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Abstract. In this paper, we propose a differential evolution algorithm to solve
constrained optimization problems. Our approach uses three simple selection
criteria based on feasibility to guide the search to the feasible region. The pro-
posed approach does not require any extra parameters other than those normally
adopted by the Differential Evolution algorithm. The present approach was val-
idated using test functions from a well-known benchmark commonly adopted to
validate constraint-handling techniques used with evolutionary algorithms. The
results obtained by the proposed approach are very competitive with respect to
other constraint-handling techniques that are representative of the state-of-the-art
in the area.

1 Introduction

Evolutionary Algorithms (EASs) are heuristics that have been successfully applied in
a wide set of areas [1, 2], both in single and in multiobjective optimization. However,
EAs lack a mechanism able to bias efficiently the search towards the feasible region
in constrained search spaces. This has triggered a considerable amount of research and
a wide variety of approaches have been suggested in the last few years to incorporate
constraints into the fitness function of an evolutionary algorithm [3, 4].

The most common approach adopted to deal with constrained search spaces is the
use of penalty functions. When using a penalty function, the amount of constraint vio-
lation is used to punish or “penalize” an infeasible solution so that feasible solutions are
favored by the selection process. Despite the popularity of penalty functions, they have
several drawbacks from which the main one is that they require a careful fine tuning of
the penalty factors that accurately estimates the degree of penalization to be applied as
to approach efficiently the feasible region [5, 3].



Differential Evolution (DE) is a relatively new EA proposed by Price and Storn [6].
The algorithm is based on the use of a special crossover-mutation operator, based on the
linear combination of three different individuals and one subject-to-replacement parent.
The selection process is performed via deterministic tournament selection between the
parent and the child created by it. However, as any other EA, DE lacks a mechanism to
deal with constrained search spaces.

The constraint-handling approach proposed in this paper relies on three simple se-
lection criteria based on feasibility to bias the search towards the feasible region. We
have used the same approach implemented on different types of Evolution Strategies
in which the results were very promising [7, 8]. The main motivation of this work was
to analyze if the use of the selection criteria that we successfully adopted in evolution
strategies would also work with differential evolution. This is an important issue to us,
because it has been hypothesized in the past that evolution strategies are a very pow-
erful search engine for constrained optimization when dealing with real numbers [9].
However, no such studies exist for differential evolution nor other related heuristics that
operate on real numbers (as evolution strategies). We thus believe that the search power
of other heuristics such as differential evolution has been underestimated and therefore
our interest in analyzing such search power.

The paper is organized as follows: In Section 2, the problem of our interest is stated.
In Section 3 we describe the previous work related with the current algorithm. A de-
tailed description of our approach is provided in Section 4. The experiments performed
and the results obtained are shown in Section 5 and in Section 6 we discuss them. Fi-
nally, in Section 7 we establish some conclusions and we define our future paths of
research.

2 Statement of the Problem

We are interested in the general nonlinear programming problem in which we want
to:Find @ which optimizes f(x) subjectto: g;(x) <0, i=1,...,nhj(x) =0, j=
1,...,p where x is the vector of solutions z = [z, 2,...,7,]T, n is the number
of inequality constraints and p is the number of equality constraints (in both cases,
constraints could be linear or nonlinear). If we denote with F to the feasible region and
with S to the whole search space, then it should be clear that 7 C S. For an inequality
constraint that satisfies ¢; () = 0, we will say that is active at . All equality constraints
h; (regardless of the value of x used) are considered active at all points of F.

3 PreviousWork

DE is a population-based evolutionary algorithm with an special recombination oper-
ator that performs a linear combination of a number of individuals (normally three)
and one parent (which is subject to be replaced) to create one child. The selection is
deterministic between the parent and the child. The best of them remain in the next
population. DE shares similarities with traditional EAs. However it does not use binary
encoding as a simple genetic algorithm [2] and it does not use a probability density



function to self-adapt its parameters as an Evolution Strategy [10]. The main differen-
tial evolution algorithm [6] is presented in Figure 1.

Begin
G=0
Create arandom initia population ¢, Vi,i = 1,..., NP
Evauate f(x;) Vi, =1,..., NP
For G=1to MAX_GENERATIONS Do
For i=1to NP Do
Select randomly 7y # r2 # 73 :
Jrand = randint(1, D)
For j=1to D Do
If (rand;[0,1) < CROr j = jrqna) Then
Ui = Tl + F@jlg — @)
Else
Ui g1 = TG
End If
End For
If(f(ugy1) < f(zg)) Then
TG = UG
Else
mé‘+1 = mlG
End If
End For
G=G+1
End For
End

Fig. 1. DE algorithm. randint(min,max) is a function that returns an integer number be-
tween min and max. rand|0, 1) is a function that returns a real number between 0 and 1.
Both are based on a uniform probability distribution. “NP”, “MAX_GENERATIONS”,
“CR” and “F” are user-defined parameters.

The use of tournament selection based on feasibility rules has been explored by
other authors. Jiménez and Verdegay [11] proposed an approach similar to a min-max
formulation used in multiobjective optimization combined with tournament selection.
The rules used by them are similar to those adopted in this work. However, Jiménez
and Verdegay’s approach lacks an explicit mechanism to avoid the premature conver-
gence produced by the random sampling of the feasible region because their approach
is guided by the first feasible solution found. Deb [12] used the same tournament rules
previously indicated in his approach. However, Deb proposed to use niching as a di-
versity mechanism, which introduces some extra computational time (niching has time-
complexity O(N?)). In Deb’s approach, feasible solutions are always considered better
than infeasible ones. This contradicts the idea of allowing infeasible individuals to re-
main in the population. Therefore, this approach will have difficulties in problems in
which the global optimum lies on the boundary between the feasible and the infeasible
regions. Coello & Mezura [13] used tournament selection based on feasibility rules.
They also adopted nondominance checking using a sample of the population (as the
multiobjective optimization approach called NPGA [14]). They adopted a user-defined
parameter S,., to control the diversity in the population. This approach provided good



results in some well-known engineering problems and in some benchmark problems,
but presented problems when facing high dimensionality [13].

Some previous approaches have been proposed to solve constrained optimization
problems using DE. Storn [15] proposed an adaptive mechanism that relaxes the con-
straints of the problem in order to make all the initial solutions feasible. This pseudo-
feasible region is shrunk each generation until it matches the real feasible region. Also,
Storn [15] proposed to use an aging concept in order to avoid that a solution remains
in the population too many generations. Furthermore, he modified the original DE al-
gorithm because when a child is created and it is not better than the parent subject-
to-replace, another child is created. The process is repeated NT' times. If the parent is
still better, the parent remains in the population. Both, the aging parameter and N'T" are
defined by the user. Storn [15] used a modified “DE/rand/1/bin” version. The approach
showed a good performance in problems with only inequality constraints but presented
problems when dealing with equality constraints. Moreover, only two test functions
(out of seven used to test the approach) are included in the well-known benchmark
for constrained optimization proposed by Koziel & Michalewicz [16] and enriched by
Runarsson & Yao [9]. The main drawback of the approach is that it adds two user-
defined parameters and that the N'T' parameter can cause an increase in the number of
evaluations of the objective function without any user control.

Lampinen & Zelinka [17] used DE to solve engineering design problems. They
opted to handle constraints using a static penalty function approach that they called
“Soft -constraint”. The authors tested their approach using three well-known engineer-
ing design problems [17]. They compared their results with respect to several classical
techniques and with respect to some heuristic methods. The main drawback of the ap-
proach is the careful tuning required for the penalty factors which is in fact mentioned
by the authors in their article. The last two methods discussed also lack of a mechanism
to maintain diversity (to have both, feasible and infeasible solutions in the population
during all the evolutionary process), which is one of the most important aspects to con-
sider when designing a competitive constraint-handling approach [8].

4 Our approach

The design of our approach is based on the idea of preserving the main DE algorithm
and just adding a simple mechanism, which has been found to be successful with other
EAs. Moreover, our constraint-handling approach does not add any extra parameter
defined by the user (other than those required by the original DE algorithm).

The modifications made to the original DE are the following:

1. The simple mechanism to deal with constraints are three simple selection criteria
which guide the algorithm to the feasible region of the search space:
— Between 2 feasible solutions, the one with the highest fitness value wins.
— If one solution is feasible and the other one is infeasible, the feasible solution
wins.
— If both solutions are infeasible, the one with the lowest sum of constraint vio-
lation is preferred.



These criteria are applied when the child is compared against the parent subject to
be replaced.

2. Inorder to accelerate the convergence process, when a child replaces its parent, it is
copied into the new generation but it is also copied into the current generation. The
goal of this change is to allow the new child, which is a new and better solution,
to be selected among the three solutions (r1, o or r3) and contribute to create
better solutions. In this way, a promising solution does not need to wait for the next
generation to share its genetic code.

3. When a new decision variable of the child is created and it is out of the limits
established (lower and upper) by an amount, this amount is subtracted or added
to the limit violated to shift the value inside the limits. If the shifted value is now
violating the other limit (which may occur), as a last option, a random value inside
the limits is generated.

Our proposed version of the DE algorithm, called CHDE (Constraint Handling Dif-
ferential Evolution) is shown in Figure 2.

Begin
G=0
Create arandom initial population wg Vi,i=1,..., NP
Evduae f(z) Vi, i=1,...,NP

For G=1to MAX_GENERATIONS Do
For i=1to NP Do
Select randomly 71 # r2 # 73 :
Jrand = randint(1, D)
For j=1to D Do
If (rand;[0,1) < CROr j = jrana) Then
Uje = T + F@jls —2%)
Else
Uj g1 = Tja
End If
End For
If (wg ., isbetter than 2 (based on the three selection criteria)) Then

Tt
TG+1 = UG+
i

I

G=G+1
End For
End

Fig.2. CHDE algorithm. The modified steps are marked with an arrow.
randint(min,max) is a function that returns an integer number between min and max.
rand[0, 1) is a function that returns a real number between 0 and 1. Both are based on
a uniform probability distribution. “NP”, “MAX_GENERATIONS”, “CR” and “F” are
user-defined parameters



5 Experimentsand Results

To evaluate the performance of the proposed approach we used the 13 test functions
described in [9]. The test functions chosen contain characteristics that are representative
of what can be considered “difficult” global optimization problems for an evolutionary
algorithm. Their expressions can be found in [9]

To get a measure of the difficulty of solving each of these problems, a p metric
(as suggested by Koziel and Michalewicz [16]) was computed using the following ex-
pression: p = |F|/|S|, where |F| is the number of feasible solutions and |S| is the
total number of solutions randomly generated. In this work, .S = 1,000,000 random
solutions.

[Problem] n [Type of function] P [CTINITLE[NE]

gol (13 quadratic 0.0003% [9]0[0 [0
g02 |20 nonlinear 99.9973%[ 20|00
g03 |10 nonlinear 0.0026% [0 0[O0 [ 1
go4 |5 quadratic 27.0079%| 42|00
gos5 |4 nonlinear 0.0000% [2|0[0 |3
g6 |2 nonlinear 0.0057% [0 2] 0|0
g0o7 |10 quadratic 0.0000% [3[5][0] 0
g08 |2 nonlinear 0.8581% [0[2]0] 0
g9 |7 nonlinear 0.5199% [0[4]0] 0
gl0 |8 linear 0.0020% [6][0[0 O
gll |2 quadratic 0.0973% [0 0[O0 | 1
gl2 [3 quadratic 4.7697% |0[93] 0| 0
g3 |5 nonlinear 0.0000% [0|0[1]2

Table 1. Values of p for the 13 test problems chosen.

The different values of p for each of the functions chosen are shown in Table 1, where
n is the number of decision variables, LI is the number of linear inequalities, NI the
number of nonlinear inequalities, LE is the number of linear equalities and NE is the
number of nonlinear equalities.

We performed 30 independent runs for each test function. Equality constraints were
transformed into inequalities using a tolerance value of 0.0001 (except for problems
g03, g11 and g13 where the tolerance was 0.001). The parameters used for the CHDE
are the following: NP = 60, MAX GENERATIONS = 5,800. To ensure that
there is no sensitivity to “F” and “CR” parameters, F' was generated randomly (using a
uniform distribution) per run between [0.3,0.9] and C'R was also randomly generated
between [0.8, 1.0]. The intervals for both parameters were defined empirically.

The results obtained with the CHDE are presented in Table 2. A comparison of the
performance of CHDE with respect to three techniques that are representative of the
state-of-the-art in the area: the Homomorphous maps [16], Stochastic Ranking [9] and
the Adaptive Segregational Constraint Handling Evolutionary Algorithm (ASCHEA)
[18] are presented in Tables 3, 4 and 5, respectively.



Statistical Results of the CHDE Algorithm

Problem Optimal Best Mean Median Wor st St. Dev.
g01 —15 —15.000 —14.792134 —15.000 —12.743044 0.401
g02 0.803619 0.803619 0.746236 0.800445 0.302179 0.081
903 1 1.00 0.640326 0.702939 0.029601 0.239

g04 [—30665.539| —30665.539 [ —30592.154435| —30665.539 | —29986.214382[108.779
g05 5126.498 [5126.496714| 5218.729114 [5231.557639| 5502.410392 | 76.422

906 | —6961.814 | —6961.814 | —6367.575424 | —6961.814 | —2236.950336 |770.803
907 24.306 24.306 104.599221 24.482080 | 1120.541494 [176.761
g08 | 0.095825 | 0.095825 0.091292 0.095825 0.027188 0.012
909 680.63 680.6300 692.472322 | 680.639178 | 839.782911 | 23.575
910 7049.25 |7049.248021| 8442.656946 |7137.415303| 15580.370333 |2186.49
i1 0.75 0.749 0.761823 0.749 0.870984 0.020
912 1 T 1 T T 0

913 | 0.053950 | 0.053866 0.747227 0.980831 2.250875 0.313

Table 2. Statistical results obtained by the CHDE for the 13 test functions with 30
independent runs.

Best Result Mean Result Worst Result

Problem Optimal CHDE HM CHDE HM CHDE HM
g01 —15 —15.000 —14.7886 —14.792134 —14.7082 —12.743044 —14.6154
g02 0.803619 0.803619 0.79953 0.746236 0.79671 0.302179 0.79119
g03 1 1.00 0.9997 0.640326 0.9989 0.029601 0.9978
g04 | —30665.539| —30665.539 | —30664.5 |—30592.154435[ —30655.3 |—29986.214382| —30645.9
g05 5126.498 |5126.496714 — 5218.729114 — 5502.410392 —
g06 —6961.814 | —6961.814 —6952.1 —6367.575424 —6342.6 —2236.950336 —5473.9
907 24.306 24.306 24.620 104.599221 24.826 1120.541494 25.069
908 0.095825 0.095825 0.0958250 0.091292 0.0891568 0.027188 0.0291438
g09 680.63 680.6300 680.91 692.472322 681.16 839.782911 683.18
g10 7049.25 7049.248021 7147.9 8442.656946 8163.6 15580.370333 9659.3
gll 0.75 0.749 0.75 0.761823 0.75 0.870984 0.75
gl2 1 1 0.999999857 1 0.999134613 1 0.991950498
g13 0.053950 0.053866 NA 0.747227 NA 2.259875 NA

Table 3. Comparison of our approach (CHDE) with respect to the Homomorphous
Maps (HM) N A = Not Available.

Best Result Mean Result Worst Result
Problem Optimal CHDE SR CHDE SR CHDE SR
g0l —15 —15.000 —15.000 —14.792134 —15.000 —12.743044 —15.000
g02 0.803619 0.803619 0.803515 0.746236 0.781975 0.302179 0.726288
903 1 1.00 1.000 0.640326 1.000 0.029601 1.000

g04 [—30665.539| —30665.539 [ —30665.539[—30592.154435|—30665.539|—29986.214382|—30665.539
g05 5126.498 [5126.496714| 5126.497 5218.729114 5128.881 5502.410392 5142.472

906 —6961.814 | —6961.814 [ —6961.814 | —6367.575424 | —6875.940 | —2236.950336 | —6350.262
907 24.306 24.306 24.307 104.599221 24.374 1120.541494 24.642
908 0.095825 0.095825 0.095825 0.091292 0.095825 0.027188 0.095825
909 680.63 680.6300 680.630 692.472322 680.656 839.782911 680.763
g10 7049.25 7049.248021| 7054.316 8442.656946 7559.192 15580.370333 8835.655
gll 0.75 0.749 0.750 0.761823 0.750 0.870984 0.750
g12 1 1 1 1 1 1 1

gl13 0.053950 0.053866 0.053957 0.747227 0.057006 2.259875 0.216915

Table 4. Comparison of our approach (CHDE) with respect to the Stochastic Ranking
(SR)



6 Discussion of Results

As can be seen in Table 2, CHDE could reach the global optimum in the 13 test prob-
lems. The apparent improvement to the optimum solutions (or the best-known solu-
tions) for problems g03, g05, g11 and g13 is due to the tolerance value adopted for
the equality constraints. However, the statistical measures suggest that the proposed ap-
proach presents premature convergence in some cases. This seems to be originated by
the high selection pressure provided by the deterministic selection. It also causes that
infeasible solutions close to the boundaries of the feasible region do not remain in the
population. Therefore, our CHDE requires a diversity mechanism (i.e., some infeasible
solutions must remain in the population to avoid premature convergence) that does not
increase its computational cost in a significant way.

With respect to the three state-of-the-art approaches, some facts require discussion:
With respect to the Homomorphous Maps [16], our approach obtained a better “best”
solution in nine problems (g01, g02, g03, g05, g06, g07, g09, g10 and g12) and a similar
“best” results in other three (g04, h08 and g11). Also, CHDE provided a better “mean”
result in five problems (g01, g05, g06, g08 and g12) and a better “worst” result for two
problems (g05 and g12). It is clear that CHDE was superior in quality of results than
the Homomorphous Maps and it was competitive based on statistical measures.

With respect to the Stochastic Ranking [9], CHDE was able to find a better “best”
result in three problems (g02, g07 and g10) and a similar “best” result in the remaining
ten problems (g01, g03, g04, g05, g06, g08, g09, gl1, g12 and g13). Besides these,
our approach got a similar “mean” and “worst” result for problem g12. CHDE found
either similar or best quality results than the Stochastic Ranking, which is one of the
most competitive approaches for evolutionary constrained optimization. However, SR
is still more robust than CHDE. This is because SR has a good mechanism to maintain
diversity in the population (keep both, feasible and infeasible solutions during all the
process).

With respect to the Adaptive Segregational Constraint Handling Evolutionary Al-
gorithm (ASCHEA) [18], our approach found better “best” results in three problems
(902, g07 and g10) and a similar “best” in eight functions (g01, g03, g04, g05, g06,
g08, g09 and g11). Finally, CHDE could find a better “mean” result in problem g02.
Our approach showed a competitive performance based on quality and showed some
robustness compared to ASCHEA. However, the analysis was incomplete because the
worst results found by ASCHEA were not available.

¢From the previous comparison, we can see that the CHDE produced competitive
results based on quality with respect to three techniques representative of the state-of-
the-art in constrained optimization. CHDE can deal with highly constrained problems,
problems with low (g06 and g08) and high (g01, g02, g03, g07) dimensionality, with
different types of combined constraints (linear, nonlinear, equality and inequality) and
with very large (g02) or very small (g05, g13) or even disjoint (g12) feasible regions.
However, our approach presented some robustness problems and more work is required
in that direction.

It is worth emphasizing that CHDE does not require additional parameters. In con-
trast, the Homomorphous Maps require an additional parameter (called v) which has
to be found empirically [16]. Stochastic ranking requires the definition of a parameter



Best Result Mean Result Worst Result

Problem Optimal CHDE ASCHEA CHDE ASCHEA CHDE ASCHEA
g01 —15 —15.000 —15.0 —14.792134 —14.84 —12.743044 NA
g02 0.803619 0.803619 0.785 0.746236 0.59 0.302179 NA
g03 1 1.00 1.0 0.640326 0.99989 0.029601 NA

go4 | —30665.539| —30665.539 [ 30665.5 [—30592.154435| 30665.5 | —29986.214382| NA
g05 5126.498 [5126.496714| 5126.5 5218.729114 5141.65 5502.410392 NA

g06 —6961.814 | —6961.814 [—6961.81| —6367.575424 [—6961.81| —2236.950336 NA
g07 24.306 24.306 24.3323 104.599221 24.66 1120.541494 NA
g08 0.095825 0.095825 | 0.095825 0.091292 0.095825 0.027188 NA
g09 680.63 680.6300 680.630 692.472322 680.641 839.782911 NA
g10 7049.25 7049.248021| 7061.13 8442.656946 7193.11 | 15580.370333 NA
gll 0.75 0.749 0.75 0.761823 0.75 0.870984 NA
g12 1 1 NA 1 NA 1 NA
913 0.053950 0.053866 NA 0.747227 NA 2.259875 NA

Table 5. Comparison of our approach (CHDE) with respect to the Adaptive Segrega-
tional Constraint Handling Evolutionary Algorithm (ASCHEA). N A = Not Available.

called Py, whose value has an important impact on the performance of the approach [9].
ASCHEA also requires the definition of several extra parameters, and in its latest ver-
sion, it uses niching, which is a process that also has at least one additional parameter
[18].

Measuring the computational cost, the number of fitness function evaluations (FFE)
performed by our approach is lower than the other techniques with respect to which it
was compared. Our approach performed 348,000 FFE. Stochastic ranking performed
350,000 FFE, the Homomorphous Maps performed 1,400,000 FFE, and ASCHEA per-
formed 1,500,000 FFE.

7 Conclusions and Future Wor k

A novel approach based on the simplest version of the Differential Evolution algorithm,
coupled with three simple criteria based on feasibility (CHDE) was proposed to solve
constrained optimization problems. CHDE does not require a penalty function or any
extra parameters (other than the original parameters of the DE algorithm) to bias the
search towards the feasible region of a problem. Additionally, this improved approach
has a low computational cost and it is easy to implement. Our algorithm was compared
against three state-of-the-art techniques and it provided a competitive performance. Our
future work consists on adding a diversity mechanism which does not increase its com-
putational cost [8] in order to avoid premature convergence.
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