
A Robust Algorithm for Solving Nonlinear Programming Problems

Yan Li
 Computation Center,

Wuhan University, Wuhan, 430072, China

llyyan2000@21cn.com

Li-Shan Kang
State Key Laboratory of Software Engineering,

Wuhan University, Wuhan, 430072, China

Abstract

In this paper, we introduce a new algorithm for solving nonlinear

programming (NLP) problems. It is an extension of Guo’s algorithm[1]

which possesses enhanced capabilities for solving NLP problems. These

capabilities include: a) advancing the variable subspace, b) adding a

search process over subspaces and normalized constraints, c) using an

adaptive penalty function, and d) adding the ability to deal with integer

NLP problems, 0-1 NLP problems, and mixed-integer NLP problems

which have equality constraints. These four enhancements increase the

capabilities of the algorithm to solve nonlinear programming problems

in a more robust and universal way. This paper will present results of

numerical experiments which show that the new algorithm is not only

more robust and universal than its competitors, but also its

performance level is higher than any others in the literature.

1 INTRODUCTION TO GUO’S ALGORITHM

It was shown in [1] that Guo’s algorithm has many

advantages when solving optimization problems. Since the

new algorithm presented in this paper is based upon Guo’s

algorithm, it is advisable to first present briefly its main

features.
The general NLP problem can be expressed in the following
form:

upperlower

upperlower

j

i

YYY

XXX

k jYXg

kiYXhts

YXfMinimize

≤≤

≤≤

=≤
==

,,2,1,0),(
,,2,1 ,0),(..

),(

2

1

L

L

where X pR∈ , Y qN∈ , and the objective function f (X,Y),
the equality constraints h i(X,Y) and the inequality constraints
g j(X ,Y) are usually nonlinear functions which include both
real and integer variables.
Denoting the domain

}, , |),{(upperlowerupperlower YYYXXXYXD ≤≤≤≤=

we introduce the concept of a subspace V of the domain D.
m points mjYX jj ,,2,1),,(L= in D are used to

construct the subspace V, defined as -

}),(),(|),{(
1∑ =

=∈= m

i iiivvvv YXaYXDYXV

where ia is subject to ∑ =
≤≤−=

m

i ii aa
1

5.15.0 ,1 .

Because Guo’s algorithm deals mainly with optimization
problems which have real variables and INequality
constraints, we assume k 1 = 0 and q = 0 in the expression (1).

Denoting

 ≤

=
 otherwise),(

0)(0,
)(

Xg

Xg
Xw

i

i
i

 and)()(
2

1
∑

=

=
k

i
i

XwXW

We define a Boolean function “better” as :

>∧=

≤∧=

>

≤

=

FALSE))2()1(())2()1((

TRUE))2()1(())2()1((

FALSE)2()1(
TRUE)2()1(

)
2

,
1

(

XfXfXWXW

XfXfXWXW

XWXW
XWXW

XXbetter

If better (X1, X2) is TRUE, this means that the individual X1 is
“better” than the individual X2.
 Guo’s algorithm can be described as follows:
Guo’s Algorithm
Begin

initialize popln P= {X1, X2,… , XN }; DX i ∈

/* since (q = 0 implies no integer variables)*/
generation count t := 0;
X best = arg) (

1
XMin i

Ni

f
≤≤

;

X worst = arg) (
1

XMax i
Ni

f
≤≤

;

while ε>−))()((worstbest XfXfabs do

select randomly m points '
1X , '

2X ,… , '
mX from P to

form the subspace V;
select randomly one point X ′ from V;
If),(worstXXbetter ′ then Xworst := X ′ ;

t := t + 1;
Xbest = arg)(

1
XfMin i

Ni≤≤
;

Xworst = arg)(
1

XfMax i
Ni≤≤

;

end do

output t , P;
end
where N is the size of population P, (m –1) is the dimension of
the subspace V (if the m points(vectors) that construct the
subspace V are linearly independent)，t is the number of
generations, ε is the accuracy of solution. Xbest = arg

)(
1

XfMin i
Ni≤≤

 means that Xbest is the variable (individual) in X i

(i=1, 2,⋯, N) that makes the function f (X) have the smallest
value.

2 A NEW OPTIMIZATION ALGORITHM

Since Guo’s algorithm deals mainly with continuous NLP

problems with INequality constraints, to make it a truly

universal and robust algorithm for solving general NLP
problems, we extend Guo’s algorithm by adding to it the

following 8 improvements -

(1) Guo selected randomly only one candidate solution from

the current subspace V. This action would tend to ignore
better solutions in the subspace, and hence influence

negatively the quality of the result and the efficiency of the

search. If however, we select randomly several individuals

from the subspace, and substitute the best one for the worst
one in the current population, the search should be better. So

we replace the instruction line in Guo’s algorithm:

“select randomly one point X ′ from V; ”

with the two instruction lines:

“ select randomly s points
*
1X , *

2X ,… , *
sX from V;

)(arg *

1 isi
XfMinX

≤≤
=′ ;”

(2) The dimension m of the subspace in Guo’s algorithm is
fixed (i.e. m parents reproduce). Thus, when the population is
close to the optimal value, the searching range is still large.
This would apparently result in unnecessary computation,
and effect the efficiency of the search. We can in fact reduce
the dimension of the subspaces. We therefore use subspaces
with variable dimensions in the new algorithm, by adding the
following instruction line to Guo’s algorithm:

if 3 ..))()((≥≤− mandXfXfabs worstbest η then

 m := m – 1;
where η depends on the computation accuracy ε , and
η > ε . For example, if the computation accuracy ε = 10-14,

then we can set η = 10-2 or 10-3.

(3) We know in principle that Guo’s algorithm can deal with
problems containing EQuality constraints using the device of
setting two INequality constraints),(0 YXhi≤ and

0),(≤YXhi to replace the equality constraint 0),(=YXhi ,

but the experimental results when employing this device are
not ideal. One such method is to use a penalty function. Since

the INequality constraints have been included in function
better in Guo’s algorithm, we use the following fitness
function which includes only the penalty of the EQuality
constraints:

F (x) = f (x) + r ∑
=

1

1

2))((
k

i

i xh

(4) Using the penalty function described above in

numerical experiments, we observe that when a constraint

coefficient is very large, it will have a decisive effect on the

entire fitness function and influence the accuracy of the
solution (referring to Example 1). We therefore introduce a

normalization method (see [2]), which finds the largest

coefficient in the constraint, then divides the entire constraint

by it. For example, the third constraint in Example.1 is:

0
3
4

1728*750 3
12

2
1 ≤−− xxx ππ

The largest coefficient is 750*1728=1,296,000. Divided by

1,296,000, the constraint becomes

01296000/)
3
4

(1 3
12

2
1 ≤−− xxx ππ

The effect of the constraint on the fitness function will now
be reduced significantly. The normalized constraint is

denoted as)(xih , so F (x) is:

∑
=

+=
1

1

2))(()()(
k

i
i xhrxfxF

(5) The penalty factor r is usually fixed. We make r a variable
namely r = r (t), where t is the iteration count. It can self-

adjust according to the reflection information, so we label it a

“self-adaptive penalty operator”. Since the constraints have

been normalized, r is relative only to the range of the
objective function, which ensures a balance between the

errors of the fitness function and the objective function, in

order of magnitude.

(6) Guo’s algorithm can deal only with continuous
optimization problems. It cannot deal directly with integer or

mixed integer NLP problems. In our algorithm, when we are

confronted with such problems, we need only replace the

integer variables derived from the range of the float of the
fitness function with “integer function” int(Y), where int(Y) is

defined as the integer part of Y. No other changes to the

algorithm are needed.

(7) 0-1 NLP problems are a special case of integer NLP
problems. The procedure for solving them is similar to (6)

except that the 0-1 variables should be defined in the interval

)2,0[.
(8)The only genetic operator used in Guo’s algorithm was
crossover. However, we can add mutation if we know more
about the characteristics of the problem. For example, if we
know that the minimum is relative to the inner sequence of the
individual, we can introduce a mutation operator which sorts
the components of each individual in descending order. Some
experiments show that the results are better with sorting than
without sorting.
Considering the above points, we introduce a new algorithm
as follows:

Denoting Z = (X, *Y), where Z∈ *D , and
},* , |*),{(* upperlowerupperlower YYYXXXYXD ≤≤≤≤=

where qp RYRX ∈∈ *, , we define the fitness function as:

F (Z) = f (X , int(*Y)) + r (t) ∑
=

−1

1

2*)))int(,((
k

i

i YXh

Denoting

 ≤

=
 otherwise)),int(,(

0))int(,(0,
)(

g
g

i

i

YX

YX
Zwi

and)()(
2

1
∑

=

=
k

i
i

ZwZW ,

We define the Boolean function “better” as follows:

>∧=

≤∧=

>

≤

=

FALSE))2()1(Z())2()1((

TRUE))2()1(Z())2()1((

FALSE)2()1(

TRUE)2()1(

)2,1(

ZFFZWZW

ZFFZWZW

ZWZW

ZWZW

ZZbetter

The new algorithm can now be described -
New Algorithm
Begin

initialize P = {Z1,Z2,… ,ZN }; Zi∈ *D ;
t := 0;

)(arg
1

i
Ni

best ZFMinZ
≤≤

= ;

)(arg
1

i
Ni

worst ZFMaxZ
≤≤

= ;

while ε>−))()((worstbest ZfZfabs do

select randomly m points
'
1Z ,

'
2Z ,… ,

'
mZ from P to

form the subspace V;

select s points randomly
*
1Z , *

2Z … *
sZ from V;

)(arg *

1 isi
ZFMinZ

≤≤
=′ ;

If),(worstZZbetter ′ then Zworst := Z ′ ;

t := t + 1;
)(arg

1 iNibest ZFMinZ
≤≤

= ;

)(arg
1

i
Ni

worst ZFMaxZ
≤≤

= ;

if 3 ..))()((≥≤− mandZfZfabs worstbest η then

 m := m –1;
endwhile
output t , P ;

end

The new algorithm has the two important features:
a) The ergodicity of the search. During the random search of
the subspace, we employ a “non-convex combination”

approach, that is, the coefficients ia of ∑
=

=′
m

i
ii ZaZ

1

' are

random numbers in the interval [-0.5,1.5], which ensures a
non-zero probability that any point in the solution space is
searched. This ergodicity of the algorithm ensures that the
optimum is not ignored.
b) The monotonic fitness decrease of the population (when

the minimum is required). Each iteration)1(+→ tt of the

algorithm discards only the individual having the worst

fitness in the population. This ensures a monotonically

decreasing trend of the fitness of the population, which

ensures that each individual of the population will reach the

optimum.

When we consider the population P(0), P(1), P(2),… , P(t),…

as a Markov chain, we can prove the convergence of our new

algorithm. See [4].

3 NUMERICAL EXPERIMENT

Example : Pressure Vessel Design Problem.

In this problem, a cylindrical pressure vessel with two

hemispherical heads (fig.1) is designed to minimize its

fabrication cost. The total cost consists of the cost of the

materials plus the cost of forming and welding. Four variables

are used. They are the inner radius o f the vessel x1, the length

of the vessel without the heads x2, the thickness of pressure

vessel 0.0625 y1, and the thickness of the head 0.0625 y2. Of

the four variables, x1 and x2 are continuous variables and y1

and y2 are discrete variables. Denoting the variable vector (X,

Y) =(x1, x2, y1, y2), the NLP problem can be described as

follows:

1
2

12
2

1
2
12

121

)0625.0(84.19)0625.0(1661.3)0625.0(

778.1)0625.0)(0625.0(6224.0),(

xyxyxy

xyyYXfMinimize

++

+=

≤−=

≤−−=

≤−=

≤−=

0240),(
0*3/41728*750),(

00625.000954.0),(
00625.00193.0),(

 ..

24

3
12

2
13

212

111

xYXg

xxxYXg

yxYXg

yxYXg

ts
ππ

The first and second constraints limit the thickness of the

cylinder and the head to lie below a factor of the cylinder

diameter. The third constraint ensures that the enclosed

volume is greater than a specified value. The fourth

constraint limits the length of the cylinder to a prescribed

value. The third constraint is the most sensitive.

We performed many numerical experiments using the new

algorithm. When we set the parameters to: N =30, ε =10-14, η

=10-3, m =10, s = 8, r (t) = 100000+int (t/1000), we obtained the

best result ever obtained in the literature, as listed in Table 1.

Fig.1 The Pressure Vessel Model

Many people have tested this problem. To illustrate the

performance of the new algorithm, we compare our result with

other published results, as listed in Table 1.

4 CONCLUSION

Judging by the results obtained from the above numerical

experiments, we conclude that our new algorithm is both

universal and robust. It can be used to solve function

optimization problems with complex constraints, such as NLP
problems with inequality and (or) equality constraints, or

without constraints . It can solve 0-1 NLP problems, integer

NLP problems and mixed integer NLP problems . When

confronted with different types of problems, we don’t need to
change our algorithm. All that is needed is to input the fitness

function, the constraint expressions, and the upper and lower

limits of the variables of the problem. Our algorithm usually

finds the global optimal value.

References

[1] Guo Tao, Kang Lishan. A new evolutionary algorithm for function

optimization. Wuhan University Journal of Nature Science. Vol. 4

No.4 1999,409~414

[2] Kalyanmoy Deb. GeneAS: A robust optimal design technique for

mechanical component design. Evolutionary algorithm in engineering

application: Springer -Verlag,1997, 497~514

[3] Carlos A. Coello: Self-adaptive penalties for GA-based optimization,

in Proceedings of the Congress on Evolutionary Computation,

Washington, D.C USA, IEEE Press, 1999,537~580

[4] Jun He, Lishan Kang. On the convergence rates of genetic

algorithms. Theoretical Computer Science, 229 (1999) 23~29

[5] Sandgren, E: Nonliner integer and discrete programming in

mechanical design, ASME J. Mechanical Design, 1990,112: 223~229

[6] J.F.Fu,R.G.Fenton and W.L.Cleghorn: A mixed integer -discrete-

continuous programming method and its application to engineeri ng

design optimization. Engineering Optimization, 1991,17(3):263~280

[7] B.K.Kannan and S.N.Kramer: An augmented Lagrange multiplier

based method for mixed integer discrete continuous optimization and

its applications to mechanical design. Journal of Mechanical Design.

Transactions of the ASME, 1994,116:318~320

[8] Y.J.Cao and Q.H.Wu: Mechanical design optimization by mixed-

variable evolutionary programming, in proceedings of the 1997

International Conference on Evolutionary Computation,

Indianapolis,Indiana, 1997,443~446

[9] Yung-Chien Lin :A hybrid method of evolutionary algorithms for

mixed-integer nonlinear optimization problem, in Proceedings of

Congress on Evolutionary Computation, 1999 (3): 2159~2166

Design
variables

Sandgren
[5]

 Fu
[6]

Kannan
[7]

Cao
[8]

Deb
[2]

Lin
[9]

Carlos
[3]

this paper

x1 47.700 48.381 58.291 51.1958 48.3290 48.5765 40.3239 38.8601
x2 117.701 111.74 43.690 90.7821 112.679 110.056 200.000 221.365
y1 20 18 20 16 15 15 13 12
y2 10 10 10 10 8 8 7 6

g1(X,Y) -0.204 -0.1913 -0.000 -0.0119 -0.0048 0.0000 -0.0343 -0.0000
g2(X,Y) -0.170 -0.1634 -0.069 -0.1366 -0.0389 -0.0336 -0.0528 -0.0043
g3(X,Y) -6.3×106 -75.875 -21.216 -13584 -3652.9 0.0000 -27.106 -0.0000
g4(X,Y) -122.299 -128.26 -196.23 -149.22 -127.32 -129.94 -40.000 -18.635
f (X,Y) 8129.80 8084.62 7198.20 7108.62 6410.38 6370.70 6288.74 5850.38

Table 1 Comparative Results with the Pressure Vessel Problem

