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Abstract 

In this paper, we introduce a new algorithm for solving nonlinear 

programming (NLP) problems. It is an extension of Guo’s algorithm[1] 

which possesses enhanced capabilities for solving NLP problems. These 

capabilities include: a) advancing the variable subspace, b) adding a 

search process over subspaces and normalized constraints, c) using an 

adaptive penalty function, and d) adding the ability to deal with integer 

NLP problems,  0-1 NLP problems, and mixed-integer NLP problems 

which have equality constraints. These four enhancements increase the 

capabilities of the algorithm to solve nonlinear programming problems 

in a more robust and universal way. This paper will present results of 

numerical experiments which show that the new algorithm is not only 

more robust and universal than its competitors, but also its 

performance level is higher than any others in the literature. 

1  INTRODUCTION  TO GUO’S ALGORITHM 

It was shown in [1] that Guo’s algorithm has many 

advantages when solving optimization problems. Since the 

new algorithm presented in this  paper is based upon Guo’s 

algorithm, it is advisable to first present briefly its main 

features. 
The general NLP problem can be expressed in the following 
form: 
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where X pR∈ , Y qN∈ , and the objective function f (X,Y), 
the equality constraints h i(X,Y) and the inequality constraints 
g j(X ,Y) are usually nonlinear functions which include both 
real and integer variables.  
Denoting the domain  
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we introduce the concept of a subspace V of the domain D.  
m points mjYX jj ,,2,1  ),,( L=  in D are used to 

construct the subspace V, defined as - 
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Because Guo’s algorithm deals mainly with optimization 
problems which have real variables and INequality 
constraints, we assume  k 1 = 0 and q = 0 in the expression (1). 

Denoting 
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We define a Boolean function “better” as : 
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If better  (X1, X2) is TRUE, this means that the individual X1 is 
“better” than the individual X2. 
 Guo’s algorithm can be described as follows: 
Guo’s Algorithm  
Begin 

initialize popln P= {X1, X2,… , XN }; DX i ∈  

/* since (q = 0 implies no integer variables)*/ 
generation count t := 0; 
X best  = arg ) ( 

1
XMin i

Ni

f
≤≤

; 

X worst = arg ) ( 
1

XMax i
Ni

f
≤≤

; 

while ε>− ))()(( worstbest XfXfabs  do 

select  randomly m points '
1X , '

2X ,… , '
mX  from P to 

form the subspace V; 
select  randomly one point X ′ from V; 
If ),( worstXXbetter ′  then  Xworst  := X ′ ; 

t := t + 1; 
Xbest  = arg )( 

1
XfMin i

Ni≤≤
; 

Xworst = arg )( 
1

XfMax i
Ni≤≤

; 

end do 



output  t , P; 
end 
where N is the size of population P, (m –1) is the dimension of 
the subspace V (if the m points(vectors) that construct the 
subspace V are linearly independent)，t is the number of 
generations, ε  is the accuracy of solution. Xbest = arg 

)( 
1

XfMin i
Ni≤≤

 means that Xbest is the variable (individual) in X i 

(i=1, 2,⋯, N) that makes the function f (X) have the smallest 
value. 

2   A NEW OPTIMIZATION ALGORITHM 

Since Guo’s algorithm deals mainly with continuous NLP 

problems with INequality constraints, to make it a truly 

universal and robust algorithm for solving general NLP 
problems, we extend Guo’s algorithm by adding to it the 

following 8 improvements - 

(1) Guo selected randomly only one candidate solution from 

the current subspace V. This action would tend to ignore 
better solutions in the subspace, and hence influence 

negatively the quality of the result and the efficiency of the 

search. If however, we select randomly several individuals 

from the subspace, and substitute the best one for the worst 
one in the current population, the search should be better. So 

we replace the instruction line in Guo’s algorithm: 

“select randomly one point X ′  from V; ” 

with the two instruction lines: 

“ select randomly s points  
*
1X , *

2X ,… , *
sX  from V; 

)( arg *

1 isi
XfMinX

≤≤
=′ ;” 

(2) The dimension m of the subspace in Guo’s algorithm is 
fixed (i.e. m parents reproduce). Thus, when the population is 
close to the optimal value, the searching range is still large. 
This would apparently result in unnecessary computation, 
and effect the efficiency of the search. We can in fact reduce 
the dimension of the subspaces. We therefore use subspaces 
with variable dimensions in the new algorithm, by adding the 
following instruction line to Guo’s algorithm: 

if 3 .. ))()(( ≥≤− mandXfXfabs worstbest η  then 

 m := m – 1; 
where η  depends on the computation accuracy ε , and 
η > ε . For example, if the computation accuracy ε  = 10-14, 

then we can set η = 10-2 or 10-3. 

(3) We know in principle that Guo’s algorithm can deal with 
problems containing EQuality constraints using the device of 
setting two INequality constraints   ),(0 YXhi≤ and 

0 ),( ≤YXhi to replace the equality constraint 0 ),( =YXhi , 

but the experimental results when employing this device are 
not ideal. One such method is to use a penalty function. Since 

the INequality constraints have been included in function 
better in Guo’s algorithm, we use the following fitness 
function which includes only the penalty of the EQuality 
constraints: 

F (x) = f (x) + r ∑
=
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(4) Using the penalty function described above in 

numerical experiments, we observe that when a constraint 

coefficient is very large, it will have a decisive effect on the 

entire fitness function and influence the accuracy of the 
solution (referring to Example 1). We therefore introduce a 

normalization method (see [2]), which finds the largest 

coefficient in the constraint, then divides the entire constraint 

by it. For example, the third constraint in Example.1 is:  
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The largest coefficient is 750*1728=1,296,000. Divided by 

1,296,000, the constraint becomes  
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The effect of the constraint on the fitness function will now 
be reduced significantly. The normalized constraint is 

denoted as  )(xih , so F (x) is:  
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(5) The penalty factor r is usually fixed. We make r a variable 
namely r = r (t), where t is the iteration count. It can self-

adjust according to the reflection information, so we label it a 

“self-adaptive penalty operator”. Since the constraints have 

been normalized, r is relative only to the range of the 
objective function, which ensures a balance between the 

errors of the fitness function and the objective  function, in 

order of magnitude.  

(6) Guo’s algorithm can deal only with continuous 
optimization problems. It cannot deal directly with integer or 

mixed integer NLP problems. In our algorithm, when we are 

confronted with such  problems, we need only replace the 

integer variables derived from the range of the float of the 
fitness function with “integer function” int(Y), where int(Y) is 

defined as the integer part of Y. No other changes to the 

algorithm are needed.  

(7) 0-1 NLP problems are a special case of integer NLP 
problems. The procedure  for solving them is similar to (6) 

except that the 0-1 variables should be defined in the interval 



)2,0[ . 
(8)The only genetic operator used in Guo’s algorithm was 
crossover. However, we can add mutation if we know more 
about the characteristics of the problem. For example, if we 
know that the minimum is relative to the inner sequence of the 
individual, we can introduce a mutation operator which sorts 
the components of each individual in descending order. Some 
experiments show that the results are better with sorting than 
without sorting.  
Considering  the above points, we introduce a new algorithm 
as follows: 

Denoting Z = (X, *Y ), where Z∈ *D , and  
},* ,  |*),{(* upperlowerupperlower YYYXXXYXD ≤≤≤≤=

where   qp RYRX ∈∈ *,  , we define the fitness function as: 

F (Z) = f (X , int( *Y )) + r (t) ∑
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We define the Boolean function “better”  as follows: 
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The new algorithm can now be described - 
New Algorithm  
Begin 

initialize P = {Z1,Z2,… ,ZN };   Zi∈ *D ; 
t := 0; 

)(arg
1

i
Ni

best ZFMinZ
≤≤

= ; 

)(arg
1

i
Ni

worst ZFMaxZ
≤≤

= ; 

while ε>− ))()(( worstbest ZfZfabs  do 

select  randomly m points  
'
1Z , 

'
2Z ,… , 

'
mZ  from P to 

form the subspace V; 

select  s points  randomly 
*
1Z , *

2Z … *
sZ  from V; 

)(arg *

1 isi
ZFMinZ

≤≤
=′ ; 

If  ),( worstZZbetter ′   then  Zworst  := Z ′ ; 

t := t + 1; 
)(arg

1 iNibest ZFMinZ
≤≤

= ; 

)(arg
1

i
Ni

worst ZFMaxZ
≤≤

= ; 

if 3 .. ))()(( ≥≤− mandZfZfabs worstbest η   then 

          m := m –1; 
endwhile 
output t , P ; 

end 

The new algorithm has the two important features: 
a) The ergodicity of the search. During the random search of 
the subspace, we employ a “non-convex combination” 

approach, that is, the coefficients ia  of  ∑
=

=′
m

i
ii ZaZ

1

' are 

random numbers in the interval [-0.5,1.5], which ensures a 
non-zero probability that any point in the solution space is 
searched. This ergodicity of the algorithm ensures that the 
optimum is not ignored. 
b) The monotonic fitness decrease of the population (when 

the minimum is required). Each iteration )1( +→ tt  of the 

algorithm discards only the individual having the worst 

fitness in the population. This ensures a monotonically 

decreasing trend of the fitness of the population, which 

ensures that each individual of the population will reach the 

optimum. 

When we consider the population P(0), P(1), P(2),… , P(t),…  

as a Markov chain, we can prove the convergence of our new 

algorithm. See [4].  

3  NUMERICAL EXPERIMENT 

Example : Pressure Vessel Design Problem. 

In this problem, a cylindrical pressure vessel with two 

hemispherical heads (fig.1) is designed to minimize its 

fabrication cost. The total cost consists of the cost of the 

materials plus the cost of forming and welding. Four variables 

are used. They are the inner radius o f the vessel x1, the length 

of the vessel without the heads x2, the thickness of pressure 

vessel 0.0625 y1, and the thickness of the head 0.0625 y2. Of 

the four variables, x1 and x2 are continuous variables and y1 

and y2 are discrete variables. Denoting the variable vector (X, 

Y) =( x1, x2, y1, y2), the NLP problem can be described as 

follows:  
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The first and second constraints limit the thickness of the 



cylinder and the head to lie below a factor of the cylinder 

diameter. The third constraint ensures that the enclosed 

volume is greater than a specified value. The fourth 

constraint limits the length of the cylinder to a prescribed 

value. The third constraint is the most sensitive. 

We performed many numerical experiments using the new 

algorithm. When we set the parameters to: N =30, ε  =10-14, η  

=10-3, m =10, s = 8, r (t) = 100000+int  (t/1000), we obtained the 

best result ever obtained in the literature, as listed in Table 1. 

 
Fig.1  The Pressure Vessel Model 

Many people have tested this problem. To illustrate the 

performance of the new algorithm, we compare our result with 

other published results, as listed in Table 1. 

4 CONCLUSION  

Judging by the results obtained from the above numerical 

experiments, we conclude that our new algorithm is both 

universal and robust. It can be used to solve function 

optimization problems with complex constraints, such as NLP 
problems with inequality and (or) equality constraints, or 

without constraints . It can solve 0-1 NLP problems, integer 

NLP problems and mixed integer NLP problems . When 

confronted with different types of problems, we don’t need to 
change our algorithm. All that is needed is to input the fitness 

function, the constraint  expressions, and the upper and lower 

limits of the variables of the problem. Our algorithm usually 

finds the global optimal value.  
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Design 
variables  

Sandgren 
[5] 

  Fu 
[6] 

Kannan 
[7] 

Cao 
[8] 

Deb 
[2] 

Lin 
[9] 

Carlos 
[3] 

this paper 

x1  47.700 48.381 58.291 51.1958 48.3290 48.5765 40.3239 38.8601 
x2  117.701 111.74 43.690 90.7821 112.679 110.056 200.000 221.365 
y1  20 18 20 16 15 15 13                                                                                                                                                                                                                                         12 
y2  10 10 10 10 8 8 7 6 

g1(X,Y)  -0.204 -0.1913 -0.000 -0.0119 -0.0048 0.0000 -0.0343 -0.0000 
g2(X,Y)  -0.170 -0.1634 -0.069 -0.1366 -0.0389 -0.0336 -0.0528 -0.0043 
g3(X,Y)  -6.3×106 -75.875 -21.216 -13584 -3652.9 0.0000 -27.106 -0.0000 
g4(X,Y)  -122.299 -128.26 -196.23 -149.22 -127.32 -129.94 -40.000 -18.635 
f (X,Y) 8129.80 8084.62 7198.20 7108.62 6410.38 6370.70 6288.74 5850.38 

Table 1   Comparative Results with the Pressure Vessel Problem 
 


