [15] Renwei [16] Schmit [17] Xicheng [18] GAOS level 2 GAOS level 3

A1 1±4 0.161 0.1492 0.1641 0.1585 0.157 0.155 0.161

A2 5±12 0.557 0.7733 0.5552 0.5936 0.537 0.535 0.544

A3 13±16 0.377 0.4534 0.4187 0.3414 0.411 0.480 0.379

A4 17,18 0.506 0.3417 0.5758 0.6076 0.571 0.520 0.521

A5 19±22 0.611 0.5521 0.5327 0.2643 0.509 0.460 0.535

A6 23±30 0.532 0.6084 0.5256 0.5480 0.522 0.530 0.535

A7 31±34 0.100 0.1000 0.1000 0.1000 0.100 0.120 0.103

A8 35,36 0.100 0.1000 0.1000 0.1509 0.100 0.165 0.111

A9 37±40 1.246 1.0235 1.2893 1.1067 1.286 1.155 1.310

A10 41±48 0.524 0.5421 0.5201 0.5793 0.516 0.585 0.498

A11 49±52 0.100 0.1000 0.1000 0.1000 0.100 0.100 0.110

A12 53,54 0.100 0.1000 0.1000 0.100 0.100 0.100 0.103

A13 55±58 1.818 1.464 1.9173 2.0784 1.905 1.755 1.910

A14 59±66 0.524 0.5207 0.5207 0.5034 0.518 0.505 0.525

A15 67±70 0.100 0.1000 0.1000 0.1000 0.100 0.105 0.122

A16 71,72 0.100 0.1000 0.1000 0.1000 0.100 0.155 0.103

Weight (lb) 381.2 395.97 379.66 388.63 380.84 385.76 383.12

Table 8

The design data for 112-bar steel dome

Constraint data

Displacement constraints: DjR20 mm in z direction,

j � 1,17,23

Stress constraints: �st�iR165 N/mm2, i � 1, . . . ,112,�sc�iR
TURKISH spec., i � 1, . . . ,112

Member-size: constraints: TURKISH circular hollow section

i � 1, . . . ,112

Loading data

Case number Joint number x (kg) y (kg) z (kg)

1 1 0 0 ÿ500
17,23,29,35 0 0 ÿ40
16,18,22,24 0 0 ÿ120
28,30,31,32

Rest 0 0 ÿ200

Material properties

Modulus of elasticity 2.1E6 kg/cm2

Yield strength 2750 kg/cm2

Table 9

The comparison table for 112-bar steel dome

Volume (cm3) Design variables (mm2)

A1 A2 A3 A4 A5 A6 A7

Saka [19]

444700 714 778

GAOS-level2

435724 707 557 667 707 707 523 1120
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optimization level may be interpreted as one step of

climbing up a hill towards the summit (optimum).

Also, it performs well in case the search space is occu-

pied by closely placed optima. Secondly, since the ca-

pacity of a discrete set is kept constant, any subset

formed by dividing a discrete set must contain fewer

ready sections than its capacity. That means excess

slots are produced in the subsets. For continuous op-

timization problems, these slots can be utilized to

obtain a better approximation to the continuous sol-

ution. During the tests, it is observed that two and

three levels of optimization are adequate for the con-

vergence to the true optimum for discrete and continu-
ous optimization, respectively.

7. Numerical examples

Several standard test problems are used to verify the
correctness and e�ciency of the GAOS program in op-
timization of plane and space steel structures. In all
problems considered, structures are designed for the

minimum weight with the cross-sectional areas of

Fig. 6. A 112-bar steel dome.
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structural members being the design variables. The

multilevel optimization approach discussed above is

implemented in all the problems. Ten thousand struc-

tural analyses are performed in each optimization level

of the problems tested here. For each problem, full list

of design data, ®nal designs at the end of optimization

levels and comparison with other methods are pre-

sented.

Fig. 7. Statically determinate 22-bar plane truss.

Table 10

The comparison table for statically determinate 22-bar plane truss

Truss member Axial force

(kip)

Applied stress

(ksi)

Allowable stress

(ksi)

True optimum GAOS level2 Optimum or not

SAP90 Pro®le Area

(in.2)

Pro®le Area

(in.2)

1 ÿ49.607 ÿ18.51 ÿ18.85 P 31/2 2.68 P 31/2 2.68 OPT.

2 ÿ41.339 ÿ15.43 ÿ18.85 P 31/2 2.68 P 31/2 2.68 OPT.

3 ÿ33.071 ÿ14.83 ÿ18.26 P 3 2.23 P 3 2.23 OPT.

4 ÿ24.803 ÿ14.59 ÿ17.20 P 21/2 1.70 P 21/2 1.70 OPT.

5 ÿ16.535 ÿ15.45 ÿ15.89 P 2 1.07 P 2 1.07 OPT.

6 ÿ8.267 ÿ10.35 ÿ13.62 P 11/2 0.799 P 11/2 0.799 OPT.

7 41.339 18.54 21.60 P 3 2.23 P 3 2.23 OPT.

8 33.071 19.45 21.60 P 21/2 1.70 P 21/2 1.70 OPT.

9 24.803 16.76 21.60 EP 2 1.48 P 21/2 1.70 NOT OPT.

10 16.535 20.69 21.60 P 11/2 0.799 P 11/2 0.799 OPT.

11 8.267 19.09 21.60 EP3/4 0.433 P 11/4 0.669 NOT OPT.

12 ÿ11.022 ÿ10.30 ÿ12.97 P 2 1.07 P 2 1.07 OPT.

13 ÿ11.022 ÿ10.30 ÿ12.97 P 2 1.07 P 2 1.07 OPT.

14 ÿ11.022 ÿ10.30 ÿ12.97 P 2 1.07 P 2 1.07 OPT.

15 ÿ11.022 ÿ10.30 ÿ12.97 P 2 1.07 P 2 1.07 OPT.

16 ÿ11.022 ÿ10.30 ÿ512.97 P 2 1.07 P 2 1.07 OPT.

17 13.779 21.56 21.60 EP 1 0.639 EP 1 0.639 OPT.

18 13.779 21.56 21.60 EP 1 0.639 P 11/2 0.799 NOT OPT.

19 13.779 21.56 21.60 EP 1 0.639 EP 1 0.639 OPT.

20 13.779 21.56 21.60 EP 1 0.639 EP 11/4 0.881 NOT OPT.

21 13.779 21.56 21.60 EP 1 0.639 EP 1 0.639 OPT.

22 13.779 21.56 21.60 EP 1 0.639 P 11/2 0.799 NOT OPT.

Weight (lb) 524.5 548.06 17 optimum

Volume (in.3) 1849.9 1932.21
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7.1. Example 1: 25-bar space truss

The standard 25-bar truss shown in Fig. 4 has been
frequently used to test numerous optimization tech-

niques [4,13]. Truss members linked in eight groups, as
shown in Table 2, are to be selected from a discrete set
of 30 ready sections. Table 3 presents complete and

detailed list of design data. A comparison of optimal
designs reported in the literature is listed in Table 4.

7.2. Example 2: 72-bar transmission tower

The design of 72-member transmission tower shown

in Fig. 5 has an important place in continuous optim-
ization literature [14±18]. The truss is subjected to two
distinct loading conditions and has sixteen independent

design variables after linking, as indicated in Table 5.
Table 6 summarizes full design data as well as loading.
A comparison of optimal designs reported in the litera-
ture is listed in Table 7.

7.3. Example 3: 112-bar steel dome

Fig. 6 shows the 112-bar steel dome that has been

Fig. 8. Stepped cantilever beam.

Table 11

The design data for stepped cantilever beam

Constraint data

Displacement constraint: tip de¯ectionR 2.7 cm in vertical

direction

Stress constraints: �sb�iR14,000 N/cm2 i � 1, . . . ,5

Aspect ratio constraints, Hi=BiR20, i � 1, . . . ,5

Loading data

P 50,000 N

Material properties

Modulus of elasticity 200 GPa

Sets of design variables (cm)

B1, H1 Integer

B2, B3 2.4, 2.6, 2.8, 3.1

H2, H3 45.0, 50.0, 55.0, 60.0

B4, H4, B5, H5 Continuous

Fig. 9. Industrial building.
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previously discussed in Saka [19]. Two modi®cations
are made to the former treatment of the problem.
First, 112 members of the dome are collected in seven

distinct groups, whereas two groups are used in Saka
[19]. Next, in place of AISC speci®cation, the allow-
able compressive stress for each member is computed

according to the Turkish speci®cation. Despite the fact
that the Turkish speci®cation leads to safer values in
computing the allowable compressive stresses, the dis-

tinction is not of much consequence. The complete and
detailed list of design data is presented in Table 8, and
a comparative study is listed in Table 9.

7.4. Example 4: statically determinate 22-bar plane

truss

The statically determinant truss shown in Fig. 7 is
considered to investigate how e�ectively and robustly

the GA performs on structural optimization. Only
AISC stress constraints are imposed on all truss mem-
bers, for which circular hollow sections are adapted.

Making use of statical determinacy of the truss, the
true optimum solution is found precisely. No member
linking is used to render the problem harder to opti-

mize. Furthermore, the member forces are independent
of member sizes due to statical determinacy of the
truss. That means no compensation with the distri-

bution of internal forces amongst the members is poss-
ible in case any design variable is exceeded. Table 10
shows and compares the true optimum value with that
of GAOS, along with the structural response. When a

third optimization level is employed, it is observed that
the program ®nds the true solution precisely.

7.5. Example 5: stepped cantilever beam

Thanedar and Vanderplaats [8] applied various op-
timization techniques to optimize the stepped cantile-
ver beam shown in Fig. 8. The beam is designed for

minimum volume. The height and width in all ®ve
steps of the cantilever beam are chosen to be the de-
sign variables, i.e., 10 variables in all. Except for bend-
ing stress constraints, a speci®ed aspect ratio is

imposed such that the ratio of height to width in the
steps of the beam is limited to be less than 20. Some
design variables are set to be integer or continuous,

while the others are to be selected from discrete sets.
Thus, the problem shows a characteristic of integer,
continuous and discrete behaviour. The complete and

detailed design data is summarized in Table 11. Table
12 presents optimum values obtained by various
methods.

Table 13

Member linking detail for industrial building

Group number Members

1 A1, A26

2 A2, A25

3 A3, A27

4 A4, A29

5 A5, A28

6 A6, A7, A23, A24

7 A8, A9, A10, A11

8 A12, A13, A14, A15

9 A16±A22

10 A17±A21

11 A18±A20

12 A19

Table 12

The comparision table for stepped cantilever beam

Design variables

(cm)

Method

Continuous/

round up

Precise

discrete

Linear

approximate

discrete

Conservative

approximate

discrete

GAOS

level 1

GOAS

level 2

B1 4 3 3 3 3 3

B2 3.1 3.1 3.1 3.1 3.1 3.1

B3 2.6 2.6 2.6 2.6 2.6 2.6

B4 2.205 2.276 2.262 2.279 2.300 2.270

B5 1.751 1.750 1.750 1.750 1.800 1.750

H1 62 60 60 60 60 60

H2 60 55 55 55 55 55

H3 55 50 50 50 50 50

H4 44.09 45.528 45.233 45.553 45.50 45.250

H5 35.03 34.995 34.995 35.004 35.00 35.00

Volume (cm3) 73555 64537 64403 64558 64815 64447
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7.6. Example 6: industrial building

Fig. 9 shows the geometry of an industrial building
with the element numbering as well as the loading. It

is subjected to three di�erent loading conditions and

has twelve design variables after linking, Table 13. The

structure is composed of two side frames and a gable

roof in between. The beam and column members of

the side frames are to be designed as ¯exural members,

for which wide ¯ange sections are adapted. Similarly,

Table 14

The design data for industrial building

Constraint data

Displacement constraints, DjR1:5 inch in horizontal direction at joints A, B, C, D, E, F for load cases 2 and 3

Stress constraints, ÿ24 ksi R�st�iR24 ksi i � 1, . . . ,29, ÿ16 ksi R�sc�iR16 ksi i � 1, . . . ,29

Loading data

Case number Load combinations (P = 10 kips)

1 roof + ¯oor + crane loads

2 case I + wind load from left

3 case I + wind load from right

Sets of structural members

Group number Behaviour Discrete set (AISC)

1, 2, 3, 4, 5, 6 Flextural members Wide-¯ange (W)

7, 8 Flextural members Tee section (WT)

9, 10, 11, 12 Axial members Double-angle (L)

Material properties

Modulus of elasticity 30� 103 ksi

Density of material 0.283 lb/in3

Yield stress 36 ksi

Table 15

The comparison table for industrial building

Design variables (in.2) Method

Linked variables Members Grierson and Lee [20] (in.2) GAOS level 1 GAOS level 2

Pro®le Area (in.2) Pro®le Area (in.2)

A1 1, 26 9.13 W18� 40 11.80 W16� 36 10.60

A2 2, 25 18.29 W18� 55 16.20 W21� 57 16.70

A3 3, 27 4.42 W8� 13 3.84 W6� 16 4.74

A4 4, 29 12.03 W14� 43 12.60 W21� 44 13.00

A5 5, 28 6.46 W8� 10 2.96 W6� 12 3.55

A6 6,7,23,24 9.13 W18� 46 13.5 W14� 26 7.69

A7 8,9,10,11 2.20 WT3� 4.5 1.34 WT3� 4.5 1.34

A8 12,13,14,15 2.20 WT5� 8.5 2.50 WT3� 4.5 1.34

A9 16, 22 1.71 L3� 2� 1/4 2.38 L3� 2� 3/16 1.80

A10 17, 21 1.09 L4� 3.5� 1/4 3.63 L3� 2.5� 3/16 1.99

A11 18, 20 0.67 L2.5� 2� 3/16 1.62 L2.5� 2� 3/16 1.62

A12 19 0.67 L3.5� 2.5� 5/16 0.31 L3� 2� 3/8 3.47

Weight (lb) 8991.6 9604.29 8693.21
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the top and bottom chord members of the gable roof
show a ¯exural behaviour, whereas vertical and

inclined web members of the gable roof only carry
axial loads. Besides, the chord and web members are
to be selected from tee sections cut from wide ¯ange

and two unequal-leg angles back to back sections, re-
spectively. The full list of design data along with the
loading conditions is presented in Table 14, and a

comparative study between this work and Grierson
and Lee [20] is shown in Table 15.

8. Discussion of results and conclusion

In this paper, the program GAOS was implemented
for a class of typical structural design problems to con-
®rm the ability of the GA on structural optimization.

These problems, except for the statically determinate
truss, have been used as test problems in the literature.
Throughout the problems, the GA is set to compete
with various continuous and discrete optimization al-

gorithms. While the test problems 1, 3, 5 and 6 are in
the category of discrete variable optimization, the test
problems 2 and 5 show a fully and partially continu-

ous behaviour, respectively. Comparing the tables, it
can immediately be observed that the GA exhibits a
satisfactory performance regardless of the problem

type. More clearly, it found best solutions to test pro-
blem 1, 3 and 6. In test problems 2 and 5 it produced
acceptably good values. Test problem 4 proved the

power of the GA since 17 optimums among 22 vari-
ables were easily obtained in the second level optimiz-
ation. The third level optimization found the true
solution. An attractive attribute of the GA is that the

optimization process does not need any gradient or
other supplementary problem information. This, in
fact, makes the optimization process easy with respect

to more conventional techniques and explains why
genetic algorithms are applied in a wide range of pro-
blem areas. The following two conclusions can be

made from the above tests: (i) the GA is one of the
most robust and promising strategies among discrete
optimization techniques; and (ii) the multilevel optim-
ization approach makes it possible for the GA to com-

pete with continuous optimization techniques.
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