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Two evolutionary algorithms – the genetic algorithm and the evolution strategy – are compared in respect of
mechanical design problems. Mechanical design problems are real world problems, characterized by a number
of inequality constraints, nonlinear equations, mixed discrete-continuous variables and the presence of
interdependent discrete parameters whose values are taken from standardized tables. The selection, recombination
and mutation operators, and the chosen constraint-handling method are presented for both the genetic algorithm
and the evolution strategy. In order to find the best combination of operators for each algorithm which will solve
mechanical design problems, a number of selection and recombination operators are compared in respect of these
problems. A comparison of these two algorithms with regard to three mechanical design problems extends the
results of comparisons presented in the literature for unimodal and multimodal test functions with continuous
variables only, and without constraints.
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1 INTRODUCTION

In mechanical design, sizing a mechanical system implies solving a problem of optimization;

this is called the optimal design problem. The characteristics of these real world problems are

mixed discrete–continuous variables, inequality constraints and nonlinear equations. Optimal

design problems generally involve interdependent discrete parameters whose values are taken

from standardized tables, i.e. lists of commercially available prefabricated sizes. These

discrete parameters directly depend on the choice of one of the discrete variables. These

optimal design problems constitute a particular class of problems, with which this article

is concerned. Because of the presence of interdependent discrete parameters, the gradients

cannot be calculated in general. Thus, classical gradient-based methods are not suitable

for this class of problems.

This article proposes using two evolutionary algorithms – genetic algorithms (GAs) and evo-

lution strategies (ESs) – to solve these problems of optimal design. By choosing zeroth order

heuristic methods, standardized tables of discrete parameters can be used directly. The purpose

is to compare GAs and ESs for the class of optimal design problem. Several GA and ES
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selection and recombination operators will be compared with respect to these problems in order

to find the best combination of operators with each algorithm to solve this type of problem.

First, optimal design problems are expounded after which GAs and ESs are briefly

reviewed. Details of the different operators chosen for study with GAs and ESs are then

described. Finally, numerical experiments on mechanical design problems are presented.

2 MATHEMATICAL FORMULATION OF THE OPTIMAL DESIGN PROBLEMS

The optimal design problems (P) can be expressed in the following form:

Minimize f ðxC; xD;PðxDÞÞ ð1Þ

Subject to gjðxC; xD;PðxDÞÞ � 0 j ¼ 1; . . . ;m ð2Þ

xLl � xCl � xUl l ¼ 1; . . . ; nC ð3Þ

xDi 2 Di;Di ¼ ðdi1; di2; . . . ; diqiÞ i ¼ 1; . . . ; nd ð4Þ

The optimal design problem (P) is a mixed discrete-continuous nonlinear optimization pro-

blem, where f and gj are objective and constraint functions respectively. The components of

the mixed variable vector x are divided into nC continuous variables expressed as xC 2 _RRnc,

where xLl and xUl are lower and upper limits, and nD discrete variables, expressed as xD. Di is

the set of discrete values for the ith variable, while qi is the number of discrete values for the

ith discrete variable. P(xD) is a vector of np discrete parameters, whose values are taken from

standardized tables of standard sizes, and which directly depend on the choice of one of the

discrete variables xDk (k 2 [1, nD]). The derivates qPi=qxDk and also qf =qxDk ,

qgj=qxDk ð j ¼ 1; . . . ;mÞ cannot be computed.

3 EVOLUTIONARY ALGORITHMS

Evolutionary algorithms are based on the principle of evolution, i.e. survival of the fittest.

Unlike classical methods, they do not use a single search point but a population of points

called individuals. Each individual represents a potential solution to the problem. In these

algorithms, the population evolves toward increasingly better regions of the search space

by undergoing statistical transformations called recombination, mutation and selection.

The general structure is the following:

t:¼ 0

initialization of the population

evaluation

while not terminated do

begin

selection (GAs)

recombination

mutation

evaluation

selection (ESs)

t¼ tþ 1

end

A good review of GAs and ESs can be found in Refs. [1, 4–6, 12, 15].
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It should be noted that the order of reproduction and selection procedures is different for

GAs and ESs. With GAs, an intermediate population is selected first and then recombination

and mutation are applied to the individuals selected. With ESs, each offspring is the result

of the recombination of two or more individuals and mutation. When l offspring individuals

are created, the selection operator reduces this intermediate population of l offspring to m
individuals.

In the next section, the individuals’ representation and details of the operators which will

be tested with each algorithm are described.

4 IMPLEMENTATION

4.1 Mixed Continuous-Discrete Representation

GAs The canonical GA uses a binary representation of individuals as fixed-length strings

over the alphabet {1, 0}, which are similar to chromosomes in biological systems [8]. In this

paper, a binary representation using the Gray coding [12] has been chosen. The advantage is

that the Hamming distance is always equal to 1. Continuous variables are treated as discrete

variables with small increments [1, 16, 17]. The segment of the chromosome, corresponding

to the continuous variable xCi is decoded to yield the corresponding integer value, and the

integer value is mapped to the interval ½xLi; xUi�.

ESs The standard representation of ESs is a real-valued vector which can only be applied to

continuous variables. Different extensions of standard ESs have been proposed to solve

mixed-discrete problems [3, 7, 14]. In this article, the representation proposed by Bäck and

Schütz [3] will be used. Each individual is represented by four vectors: a¼ (xC, xD, s, p)

where s 2 Rnc
þ and p 2 [0, 1]nd are strategy parameters which control the application of

mutation to the continuous and discrete parameters.

4.2 Fitness Function and Constraint-Handling

When the problem of minimization does not contain any constraint, the fitness function is

generally the objective function. For problems which involve constraints, many methods

have been developed, especially with GAs (see Refs. [11–13]).

In order to compare GAs and ESs, the same constraint-handling method for GAs and ESs will

be used. A dynamic penalty method in which the penalty coefficient increases during the evolu-

tion process has been chosen. Penalty methods generally give good results in a reasonable com-

putation time. The aim of increasing this coefficient during the search is to initially keep a slow

exploration of the design space and then force a greater exploitation of promising regions.

4.3 Selection

GAs and ESs have very different selection processes – probabilistic in the case of GAs, and

deterministic in the case of ESs.

GAs In the case of GAs, the chance of being selected is proportional to the individual’s

fitness. The rule is that the best individuals have the most copies, the average individual stays

even and the worst dies off. In the case of classical selection (proportional selection) [8], a

linear scaling method can be used to determine the selection probability of the individual

ai: pðaiÞ ¼ ðF max	FðaiÞÞ=ðmF max	
Pm

i¼1 FðaiÞÞ, where F(ai) is the fitness of the
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individual ai and Fmax is the worst fitness value F in the current population. m individuals are

then selected according to that probability distribution (roulette wheel selection). Rank-based

selection methods are now often used rather than this classical selection [12]. The probability

assigned to each individual depends only on its position in the individual’s rank. In the

application, the classical selection and a rank-based selection method used by Le Riche [10]

will be tested.

ESs With ESs, the selection operator is completely deterministic. Two selection methods

exist i.e. (m, l) selection and (mþ l) selection [1]. (m, l) selection is recommended by

Schwefel [15], but the experimental studies of Gehlhaar and Fogel [5] show that the (mþ l)

strategy performs better than the (m, l) strategy. As a result, the two selection strategies will

be tested with respect to the present optimal design problems.

4.4 Recombination

The recombination operator strongly depends on the way individuals are represented. As

GAs and ESs do not use the same representation of individuals (binary and floating-point

vectors respectively), the operators are different.

GAs Many crossover operators have been proposed for GAs (see Ref. [12]). In this article

three different crossover operators will be tested:

– the traditional one-point crossover

– the two-point crossover

– the uniform crossover, in which each bit is chosen randomly from the corresponding

parental bits.

The crossover is applied with a given probability, generally between 0.6 and 0.9 [10]. A

probability pc equal to 0.8 has been chosen.

ESs Not only object variables but also strategy parameters are subject to recombination and

this operator may be different for continuous variables, discrete variables, standard deviations

corresponding to continuous variables, and mutation probabilities corresponding to discrete

variables.

As with GAs, many recombination operators exist [1]. They can all be used in local form

(noted with small letters), where two randomly selected parent individuals produce an

offspring, or global form (indicated in capitals), where one randomly chosen parent is held

fixed and the second parent is randomly chosen anew for each single variable. Table I describes

8 different recombination operators. xP1
i and xP2

i are the ith variables of the two parents P1 and

P2 chosen randomly from the population. x
Pj
i is the ith variable of a new parent j chosen ran-

domly for each component in the case of the global form. xi is the ith variable of the offspring

created by recombination. ai indicates that a is resampled for each variable i.

As no theoretical basis exists for choosing recombination operators, different combinations

of recombination operators for the object variables and the strategy parameters will be tested

with respect to different optimal design problems. The chosen recombination operators are:

– The discrete recombination in its local and global form for the discrete variables:

rxd 2 fd;Dg

– The local discrete, global discrete, global intermediate and global extended generalized

intermediate recombination for the mutation probability: rp 2 fd;D; I ;A1:5g
– The next 6 recombination pairs for the continuous variables xC and the standard deviations

s: ðrxc; rsÞ 2 fðd; I Þ; ðI ; dÞ; ðI ; I Þ; ða1:5; a1:5Þ; ðA1;A1Þ; ðA1:5;A1:5Þg
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4.5 Mutation

GAs In GAs, the mutation changes single bits of chromosomes according to a small

predetermined probability pm. This operator can be applied on a bit by bit basis with a

probability inversely proportional to the number of bits of the chromosome representing each

individual. A predetermined low probability can also be chosen by the user (generally

pm 2 [0.001, 0.02]). In this application, a bit by bit mutation with pm ¼ 0.02 has been chosen.

ESs In the evolution strategy, the strategy parameters (standard deviation and probability of

mutation) are modified during the optimization process by a mechanism of self adaptation.

The strategy parameters undergo the evolution process (crossover and mutation).

Self adaptation in ESs is very different from what happens in GAs. In GAs, the parameters

pc and pm (probability of crossover and mutation) are constant during the evolution process

and they are chosen by the user, whereas in ESs, the strategy parameters s and p undergo

crossover and mutation, and are modified during the evolution process.

For continuous variables, the mutation operator operates by first mutating the standard

deviations with a multiplicative, logarithmic, normally-distributed process, and then by

mutating the continuous variables with a normally-distributed random vector [2]. For discrete

variables, the mechanism of mutation used in this article is similar to that of continuous

variables. The mutation probability is mutated first and then the discrete object variables

are modified. This mechanism is described by Bäck and Schütz [3].

5 COMPUTATIONAL PROCEDURE

The purpose of this paper is to find the best strategy to solve mechanical optimal design

problems. As no theoretical basis exists for the choice of genetic operators with GAs and

ESs to solve this type of problem, the different selection and recombination operators

presented in the previous chapter will be tested with regard to these problems. All in all,

6 tests with GAs and 96 tests with ESs will be carried out in order to find the best combina-

tion of ES and GA operators for the class of design problems.

To obtain statistically significant data, 100 runs for each combination of GA and ES

operators will be performed. A population of 200 individuals is chosen. With GAs, 200

parents create 200 offspring. With ESs, the (30þ 200)-ES and the (30, 200)-ES are studied.

TABLE I Recombination Operators for ESs.

Recombination Computation: xi¼ Interval for a Form Notation

Discrete x
p1
i or x P2

i local d

Global discrete x
p1
i or x

Pj
i global D

Intermediate axP1
i þ ð1 	 aÞxP2

i a¼ 0.5 local i

Global intermediate axP1
i þ ð1 	 aÞxPj

i a¼ 0.5 global I

Generalized intermediate aix
P1
i þ ð1 	 aiÞx

P2
i ai 2 ½0; 1� local a1

Global generalized
intermediate

aix
P1
i þ ð1 	 aiÞx

Pj
i ai 2 ½0; 1� global A1

Extended generalized
intermediate

aix
P1
i þ ð1 	 aiÞx

P2
i ai 2 ½	0:5; 1:5� local a1.5

Global extended
generalized intermediate

aix
P1
i þ ð1 	 aiÞx

Pj
i ai 2 ½	0:5; 1:5� global A1.5
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6 NUMERICAL EXAMPLES

6.1 Formulation of the Problems

GAs and ESs are applied to three mechanical design problems.

Problem 1 (Fig. 1) The first problem is the design of a pressure vessel [16]. The dimensions

Ts (the shell thickness), Th (the spherical head thickness), R (the radius of the cylindrical

shell), and L (the length of the shell) are the design variables. The aim of the design is to

minimize the total manufacturing cost for the pressure vessel. The optimization problem

contains 2 discrete variables (Ts, Th), 2 continuous variables (R, L) and 7 inequality con-

straints. Its formulation is as follows:

Minimize the objective function

f ðTs; Th;R; LÞ ¼ 0:6224 TsR L þ 1:7781 ThR2 þ 3:1611 T2
s L þ 19:84 T2

s R ð5Þ

Subject to the constraints:

g1ðTs; Th;R; LÞ ¼ 0:0193 R 	 Ts � 0 g5ðTs; Th;R; LÞ ¼ 0:6 	 Th � 0

g2ðTs; Th;R; LÞ ¼ 0:00954 R 	 Th � 0 g6ðTs; Th;R; LÞ ¼ R 	 70 � 0

g3ðTs; Th;R; LÞ ¼ 1:1 	 Ts � 0 g7ðTs; Th;R; LÞ ¼ L 	 50 � 0

g4ðTs; Th;R; LÞ ¼ 752 � 1728 	 pR2L2 	 4pR2=3 � 0

ð6Þ

Problem 2 (Fig. 2) The second problem is a coupling with a bolted rim [9]. A torque is

transmitted by adhesion using N bolts of diameter d placed at radius RB. The problem is to

find the coupling with the smallest radius, the smallest number of bolts and the lowest torque.

This objective function is a multi criteria function with weighting coefficients b1, b2, b3. In

this study it is assumed that the restrained linkage between the shaft and the coupling is

chosen. The formulated optimization problem contains one discrete variable (d), one integer

variable (N), two continuous variables (RB, M), 11 inequality constraints and 5 discrete bolt

FIGURE 1 Pressure vessel.
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parameters (fi(d), i¼ 1, . . ., 5). Details of the equations of the problem and values of the data

can be found in Ref. [9]. The formulation of the problem is as follows:

Minimize the objective function:

f ðd;N ;RB;M Þ ¼ b1

N

Nm

� �
þ b2

ðRB þ F4ðdÞ þ cÞ

RM

� �
þ b3

M

MT

� �
ð7Þ

Subject to the constraints:

g1ðd;N ;RB;M Þ ¼
aM

ðN :RB:KðdÞÞ
	 1 � 0 g6ðd;N ;RB;M Þ ¼ Nm 	 N � 0

g2ðd;N ;RB;M Þ ¼ 1 	
2pRB

F5ðdÞ:N
� 0 g7ðd;N ;RB;M Þ ¼ RM 	 RB � 0

g3ðd;N ;RB;M Þ ¼ 1 	
RB

F4ðdÞ
þ RM � 0 g8ðd;N ;RB;M Þ ¼ M 	 MMAXI � 0

g4ðd;N ;RB;M Þ ¼ N 	 NMAXI � 0 g9ðd;N ;RB;M Þ ¼ MT 	 M � 0

g5ðd;N ;RB;M Þ ¼ RB 	 RMAXI � 0 g10ðd;N ;RB;M Þ ¼ d 	 24 � 0

g11ðd;N ;RB;M Þ ¼ 6 	 d � 0

ð8Þ

Data:

MT, MMAXI: lower and upper bound of the torque to be transmitted.

fm, f1: friction coefficient between the two rims and between the nuts and the screw.

a: torque wrench precision.

Re: yield stress of bolts.

Nm, NMAXI : lower and upper bound on the number of bolts.

RM, RMAXI : lower and upper bound on the radius of bolts

c: minimum thickness of the rim

with KðdÞ ¼
0:9 fmRepðF1ðdÞÞ

2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 3ð0:16F3ðdÞ þ 0:583F2ðdÞf1Þ=F1ðdÞÞ

2
p

FIGURE 2 A coupling with bolted rim.
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Problem 3 (Fig. 3) The last problem is a ball bearing pivot link. The aim is to find the lengths

x1, x2 and the two ball bearings R1 and R2 in order to minimize the weight of the assembly

composed of a shaft and two ball bearings. The ball bearings were chosen from a standar-

dized table of prefabricated sizes. The formulated optimization problem contains 4 variables,

2 continuous (x1, x2), 2 integer (R1, R2) variables, 12 discrete parameters and 10 inequality

constraints. R1 and R2 represent the choice of the two ball bearings. In order to solve this

problem with GAs and ESs, we numbered the ball bearings, having a diameter of 30 to 45,

from 1 to 28 in the same order as the standardized table. The parameters of the 2 ball bearings

are (C1, d1, D1, b1, d3, m1) and (C2, d2, D2, b2, d4, m2) respectively, depending on the choice

of the ball bearings. This gives the following formulation, with X ¼ fR1;R2; x1; x2g:

Minimize the objective function:

f ðX Þ ¼ m1 þ m2 þ r
p
4
½0:5ðd2

1ðb1 	 b0Þ 	 ðd2 þ 2t2Þ
2
ðb1 þ b2ÞÞ�

þ r
p
4
½ðd1 þ 2t1Þ

2b3 þ d2
2 l2 þ x1d2

1 þ d2
2 ðx2 	 b3Þ� ð9Þ

Subject to the constraints:

g1ðX Þ ¼ 0:5 b1 	 x1 þ ð0:5 b0 þ e1Þ � 0 g2ðX Þ ¼ D2 	 D1 � 0

g3ðX Þ ¼ 29216 1 þ
x1

x2

� �
	 C1 � 0 g4ðX Þ ¼ d0 	 d1 � 0

g5ðX Þ ¼ 29216
x1

x2

� �
	 C2 � 0 g6ðX Þ ¼ d5 	 d2 � 0

g7ðX Þ ¼ ð615:51x1 þ 3930Þ1=3
	 d1 � 0 g8ðX Þ ¼ D1 	 DM � 0

g9ðX Þ ¼ 0:5 b1 þ 0:5 b2 	 x2 þ ðe4 þ b3Þ � 0 g10ðX Þ ¼ x2 þ x1 þ 0:5 b2 	 177 � 0

Data: fb0; b3; e1; e4; e2;DM ; LM ; b5; d0; rg
ð10Þ

FIGURE 3 Ball bearing pivot link.
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These 3 problems are real world mechanical engineering problems. For the three mechanical

design problems studied in this paper, the analytical solution is known, so the results can be

compared with the theoretical solution. These problems allow the best combination of opera-

tors to be found for the class of problems, of which they are part. Knowing these results, it

will be possible to apply the best strategy to problems of the same class, but for which the

theoretical solution is unknown.

6.2 The Best Combination of Operators for GAs and ESs

From the 6 tests made with GAs and the 96 tests made with ESs with respect to the design

problems described above, the following conclusions can be drawn:

6.2.1 Selection

Based on the results of the different tests, the conclusions about the selection operators are

the following:


 For GAs the rank-based method gives better results than the proportional one for the three

problems (see Fig. 4 for example).


 For ESs the best results are obtained with the (mþ l) selection from the viewpoint of

convergence reliability and velocity (see Table II).

6.2.2 Recombination

GAs For the recombination methods with GAs, the two point crossover clearly increases the

convergence velocity and the convergence reliability (see Fig. 5). The reason is that the

FIGURE 4 The two methods of selection with GAs (problem 2).
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one-point crossover method has a very high probability of separating bits located at the

extreme ends of the chromosome. Some recent studies [17] have shown that crossover

operators with a higher number of crossover points may sometimes be more effective but

they do not always give the best results for the present class of design problems. The results

depend on the problem treated. The two-point crossover appears to be the best strategy.

ESs With regard to recombination for discrete variables and probability of mutation, for

problems 2 and 3 it can be noted that:


 For the discrete variables, the results are a little more precise with the global form

((rxd¼D)). For example for problem 2, the average error is equal to 0.46% with the global

form and 0.56% with the local one.


 For the probability of mutation, the average reliability is better with the global intermediate

method (rp¼ I). For example, for problem 2, the average error equal to 0.46% with rp¼ I

is respectively equal to 0.48%, 0.56%, 0.72% for rp¼ d, D, A1.5. So ((rxd¼D) and

(rp¼ I)) will be kept for the remainder of this article.

TABLE II Comparison of the Two Selection Methods of ES (Realized with rxd¼D, rp¼ I,
rxc¼ d, rs¼ I).

Problem 1 Problem 2 Problem 3

(m, l) (mþ l) (m, l) (mþ l) (m, l) (mþ l)

Average
error (%)

2.38 1.49 0.57 0.46 1.95 1.18

FIGURE 5 1-point crossover and 2-point crossover (problem 3).
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With regard to recombination operators for continuous variables and standard deviations, it

is very difficult to tell from the tests carried out for the three mechanical problems which

operators are best (see Figs. 6–8). The two pairs of recombination operators (rxc, rs)¼

(a1.5, a1.5) and (A1.5, A1.5) have similar behavior for all three problems. They both give

FIGURE 6 Comparison of the recombination operators of ES (problem 1) with rxd¼D, rp¼ I.

FIGURE 7 Comparison of the recombination operators of ES (problem 2) with rxd¼D, rp¼ I.
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the best convergence reliability for problems 2 and 3. For problem 1, the best convergence

reliability and velocity is obtained with the pair of operators (d, I).

Table III presents the conclusions drawn from Figures 6–8 concerning the two pairs of

recombination operators (d, I) and (A1.5, A1.5), the average of the objective function from

100 runs ( �ff ) and its standard deviation (V). Other pairs of operators are not presented be-

cause their performance was not as good.

Finally, for problems 2 and 3, the operators (A1.5, A1.5) are kept for (rxc, rs) because they

give the best reliability and a good performance velocity (in the case of problem 2). These

operators are different from the standard operators, advised by Bäck [1] ((rxc, rs)¼ (d, I))

or from the operators used by Bäck and Schütz [3] ((rxc, rs)¼ (I, I)). These results show

that the recombination operator (A1.5) is better adapted, when difficult real-world mechanical

design problems are solved, because it favors the exploration.

For problem 1, operators (rxc, rs)¼ (d, I) which gave the best performance for this problem

are kept. Problem 1 is the easiest problem. Exploration of the search space does not seem as

FIGURE 8 Comparison of the recombination operators of ES (problem 3) with rxd¼D, rp¼ I.

TABLE III Conclusions Concerning the Continuous Recombination Operators for ESs.

Problem 1 Problem 2 Problem 3

(d, I) reliability : reliability ! reliability !

initial velocity : fast initial velocity : initial velocity ;
�ff =7307:32 �ff =4:043 �ff =796693:6
V¼ 60.05 V¼ 0.239 V¼ 91536.4

(A1.5, A1.5) reliability ! reliability : reliability :
f initial velocity : initial velocity : initial velocity ;
�ff =7323:54 �ff =3:986 �ff =783205:3
V¼ 61.86 V¼ 0.163 V¼ 45080.2
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extensive as it is for the other problems. The best combinations of operators with GAs and

ESs for the mechanical design problems are summarized in Table IV.

6.3 Comparison of GAs and ESs

The results of this comparison are summarized on Figures 9–11 and in Tables V and VI.

Table V presents, for each problem, the error for the final best objective function value

with regard to the theoretical solution (best error %), and the number of evaluations which

were necessary to obtain the theoretical objective function with an error of 10% (Nb eval

Ftheo 10%). Concerning the convergence reliability of the two algorithms, Table V shows

that the theoretical global optimum was always identified by ESs, after 50 generations,

whereas this is not so with GAs. GAs give good approximations to the global optimum

for the three problems but never the exact solution. So a better convergence reliability is

obtained with ESs. This first result can easily be explained by the fact that GAs work with

a binary representation of individuals whereas ESs work with real vectors. The reliability

given with GAs is always limited by the increment of discretization.

TABLE IV Operators Chosen.

GAs ESs

Selection rank-based (mþ l)
Recombination two-point rxd¼D

rp¼ I
(rxc, rs)¼ (d, I) (prob 1)
(rxc, rs)¼ (A1.5, A1.5) (prob 2, 3)

FIGURE 9 Comparison (problem 1).
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FIGURE 10 Comparison (problem 2).

FIGURE 11 Comparison (problem 3).
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Figures 9–11 show that convergence is faster with ESs than GAs for all three problems.

Moreover, the more difficult the mechanical design problem, the greater is the difference

in performance between GAs and ESs. GAs give poorer convergence reliability and velocity

when the problem becomes difficult (problem 3). Figure 11 shows a rapid initial convergence

rate with GAs for problem 3, which is better than with ESs. However, this convergence rate

rapidly decreases over time (Figs. 10, 11). This comes from the fact that the probability of

mutation with GAs is not adjusted during the optimization process, contrary to ESs which

benefit from self adaptation. For the three problems, Table V shows that the number of

evaluations needed to obtain a given reliability (the theoretical optimum with a 10% error)

is about twice as much with GAs as it is with ESs. This confirms once again that the con-

vergence velocity is better with ESs than it is with GAs.

Finally, for the three problems, ESs show a better convergence reliability and convergence

velocity than GAs. These results were also found by Bäck and Schwefel [4] for three func-

tions i.e. two unimodal functions and a multimodal function without constraints and with

only continuous variables. The results of this paper, which were obtained for three highly

constrained, mixed discrete-continuous nonlinear functions, show that ESs still give the

best performance with this type of complex problem.

CONCLUSION

GAs and ESs have enabled solutions to be found of mechanical design problems expressed as

highly constrained, mixed discrete–continuous nonlinear optimization problems. One of the

principal advantages of these evolutionary algorithms is that they do not require any deriva-

tive information. This means that complex mechanical design problems can be solved for

which the gradient functions cannot be computed and which therefore cannot be solved

using classical methods.

GAs and ESs are both evolutionary algorithms based on the same concepts. The tests

which were carried out with different selection and recombination operators enabled the

best combination of operators to be found for each algorithm for the mechanical design pro-

blems studied. These operators are often different from the standard operators. These results

TABLE V Error for the Final Best Objective Function Value at the 50th Generation.

Problem 1 Problem 2 Problem 3

Best error
(%)

Nb eval.
Ftheo 10%

Best error
(%)

Nb eval.
Ftheo 10%

Best error
(%)

Nb eval.
Ftheo 10%

GA 0.0182 944 0.0272 5320 0.1994 6298
ES 0 584 0 2120 0 3125

TABLE VI Standard Deviations for 100 Runs after 50 Generations.

GAs ESs Optimum

Problem 1 44.34 62.04 7197,73
Problem 2 0.0183 0.0675 3,8797
Problem 3 51683.02 28744.49 748315,6
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show that the standard operators do not always give the best results, when difficult real-world

problems of optimal design are solved.

Finally the comparison of GAs and ESs for three design problem indicates a better

convergence reliability and convergence velocity with ESs. The problem with GAs is that

the GA parameters (probability of crossover and mutation) are not adjusted during the opti-

mization process, contrary to ESs.

The tests realized here on three design problems will now allow mechanical design

problems of the same class to be solved by using the best combination of operators found

in this article. Our future research will be on the coupling of an evolutionary algorithm

with a deterministic algorithm in order to reduce the computational cost.
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