

Studies on
Metaheuristics for Continuous Global

Optimization Problems

Abdel-Rahman Hedar A. Ahmed

Studies on
Metaheuristics for Continuous Global

Optimization Problems

Abdel-Rahman Hedar A. Ahmed

Submitted in partial fulfillment of

the requirement for the degree of

Doctor of Informatics

Kyoto University
Kyoto, Japan

June 2004

Preface

The interface between computer science and operations research has drawn much attention

recently especially in optimization which is a main tool in operations research. In optimiza-

tion area, the interest on this interface has rapidly increased in the last few years in order to

develop nonstandard algorithms that can deal with optimization problems which the stan-

dard optimization techniques often fail to deal with. Global optimization problems represent

a main category of such problems. Global optimization refers to finding the extreme value

of a given nonconvex function in a certain feasible region and such problems are classified

in two classes; unconstrained and constrained problems. Solving global optimization prob-

lems has made great gain from the interest in the interface between computer science and

operations research.

In general, the classical optimization techniques have difficulties in dealing with global

optimization problems. One of the main reasons of their failure is that they can easily be

entrapped in local minima. Moreover, these techniques cannot generate or even use the global

information needed to find the global minimum for a function with multiple local minima.

The interaction between computer science and optimization has yielded new practical solvers

for global optimization problems, called metaheuristics. The structures of metaheuristics are

mainly based on simulating nature and artificial intelligence tools. Metaheuristics mainly

invoke exploration and exploitation search procedures in order to diversify the search all over

the search space and intensify the search in some promising areas. Therefore, metaheuristics

cannot easily be entrapped in local minima. However, metaheuristics are computationally

costly due to their slow convergence. One of the main reasons for their slow convergence

is that they may fail to detect promising search directions especially in the vicinity of local

minima due to their random constructions.

In this study, both global optimization problem classes; unconstrained and constrained

problems, are considered in the continuous search space. New hybrid versions of metaheuris-

tics are proposed as promising solvers for the considered problems. The proposed methods

ii Preface

aim to overcome the drawbacks of slow convergence and random constructions of meta-

heuristics. In these hybrid methods, local search strategies are inlaid inside metaheuristics

in order to guide them especially in the vicinity of local minima, and overcome their slow

convergence especially in the final stage of the search.

Metaheuristics are derivative-free methods so that direct search methods, which are also

derivative-free methods, are invoked to play the role of local search in the proposed hybrid

methods. Therefore, the hybrid methods proposed in this study confront the growth of many

optimization problems in which the gradient information is not available.

Kyoto, Japan Abdel-Rahman Hedar A. Ahmed

June 2004

Acknowledgements

I am greatly indebted to my supervisor, Prof. Masao Fukushima, one of the great scientists

in optimization and mathematical programming, for many things. I thank him for accepting

me to be one of his students in Kyoto University from four years ago, for his suggestion of

this research area to work on, and for his direct supervision. I would also like to thank him

for his continual suggestions and support during this research. I owe special thanks for him

for carefully reading and invaluable suggestions and corrections of the draft manuscripts of

the parts of this thesis.

I would like to thank all members of Prof. Fukushima’s research group, Prof. Tetsuya

Takine, Dr. Nobuo Yamashita and my colleagues, for the good scientific atmosphere they

offered to me during my study in Kyoto University. I would also like to thank Prof. Toshihide

Ibaraki and Dr. Mutsunori Yagiura for providing me with some essential research papers

needed in my study from their own libraries. Moreover, I am very grateful that I have been

graduated from Kyoto University, one of the best universities in Japan and all over the

world.

I owe thanks to Egyptian Government and Kyoto University for supporting my study

in Japan. I am grateful for all research facilities that have been provided to me in Kyoto

University to achieve this study.

Although I was very happy to be a great scientific environment represented in Kyoto

University, it was hard to achieve the needed research atmosphere without my wife’s support.

Actually, it was not so easy for me to be settled in an oriental culture like Japanese Culture

without her accompany. So, I am very grateful for her continual supports and encouragement.

I owe great thanks to my great parents for all things that they gave to me or taught me.

Without their supports I would never have made any success.

I have been brought up in an Islamic culture and environment in which my parents taught

me importance of thanks and appreciation to others and primarily to Allah, the Creator,

the Ultimate Source of all gifts in life. I have been always grateful to their teaching so lastly

iv Acknowledgements

and above all, I would thank Him Almighty for all His gifts, guidance and helps.

Contents

Preface i

Acknowledgements iii

1 Introduction 1

1.1 Continuous Global Optimization Problems 2

1.2 Metaheuristics . 3

1.2.1 Genetic Algorithms . 3

1.2.2 Simulated Annealing . 6

1.2.3 Tabu Search . 8

1.3 Direct search methods . 9

1.3.1 Nelder-Mead method . 10

1.3.2 Pattern Search methods . 13

1.4 Organization and Contributions . 14

2 Direct Search SA for Unconstrained Global Optimization 17

2.1 Introduction . 17

2.2 The description of the proposed methods . 18

2.2.1 Simple direct search (SDS) . 19

2.2.2 Simplex simulated annealing (SSA) 21

2.2.3 Direct search simulated annealing (DSSA) 22

2.3 Experimental results . 24

2.3.1 Setting of parameters . 25

2.3.2 Numerical results . 26

vi CONTENTS

2.4 Conclusion . 29

3 Simplex Coding GA for Unconstrained Global Optimization 33

3.1 Introduction . 33

3.2 Simplex-Based Genetic Algorithms . 34

3.3 Description of SCGA . 36

3.3.1 Initialization . 36

3.3.2 GA loop . 37

3.3.3 Acceleration in the final stage . 39

3.4 Experimental Results . 40

3.4.1 Parameter setting . 40

3.4.2 Numerical results . 42

3.5 Conclusion . 46

4 Heuristic Pattern Search SA for Unconstrained Global Optimization 47

4.1 Introduction . 47

4.2 Approximate Descent Direction . 48

4.3 Heuristic Pattern Search . 54

4.4 Simulated Annealing HPS . 59

4.5 Experimental Results . 62

4.5.1 Setting of Parameters . 62

4.5.2 Numerical Results . 63

4.6 Conclusion . 65

5 Directed TS for Unconstrained Global Optimization 67

5.1 Introduction . 67

5.2 TS Memory Elements . 69

5.2.1 Multi-Ranked Tabu List (TL) . 70

5.2.2 Visited Region List (VRL) . 72

5.3 Neighborhood-Local Search Strategies . 73

CONTENTS vii

5.3.1 Nelder-Mead Search (NMS) Strategy 74

5.3.2 Adaptive Pattern Search (APS) Strategy 74

5.4 Directed Tabu Search (DTS) . 76

5.4.1 Exploration-Diversification Loop . 77

5.4.2 Intensification Search . 79

5.4.3 Main Algorithm . 79

5.5 Implementation and Experiments . 82

5.5.1 Setting Parameters . 82

5.5.2 Numerical Results . 85

5.6 Conclusion . 92

6 Filter SA for Constrained Global Optimization 93

6.1 Introduction . 93

6.2 Preliminaries . 95

6.2.1 Pareto Dominance . 96

6.2.2 Problem Reformulation . 96

6.2.3 Filter Set and Filtered Points . 97

6.3 The FSA method . 97

6.3.1 Diversification Generation Procedure 98

6.3.2 Ranking Procedure . 100

6.3.3 Trial Solution Generation Procedure 101

6.3.4 Intensification . 102

6.3.5 FSA Algorithm . 103

6.4 Setting FSA Parameters . 104

6.4.1 Constraint Violation Function Parameters 105

6.4.2 Diversification Parameters . 106

6.4.3 Cooling Schedule Parameters . 106

6.4.4 Trial Solutions Parameters . 106

6.4.5 Intensification Parameters . 107

viii CONTENTS

6.5 Numerical Results . 107

6.6 More Numerical Experiments . 110

6.6.1 Welded Beam Design Problem . 110

6.6.2 Pressure Vessel Design Problem . 113

6.6.3 Tension-Compression String Problem 113

6.7 Conclusion . 114

7 Summary and Conclusions 115

A Unconstrained Test Problems 117

B Constrained Test Problems 125

Chapter 1

Introduction

Many recent problems in science, engineering and economics can be expressed as comput-

ing globally optimal solutions [48, 49, 74, 75, 76]. Using classical nonlinear programming

techniques may fail to solve such problems because these problems usually contain multiple

local optima. Therefore, global search methods should be invoked in order to deal with

such problems. In recent years, there has been a great deal of interest in emerging some

artificial intelligence tools in the area of optimization. These tools which are normally called

metaheuristics are mainly proposed by simulating nature or by invoking intelligent learned

procedures [30, 73, 81].

One main category of global optimization problems contains the problems which are

characterized by one or more of the following properties:

• Calculation of the objective function (or constraint functions if exist) is very expensive

or time consuming.

• The exact gradient of the objective function (or constraint functions if exist) cannot

be computed, or its numerical approximation is very expensive or time consuming.

• The values of the objective function (or constraint functions if exist) contain noise.

Such problems exist in many real-world applications and achieving the exact global solution

is neither possible nor desirable. Therefore, using derivative-free global search methods

is highly needed in order to achieve acceptable solutions. Actually, metaheuristics fight

courageously when applied to these problems and they could obtain highly accurate solutions

in many cases [73]. The power of metaheuristics comes from the fact that they are robust

and can deal successfully with a wide range of problem areas. However, these methods,

especially when they are applied to complex problems, suffer from the slow convergence that

2 Introduction

brings about the high computational cost. The main reason for this slow convergence is that

these methods explore the global search space by creating random movements without using

much local information about promising search direction. In contrast, local search methods

have faster convergence due to their using local information to determine the most promising

search direction by creating logical movements. However, local search methods can easily

be entrapped in local minima.

One approach that recently has drawn much attention is to combine metaheuristics with

local search methods to design more efficient methods with relatively faster convergence than

the pure metaheuristics, see [37, 38, 39, 40, 41, 42] and references therein. Moreover, these

hybrid methods are not easily entrapped in local minima because they still maintain the

merits of the metaheuristics.

In this study, new hybrid methods that combine metaheuristics and direct search meth-

ods are proposed in order to deal with the global optimization problems that have the above

characteristics. Specifically, local search guidance in the direct search methods is invoked to

direct and control the global search features of metaheuristics to design more efficient hybrid

methods. In the rest of this chapter, some well-known direct search methods and metaheuris-

tics are introduced to be used throughout this study. The mathematical definitions of the

considered problems are given first.

1.1 Continuous Global Optimization Problems

In this study, both unconstrained and constrained global optimization problems in a continu-

ous space are considered. Without loss of generality, only minimization problems are studied

since maximization problems can be transformed to minimization problems by inverting the

sign of their objective functions. The mathematical definitions for the considered problems

are given below.

Unconstrained Problem

min
xǫRn

f(x), (1.1.1)

where f is a generally nonconvex, real valued function defined on Rn.

Constrained Problem

min
x

f (x) ,

s.t. gi (x) ≤ 0, i = 1, . . . , l,
hj (x) = 0, j = 1, . . . ,m,
x ∈ S,

(1.1.2)

1.2 Metaheuristics 3

where f , gi and hj are real-valued functions defined on the search space S ⊆ Rn. Usually,

the search space S is defined as {x ∈ Rn : xi ∈ [li, ui] , i = 1, . . . , n}.

1.2 Metaheuristics

The term “metaheuristics” was first proposed by Glover [27]. The word “metaheuristics”

contains all heuristics methods that show evidence of achieving good quality solutions for

the problem of interest within an acceptable time. Usually, metaheuristics offer no guarantee

of obtaining the global solutions.

Metaheuristics can be classified into two classes; population-based methods and point-

to-point methods. In the latter methods, the search invokes only one solution at the end

of each iteration from which the search will start in the next iteration. On the other hand,

the population-based methods invoke a set of many solutions at the end of each iteration.

Below, we highlight the principles of genetic algorithm as an example of population-based

methods, and simulated annealing and tabu search as examples of point-to-point methods.

1.2.1 Genetic Algorithms

A genetic algorithm (GA) is a procedure that tries to mimic the genetic evolution of a species.

Specifically, GA simulates the biological processes that allow the consecutive generations in a

population to adapt to their environment. The adaptation process is mainly applied through

genetic inheritance from parents to children and through survival of the fittest. Therefore,

GA is a population-based search methodology. Some pioneering works traced back to the

middle of 1960s preceded the main presentation of the GAs of Holland [46] in 1975. However,

GAs were limitedly applied until their multipurpose presentation of Goldberg [34] in search,

optimization, design and machine learning areas. Nowadays, GAs are considered to be the

most widely known and applicable type of metaheuristics [7, 8, 68].

GA starts with an initial population whose elements are called chromosomes. The chro-

mosome consists of a fixed number of variables which are called genes. In order to evaluates

and rank chromosomes in a population, a fitness function based on the objective function

should be defined. Three operators must be specified to construct the complete structure

of the GA procedure; selection, crossover and mutation operators. The selection operator

cares with selecting an intermediate population from the current one in order to be used by

the other operators; crossover and mutation. In this selection process, chromosomes with

4 Introduction

higher fitness function values have a greater chance to be chosen than those with lower fitness

function values. Pairs of parents in the intermediate population of the current generation

are probabilistically chosen to be mated in order to reproduce the offspring. In order to in-

crease the variability structure, the mutation operator is applied to alter one or more genes

of a probabilistically chosen chromosome. Finally, another type of selection mechanism is

applied to copy the survival members from the current generation to the next one.

GA operators; selection, crossover and mutation have been extensively studied. Many

effective setting of these operators have been proposed to fit a wide variety of problems. More

details about GA elements are discussed below before stating a standard GA in Algorithm

1.2.1.

Fitness Function

Fitness function F is a designed function that measures the goodness of a solution. It should

be designed in the way that better solutions will have a higher fitness function value than

worse solutions. The fitness function plays a major role in the selection process.

Coding

Coding in GA is the form in which chromosomes and genes are expressed. There are mainly

two types of coding; binary and real. The binary coding was presented in the GA original

presentation [46] in which the chromosome is expressed as a binary string. Therefore, the

search space of the considered problem is mapped into a space of binary strings through a

coder mapping. Then, after reproducing an offspring, a decoder mapping is applied to bring

them back to their real form in order to compute their fitness function values. Actually,

many researchers still believe that the binary coding is the ideal. However, the real coding

is more applicable and easy in programming. Moreover, it seems that the real coding fits

the continuous optimization problems better than the binary coding [44].

Selection

Consider a population P , selection operator selects a set P ′ ⊆ P of the chromosomes that

will be given the chance to be mated and mutated. The size of P ′ is the same as that of

P but more fit chromosomes in P are chosen with higher probability to be included in P ′.

Therefore, the most fit chromosomes in P may be represented by more than one copy in P ′

and the least fit chromosomes in P may be not represented at all in P ′.

1.2 Metaheuristics 5

Consider the population P = {x1, x2, . . . , xN}. The difference between selection operators

lies in the way of computing the probability of including a copy of chromosome xi ∈ P into the

set P ′, which is denoted by ps(xi). Using these probabilities, the population is mapped onto

a roulette wheel, where each chromosome xi is represented by a space that proportionally

corresponds to ps (xi). Chromosomes in the set P ′ are chosen by repeatedly spinning the

roulette wheel until all positions in P ′ are filled.

The most common selection operators are the proportional selection [46] and linear rank-

ing selection [9], see [6] for ease of explanation and comparison of different selection op-

erators. It is noteworthy that in the proportional selection mechanism, the probabilities

ps(xi), i = 1, . . . , N, are calculated by

ps(xi) =
F (xi)∑N

j=1 F (xj)
.

where F is the fitness function which must have positive values for all possible chromosomes

in order to be used in this selection mechanism. In linear ranking selection mechanism, the

chromosomes of P are sorted in the order of raw fitness, i.e.,

F (x1) ≤ F (x2) ≤ · · · ≤ F (xN).

Then the probabilities ps(xi), i = 1, . . . , N, are calculated by

ps(xi) =
1

M

(
ηmax − (ηmax − ηmin)

i − 1

N − 1

)
,

where ηmin = 2 − ηmax and 1 ≤ ηmax ≤ 2.

Crossover and Mutation

Crossover operator aims to interchange the information and genes between chromosomes.

Therefore, crossover operator combines two or more parents to reproduce new children,

then, one of these children may hopefully collect all good features that exist in his parents.

Crossover operator is not typically applied for all parents but it is applied with probability

pc which is normally set equal to 0.6. Actually, crossover operator plays a major role in

GA, so defining a proper crossover operator is highly needed in order to achieve a better

performance of GA. Different types of crossover operators have been studied, see [44] as a

condensed survey.

Mutation operator alters one or more gene in a chromosome. Mutation operator aims

to achieve some stochastic variability of GA in order to get a quicker convergence. The

probability pm of applying the mutation operator is usually set to be small, normally 0.01.

6 Introduction

Algorithm 1.2.1. Genetic Algorithm

1. Initialization. Generate an initial population P0. Set the crossover and

mutation probabilities pc ∈ (0, 1) and pm ∈ (0, 1), respectively. Set the gener-

ation counter t := 1.

2. Selection. Evaluate the fitness function F at all chromosomes in Pt. Select

an intermediate population P ′
t from the current population Pt.

3. Crossover. Associate a random number from (0, 1) with each chromosome

in P ′
t and add this chromosome to the parents pool set SP

t if the associated

number is less than pc. Repeat the following Steps 3.1 and 3.2 until all parents

in SP
t are mated:

3.1. Choose two parents p1 and p2 from SP
t . Mate p1 and p2 to reproduce

children c1 and c2.

3.2. Update the children pool set SC
t through SC

t := SC
t ∪ {c1, c2} and update

SP
t through SP

t := SP
t − {p1, p2}.

4. Mutation. Associate a random number from (0, 1) with each gene in each

chromosome in P ′
t , mutate this gene if the associated number is less than pm,

and add the mutated chromosome only to the children pool set SC
t .

5. Stopping Conditions. If stopping conditions are satisfied, then terminate.

Otherwise, select the next generation Pt+1 from Pt ∪SC
t . Set SC

t to be empty,

set t := t + 1, and go to Step 2.

1.2.2 Simulated Annealing

The original ideas of the simulated annealing (SA) methods dates back to 50s of the last cen-

tury. Exactly, in 1953, Metropolis et al. [65] introduced an efficient algorithm to simulated

the equilibrium of a collection of atoms at a given temperature. This pioneering technique

1.2 Metaheuristics 7

had inspired Kirkpatrik et al. [53] to simulate it in optimization and call it Simulated An-

nealing (SA). Since the presentation of Kirkpatrik et al., a lot of studies that invoke SA

have emerged in the area of optimization. Actually, the theoretical aspects as well as the

applications of SA have been extensively studied, see [58, 57] and see [1, 43] as recent and

short surveys.

The SA algorithm successively generates a trial point in a neighborhood of the current

solution and determines whether or not the current solution is replaced by the trial point

based on a probability depending on the difference between their function values. Conver-

gence to an optimal solution can theoretically be guaranteed only after an infinite number

of iterations controlled by the procedure so-called cooling schedule. The main control pa-

rameter in the cooling schedule is the temperature parameter T . The main role of T is to let

the probability of accepting a new move be close to 1 in the earlier stage of the search and

to let it be almost zero in the final stage of the search. A proper cooling schedule is needed

in the finite-time implementation of SA to simulate the asymptotic convergence behavior of

the SA. Algorithm 1.2.2 states the steps of the standard SA method.

Algorithm 1.2.2. Simulated Annealing

1. Initialization. Choose an initial solution x0, and fix the cooling schedule

parameters; initial temperature Tmax, epoch length M, cooling reduction ratio

λ ∈ (0, 1), and minimum temperature Tmin. Set the temperature T := Tmax

and k := 0.

2. Epoch Loop. Repeat the following steps (2.1–2.3) M times.

2.1. Generate a trial point yk in the neighborhood of the current solution xk.

2.2. Evaluate f on the trial point yk, and compute

p :=

1, if f(yk) < f(xk);

exp
(−∆f

T

)
, otherwise,

where ∆f := f(yk) − f(xk).

2.3. Choose a random number u from (0, 1) . If p ≥ u, set xk+1 := yk. Otherwise,

set xk+1 := xk. Set k := k + 1.

8 Introduction

3. Termination Condition. If the cooling schedule is completed (T ≤ Tmin),

terminate. Otherwise, decrease the temperature by setting T := λT , and go

to Step 2.

One of the most powerful features of SA is its ability of easily escaping from being trapped

in local minima by accepting up-hill moves through a probabilistic procedure especially in

the earlier stages of the search. On the other hand, the main drawbacks that have been

noticed on SA are its suffering from slow convergence and its wandering around the optimal

solution if high accuracy is needed.

1.2.3 Tabu Search

Tabu Search (TS) is a heuristic method originally proposed by Glover in 1986 [27]. TS has

been proposed and developed for combinatorial optimization problems [28, 29, 31]. TS fights

courageously when applied to combinatorial optimization problems [31, 73, 81]. However,

there is a very limit number of TS contributions in continuous optimization problems [39].

The main feature of TS is its use of an adaptive memory and responsive exploration.

A simple TS combines a local search procedure with anti-cycling memory-based rules to

prevent the search from getting trapped in local minima. Specifically, TS restricts returning

to recently visited solutions by constructing a list of them called Tabu List (TL). In each

iteration of the simple TS illustrated in Algorithm 1.2.3, TS generates many trial solutions

in a neighborhood of the current solution. The trial solutions generation process is composed

to avoid generating any trial solution that is already recently visited. The best trial solution

found among the generated solutions will become the next solution. Therefore, TS can

accept uphill movements to avoid getting trapped in local minima. TS can be terminated

if the number of iterations without any improvement exceeds a predetermined maximum

number.

Algorithm 1.2.3. Simple Tabu Search

1. Choose an initial solution x0. Set the Tabu List (TL) to be empty, and set

the counter k := 0.

2. Generate neighborhood moves list M(xk) = {x′ : x′ ∈ N(xk)}, based on tabu

restrictions, where N(xk) is a neighborhood of xk.

1.3 Direct search methods 9

3. Set xk+1 equal to the best trial solution in M(xk), and update TL.

4. If stopping conditions are satisfied, terminate. Otherwise, go to Step 2.

A simple TS structure given in Algorithm 1.2.3 is called short-term memory TS. Updating

the memory-based TL can be modified and controlled by the following concepts:

• Tabu tenure: number of iterations in which a tabu move is considered to remain

tabu or forbidden;

• Aspiration criteria: accepting an improving solution even if generated by a tabu

move.

The short-term memory is built to keep the recency only. In order to achieve better per-

formance, long-term memory has been proposed to keep more important search features

besides the recency, such as the quality and the frequency [32]. Specifically, long-term mem-

ory in high-level TS records attributes of special characters like elite and frequently visited

solutions. Then, the search process of TS can adapt itself by using these special types of

solutions in:

• Intensification: giving priority to elite solutions in order to obtain much better

solutions in their vicinity.

• Diversification: discouraging attributes of frequently visited solutions in new move

selection functions in order to diversify the search to other areas of solution space.

1.3 Direct search methods

Direct search methods can be simply defined as the procedures which try to direct the search

for a minimum through the geometric intuition of the objective function by using function

values only without evaluating the gradients, see [54, 78, 93]. In order to show the reality

and the difficulty of the job that has been delegated to direct search methods, we borrow

John Dennis’ description of these methods which is stated and extended by Mike Powell in

[77]:

“It is to find the deepest point of a muddy lake, given a boat and a plump

line, when there is a price to be paid for each sounding. A specification of an

algorithm that is suitable for solving this problem would probably appeal to

10 Introduction

geometric intuition, and probably the procedure would require widely spaced

measurements to be taken, in order to smooth out any high frequency variations

in the depth of the lake. Experience has shown that many computer users find

such algorithms attractive for a wide range of optimization calculations.”

Direct search methods were originally proposed in the 1950s and 1960s to be justified in

terms of geometric intuition in low dimensional spaces without mathematical proof. Since

these methods are simple, easy to understand, easy to program, and widely applicable,

they have remained popular for real-world problems in chemistry, chemical engineering and

medicine. However, they failed to attract the mathematical optimization community until

the appearance of their mathematical analysis from only fifteen years ago. In this section,

Nelder-Mead and pattern search methods are presented as examples of direction search

methods.

1.3.1 Nelder-Mead method

The local search method called the Nelder-Mead method [72] is one of the most popular

derivative-free nonlinear optimization methods. Instead of using the derivative information

on the function to be minimized, the Nelder-Mead method maintains at each iteration a

nondegenerate simplex, a geometric figure in n dimensions of nonzero volume that is the

convex hull of n + 1 vertices, x1, x2, . . . , xn+1, and their respective function values. In each

iteration, new points are computed, along with their function values, to form a new simplex.

Four scalar parameters must be specified to define a complete Nelder-Mead method; coef-

ficients of reflection ρ, expansion χ, contraction γ, and shrinkage σ. These parameters are

chosen to satisfy

ρ > 0, χ > 1, 0 < γ < 1, and 0 < σ < 1.

The Nelder-Mead method consists of the following steps:

Algorithm 1.3.1. Nelder-Mead Method

1. Order. Order and re-label the n + 1 vertices as x1, x2, . . . , xn+1 so that

f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). Since we want to minimize f , we refer to x1

as the best vertex or point, to xn+1 as the worst point.

1.3 Direct search methods 11

2. Reflect. Compute the reflection point xr by

xr = x + ρ (x − xn+1) ,

where x is the centroid of the n best points, i.e., x =
∑

n
i=1xi/n. Evaluate

f(xr). If f(x1) ≤ f(xr) < f(xn), replace xn+1 with the reflected point xr and

go to Step 6.

3. Expand. If f(xr) < f(x1), compute the expansion point xe by

xe = x + χ (xr − x) .

Evaluate f(xe). If f(xe) < f(xr), replace xn+1 with xe and go to Step 6;

otherwise replace xn+1 with xr and go to Step 6.

4. Contract. If f(xr) ≥ f(xn), perform a contraction between x and the better

of xn+1 and xr.

4.1. Outside. If f(xn) ≤ f(xr) < f(xn+1) (i.e., xr is strictly better than

xn+1), perform an outside contraction: Calculate

xoc = x + γ (xr − x) .

Evaluate f(xoc). If f(xoc) ≤ f(xr), replace xn+1 with xoc and go to Step 6;

otherwise, go to Step 5.

4.2. Inside. If f(xr) ≥ f(xn+1), perform an inside contraction: Calculate

xic = x + γ (xn+1 − x) .

Evaluate f(xic). If f(xic) ≤ f(xn+1), replace xn+1 with xic and go to Step 6;

otherwise, go to Step 5.

5. Shrink. Evaluate f at the n new vertices

x′
i = x1 + σ (xi − x1) , i = 2, . . . , n + 1.

12 Introduction

x1

x3

x2 x2

x1

x3

xic

xoc xr

xe

x′
3

x′
2

Figure 1.1: The reflection, expansion, contraction and shrinkage points for a simplex in two

dimensions.

Replace the vertices x2, . . . , xn+1with the new vertices x′
2, . . . , x

′
n+1.

6. Stopping Condition. Order and re-label the vertices of the new simplex

as x1, x2, . . . , xn+1 such that f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). If f(xn+1) −

f(x1) < ε, then stop, where ε > 0 is a small predetermined tolerance. Other-

wise, go to Step 2.

Figure 1.1 shows the effects of reflection, expansion, contraction and shrinkage for a

simplex in two dimensions using the standard values of the coefficients

ρ = 1, χ = 2, γ =
1

2
, and σ =

1

2
.

After more than thirty years of studying and applying the Nelder-Mead method, McKin-

non [64] shows that the Nelder-Mead algorithm can stagnate and converge to a nonoptimal

point even for very simple problems. However, Kelley [51, 52] proposes a test for sufficient

decrease which, if passed for all iterations, will guarantee convergence of the Nelder-Mead

iteration to a stationary point under some appropriate conditions. Moreover, he modified the

Nelder-Mead method by invoking a reconstruction of the simplex called “oriented restarts”

whenever the decrease test does not hold. This new orientation of the simplex is intended to

1.3 Direct search methods 13

compensate for the kind of stagnation that was exhibited in [64]. However, this modification

improves the robustness of the method, but it does not solve all the problems on stagnation

of the Nelder-Mead method.

1.3.2 Pattern Search methods

Pattern search methods direct the search towards a local minimum through a pattern con-

taining a certain number of points. Although the original pattern search algorithm has been

proposed by Hooke and Jeeves [47], the pattern search methods as well as other direct search

methods were not wildly applicable until fifteen years ago. The renaissance of pattern search

methods began in 1989 with Torczon’s Ph. D. thesis [87] and reached its mature stage by her

paper [88] in which she has presented the generalized pattern search (GPS) as a framework

of pattern search methods.

Pattern search methods invoke a pattern containing at least n+1 points in each iteration.

One of these points is the current iterate and the other point are generated along search

directions starting from the current iterate with a certain step size. The search directions

used to generate the pattern points consist of a finite set of positive spanning directions

in Rn. However, in order to achieve quicker convergence, other promising search directions

may be included in addition to the positive spanning directions. Whenever the search fails

to obtain a better movement, the step size is decreased in order to refine the search.

A sample GPS algorithm is stated in Algorithm 1.3.2 based on the one presented in [4].

In the initialization step of GPS, a set D of positive spanning directions in Rn should be

chosen beside the initial solution and step size. For example, the set D can be set either

{e1, . . . , en,−e1, . . . ,−en} or {e1, . . . , en,−e} , where ei ∈ Rn is the ith unit vector in Rn and

e ∈ Rn is the vector of ones. In each iteration of GPS, the mesh point set Mk and the poll

points set Pk based on the set D should be computed as

Mk = {y : y = xk + ∆kdz ∈ X, d ∈ D, z ∈ Z
|D|
+ }, (1.3.1)

Pk = {y : y = xk + ∆kd ∈ X, d ∈ Dk}, (1.3.2)

where Z+ is the set of all positive integers. Moreover, the step size ∆k is updated at each

iteration in the way that it remains the same as its previous setting, or it is increased

whenever an improvement is achieved, and it is decreased otherwise. More details about the

step size updating process is given in [88] in order to fulfill some assumptions needed in the

mathematical analysis of GPS.

14 Introduction

The scenario of GPS starts with fitting the initial parameters, and then two search stages

are invoked before the updating step. The first search stage is called Search Step in which

any search procedure can be defined by the user to generate trial solutions from Mk. The

main role of the Search Step is to achieve faster convergence of GPS. The other search stage

called Poll Step is invoked as a systematic search in order to explore a region around the

current solution. If an improvement is obtained, then the search is going on with the same

step size or with a bigger step size if more promising solutions are expected. Otherwise, the

current iterate is called a mesh optimizer and the step size is reduced in order to refine the

mesh. GPS may be terminated when the step size becomes small enough.

Algorithm 1.3.2. Generalized Pattern Search

1. Initialization. Choose an initial solution x0, choose a positive spanning

directions set D, choose a step size ∆0 > 0 and set the counter number

k := 0.

2. Search Step: Compute the mesh Mk as in (1.3.1). Invoke a search strategy

to get an improved point from Mk. If an improvement is obtained go to Step

4.

3. Poll Step. Choose the search direction set Dk ⊂ D to be used in computing

the poll set Pk as in (1.3.2). Evaluate f at all points in Pk.

4. Update Step. If an improved point obtained in Step 2 or 3, set xk+1 equal

to this improved point, and set ∆k+1 ≥ ∆k. Otherwise, set xk+1 := xk, and

∆k+1 < ∆k.

5. Termination Conditions. If the termination conditions are satisfied, then

stop. Otherwise, set k := k + 1, and go to Step 2.

1.4 Organization and Contributions

In the subsequent chapters, we will introduce new hybrid methods that deal with the con-

tinuous global optimization problems in their two forms; unconstrained and constrained

1.4 Organization and Contributions 15

problems. Below, we summarize the organization of the rest of the thesis as well as brief

descriptions of the main contributions done in this study.

In Chapter 2, we give a new approach of hybrid direct search methods with metaheuristics

of simulated annealing for finding a global minimum of a nonlinear function with continuous

variables. First, we suggest a Simple Direct Search (SDS) method, which comes from some

ideas of other well known direct search methods. Since our goal is to find global minima and

the SDS method is still a local search method, we hybridize it with the standard simulated

annealing to design a new method, called Simplex Simulated Annealing (SSA) method,

which is expected to have some ability to look for a global minimum. To obtain faster

convergence, we first accelerate the cooling schedule in SSA, and in the final stage, we

apply Kelley’s modification of the Nelder-Mead method on the best solutions found by the

accelerated SSA method to improve the final results. We refer to this last method as the

Direct Search Simulated Annealing (DSSA) method. The performance of SSA and DSSA is

reported through extensive numerical experiments on some well known functions.

In Chapter 3, a new algorithm called Simplex Coding Genetic Algorithm (SCGA) is

proposed by hybridizing genetic algorithm and Nelder-Mead method. In the SCGA, each

chromosome in the population is a simplex and the gene is a vertex of this simplex. Selection,

new multi-parents crossover and mutation procedures are used to improve the initial pop-

ulation. Moreover, Nelder-Mead method is applied to improve the population in the initial

stage and every intermediate stage when new children are generated. Applying Nelder-

Mead method again on the best point visited is the final stage in the SCGA to accelerate

the search and to improve this best point. The efficiency of SCGA is tested on some well

known functions.

In Chapter 4, we present a new approach of hybrid simulated annealing method for

minimizing multimodel functions called the simulated annealing heuristic pattern search

(SAHPS) method. Two subsidiary methods are proposed to achieve the final form of the

global search method SAHPS. First, we introduce the approximate descent direction (ADD)

method, which is a derivative-free procedure with high ability of producing a descent di-

rection. Then, the ADD method is combined with a pattern search method with direction

pruning to construct the heuristic pattern search (HPS) method. The last method is hy-

bridized with simulated annealing to obtain the SAHPS method. The experimental results

through well-known test functions are shown to demonstrate the efficiency of the SAHPS

method.

In Chapter 5, we introduce a continuous TS called Directed Tabu Search (DTS) method.

In the DTS method, direct-search-based strategies are used to direct a tabu search. These

16 Introduction

strategies are based on the well-known Nelder-Mead method and a new pattern search proce-

dure called adaptive pattern search. Moreover, we introduce a new tabu list conception with

anti-cycling rules called Tabu Regions and Semi-Tabu Regions. In addition, Diversification

and Intensification search schemes are employed. Numerical results of the DTS method are

reported through extensive numerical experiments on several well known functions.

In Chapter 6, a simulated-annealing-based method called Filter Simulated Annealing

(FSA) method is proposed to deal with the constrained global optimization problem. The

considered problem is reformulated so as to take the form of optimizing two functions; the

objective function and the constraint violation function. Then, the FSA method is applied

to solve the reformulated problem. The FSA method invokes a multi-start diversification

scheme in order to achieve an efficient exploration process. To deal with the considered

problem, a filter-set-based procedure is built in the FSA structure. Finally, an intensification

scheme is applied as a final stage of the proposed method in order to overcome the slow

convergence of SA-based methods. The computational results obtained by the FSA method

are reported and compared with some population-based methods.

Chapter 7 gives brief summary and conclusions of the main contributions in the thesis.

Finally, the unconstrained test problems and the constrained test problems used throughout

the study are given in Appendixes A and B, respectively.

Chapter 2

Direct Search SA for Unconstrained
Global Optimization

2.1 Introduction

One approach that recently has drawn much attention is to combine simulated annealing

(SA) method with local search methods to design more efficient methods with relatively faster

convergence than the pure SA methods. Direct search methods, as local search methods, have

got much attention in these combinations. For instance, SA was hybridized with simplex-

based direct search method in [13, 79]. In addition, Kvasnicka and Pospichal [56] proposed

a hybrid of controlled random search method, which is a generalization of the Nelder-Mead

method, and SA.

In this chapter, we will hybridize SA and direct search methods to deal with the uncon-

strained optimization problem

min
xǫRn

f(x), (2.1.1)

where f is a generally nonconvex, real valued function defined on Rn. First, we suggest

a simple direct search (SDS) method, which comes from some ideas of other well known

direct search methods. Since our goal is to find global minima and the SDS method is

still a local search method, we hybridize it with the standard simulated annealing to design

a new method, called simplex simulated annealing (SSA) method, which is expected to

have some ability to look for global minima. The final method, called the direct search

simulated annealing (DSSA) method, can be obtained by modifying SSA. To obtain faster

convergence, we first accelerate the cooling schedule in SSA, and in the final stage, we apply

Kelley’s modification of the Nelder-Mead method [51, 52] on the best solutions found by the

accelerated SSA to improve the final results. These two modifications on SSA will comprise

18 Direct Search SA for Unconstrained Global Optimization

the final method DSSA. The performance of SSA and DSSA is reported through extensive

numerical experiments on some well known functions. Comparing their performance with

that of other metaheuristics methods shows that SSA and DSSA are promising in practice.

Especially, DSSA is shown to be very efficient and robust.

To the author’s knowledge, there are two main previous results on hybridizing simulated

annealing with simplex methods. Press and Teukolsky [79] add a positive logarithmically

distributed variable, proportional to the control annealing temperature T , to the function

associated with every vertex of the simplex. Likewise, they subtract a similar random

variable from the function value at every new replacement point. Then, their method may

accept a new simplex whose actual function values at its vertices are not better than those

at the previous simplex. This method was subsequently studied by Cardoso et al. [13,

14]. The other main result was presented by Kvasnicka and Pospichal [56]. Their method

depends on the use of the simulated annealing acceptance in a controlled random search

method. More precisely, the controlled random search uses a simplex method on randomly

selected simplex sets from the population. So, to avoid being entrapped in local minima,

they applied simulated annealing acceptance on the updating procedure. The common

idea underlying these hybrid approaches and also our approach is to use simplex method to

generate new logical movements while applying simulated annealing. However, the approach

proposed in this chapter is different from the above mentioned approaches. We try to fix

some disadvantages of simulated annealing like its slowness and its wandering near the global

minimum in the final stage of search. So, we use a new simplex method to generate the

movements trying to explore the function domain more carefully while applying accelerated

simulated annealing, and also use another simplex method to accelerate the final stage in

the search.

This chapter is organized as follows. In Section 2.2, we state the description of the

proposed methods. Experimental results along with the initialization of some parameters

and the setting of the control parameters of the proposed methods are discussed in Section

2.3. The conclusion of the contribution of this chapter makes up Section 2.4.

2.2 The description of the proposed methods

In this section, we describe the SDS, SSA and DSSA methods and introduce the initial and

control parameters that are required by these methods. The values of these parameters used

in the experiments will be given in Section 2.3.

2.2 The description of the proposed methods 19

2.2.1 Simple direct search (SDS)

Before we state the steps of the SDS method, we will introduce the main ideas which SDS

comes from. The most famous simplex based direct search method was proposed by Nelder

and Mead [72] in 1965. Nelder-Mead method has been studied extensively. In 1991, Dennis

and Torczon [23] proposed a new form of direct search method, called the multidirectional

search method, which can be considered an effective modification of Nelder-Mead method

in the parallel computing environment. The main difference between Nelder-Mead method

and the multidirectional search method is that the number of points used in the reflection

step equals n in the latter method and equals one in Nelder-Mead method. Recently, Tseng

[86] proposed a general framework of the simplex based direct search method which con-

tains Nelder-Mead and the multidirectional search methods as subclasses and uses a varying

number of reflected points in a flexible manner.

In the SDS method, we will start with an initial simplex with n + 1 vertices. Then, we

will try to get a better movement by reflecting the worst vertex in this simplex with respect

to the remaining vertices. If the new vertex is not better than the worst one, we reflect the

two worst vertices. If it fails to get a better point, then we reflect the three worst vertices

and so on. If we reach the case of reflecting the n worst vertices and we still fail to get any

better movement, then we will shrink the simplex.

Algorithm 2.2.1 below is a formal description of the SDS method. We require that the

initial simplex S be a non-degenerate simplex with vertices x1, x2, . . . , xn+1. We assume

throughout that the vertices are sorted according to the objective function values

f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). (2.2.1)

We will refer to x1 as the best vertex and xn+1 as the worst. Two scalar parameters ρ and

σ that represent coefficients of reflection and shrinkage, respectively, must be specified to

define the SDS method. We suppose that these parameters satisfy

ρ > 0, 0 < σ < 1. (2.2.2)

Algorithm 2.2.1. SDS(S, f, ǫ)

1. Initialization. Choose parameters ρ and σ satisfying (2.2.2). Select an

initial simplex S with vertices x1, x2, . . . , xn+1. Choose a sufficiently small

number ǫ > 0.

20 Direct Search SA for Unconstrained Global Optimization

2. Order. Order and re-label the vertices of S so that (2.2.1) holds.

3. If f(xn+1) − f(x1) ≤ ǫ, then terminate. Otherwise, go to Step 4.

4. Let k := 1. (k is the number of reflected points.)

5. If k ≤ n, then go to Step 6 to perform the reflection. Otherwise, go to Step 7

to perform the shrinkage.

6. Reflect. Compute the k reflected points {xr
i}n+1

i=n−k+2 by

xr
i := x + ρ(x − xi), i = n + 1, n, . . . , n − k + 2,

where x is the centroid of the set {x1, x2, . . . , xn−k+1}, i.e.,

x :=
1

n − k + 1

n−k+1∑

i=1

xi. (2.2.3)

Evaluate f(xr
i), i = n+1, n, . . . , n−k+2. If minn−k+2≤i≤n+1{f(xr

i)} < f(x1),

then put xi := xr
i , i = n + 1, n, . . . , n − k + 2, and go to Step 2. Otherwise,

let k := k + 1 and go to Step 5.

7. Shrink. Evaluate the function f at the n new vertices

xi := x1 + σ(xi − x1), i = 2, 3, . . . , n + 1. (2.2.4)

Go to Step 2.

The coefficient of reflection ρ, in Algorithm 2.2.1, can be randomly chosen from the

interval (0.9, 1.1) to make more effective exploration. Algorithm 2.2.1 terminates when the

function values at all the vertices become close to each other. However, if the number of

iterations exceeds the predetermined allowed number of iterations, then we may terminate

the algorithm.

SDS as well as other Simplex methods maintains at each iteration a nondegenerate sim-

plex and the function values at the vertices. When one or more test points, along with their

function values, are computed, we proceed to the next iteration with a new simplex. A most

general approach of simplex methods was proposed by Tseng [86]. In this general approach,

2.2 The description of the proposed methods 21

an integer m (1 ≤ m ≤ n) is chosen to specify the number of “good” vertices to be retained

in constructing the initial trial simplices. The other vertices will be reflected, and then either

expanded or contracted, at each iteration. If it fails to get a better point, then the whole

simplex will be shrunk with respect to the best vertex. However, in Algorithm 2.2.1, we

simply intensify the search by only repeating the reflection step in many directions and if it

fails to get a better point, then we shrink the simplex with respect to the best vertex. It is

noteworthy that the main aim of SDS is to enhance the exploration role to be a good seed

to generate the global optimization methods SSA and DSSA. So, we will not compare the

behavior of SDS with the other simplex based direct search methods in our experiments.

2.2.2 Simplex simulated annealing (SSA)

Since the SDS method is still a local search method, we hybridize it with the standard

SA to perform simplex simulated annealing (SSA) method, which is expected to have the

ability to look for a global minimum. We will apply this SA acceptance condition on the

reflected points in the SDS method to obtain SSA method. In other words, we allow the

possibility of accepting reflected points which do not include any better solution. Algorithm

2.2.2 describes the steps of SSA method and shows how we apply the simulated annealing

acceptance and the cooling schedule with the lower limit temperature Tmin.

Algorithm 2.2.2. SSA(S, f, ǫ, Tmin,M)

1. Initialization. Choose parameter σ ∈ (0, 1). Select an initial simplex S

with vertices x1, x2, . . . , xn+1. Set the parameters of the cooling schedule: the

initial temperature T, Tmin and M. Choose a sufficiently small number ǫ > 0.

2. Order. Order and re-label the vertices of S so that (2.2.1) holds.

3. If f(xn+1)− f(x1) ≤ ǫ or T < Tmin, then terminate. Otherwise, go to Step 4.

4. Repeat the following Steps 4.1-4.5 M times.

4.1. Let k := 1.

4.2. If k ≤ n, then go to Step 4.3 to perform the reflection. Otherwise, go to

Step 4.4 to perform the shrinkage.

22 Direct Search SA for Unconstrained Global Optimization

4.3. Reflect. Compute the k reflected points {xr
i}n+1

i=n−k+2 by

xr
i := x + ρ(x − xi), i = n + 1, n, . . . , n − k + 2,

where ρ is randomly chosen from the interval (0.9, 1.1) and x is defined

by (2.2.3). Evaluate f(xr
i), i = n + 1, n, . . . , n − k + 2, and put f̂ :=

minn−k+2≤i≤n+1{f(xr
i)}.

4.3.1. If f̂ < f(x1), then go to Step 4.3.3.

4.3.2. Compute p := exp{−(f̂ − f(x1))/T} and choose u randomly from the

interval (0, 1). If p ≥ u, then go to Step 4.3.3. Otherwise, let k := k + 1 and

go to Step 4.2.

4.3.3. Set xi := xr
i , i = n + 1, n, . . . , n − k + 2. Go to Step 4.5.

4.4. Shrink. Shrink the simplex by determining n vertices by (2.2.4). Go to

Step 4.5

4.5. Sort. Sort the vertices of S so that (2.2.1) holds.

5. Reduce the temperature T and go to Step 3.

In Algorithm 2.2.2, the coefficient of reflection ρ is determined by choosing a random

number from the interval (0.9, 1.1) . SSA method terminates when the function values at

the vertices are close to each other or the cooling schedule is completed. The main role of

M, the number of inner iterations per each temperature, is to get closer to the equilibrium

because it has been proved [57, 58] that when M is sufficiently large and the temperature T

is slowly reduced, the solution x will eventually be frozen at the global minimum.

2.2.3 Direct search simulated annealing (DSSA)

It is known that the standard SA may quickly approach the neighborhood of the global

minimum but has a difficulty in obtaining some required accuracy. So, it is suitable to finish

the algorithm with a faster convergent method. According to this idea, we modify SSA

method to obtain the DSSA method as follows:

2.2 The description of the proposed methods 23

1. Accelerate the cooling schedule in SSA, i.e., use a smaller reduction factor for the

temperature T.

2. Set the coefficient of shrinkage σ equals one to maintain the size of the initial simplex

large enough. Actually, setting 0 < σ < 1 is effective for achieving good behavior near

a minimum in SSA, especially, in the final stage of search. However, in DSSA, the

situation is different because we use the simplex simulated annealing part in exploring

the whole domain and storing the best visited point in a list. So, perfect behavior

near a minimum is not pursued in this part but it will be considered in the last part of

DSSA using a complete local search method starting from each point in the best point

list. In fact, it is known that local search methods have much better behavior near a

minimum than global methods.

3. Store the best solutions found by the accelerated SSA in a list called “best list” as

mentioned earlier and apply another local search method starting from each element

of the best list to improve further these best solutions.

According to these modifications of SSA, we can state the steps of the DSSA method in

Algorithm 2.2.3.

Algorithm 2.2.3. DSSA(S, f, ǫ, Tmin,M)

1. Initialization. Select an initial simplex S with vertices x1, x2, . . . , xn+1. Set

the parameters of the cooling schedule: the initial temperature T, Tmin and

M. Set the size of the best list. Choose a sufficiently small number ǫ > 0.

2. Order. Order and re-label the vertices of S so that (2.2.1) holds.

3. Best list. Store the m best points in the best list.

4. If f(xn+1) − f(x1) ≤ ǫ or T < Tmin, then go to Step 7. Otherwise, go to Step

5.

5. Repeat the following Steps 5.1-5.4 M times.

5.1. Let k := 1.

24 Direct Search SA for Unconstrained Global Optimization

5.2. Reflect. Compute the k reflected points {xr
i}n+1

i=n−k+2 by

xr
i := x + ρ(x − xi), i = n + 1, n, . . . , n − k + 2,

where ρ is randomly chosen from the interval (0.9, 1.1) and x is defined

by (2.2.3). Evaluate f(xr
i), i = n + 1, n, . . . , n − k + 2, and put f̂ :=

minn−k+2≤i≤n+1{f(xr
i)}.

5.2.1. If f̂ < f(x1), then go to Step 5.2.3.

5.2.2. Compute p := exp{−(f̂ − f(x1))/T} and choose u randomly from the

interval (0, 1). If p ≥ u, then go to Step 5.2.3. Otherwise, let k := k + 1 and

go to Step 5.4.

5.2.3. Set xi := xr
i , i = n + 1, n, . . . , n − k + 2. Go to Step 5.3.

5.3. Sort. Sort the vertices of S so that (2.2.1) holds and update the best list.

5.4. If k ≤ n, then go to Step 5.2.

6. Reduce the temperature T and go to Step 3.

7. From each point in the best list, construct a smaller simplex. Then, apply

Kelley’s modification of the Nelder-Mead method on each of these simplices.

In the DSSA method, we use the Kelley’s modification [51] of the Nelder-Mead method

to refine the points stored in the best list.

2.3 Experimental results

The performance of SDS, SSA and DSSA methods has been evaluated to show how simu-

lated annealing can affect the local search method SDS toward its generalization in global

optimization. Moreover, the comparison between the results of SSA and DSSA shows the

effect of the acceleration of convergence to improve the final results. Finally, the performance

of our final method DSSA has been compared with some other metaheuristics methods. The

2.3 Experimental results 25

comparison was made using a set of some well known functions, which are listed in Appendix

A.

2.3.1 Setting of parameters

Some initial parameters and control parameters must be specified to define the complete

implementation of the methods SDS, SSA and DSSA.

Choosing the initial simplex

First, we randomly choose an initial orientation x1 from some predetermined range of initial

points for each function. Then, we take a step in each coordinate direction, called the edge

of the simplex, to construct a right-angled simplex with vertices x1, x2, . . . , xn+1. The edge

length of the simplex is chosen to fit the range of initial points for each function. For all test

functions the edge length is varied from 0.125 to 4 depending on the range of initial points

of each function. Moreover, we start with some suitable edge length and if the difference

of the functional values at the simplex vertices is very small, then this edge length will be

doubled until we get an improvement on the condition of the initial simplex or reach the

maximum allowed edge length. This method of choosing the initial simplex is applied on all

methods SDS, SSA and DSSA.

The cooling schedule

The cooling schedule consists of the initial temperature Tmax, the cooling function, the epoch

length M and the stopping condition. As in Kirkparick et al. [53], we choose the value of

Tmax large enough to make the initial probability of accepting transition close to 1. We set

the initial probability equal to 0.9. Then, Tmax is calculated from the equation

Tmax = −f(xn+1) − f(x1)

ln(0.9)
.

The temperature is reduced with a so-called cooling function F, i.e., the temperature at

the kth epoch is determined with Tk = F (Tk−1). In the standard SA, this equation will be

Tk = αTk−1, where α ∈ [0.5, 0.99] is a parameter called cooling ratio. In SSA algorithm,

we set α = 0.9. Since the DSSA algorithm is designed by accelerating SSA, we set α = 0.5,

and the computational experience shows that this value of α gives good results for most of

the test functions. However, for some hard functions; Shekel functions, Shubert function

26 Direct Search SA for Unconstrained Global Optimization

and Griewank function, we have observed that it is more effective to slow down the cooling

schedule by setting α = 0.7. Epoch length M is the number of trials allowed at each

temperature and we set it equal to 10n in SSA and n in DSSA. Finally, the stopping condition

is comprised of the minimum allowed temperature Tmin which equals 10−5 × Tmax in both

methods SSA and DSSA.

Termination criteria

The termination criteria of SDS, SSA and DSSA algorithms are intended to reflect the

progress of these algorithms. So, we terminate these algorithms when the function values at

all the vertices become close to each other, i.e.,

f(xn+1) − f(x1) ≤ ǫ,

where the tolerance ǫ is a small positive number and we set it 10−6 in SDS, SSA and 10−8 in

DSSA. Moreover, SSA algorithm and the simulated annealing part of the DSSA algorithm

can also be terminated if the cooling schedule is completed. However, if the number of

iterations exceeds the predetermined allowed number of iterations, then we may terminate

the algorithms. This maximum number equals 50n in SDS and DSSA and equals 1000n

in SSA. We remark that, for Easom function, DSSA has had some difficulty in finding its

minimum because it lies in a very narrow hole and outside this narrow hole the graph the

function is almost flat. Termination before reaching this narrow hole could be avoided by

repeating the algorithm with reducing the edge length of the simplex in each time until we

get a very small edge length equal to 10−4.

Best list

The remaining parameter is the number of the best points stored during the search in the

DSSA method. This parameter is set equal to n except for the two types hard functions,

Shekel functions and Griewank function, for which we set it equal to 2n.

2.3.2 Numerical results

To examine the performance of our algorithms, we tested them on some well known functions

[13, 15, 92], which are given in Appendix A. The behavior of these test functions varies;

we have functions with some studded local minima such as Goldstein and Price function,

2.3 Experimental results 27

Table 2.1: Percentage of successful trials for SDS, SSA and DSSA

Function SDS SSA DSSA Function SDS SSA DSSA
RC 100 99 100 S4,5 14 61 81
ES 12 68 93 S4,7 19 60 84
GP 41 91 100 S4,10 15 59 77
B1 76 100 100 R5 4 67 100
HM 100 100 100 Z5 100 87 100
SH 59 57 94 H6,4 52 49 92
R2 12 93 100 GR 36 82 90
Z2 100 99 100 R10 0 78 100
DJ 100 100 100 Z10 0 66 100
H3,4 88 86 100

functions with many crowded local minima such as Shubert function, functions with a global

minimum lying in a very narrow hole such as Easom function, functions with a narrow valley

such as Rosenbrock function, and smooth functions such as De Joung function and Zakharov

function. For each function we made 100 trials with different starting points. The average

number of function evaluations and the average error are related to only successful trials.

First, to demonstrate the effect of hybridizing simulated annealing with SDS to design

SSA and DSSA, we show in Table 2.1 the percentage of successful trials. From Table 2.1,

we see that the rate of success for SSA is generally better than that for SDS. However, the

behavior of SDS for Zakharov function Z5 is better than that of SSA due to the fixed cooling

schedule in SSA for all functions. We note that the behavior of these methods has changed

drastically when the dimension n of function Zn is increased to 10. Moreover, Table 2.1

clearly shows that the behavior of DSSA is the best of the three methods in terms of the

rate of success.

In Table 2.2, we show the effect of accelerating the cooling schedule in SSA and applying

a local search method on the final results obtained by the accelerated SSA to design DSSA.

The results in Table 2.2 reveal that the acceleration procedure successfully affects the rate

of success, the average number of function evaluations (Av. f -evals.), and the average error

(Av. Error).

To show to what extent DSSA succeed in accelerating SA, we compare its results with

other simplex SA method like SIMPSA and NE-SIMPSA [13]. Table 2.3 shows the average

28 Direct Search SA for Unconstrained Global Optimization

Table 2.2: Results of SSA and DSSA
Rate of Success Av. f -evals. Av. Error

f SSA DSSA SSA DSSA SSA DSSA
RC 99 100 12225 118 9E-3 4E-7
ES 68 93 4318 1442 4E-3 3E-9
GP 91 100 11238 261 5E-3 4E-9
B1 100 100 4564 252 7E-3 5E-9
HM 100 100 10157 225 0.01 5E-8
SH 57 94 10237 457 0.1 9E-6
R2 93 100 7387 306 3E-3 4E-9
Z2 99 100 5868 186 8E-3 4E-9
DJ 100 100 6743 273 3E-3 5E-9
H3,4 86 100 17756 572 0.1 2E-6
S4,5 61 81 7856 993 6E-3 2E-6
S4,7 60 84 9047 932 0.01 6E-7
S4,10 59 77 9062 992 0.01 1E-5
R5 67 100 11115 2685 0.03 3E-9
Z5 87 100 11527 914 0.03 5E-9
H6,4 49 92 37467 1737 0.02 2E-6
GR 82 90 12208 1830 0.1 5E-9
R10 78 100 22306 16785 0.02 7E-9
Z10 66 100 23883 12501 0.04 7E-9

Table 2.3: Average number of function evaluations in DSSA and other simplex SA methods

Function DSSA SIMPSA NE-SIMPSA
R2 306 10780 4508
R4 1682 21177 (99%) 3053 (94%)
CV 1592 22615 3443
DX 6941 52556 (93%) 8613 (94%)

number of function evaluations obtained by each method starting from the same starting

point as in [13]. The data for SIMPSA and NE-SIMPSA are taken from [13]. Actually, the

reference [13] reports many results for SIMPSA and NE-SIMPSA depending on the search

domain but we prefer to make our method more general without any constrains during the

search. Moreover, we have chosen the best results obtained by SIMPSA and NE-SIMPSA

from Table 2.3 in [13] to make the comparison simpler and fair.

Next we compare the DSSA method with three other metaheuristics methods based on

simulated annealing, tabu search, and genetic algorithm. These methods are:

1. Enhanced Continuous Tabu Search (ECTS) [15].

2.4 Conclusion 29

2. Enhanced Simulated Annealing (ESA) [85].

3. Real-value Coding Genetic Algorithm (RCGA) [11].

Table 2.4 shows the average number of function evaluations needed by each algorithm.

The results of ECTS, ESA and RCGA are taken from their original references [15, 85, 11].

For all test functions, we use the same condition as that used by ECTS [15] to judge the

success of a trial which is given by

|f ∗ − fDSSA| < ǫ1 |f ∗| + ǫ2, (2.3.1)

where fDSSA refers to the best function value obtained by DSSA and f ∗ refers to the exact

global minimum. We set ǫ1 = 10−4 and ǫ2 = 10−6. The ESA method used the same condition

for testing the successful trials with smaller ǫ1 and ǫ2. However, for the results marked by

(⊗) in Table 2.4, their original corresponding data in Table 2 in [15] and Table I in [85] seem

to contain some inconsistencies. Since the authors of [15] used the same condition as (2.3.1)

to test the successful trials, the average errors for the functions R2, R5 and Z5 must be less

than 10−6 because f ∗ = 0 for all these functions. However, the average errors corresponding

to these functions are reported to be greater than 10−6. For instance, the average error

corresponding to the function R5 in Table 2 in [15] is 0.08, i.e., there are some trials that did

not satisfy the successful trial condition but the authors reported that the rate of success

equals 100%. Moreover, the results corresponding to the functions RC,ES,GP, H3,4 and

H6,4 in Table 2 in [15] also contain the same kind of inconsistencies. For the same reasons,

the ESA results marked by (⊗) suffer from the same inconsistencies. The comparison given

in Table 2.4 shows that DSSA outperforms the others for some functions and has similar

behavior for other functions. However, Table 2.5 shows that DSSA generally produces more

accurate solutions than the others. It is noteworthy that the efficiency of the simplex method

dwindles with dimensionality, which explains the greatest margin of superiority for DSSA

on Z5 while it does not outperform the others on Z10.

2.4 Conclusion

The simulated annealing method usually suffers from slow convergence due to its random

nature of movements. Moreover, simulated annealing also suffers from the difficulty in ob-

30 Direct Search SA for Unconstrained Global Optimization

Table 2.4: Average number of function evaluations in DSSA and other metaheuristics

Function DSSA ECTS ESA RCGA
RC 118 245⊗ - 490
ES 1442 (93%) 1284⊗ - 642
GP 261 231⊗ 783⊗ 270
SH 457 (94%) 370 - 946
R2 306 480⊗ 796 596
Z2 186 195 15820 437
DJ 273 338 - 395
H3,4 572 548⊗ 698⊗ 324
S4,5 993 (81%) 825 (75%) 1137⊗ (54%) 1158 (62%)
S4,7 932 (84%) 910 (80%) 1223⊗ (54%) 1143 (70%)
S4,10 992 (77%) 989 (75%) 1189⊗ (50%) 1235 (58%)
R5 2685 2142⊗ 5364 4150 (60%)
Z5 914 2254⊗ 96799 1115
H6,4 1737 (92%) 1520⊗ 2638⊗ 937
R10 16785 15720 (85%) 12403⊗ 8100 (70%)
Z10 12501 4630 15820⊗ 2190

Table 2.5: Average errors in function value in DSSA and other metaheuristics

Function DSSA ECTS ESA RCGA
RC 4E-7 5E-2 - 3E-3
ES 3E-9 1E-2 - 3E-9
GP 4E-9 2E-3 9E-3 1E-9
SH 9E-6 1E-3 - 6E-4
R2 4E-9 2E-2 - 1E-12
Z2 4E-9 2E-7 - 1E-10
DJ 5E-9 3E-8 - 6E-4
H3,4 2E-6 9E-2 5E-4 7E-3
S4,5 2E-6 1E-2 4E-3 1E-3
S4,7 6E-7 1E-2 8E-3 1E-4
S4,10 1E-5 1E-2 4E-2 4E-3
R5 3E-9 8E-2 - 1E-1
Z5 5E-9 4E-6 - 9E-4
H6,4 2E-6 5E-2 6E-2 3E-2
R10 7E-9 2E-2 4E-2 1E-1
Z10 7E-9 2E-7 2E-3 3E-3

2.4 Conclusion 31

taining some required accuracy although it may quickly approach the neighborhood of the

global minimum. In this chapter, we have focused on the importance of creating direct-

search-based logical movements while applying simulated annealing and the importance of

accelerating the final stage of simulated annealing by using a faster convergent method.

The obtained results demonstrate that these two concepts can be successfully realized by

effectively combining direct search methods with simulated annealing. Moreover, the exper-

imental results show that the DSSA method is very efficient and robust.

32 Direct Search SA for Unconstrained Global Optimization

Chapter 3

Simplex Coding GA for

Unconstrained Global Optimization

3.1 Introduction

Genetic algorithms (GAs) are one of the most efficient metaheuristics [34, 68], that have

been employed in a wide variety of problems. However, GAs, like other metaheuristics,

suffer from the slow convergence that brings about the high computational cost. Recently,

several new approaches have been developed to furnish GAs with the ability to simulate the

fast convergence of local search methods. Most of these approaches hybridize local search

methods with GAs to obtain more efficient methods with relatively faster convergence. This

chapter pursues in that direction and proposes a new hybrid method that combines GA with

Nelder-Mead method [72] to deal with the unconstrained optimization problem

min
xǫRn

f(x), (3.1.1)

where f is a generally nonconvex, real valued function defined on Rn. In the combined

method, called the simplex coding genetic algorithm (SCGA), we consider the members of

the population to be simplices, i.e., each chromosome is a simplex and the gene is a vertex

of this simplex. Selection, crossover and mutation procedures are used to improve the initial

population. Moreover, Nelder-Mead method is applied to improve the population in the

initial stage and every intermediate stage when new children are generated. In the SCGA,

we use the linear ranking selection scheme [9] to choose some fit parents to be mated. Then,

34 Simplex Coding GA for Unconstrained Global Optimization

using a new scheme of a multi-parents crossover, new children are reproduced and a few of

them are mutated. Applying Kelley’s modification [51, 52] of Nelder-Mead method on the

best point visited is the final stage in the SCGA to accelerate the search and to improve this

best point.

There have been some attempts to utilize the idea of hybridizing local search methods

with GA. Simple hybrid methods use the GA or local search methods to generate the points

for the new population and then apply the other technique to improve this new population

[35, 96]. Other hybrid methods do some modifications in the GA operations; selection,

crossover and mutation using local search methods [71, 80, 94, 95]. However, the method

proposed in this chapter is different from those hybrid methods as we will see in the next

section. The next section briefly reviews some hybrid GA methods that use Nelder-Mead

method. The description of the proposed method is given in Section 3.3. Section 3.4 discusses

the experimental results along with the initialization of some parameters and the setting of

the control parameters of the proposed method. The conclusion of the contribution of this

chapter follows the experimental results and makes up Section 3.5.

3.2 Simplex-Based Genetic Algorithms

In this section, we review some earlier methods that hybridize GAs and simplex methods.

The Nelder-Mead method is the most popular simplex-type method that has been used to

design a hybrid simplex-based GA method. There have been several attempts to hybridize

GA with simplex-based direct search methods. Remarkable features underlying these hybrid

methods are global exploration and parallelism in GA, and local exploitation in direct search

methods. Moreover, both GA and direct search methods only use the function values rather

than derivatives, which makes those hybrid methods applicable to a broad class of problems.

In the following, we briefly summarize some of the hybrid simplex-based GA methods.

Renders and Bersini method [80]. In this method the population is divided into λ

groups of n+1 chromosomes. Then, one of the following operations is applied to each group

with some predetermined probabilities to reproduce exactly one child.

• Discrete crossover. Each gene in a child can be chosen from the corresponding gene

in a parent which is randomly chosen from the group. This child replaces the worst

parent in this group.

• Average crossover. The average of all n + 1 parents in the group replaces the worst

parent in this group.

3.2 Simplex-Based Genetic Algorithms 35

• Simplex crossover. Apply the Nelder-Mead method with slight modification to repro-

duce a new point.

The algorithm terminates if some convergence criterion is reached.

Yang and Douglas method [94]. M points are selected randomly from the search

space to form the initial population. GA’s reproduction schemes (selection, crossover, and

mutation) are used to generate k (0 < k < M) children. The rest of the offspring will be

generated by repeating the following procedure M − k times. Using some selection scheme,

construct a subcommunity of S points from the M old points. Try to get a better child

by applying a simplex method. Otherwise, a child is generated randomly within the search

space. If the best point of the new generation is not better than the best one of the old

generation, then replace the worst point of the new generation by the best point of the old

generation. Moreover, some comparisons are made between the old generation and the new

one to copy some of the best points in the old generation into the new one. The algorithm

terminates if either a predetermined iteration number is reached or an acceptable objective

function value is obtained.

Yen, Liao, Lee, and Randolph method [95]. This simplex GA hybrid method

uses a modification of the Nelder-Mead method called the concurrent simplex method. The

initial population consists of M chromosomes and the concurrent simplex method is applied

to the top S (n < S < M) chromosomes in the population to produce S − n children. The

top n chromosomes are copied to the next generation. The GA’s reproduction operations,

crossover and mutation, are used to generate the remaining M − S chromosomes. The

algorithm terminates when it satisfies a convergence criterion or reaches a predetermined

maximum number of fitness evaluations.

Musil, Wilmut, and Chapman method [71]. The initial population consists of M

chromosomes generated at random. The cycle starts by selecting n + 1 random pairs of

parents from the population. The binary operations (crossover and mutation) are applied

on the parents to reproduce children. One child is selected from each of the n + 1 pairs

of children and this results in n + 1 new children. The Nelder-Mead method runs for k

iterations starting with the simplex that consist of these n+1 children. The point that gives

the lowest objective function value obtained by Nelder-Mead iterations replaces the one with

the highest objective function value in the population. The cycle is terminated when the

parameters in the population have converged. At this point, other Nelder-Mead iterations

start with the chromosome with the lowest objective function value in the population to

refine this chromosome and to get the solution.

Our hybrid method SCGA presented in the next section is different from these hybrid

36 Simplex Coding GA for Unconstrained Global Optimization

methods in many aspects. One of the main differences lies in the coding representation. We

use a simplex coding in which the chromosome is a simplex and its genes are the vertices

of this simplex. It is expected that using this coding type and applying some iteration of

Nelder-Mead method starting from each chromosome in the initial population and from each

child chromosome will increase the local exploitation and will improve these chromosomes.

The other main difference consists in the crossover operation. We introduce a new kind

of multi-parents crossover that gives the chance for more than two parents to cooperate in

reproducing children and exploring the region around these parents.

3.3 Description of SCGA

In this section, we describe the proposed method SCGA. The SCGA uses the main functions

of the GA; selection, crossover and mutation, on a population of simplices to encourage the

exploration process. Moreover, the SCGA tries to improve the initial members and new

children by applying a local search method to enhance the exploitation process. This kind

of exploration-exploitation procedure is sometimes called “Memetic Algorithm”, see [70].

Finally, the SCGA applies an effective local search method on the best point reached by the

previous exploration-exploitation procedure. The purpose of this local search is to accelerate

the final stages of the GA procedure. This strategy is expected to be effective because the GA

has a difficulty in obtaining some required accuracy although the GA may quickly approach

the neighborhood of the global minimum.

3.3.1 Initialization

The SCGA starts with the following initialization procedure:

1. Generate the initial population P0 that consists of M chromosomes (simplices), i.e.,

P0 =
{

Sj : Sj =
{
xj,i

}n+1

i=1
; xj,i ∈ Rn, j = 1, . . . ,M

}
.

2. Order the vertices of each simplex Sj, j = 1, 2, . . . ,M, so that

f(xj,1) ≤ f(xj,2) ≤ · · · ≤ f(xj,n+1). (3.3.1)

3. Apply a small number of iterations of the Nelder-Mead method with each Sj as an

initial simplex to improve the chromosomes in the initial population P0.

3.3 Description of SCGA 37

4. Order the simplices Sj = {xj,i}n+1
i=1 , j = 1, . . . ,M in the improved population P0 so

that

f(x1,1) ≤ f(x2,1) ≤ · · · ≤ f(xM,1). (3.3.2)

3.3.2 GA loop

Repeat the following procedures; selection, crossover and mutation, and reduction of the

population, described below until the stopping conditions are not satisfied.

Selection

We describe how we select the set Q ⊆ P of the members that will be given the chance to

be mated from the current population P . For each generation, the size of Q is the same as

that of P but more fit members in P are chosen with higher probability to be included in

Q. We use Baker’s scheme called “linear ranking selection” [9] to select the new members in

Q. In this scheme, the chromosomes Sj ∈ P, j = 1, 2, . . . ,M, are sorted in the order of raw

fitness as in (3.3.2), and then the probability of including a copy of chromosome Sj into the

set Q is calculated by

ps(S
j) =

1

M

(
ηmax − (ηmax − ηmin)

j − 1

M − 1

)
,

where ηmin = 2 − ηmax and 1 ≤ ηmax ≤ 2. Using these probabilities, the population is

mapped onto a roulette wheel, where each chromosome Sj is represented by a space that

proportionally corresponds to ps (Sj) . Chromosomes in the set Q are chosen by repeatedly

spinning the roulette wheel until all positions in Q are filled.

Crossover and mutation

Choose a random number from the unit interval (0, 1) for each chromosome in Q. If this

number is less than the predetermined crossover probability pc, then this chromosome is

chosen as a parent. Repeat the following steps until all parents are mating.

1. Select a number nc from the set {2, . . . , n + 1} randomly to determine the number of

parents chosen to be mated together.

2. Compute new children Ci =
{
xi,k

c

}n+1

k=1
, i = 1, . . . , nc by

xi,k
c = xk + d ri, k = 1, . . . , n + 1, (3.3.3)

38 Simplex Coding GA for Unconstrained Global Optimization

x1,1

x2,1

x3,1

d

x1

x2

x3
x1,3x1,2

x2,3

x2,2

x3,3

x3,2

d

x1

x2

x3

(a) (b)

C1

C2

C3
S1

S3

S2

Figure 3.1: An example of SCGA crossover in two dimensions.

where ri, i = 1, . . . , nc, are random vectors of length less than 1, d is the maximum

distance between pairs of parents and xk is the average of the kth vertices of all parents,

i.e.,

xk =
1

nc

nc∑

i=1

xi,k, k = 1, . . . , n + 1. (3.3.4)

Figure 3.1 shows an example of crossover in two dimensions. In Figure 3.1(a), we use

Equations (3.3.4) to compute the dotted simplex whose vertices are the average of the

vertices of the parents S1, S2 and S3. By using Equations (3.3.3), we move this dotted

simplex randomly inside the circle to create the children C1, C2 and C3, as in Figure

3.1(b).

3. Choose a random number from the unit interval (0, 1) for each child Ci, i = 1, . . . , nc.

If this number is less than the predetermined mutation probability pm, then this child

is mutated. Let Im be the index set of those children who are mutated.

4. Apply the following procedure for each child Ci =
{
xi,k

c

}n+1

k=1
, i ∈ Im. Select a number

ni from the set {1, 2, . . . , n + 1} randomly to determine the vertex that is reflected as

a mutation. Compute the mutated child C̃i =
{
xi,k

m

}n+1

k=1
by

xi,k
m = xi,k

c , k = 1, . . . , ni − 1, ni + 1, . . . , n + 1,
xi,ni

m = x + u (x − xi,ni
c) ,

where u is a random number in the interval [0.5, 1.5] and x is the average of vectors

xi,1
c , . . . , xi,ni−1

c , xi,ni+1
c , . . . , xi,n+1

c . Replace the child Ci by the mutated one C̃i. Figure

3.3 Description of SCGA 39

x1,1
c = x1,1

m

x1,3
c = x1,3

m

x1,2
c

p1

p2

Figure 3.2: An example of SCGA mutation in two dimensions.

3.2 shows an example of mutation in two dimensions, where the mutated simplex

consists of the vertices x1,1
m , x1,2

m and x1,3
m , where the vertex x1,2

m is randomly chosen on

the line segment p1p2.

5. Apply a small number of iterations of the Nelder-Mead method with each child Ci, i =

1, . . . , nc as an initial simplex to improve the chromosomes.

6. The population in the next generation consists of the M best ones from the set P ∪
{Ci}nc

i=1 . Re-order the chromosomes in the new population so that (3.3.1) and (3.3.2)

hold.

Reduction of the population

After every predetermined number of generations, remove some of the worst members in the

population P .

3.3.3 Acceleration in the final stage

From the best point obtained in GA loop, construct a small simplex. Then, apply Kelley’s

modification [51, 52] of the Nelder-Mead method on this simplex to obtain the final solution.

40 Simplex Coding GA for Unconstrained Global Optimization

x1

x2

l1 u1

u2

l2

Figure 3.3: Initial population in two dimensions.

3.4 Experimental Results

3.4.1 Parameter setting

In this subsection, we specify suggested values of the initial and control parameters.

Generating the initial population

Let [L,U] = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, 2, . . . , n} be the domain in which the initial

points are chosen and let this domain be divided into an equal distance grid. The pop-

ulation consists of simplices distributed on this grid and in each coordinate direction there

are µ simplices, i.e., the size M of population equals µn. We distribute the simplices in such

a way that each simplex is put in a neighborhood of one of the knots in the grid. We consider

all possible positions of simplices if n = 2, and some best positions of them if 3 ≤ n ≤ 10.

However, for n > 10, we employ another procedure for choosing the initial simplices as will

be discussed later. From each one of these main vertices we construct a right-angled simplex

by taking a step in each coordinate direction. This step size is called edge length. Figure

3.3 shows an example of the distribution of the population in two dimensions. The values

of the parameters used in generating the initial population are given as follows.

1. The number µ of simplices per coordinate direction is varied from 2 to 5 according

the estimated density of the local minima of the test function and the number n of

variables.

3.4 Experimental Results 41

2. The edge length is set equal to max1≤i≤n (ui − li) /10.

3. The number of Nelder-Mead iterations in the local search for the initial population is

set equal to 2.

In the case of n > 10, the main vertices in the initial population are generated in a

different way. First, we choose a random point x1,1 ∈ [L,U] . Then we generate the other

main vertices xj,1, j = 2, . . . ,M, by using the following procedure:

1. Generate xj,1.

2. If min1≤k≤j−1 max1≤i≤n |xj,1
i − xk,1

i |/ (ui − li) ≥ h for some prescribed h ∈ (0, 1), then

accept this vertex xj,1. Otherwise, return to step 1.

We set the probability of accepting the new main vertex equal to 0.7. From these main

vertices, we construct the simplices of the initial population as in the case of n ≤ 10.

GA loop parameters

The steps of the GA loop have been described in the previous section. Here we specify the

values of the parameters used in this loop.

1. The control parameter ηmax in the selection procedure is chosen to be 1.1 according to

the original setting in [9].

2. The crossover probability pc and the mutation probability pm are set equal to 0.6 and

0.1, respectively.

3. The number of Nelder-Mead iterations in the local search for the new children is fixed

at 2.

4. At every 3n generations, we remove the n worst chromosomes from the population

unless the number of its chromosomes is less than 2n.

Termination criteria

The SCGA is terminated when one of the following termination conditions is satisfied.

42 Simplex Coding GA for Unconstrained Global Optimization

1. The function values at all vertices of the simplex that contains the best point become

close to each other, i.e.,

f(x1,n+1) − f(x1,1) ≤ ǫ,

where the tolerance ǫ is a small positive number and set equal to 10−8.

2. The number of generations exceeds the predetermined number that is set equal to

min (10n, 100) .

3.4.2 Numerical results

The performance of the SCGA was tested on a number of well known functions [11, 12, 37,

94, 95], which are given in Appendix A. The behavior of these test functions varies to cover

many kinds of difficulties that face unconstrained global optimization problems. For each

function we made 100 trials with different initial populations. To judge the success of a trial,

we used the condition

|f ∗ − f̂ | < ǫ1 |f ∗| + ǫ2, (3.4.1)

where f̂ refers to the best function value obtained by SCGA, f ∗ refers to the known exact

global minimum, and ǫ1 and ǫ2 are small positive numbers. We set ǫ1 and ǫ2 equal to 10−4

and 10−6, respectively, when n ≤ 10, but for n > 10 we relax this test condition by increasing

the value of ǫ2 to 10−4. The results are shown in Table 3.1, where the average number of

function evaluations (Av. f -evals.) and the average error (Av. Error) are related to only

successful trials. Table 3.1 shows that the SCGA reached the global minima in a very good

success rate for the majority of the tested functions. Moreover, the numbers of function

evaluations and the average errors show the efficiency of the method.

In Table 3.2, we compare the results of the SCGA with those of three other metaheuristic

methods. These methods are:

1. Real-value Coding Genetic Algorithm (RCGA) [11].

2. Continuous Genetic Algorithm (CGA) [16].

3. Direct Search Simulated Annealing (DSSA) proposed in Chapter 2.

3.4 Experimental Results 43

Table 3.1: Results of SCGA
f Rate of success Av. f -evals. Av. Error
RC 100 173 3.62e-07
ES 100 715 4.97e-09
GP 100 191 4.81e-09
HM 100 176 5.23e-08
SH 98 742 8.83e-06
MZ 100 179 3.40e-06
B1 99 460 5.11e-09
B2 99 471 5.43e-09
B3 100 468 5.14e-09
R2 100 222 4.60e-09
Z2 100 170 4.68e-09
DJ 100 187 5.12e-09
H3,4 100 201 2.14e-06
S4,5 79 1086 3.28e-07
S4,7 81 1087 4.06e-05
S4,10 84 1068 9.81e-06
R5 90 3629 5.88e-09
Z5 100 998 7.10e-09
H6,4 99 989 2.00e-06
GR 100 906 8.46e-09
R10 90 6340 1.85e-08
Z10 100 1829 1.76e-08
R20 90 33134 7.59e-05
Z20 100 33106 5.79e-07

44 Simplex Coding GA for Unconstrained Global Optimization

Table 3.2: Average number of function evaluations in SCGA and other metaheuristics

Function SCGA RCGA [11] CGA⊗ [16] DSSA
RC 173 490 620 118
ES 715 642 1504 1442 (93%)
GP 191 270 410 261
HM 176 - - 225
SH 742 (98%) 946 575 457 (94%)
MZ 179 452 - -
B1 460 (99%) - 430 252
B2 471 (99%) 493 - -
R2 222 596 960 306
Z2 170 437 620 186
DJ 187 395 750 273
H3,4 201 342 582 572
S4,5 1086 (79%) 1158 (62%) 610 (76%) 993 (81%)
S4,7 1087 (81%) 1143 (70%) 680 (83%) 932 (84%)
S4,10 1068 (84%) 1235 (58%) 650 (81%) 992 (77%)
R5 3629 (90%) 4150 (60%) 3990 2685
Z5 998 1115 1350 914
H6,4 989 (99%) 973 970 1737 (92%)
GR 906 - - 1830 (90%)
R10 6340 (90%) 8100 (70%) 21563 (80%) 16785
Z10 1829 2190 6991 12501

The figures for RCGA and CGA methods in Table 3.2 are taken from the original ref-

erences. For those results of the CGA which are marked by (⊗) in Table 3.2, their original

corresponding data in Table 1 in [16] seem to contain some inconsistencies. In fact, since

the same condition as (3.4.1) is used in CGA [16] to test the successful trials, the average

errors for the tested functions must be less than the right-hand side of (3.4.1) for all these

functions. However, the average errors corresponding to the tested functions in [16] are

reported to be greater than the right-hand side of (3.4.1). The comparison given in Table

3.2 shows the SCGA outperforms the others for many of those functions.

Next, we try to compare SCGA with some of the other simplex-based GA methods de-

scribed in Section 3.2. Actually, for many reasons, it is not so easy to make clear comparisons

between SCGA and other simplex-based GA methods of [71, 80, 94, 95]. In fact, some of

these hybrid methods such as [71, 95] are concentrated on a certain complicated specific

3.4 Experimental Results 45

Table 3.3: The results for F1 function

Function evaluations SCGA Simplex GA [94]
Average 351 660
Min 259 32
Max 452 9538

problem. Moreover, for some of these methods, computational experiments reported in their

original references do not show much helpful information for comparison. For instance, the

successful trial test is not mentioned in [94, 95] and the number of the test problems is very

small in [71, 80, 94]. Nevertheless, in Tables 3.3 and 3.4, we give the available comparisons

between SCGA and the other Simplex GA methods of [80, 94, 95]. First, we compare SCGA

with the Simplex GA [94] using two functions F1 (n = 2) and F2 (n = 10), see Appendix A.

The results for F1 are shown in Table 3.3 and the results for both SCGA and the Simplex

GA [94] are taken over 100 trials. It is seen that for this function, SCGA outperforms the

Simplex GA [94] with regard to the average function evaluations. For the other function

F2, many results for the Simplex GA are reported in [94] and the best of them is 0.0002 for

the best function value with 6400 function evaluations. On the other hand, the results of

SCGA for this function are slightly worse, that is, 0.0008 for the best function value with

8127 function evaluations. However, there is another function with n = 10 studied in [94]

for which the Simplex GA [94] needed to generate 640 generations to obtain the accuracy

10−3, whereas SCGA needed only 60 generation to obtain the accuracy 10−9.

SCGA is also compared with the Simplex GA methods of [80, 95] using De Joung F5

function, see Appendix A. All these methods have the same rate of success (100%), but the

Simplex GA [80] required a large number of function evaluations, as shown in Table 3.4. We

note that the results for the Simplex GA methods of [80, 95], which are cited from [95], are

the average taken over 10 trials. However, the reference [95] does not give the condition used

to judge the success of trials for both of the Simplex GA methods of [80, 95], whereas the

results for SCGA are taken over 100 trials and we use condition (3.4.1) with ǫ1 = 10−4 and

ǫ2 = 10−6 to judge the success of trials. It is noteworthy that the average error obtained by

SCGA for De Joung function F5 is 1.6 × 10−7.

46 Simplex Coding GA for Unconstrained Global Optimization

Table 3.4: The results for De Joung F5 function

Average number of
Method function evaluations
SCGA 1570
Simplex GA [80] 14924
Simplex GA [95] 1695

3.5 Conclusion

In this chapter, we have introduced a simplex coding genetic algorithm that uses a set

of simplices as the population. Applying the Nelder-Mead local search method on these

simplices in addition to the ordinary GA operations such as selection, crossover and mutation

enhances the exploration process and accelerates the convergence of the GA. We also have

introduced a new kind of multi-parents crossover that gives more than two parents the

chance to cooperate in reproducing children and exploring the region around these parents.

Moreover, using a local search method again in the final stage helps the GA in obtaining good

accuracy quickly. Finally, the computational results show that the SCGA works successfully

on some well known test functions.

Chapter 4

Heuristic Pattern Search SA for

Unconstrained Global Optimization

4.1 Introduction

Simulated annealing (SA) [1, 53, 57, 58] is one of the most effective metaheuristics not only

for combinatorial optimization but also for continuous global optimization. However, SA

suffers from slow convergence and also it may wander around the optimal solution if high

accuracy is needed. In continuous optimization, combining SA with direct search methods is

a practical remedy to overcome the slow convergence of SA as shown previously in Chapter

2. In this chapter, we present a new hybrid method that combines SA with a new pattern

search method to deal with the unconstrained optimization problem

min
xǫRn

f(x), (4.1.1)

where f is a generally nonconvex, real valued function defined on Rn.

We will make use of two new ideas to form the main parts of the hybrid algorithm. We

first introduce a derivative-free heuristic method to produce an approximate descent direction

at the current solution, which we call the Approximate Descent Direction (ADD) method.

Some preliminary numerical results show that the ADD method has a high ability to obtain

a descent direction. Next, we use the ADD method to design a new PS method called the

Heuristic Pattern Search (HPS) method. In the HPS method, the ADD method is recalled

48 Heuristic Pattern Search SA for Unconstrained Global Optimization

to obtain an approximate descent direction v at the current iterate. If no improvement is

obtained along the vector v, then we use v to prune the set of pattern search directions to

generate other exploratory moves. Finally, we hybridize SA and HPS to construct a global

search method, called the Simulated Annealing Heuristic Pattern Search (SAHPS) method.

The SAHPS tries to get better movements through the SA acceptance procedure or by using

the HPS procedure. More specifically, we first introduce a new exploring neighborhood

search to generate a number of SA trial points. If some of these trail points can be accepted

by the SA acceptance procedure, this means the search can go further and there is no need

to use a local search method. Otherwise, we apply some iterations of the HPS method to

generate more local exploratory trial points. In the final stage of the search, we apply a

direct search method to refine the best solution obtained so far. Numerical results with 19

well-known test functions indicate that the SAHPS exhibits a very promising performance

to obtain global minima of multimodal functions.

This chapter is organized as follows. We introduce the ADD and the HPS methods

with some numerical results to show their performances in Section 4.2 and Section 4.3,

respectively. The description of the main SAHPS method is given in Section 4.4. In Section

4.5, we discuss the experimental results along with the initialization of some parameters and

the setting of the control parameters of the SAHPS method. Finally, the conclusion of the

contribution of this chapter makes up Section 4.6.

4.2 Approximate Descent Direction

In this section, we present the ADD method in which we use m close exploring points to

generate an approximate descent direction. Given a point p ∈ Rn, we want to obtain an

approximate descent direction v ∈ Rn of f at p. We randomly generate m points {yi}m
i=1

close to p and compute the direction v at p as follows:

v =
m∑

i=1

wiei, (4.2.1)

where

4.2 Approximate Descent Direction 49

p

y2 y1

v
f(y1) ≥ f(p)

f(y2) < f(p)

Figure 4.1: An ADD example in R2.

wi =
∆fi∑m

j=1 |∆fj|
, i = 1, 2, . . . ,m, (4.2.2)

ei = − (yi − p)

‖yi − p‖ , i = 1, 2, . . . ,m,

∆fi = f(yi) − f(p), i = 1, 2, . . . ,m.

By means of (4.2.1), the direction v is composed toward the vectors −sign (∆fi) (yi − p)

with weights proportional to |∆fi| , i = 1, 2, . . . ,m. Figure 4.1 shows an example of compos-

ing an ADD in two dimensions. Given a point p ∈ R2, the ADD v is composed in Figure

4.1 toward

• the vector − (y1 − p) , since the inequality f (y1) ≥ f (p) suggests that the function

value is not likely to decrease along the direction y1 − p, and

• the vector y2 − p, since the inequality f (y2) < f (p) suggests that the function value

is likely to decrease along the direction y2 − p.

We can show some theoretical results concerning the descent property of the direction v

in the following two special cases.

The linear case. If f is a linear function, i.e., f (x) = cT x + b, c ∈ Rn, b ∈ R, then the

50 Heuristic Pattern Search SA for Unconstrained Global Optimization

vector v in (4.2.1) can be written as

v =
−1∑m

j=1 |∆fj|

m∑

i=1

∆fi
(yi − p)

‖yi − p‖

=
−1∑m

j=1 |∆fj|

m∑

i=1

cT (yi − p)
(yi − p)

‖yi − p‖

=
−1∑m

j=1 |∆fj|

(
m∑

i=1

(yi − p) (yi − p)T

‖yi − p‖

)
c

= −γAc,

where γ = 1/
∑m

j=1 |∆fj| and A =
∑m

i=1 (yi − p) (yi − p)T / ‖yi − p‖ . Note that matrix A

is positive semidefinite, since xT Ax =
∑m

i=1

(
(yi − p)T x

)2

/ ‖yi − p‖ ≥ 0 for any x ∈ Rn.

Therefore, it holds that ∇f (p)T v = −γcT Ac ≤ 0, i.e., v is a descent direction.

The nonlinear case. If f is a differentiable nonlinear function, we can approximate

f around point p as f (x) ∼= f (p) + ∇f(p)T (x − p) ,∀x ∈ N (p) , where N (p) is a small

neighborhood of p. Therefore, if points yi, i = 1, . . . ,m, are chosen from the neighborhood

N (p) , then the vector v in (4.2.1) can be represented approximately as

v =
−1∑m

j=1 |∆fj|

m∑

i=1

∆fi
(yi − p)

‖yi − p‖

∼= −1∑m
j=1 |∆fj|

m∑

i=1

∇f (p)T (yi − p)
(yi − p)

‖yi − p‖

=
−1∑m

j=1 |∆fj|

(
m∑

i=1

(yi − p) (yi − p)T

‖yi − p‖

)
∇f (p) (4.2.3)

= −γA∇f (p) , (4.2.4)

where A and γ are defined as before. Since A is positive semidefinite, we obtain ∇f (p)T v ∼=
−γ∇f (p)T A∇f (p) ≤ 0, i.e., v is expected to be a descent direction.

Remark 4.2.1. The vector −∇f (p) , which is referred to as the steepest descent direction

of f at p, provides the direction along which the function f decreases most rapidly. Since

our aim is to minimize f , it is therefore plausible to try to obtain a direction v that imitates

−∇f (p). Actually, we can show that the vector v in (4.2.1) can simulate the steepest descent

direction −∇f (p) under some conditions. Specifically, the vector v becomes approximately

4.2 Approximate Descent Direction 51

proportional to −∇f (p) by setting m = n and choosing the points {yi}n
i=1 so as to meet the

following conditions:

• The points {yi}n
i=1 are in equal distance from p, i.e., ‖yi − p‖ = ǫ, i = 1, 2, . . . , n, for

some ǫ > 0;

• the vectors {(yi − p)}n
i=1 are orthogonal to each other.

In fact, by letting ui = (yi − p) / ‖yi − p‖ for i = 1, . . . , n, we may rewrite the formula (4.2.3)

as follows:

v ∼= −ǫ∑n
j=1 |∆fj|

(
n∑

i=1

uiu
T
i

)
∇f (p)

=
−ǫ∑n

j=1 |∆fj|
Q ∇f(p),

where Q =
∑

n
i=1uiu

T
i . Since Qui = ui, i = 1, . . . , n, we can readily see Q = In, and this

shows that v is approximately proportional to −∇f(p). This result provides a controlled way

to generate the exploring points {yi}m
i=1 rather than a complete random choice of them. Both

of these two ways of generating the points {yi}m
i=1 are tested numerically at the end of this

section.

Remark 4.2.2. In general, it is not easy to know how small the neighborhood N(p) should

be in order to ensure the validity of approximation (4.2.4). Let N(p) = {x : ‖x − p‖ ≤ ǫ}

and M = sup{∇2f(ζ) : ζ ∈ N(p)}. Then we have for any x ∈ N(p)

∣∣f (x) − f(p) −∇f(p)T (x − p)
∣∣ =

∣∣∣∣
1

2
(x − p)T∇2f(p + θ (x − p))(x − p)

∣∣∣∣ ≤
1

2
Mǫ2

where θ ∈ (0, 1) . This estimate may suggest a proper choice of radius ǫ of the neighbor-

hood. However, a priori knowledge of M is not available except for some special cases. Our

numerical experiments reported below suggest that the choice ǫ = 10−3 practically works well.

52 Heuristic Pattern Search SA for Unconstrained Global Optimization

The previous theoretical analysis uses an approximation of f in the nonlinear case. Here

we give some numerical results to show the effectiveness of the ADD method in obtaining

a descent direction. We test this procedure using Easom (ES), Goldstein and Price (GP),

Griewank (GR) and Rosenbrock (Rn, n = 2, 4, 10, 20, 50) functions, as shown in Table 4.1.

See Appendix A for the analytical formulae and search domains for these test functions. For

each test function, three different test points pj, j = 1, 2, 3, are randomly chosen from its

search domains. In addition, three test points pj, j = 4, 5, 6, are chosen to be close to the

global minimum x∗ for each test function such that p4 = x∗ − 0.1e, p5 = x∗ − 0.01e and

p6 = x∗ − 0.001e, where e ∈ Rn is the vector of ones. An approximate descent direction v

is computed 100 times for each point using different exploring points {yi}m
i=1 in each trial.

The success rate for obtaining a descent direction in these 100 trials are reported in Table

4.1. The following two methods are used to generate the exploring points {yi}m
i=1 close to

each point p = pj, j = 1, . . . , 6 :

1. Random: Let m = 2 and choose points {yi}2
i=1 randomly from the neighborhood

N (p, ǫ) = {x ∈ Rn : ‖p − x‖ ≤ ǫ} .

2. Orthogonal: Let m = n and choose points {yi}n
i=1 such that {(yi − p)}n

i=1 are parallel

to the coordinate axes and ‖yi − p‖ = ǫ, i = 1, . . . , n, for some ǫ > 0.

As to the neighborhood radius ǫ, smaller value of ǫ is expected to yield higher possibility of

obtaining a descent direction. To examine how small ǫ is enough to achieve this goal, we

have tested three values of ǫ, which are 10−1, 10−3 and 10−5. If two percentages are reported

in the same space in Table 4.1, the first one is related to Random and the second one is

related to Orthogonal. If only one percentage is reported, this means both of them have this

percentage.

The results in Table 4.1 show that using the neighborhood radius ǫ = 10−3 or 10−5 is very

effective in obtaining a descent direction even in a vicinity of the global minimum. Moreover,

there is no significant difference between the results obtained using these two values of ǫ. It

is noteworthy that although the Random method uses only two random exploring points, it

succeeds to obtain a descent direction with a high rate even for higher dimensional functions.

4.2 Approximate Descent Direction 53

Table 4.1: Success rates of obtaining descent direction for the test functions

f ǫ p1(%) p2(%) p3(%) p4(%) p5(%) p6(%)
10−1 100 100 100 100 55/49 45/46

R2 10−3 100 100 100 100 100 100
10−5 100 100 100 100 100 100
10−1 100 100 100 96/100 54/63 42/35

R4 10−3 100 100 100 100 100 96/100
10−5 100 100 100 100 100 100
10−1 100 100 100 94/100 55/47 51/55

R10 10−3 100 100 100 100 100 95/100
10−5 100 100 100 100 100 100
10−1 100 100 100 95/100 52/52 57/38

R20 10−3 100 100 100 100 99/100 98/100
10−5 100 100 100 100 100 100
10−1 100 100 100 92/100 56/57 48/31

R50 10−3 100 100 100 100 100 97/100
10−5 100 100 100 100 100 100
10−1 100 100 100 99/100 90/70 58/76

ES 10−3 100 100 100 100 100 99/100
10−5 100 100 100 100 100 100
10−1 100 100 87/48 100 52/45 52/48

GP 10−3 100 100 100 100 100 99/100
10−5 100 100 100 100 100 100
10−1 93/100 96/100 87/100 89/100 80/65 51/48

GR 10−3 94/100 96/100 83/100 92/100 91/100 89/100
10−5 95/100 97/100 89/100 95/100 87/100 90/100

54 Heuristic Pattern Search SA for Unconstrained Global Optimization

4.3 Heuristic Pattern Search

In this section, we describe the details of the new pattern search method HPS. At the

iteration k with iterate xk ∈ Rn, the HPS uses the ADD method to generate a direction v

at xk. If we could obtain a better movement along direction v with a certain step size, then

we proceed to the next iteration by updating the current iterate. Otherwise, the HPS, like

conventional pattern search (PS) algorithms [88], uses a finite set D of positive spanning

directions in Rn to generate a mesh of points. To avoid searching randomly in all these

direction, we prune the positive spanning direction set D, by using a control parameter

β ∈ (−1, 1), to select only those directions which lie within the angle cos−1 (β) from vector

v or −v, depending on whether v is a descent direction or not, respectively. Thus, we have

the following two cases:

1. If v is a descent direction, we prune the positive spanning direction set D to obtain

the pruned direction set Dp
k as

Dp
k =

{
d ∈ D : dT v ≥ β ‖d‖ ‖v‖

}
. (4.3.1)

2. If v is not a descent direction, the pruned direction set Dp
k is obtained as

Dp
k =

{
d ∈ D : dT v ≤ −β ‖d‖ ‖v‖

}
. (4.3.2)

Since we do not want to evaluate the (computationally expensive) gradient of f, we judge

whether or not v is a descent direction by using a sufficiently small step size α > 0. That is,

if f (xk + αv) < f (xk) , we consider v a descent direction. Otherwise, we do not consider v

a descent direction. It is noteworthy that Abramson et al. [2] use the gradient to prune the

positive spanning direction set D by means of (4.3.1) with v = −∇f (xk) and β = 0. The use

of gradients, however, may not be appropriate in the case where they are computationally so

expensive that a derivative-free method such as a PS method becomes a method of choice.

Algorithm 4.3.1 below describes the steps of the HPS method. In the ADD step, we

may use either the Random method or the Orthogonal method described in the previous

section. In practice, we prefer to use the Random method since the Orthogonal method is

computationally more expensive. Moreover, the positive spanning direction set D used in

the PS step can be set either {e1, . . . , en,−e1, . . . ,−en} or {e1, . . . , en,−e} , where ei ∈ Rn

is the ith unit vector in Rn and e ∈ Rn is the vector of ones.

Algorithm 4.3.1. HPS(f, x0, ∆0, α, σ)

4.3 Heuristic Pattern Search 55

1. Initialization. Choose an initial solution x0, fix an initial mesh size ∆0 > 0,

choose the shrinkage coefficient σ of the mesh size from (0, 1), fix a sufficiently

small step size α > 0, set the pruning control parameter β ∈ (−1, 1) , and set

the iteration counter k := 0.

2. ADD. Calculate the vector v at xk as in (4.2.1). If f (xk + ∆kv) < f (xk) ,

then set xk+1 := xk + ∆kv, and go to Step 5.

3. PS. If f (xk + αv) < f (xk) , then use (4.3.1) to obtain Dp
k. Otherwise, use

(4.3.2) to obtain Dp
k. Evaluate f on the trial points {pj = xk+∆kdj : dj ∈ Dp

k,

j = 1, . . . , |Dp
k|}.

4. Parameter Update. If min1≤j≤|Dp
k| f(pj) < f (xk) , then set xk+1 :=

arg min1≤j≤|Dp
k| f(pj). Otherwise, decrease ∆k through the rule ∆k+1 := σ∆k.

5. If the stopping condition is satisfied, then terminate. Otherwise, let k := k+1

and return to step 2.

To implement Algorithm 4.3.1, we have to determine a proper value of the pruning

control parameter β. We use the standard 2n directions, D = {e1, . . . , en, −e1, . . . ,−en, }
as a positive spanning direction set. In this case, a proper value for β can be chosen from

(−1, 1√
n
) to guarantee that the pruned direction set Dp

k contains at least one direction. In

the following, we study the tuning of parameter β through some numerical experiments.

Four values β = 1√
n
, 1

2
√

n
, 0, −1

2
√

n
have been chosen to make some numerical simulations using

Rosenbrock function R2, De Joung function DJ, and Zakharov functions Zn, n = 2, 4, 10, 20,

see Appendix A for the analytical formulae of these test functions. Note that the global

minimum values of all these functions are 0. Figures 4.2–4.7 show that β = 1√
n

generally

gives faster convergence toward the global minima than the other values of β. It is notable

from these figures that the performance of the HPS method for the function R2 is different

from that for other functions. Figure 4.3 shows that the HPS method with β = 1√
n

works

well in the early stage of the search, while it suffers from slow convergence in the later stage

compared with the method using other values. However, this difference in performance is

expected since the HPS method uses the ADD method and descent-type methods usually

suffer from slow convergence when applied to R2.

56 Heuristic Pattern Search SA for Unconstrained Global Optimization

0 20 40 60 80 100 120 140 160 180
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of function evaluations

B
es

t f
un

ct
io

n
va

lu
e

β = 1/21/2

β = 0.5/21/2

β = 0
β = −0.5/21/2

Z
2
 Function

Figure 4.2: The HPS performance for Zakharov function Z2.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−2

10
−1

10
0

10
1

10
2

Number of function evaluations

B
es

t f
un

ct
io

n
va

lu
e

β = 1/21/2

β = 0.5/21/2

β = 0
β = −0.5/21/2

R
2
 Function

Figure 4.3: The HPS performance for Rosenbrock function R2.

4.3 Heuristic Pattern Search 57

0 50 100 150 200 250
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of function evaluations

B
es

t f
un

ct
io

n
va

lu
e

β = 1/31/2

β = 0.5/31/2

β = 0
β = −0.5/31/2

DJ Function

Figure 4.4: The HPS performance for De Joung function.

0 50 100 150 200 250 300 350
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of function evaluations

B
es

t f
un

ct
io

n
va

lu
e

β = 1/41/2
β = 0.5/41/2
β = 0
β = −0.5/41/2

Z
4
 Function

Figure 4.5: The HPS performance for Zakharov function Z4.

58 Heuristic Pattern Search SA for Unconstrained Global Optimization

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of function evaluations

B
es

t f
un

ct
io

n
va

lu
e

β = 1/101/2

β = 0.5/101/2

β = 0
β = −0.5/101/2

Z
10

 Function

Figure 4.6: The HPS performance for Zakharov function Z10.

0 0.5 1 1.5 2 2.5

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of function evaluations

B
es

t f
un

ct
io

n
va

lu
e

β = 1/201/2

β = 0.5/201/2

β = 0
β = −0.5/201/2

Z
20

 Function

Figure 4.7: The HPS performance for Zakharov function Z20.

4.4 Simulated Annealing HPS 59

Table 4.2: Results of PS and HPS for Zakharov functions

No. f -evals. Best f value
f
Z2

Z4

Z10

Z20

PS HPS
97 132
353 234
7821 1547

50000+ 11140

PS HPS
3.0E–9 2.6E–8
9.1E–9 3.1E–7
2.6E–6 8.4E–5
4.4E–2 1.7E–3

A question that arises when we test the performance of the HPS method is to what extent

the ADD used in HPS helps the PS to get better results. To examine this issue, we compare

the HPS method with the plain PS method on Zakharov functions Zn, n = 2, 4, 10, 20. We

use the standard 2n directions, D = {e1, . . . , en,−e1, . . . ,−en} , to generate the pattern

search directions in each method. Table 4.2 shows the best function value (Best f value)

and the number of function evaluations (No. f -evals.) achieved by each method. We use

the same starting points for all methods. Since there is no random step in the PS method,

it was run only once for each problem. On the other hand, the HPS method was run 100

times and the Best f value and the No. f -evals. are the average of these 100 trials. The

pruning control parameter β was set equal to 1√
n
. Moreover, the shrinkage coefficient σ is

set equal to 0.5, which is the standard value of the shrinkage coefficient in direct search

methods. The initial mesh size should be chosen big enough for more efficient local search,

so that we set ∆0 equal to 1. The step size α is set equal to 10−3, which is small enough

to avoid misleading the search especially in the vicinity of a local minimum. The iteration

was terminated in Step 5 when the mesh size became smaller than 10−4, or the number of

function evaluations exceeded 50, 000.

From the results shown in Table 4.2, we may observe that using the ADD in the HPS

method can reduce the number of function evaluations in the plain PS method especially for

higher dimensional problems.

4.4 Simulated Annealing HPS

In this section we give the details of our main hybrid method SAHPS. The SA approach

is combined with the HPS to form the hybrid method SAHPS, which is expected to have

a higher ability to detect global minima. At each major iteration of the SAHPS method,

60 Heuristic Pattern Search SA for Unconstrained Global Optimization

we first repeat the simulated annealing acceptance trials m1 times. In each time, a trial

point is generated by using an exploring point to guide the SA search along a promising

direction and to avoid making a blind random search. Specifically, we generate an exploring

point zk close to the current iterate xk and a SA trial is generated along the direction

sign(f(xk)− f(zk))(zk − xk), with a certain step size. If more than mac out of m1 trials are

accepted, then we immediately proceed to the next major iteration of SAHPS. Otherwise,

within the same major iteration, we repeat the HPS iterations m2 times. In the early stage of

the search, the diversification is more needed than the intensification, however, the converse

is needed in the final stage of the search. Since the HPS represents the intensification part

of the SAHPS, it is better to initialize the value of m2 at a moderate value and increase it

while the search is going on. In the end of the search, we complete the algorithm by applying

a fast local search method to refine the best point obtained by the search so far. We prefer

to use the Kelley’s modification [51, 52] of the Nelder-Mead method [72] in this final step.

More detailed and formal description of the SAHPS method is shown in the following

Algorithm 4.4.1. The setting of parameters used in this algorithm will be discussed later in

next section.

Algorithm 4.4.1. SAHPS(f, x0, ∆0, r, α, ǫ)

1. Initialization. Choose an initial solution x0, fix an initial mesh size ∆0 > 0,

choose the shrinkage coefficient σ of the mesh size from (0, 1), fix the SA trial

point radius r, fix a sufficiently small step size α > 0, and fix a sufficiently

small neighborhood radius ǫ > 0. Fix the cooling schedule parameters; initial

temperature Tmax, epoch length M, cooling reduction ratio λ ∈ (0.5, 0.99), and

minimum temperature Tmin. Set the temperature T := Tmax.

2. The main iteration. Repeat the following Global SA Search (Step 2.1) m1

times. If more than mac out of m1 trial points are accepted, then skip the

Local HPS (Step 2.2) and proceed to Step 3.

2.1 Global SA search. Given the current iterate xk, generate an exploring

point zk randomly in the neighborhood of xk with radius ǫ. Generate a trial

4.4 Simulated Annealing HPS 61

point xSA in the neighborhood of the current solution xk by

xSA =

xk + ηr (zk − xk) / ‖zk − xk‖ , if f (zk) ≤ f (xk) ,

xk − ηr (zk − xk) / ‖zk − xk‖ , otherwise,

where η is a random number in (0.1, 1). Evaluate f on the trial point xSA,

and accept it, i.e. xk+1 := xSA, if

i. ∆f := f(xSA) − f(xk) < 0, or

ii. ∆f ≥ 0, and p = exp
(−∆f

T

)
≥ u, where u is a random number in (0, 1) .

2.2. Local HPS. Repeat the following procedure m2 times.

2.2.a. ADD. Calculate the vector v at xk as in (4.2.1). If f (xk + ∆kv) <

f (xk) , then set xk+1 := xk + ∆kv, and proceed to the next iteration of the

Local HPS loop.

2.2.b. PS. If f (xk + αv) < f (xk) , then use (4.3.1) to obtain Dp
k. Otherwise,

use (4.3.2) to obtain Dp
k. Evaluate f on the trial points {pj := xk + ∆kdj :

dj ∈ Dp
k, j = 1, . . . , |Dp

k|}.

2.2.c. Parameter update. If min1≤j≤|Dp
k| f(pj) < f (xk) , then set xk+1 :=

arg min1≤j≤|Dp
k| f(pj). Otherwise, decrease ∆k through the following rule:

∆k+1 := σ∆k. (4.4.1)

3. If the epoch length, which corresponds to M iterations of Global SA Search,

is not achieved, then go to Step 2.

4. If the cooling schedule is completed (T ≤ Tmin) or the function values of two

consecutive improvement trials become close to each other or the number of

iterations exceeds 50n, then go to Step 5. Otherwise, decrease the temperature

62 Heuristic Pattern Search SA for Unconstrained Global Optimization

by setting T := λT , increase m2 slightly, decrease r slightly, and go to Step

2.

5. From the best point found, apply the modified Nelder-Mead method [51, 52].

4.5 Experimental Results

4.5.1 Setting of Parameters

Below we elaborate on the implementation of Algorithm 4.4.1.

Initial trial. The initial point x0 is chosen randomly from the predetermined range

[L,U] of the initial points for each test function, where

[L,U] = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n} .

Cooling schedule. Generally, choosing a proper cooling schedule is not a trivial task.

Our cooling schedule is designed based on some common choice of parameters suggested in

the literature, or according to our observation gained through some preliminary numerical

experiments. First, the initial temperature Tmax is set large enough to make the initial

probability of accepting transition close to 1. Beside the initial point x0, another point x̃0

is generated in a neighborhood of x0 to calculate Tmax as

Tmax := − 1

ln(0.9)
|f(x̃0) − f(x0)| .

The cooling ratio λ is normally chosen to be between 0.9 and 0.99 [57]. Actually, in the

original SA method, Kirkpatrick et al. [53] suggested λ = 0.95, which has become a common

choice. However, in our experiments, we observed that the results obtained with λ = 0.95

were not significantly different from those with λ = 0.9. The main reason for this insignificant

difference is due to the use of refining local search method at the final stage. Since setting

λ equal to 0.95 is more computationally costly, we set λ equal to 0.9. A common choice of

the number of trials allowed at each temperature, which is called epoch length M , is to let

it depend on the size of the problem [58]. Although Kirkpatrick et al. [53] set the value of

M equal to n, our preliminary experiments have revealed that setting M equal to 2n fits

the SAHPS algorithm well. Therefore, we set M equal to 2n. In the implementation of SA,

the cooling schedule is terminated when the temperature reaches a fixed minimum value

4.5 Experimental Results 63

Tmin [58]. We observed that setting Tmin equal to min (10−3, 10−3Tmax) can give a complete

cooling schedule in the sense that the acceptance probability at the end is almost zero.

Neighborhood radius. The neighborhood radius ǫ, which is used in generating the

exploring points zk in the Global SA Search and in generating the exploring points used to

compute vector v in the ADD step, is set equal to 10−3.

SA trial point radius. The radius r, which is used in generating the SA trial points,

is initialized as r0 := max1≤i≤n (ui − li) /5 to fit the search domain of each test func-

tion, and then r is reduced in parallel to the reduction of temperature T by setting r :=

max {0.95r, 0.02r0} .

HPS parameters. The mesh size is initialized as ∆0 := max1≤i≤n (ui − li) /10, and

when no improvement is achieved, its shrinkage factor σ in (4.4.1) is set equal to 0.7. Actually,

the standard value of the shrinkage coefficient in direct search methods is 0.5 but, in our

experiments, we observed that using the value 0.7 gives more ability of efficient exploration

than the value 0.5, because the latter may decrease the step size prematurely before reaching

a proper exploration process. We set the step size α used in Step 2.2.a equal to 10−3. The

pattern search strategy described in Section 4.3 is adopted in the Local HPS step.

Loop repetitions. The repetition numbers of the Global SA Search and Local HPS

steps, m1 and m2, are both set equal to n initially, which is equal to the half of the epoch

length M . However, m2 is updated as m2 := min{5n, 1.05m2} in Step 4 at every major

iteration. The control parameter mac, the desired number of accepted points in the Global

SA Search step, is set equal to 1.

Termination conditions. Beside the completeness of the cooling schedule, Algorithm

4.4.1 may be terminated in Step 4, if the difference between the function values of two

consecutive improvement trials becomes less than Tol = 10−8, or the number of iterations

exceeds Itmax = 50n.

In Table 4.3, we summarize all parameters used in the SAHPS algorithm with their

assigned values.

4.5.2 Numerical Results

Algorithm 4.4.1 was programmed in Matlab and applied to 19 well-known test functions

[15, 37], see Appendix A. For each function, this Matlab code was run 100 times with

different initial points. To judge the success of a trial, we used the condition

64 Heuristic Pattern Search SA for Unconstrained Global Optimization

Table 4.3: SAHPS Parameters

Parameter Definition Value
Tmax maximum (initial) temperature − 1

ln(0.9)
|f(x̃0) − f(x0)|

Tmin minimum temperature min (10−3, 10−3Tmax)
λ cooling ratio 0.9
M epoch length 2n
ǫ neighborhood radius 10−3

r0 initial radius for generating SA trial points min1≤i≤n (ui − li) /5
∆0 initial mesh size min1≤i≤n (ui − li) /10
σ reduction factor of mesh size 0.7
α step size for checking descent directions 10−3

m1 Global SA Search repetition number n

m2 Local HPS repetition number

{
initial: n
update: min{5n, 1.05m2}

mac number of accepted points in Global SA Search 1
Itmax maximum number of iterations 50n
Tol termination tolerance 10−8

|f ∗ − f̂ | < ǫ1 |f ∗| + ǫ2, (4.5.1)

where f̂ refers to the best function value obtained by SAHPS, f ∗ refers to the known exact

global minimum value, and ǫ1 and ǫ2 are small positive numbers. We set ǫ1 and ǫ2 equal to

10−4 and 10−6, respectively. The average number of function evaluations (Av. f -evals.) and

the average errors (Av. Error) reported in Table 4.4 are those for the successful trials. It

is noteworthy that, for some of the functions that fail to achieve the 100% success rate, the

success rate can be improved by relaxing the maximum number of iterations or by slowing

down the cooling schedule. For example, the success rate for SH function can be improved

to 95% with Av. f -evals. of 822 and Av. Error of 9E–6, if we set the maximum number of

iterations equal to 100n instead of 50n.

To complete the testing of the SAHPS method, we compare it with other SA-based

methods, Enhanced Simulated Annealing (ESA) [85] and Direct Search Simulated Annealing

(DSSA) proposed in Chapter 2. The results of ESA are taken from its original reference [85],

as well as [15]. The results of DSSA are the same as those shown in Table 2.2.

The results shown in Table 4.4 indicate that SAHPS generally outperforms the ESA.

Since ESA is a plain SA method without any combination with a local search method, we

may conclude that hybridizing HPS with SA significantly improves the performance of SA.

4.6 Conclusion 65

Table 4.4: Results of SAHPS and other SA methods

Av. f -evals. Av. Error
f
RC
ES
GP
B1

HM
SH
Z2

R2

DJ
H3,4

S4,5

S4,7

S4,10

Z5

R5

H6,4

GR
Z10

R10

SAHPS ESA DSSA
318 – 118
432(96%) – 1442(93%)
311 783 261
346 – 252
278 – 225
450(86%) – 457(94%)
276 15820 186
357 796 306
398 – 273
517(95%) 698 572
1073(48%) 1137(54%) 993(81%)
1059(57%) 1223(54%) 932(84%)
1031(48%) 1189(50%) 992(77%)
716 96799 914
1104(91%) 5364 2685
997(72%) 1638 1737(92%)
795 – 1830(90%)
2284 15820 12501
4603(87%) 12403 16785

SAHPS ESA DSSA
4E–7 – 4E–7
5E–9 – 3E–9
5E–9 9E–3 4E–9
8E–9 – 5E–9
5E–8 – 5E–8
9E–6 – 9E–6
7E–9 – 4E–9
6E–9 – 4E-9
6E–9 – 5E–9
2E–6 5E–4 2E–6
3E–7 4E–3 2E–6
4E–5 8E–3 6E–7
1E–5 4E–2 1E–5
8E–9 – 5E–9
7E–9 – 3E-9
2E–6 6E–2 2E–6
8E–9 – 5E–9
3E–8 2E–3 7E–9
2E-8 4E-2 7E-9

On the other hand, the comparison between SAHPS and DSSA does not seem to yield a

definitive answer. The performance of DSSA is better for the problems with n < 5 but

SAHPS outperforms DSSA in higher dimensional problems, i.e., n ≥ 5, in terms of the

number of function evaluations.

4.6 Conclusion

In this chapter, we have presented a new hybrid global search method in which a direct

search method is combined with the SA procedure to remedy the slow convergence of the

latter method. Two new methods have been introduced to design the SAHPS method; one

is the ADD method that produces an approximate descent direction, the other is the HPS

method that is used to make a local exploratory search in the main SAHPS method. The

66 Heuristic Pattern Search SA for Unconstrained Global Optimization

latter has turned out to be particularly effective because the HPS method shows a superior

performance in reducing the computational expense of the plain PS method.

Chapter 5

Directed TS for Unconstrained Global

Optimization

5.1 Introduction

Tabu Search (TS) is one of the recent metaheuristics originally developed for combinatorial

optimization problems [31, 33]. TS has shown an appropriate performance when applied

to these problems [31]. However, contributions of TS to solving continuous optimization

problems are still very limited compared with other metaheuristics like Simulated Annealing

and Genetic Algorithms. In this chapter, we introduce a TS approach that deals with the

continuous unconstrained optimization problem

min
xǫRn

f(x), (5.1.1)

where f is a generally nonconvex, real valued function defined on Rn. Specifically, we present

continuous versions of TS called Directed Tabu Search (DTS) by hybridizing TS with direct

search methods. The role of direct search methods is to stabilize the search especially in the

vicinity of a local minimum. Specifically, instead of using completely blind random search

in generating neighborhood trial moves, appropriate direct search strategies are responsible

to generate these neighborhood moves. Moreover, new implementations of TS elements are

employed in the proposed method.

Since the main presentation of Glover [28, 29], a lot of studies have emerged in the area

of TS. The majority of these studies are related to combinatorial optimization problems

68 Directed TS for Unconstrained Global Optimization

and relatively few attempts have been made to deal with continuous optimization problems

[3, 10, 15, 20, 21, 26, 50]. One of the earliest TS methods was presented by Hu [50] for

constrained optimization problems. Cvijovic and Klinowski [20, 21] extented and generalized

the TS to functions with variables that may be continuous or, if discrete, need not take integer

values. Battiti and Tecchiolli [10] introduced an interesting continuous TS method called the

Continuous Reactive Tabu Search. Their method tries to locate the most promising boxes,

and then starting points for the local search are generated within those boxes. Al-Sultan

and Al-Fawzan [3] gave a hybrid method that combines TS with the local search method of

Hooke and Jeeves.

Recently, intensive studies on continuous TS have been conducted in [15, 26]. In [15],

Chelouah and Siarry introduced a new algorithm called Enhanced Continuous Tabu Search

(ECTS), which aims to follow Glover’s basic approach as closely as possible. In order to

cover a wide domain of possible solutions, the ECTS algorithm first performs a diversification

search to locate the most promising areas. When the most promising areas are located, the

algorithm proceeds to an intensification search within one promising area of the solution

space. In [26], Franze and Speciale presented a novel TS algorithm that explores a grid

of points with a distance dynamically adjusted. When it collapses to a local minimum, it

continues the local search from that point while accepting some non-improving points to

allow the exploration of new regions in the search space.

The DTS method proposed in this chapter differs from the previous continuous TS meth-

ods in many aspects. In the DTS method, three search procedures are employed; Explo-

ration, Diversification and Intensification. In the Exploration Search, a new local search pro-

cedure is introduced to generate trial moves, based on the well-known Nelder-Mead method

[72] and the heuristic pattern search method proposed in Chapter 4. Moreover, novel con-

cepts of TS memory elements called Tabu Regions (TRs), Semi-TRs and a multi-ranked

Tabu List (TL) are introduced to provide anti-cycling rules. Another memory element

called Visited Regions List (VRL) is also introduced as a tool for the Diversification Search

to diversify the search to unvisited areas of the solution space. Finally, assuming that one of

the best points obtained by the Exploration and Diversification Searches is close to a global

minimum, the Intensification Search is applied again at the final stage to refine the elite so-

lutions visited so far. Actually, the proposed Diversification and Intensification Searches try

to follow some known strategies from the high level TS with a long term memory. Moreover,

the DTS can be classified as a multi-start method. The multi-start methods aim to construct

powerful search procedures by guidance of global exploration and local searches; as surveys

for multi-start methods the reader is referred to [62, 63, 84]. Multi-start methods have been

5.2 TS Memory Elements 69

successfully applied to both nonlinear global optimization and combinatorial problems, see

[63] and references therein. Finally, the numerical results reported below show the promise

of the proposed method especially in producing high quality solutions.

The rest of this chapter is organized as follows. The next section gives a detailed descrip-

tion of the proposed TS memory elements. In Section 5.3, we introduce neighborhood and

local search strategies used to generate the trial moves. The main DTS method is presented

elaborately in Section 5.4. Section 5.5 discusses the implementation of the proposed method

and reports comprehensive experimental results. The conclusion of the contribution of this

chapter makes up Section 5.6.

5.2 TS Memory Elements

The concept of memory plays a major role in TS, especially when it is used in a kind of

learning process as in high level TS with long term memory. Using an effective memory

conception in intensification and diversification schemes makes TS behave as an intelligent

search technique [31]. The optimization search methods can be classified in two categories;

point-to-point methods and population-based methods. TS belongs to the first category.

Keeping the diversity is one of the main problems that face the point-to-point methods

compared with the population-based methods. However, the long term memory in TS makes

it competitive with the population-based methods in keeping the diversity. In TS with

long term memory, the search can be restarted from new diverse solutions whenever the

diversification is needed, or can be intensified to improve the elite solutions whenever the

intensification is needed. These TS concepts of diversification and intensification have turned

out to be effective in many combinatorial optimization problems, see [31, 61] for example.

In this section, we introduce some new conceptions and implementations of the TS memory

elements to continuous optimization problems. First, we let the multi-ranked Tabu List (TL)

be a set of some visited solutions. The points in the TL are ranked and saved according to

their recency and their objective function values. Therefore, some positions in the TL are

kept for the best visited solutions, which helps an intensification scheme to refine the search

from these best solutions at the final stage. Around each solution saved in the TL, two types

of regions are specified in the search space. The first one is a Tabu Region (TR) in which no

new trial point is allowed to be generated. The other is a Semi-Tabu Region (Semi-TR) that

comprises a surrounding region around TR. The main role of the Semi-TRs is to generate

neighboring trial points in a special way so that returning back to a visited TR is avoided

70 Directed TS for Unconstrained Global Optimization

when the trial solution lies inside a Semi-TR. Another memory element introduced in this

section is the Visited Region List (VRL). The centers of the visited regions and the frequency

of visiting these regions are saved in the VRL in order to direct a diversification scheme to

explore the space outside these visited regions.

5.2.1 Multi-Ranked Tabu List (TL)

Some of the previously visited solutions are stored in the TL. Let TL = {ti}L
i=1 . The elements

in TL are ranked in ascending order according to their recency using the rank indices Ir
i , i =

1, . . . , L, i.e., if the most recent element in TL is tk, then Ir
k = 1, while if the most ancient

element is tk′ , then Ir
k′ = L. Also, the elements in TL are ranked in ascending order according

to their objective function values using another set of rank indices Ifv
i , i = 1, . . . , L, i.e., if

the best element in TL is tj, then Ifv
j = 1, and if the worst element is tj′ , then Ifv

j′ = L. In

the ordering, ties are broken arbitrarily. We consider the TL to be a fuzzy set and associate

its elements {ti}L
i=1 the membership values:

mi = max
{

mr
i ,m

fv
i

}
, i = 1, . . . , L, (5.2.1)

where mr
i ,m

fv
i ∈ [0, 1] are the recency and the function-value ranked values, respectively, for

element ti and they are computed as follows:

• The recency ranked value mr. We use a linear ranking procedure that gives the most

recent element the maximum ranked value ηmax and the most ancient element the

minimum ranked value ηmin, where 0 ≤ ηmin < ηmax ≤ 1. Specifically, the recency

ranked value for each element of TL is given by

mr
i = ηmin + (ηmax − ηmin)

(
L − Ir

i

L − 1

)
, i = 1, . . . , L.

• The function-value ranked value mfv. To avoid reserving excessively many positions

in the TL for the best elements and to give the recency some priority, this procedure

ranks only L best elements so that the best element is given the ranked value µmax, and

the worst L − L + 1 elements are given the ranked value µmin, where 1 ≤ L ≤ L and

0 ≤ µmin < µmax ≤ 1. Specifically, the function-value ranked value for each element of

TL is given by

mfv
i =

{
µmin + (µmax − µmin)

(
L−Ifv

i

L−1

)
, if Ifv

i = 1, . . . , L,

µmin, if Ifv
i = L + 1, . . . , L.

5.2 TS Memory Elements 71

The Tabu Regions (TRs) are defined to be spheres with radius rTR and their centers being

the points of TL, where rTR > 0 . For each TR, we define Semi-TR to be the surrounding

region around this TR with outer radius rSTR from its center, where rSTR > rTR. If a trial

solution lies in Semi-TRs, then a specific procedure is applied to create special neighborhood

trial points to avoid returning back to a vicinity of a previously visited solution. We suggest

the following procedure for this purpose.

Procedure 5.2.1. Trial Solution Generation in Semi-TRs

1. Let a trial point x lie in ν Semi-TRs with centers t1, . . . , tν . Compute the

centroid t of the Semi-TRs’ centers and the maximum distance dmax between

x and these centers, i.e.,

t =
1

ν

ν∑

i=1

ti,

dmax = max
i=1,...,ν

{‖x − ti‖} .

2. Construct neighborhood search directions that are parallel to the coordinate

axes but point towards the direction x− t, i.e., the neighborhood search direc-

tions are determined as sign
(
(x)i −

(
t
)

i

)
ei, i = 1, . . . , n, where ei ∈ Rn is

the ith unit vector in Rn. Neighborhood trial points are generated along these

search directions with a suitable step size β > 0. In the case of ν > 1, the step

size β should be chosen greater than dmax + rTR in order to avoid generating

trial points inside a TR.

Figure 5.1 illustrates how Procedure 5.2.1 works when a solution x lies in Semi-TRs in

two dimensions. In this example, the solution x lies in two Semi-TRs with center t1 and t2.

According to Procedure 5.2.1, the neighborhood search directions d1 and d2 are constructed

to follow the vector
(
x − t

)
, where t is the centroid of the Semi-TRs ’ centers. It is noteworthy

that the step size used to generate a trial point along search directions d1 and d2 is chosen

to be greater than rTR + max {‖x − t1‖ , ‖x − t2‖} , to make sure that the close TRs with

centers t1 and t2 will not be hit.

72 Directed TS for Unconstrained Global Optimization

t1

t2

t̄ x

β(x − t̄)

d1

d2

Semi-TR

Semi-TR

TR

TR

Figure 5.1: Neighborhood search from a point in Semi-TRs.

5.2.2 Visited Region List (VRL)

Some historical information about the previously visited regions is stored in the VRL.

More specifically, the center ζi of a visited region, which is a sphere with radius ρi, and

the frequency ϕi of visiting this region comprise the information stored in the VRL, i.e.,

VRL = {(ζi, ρi, ϕi)}M
i=1 , where M is the number of all listed visited regions. The informa-

tion in VRL will be used to direct the search towards new regions whenever the current TS

procedure fails to get improvement or whenever a diversification scheme is needed. As a

diversification scheme, we try to generate new trial points outside the visited regions. How-

ever, generating trial points near to more frequently visited regions is discouraged. To this

end, a function Φ(ϕ) is introduced to distinguish between more and less frequently visited

regions. Specifically, we define the function Φ as

Φ(ϕ) = γ
(
1 − e−γ(ϕ−1)

)
, (5.2.2)

where γ ∈ (0, 1] is a given constant. Note that the function Φ is strictly increasing and

bounded above by the value γ. We will describe the role of γ in the diversification scheme

after we state Procedure 5.2.2 below.

In the following, we suggest a procedure that uses the VRL information to generate a new

solution. The procedure allows accepting a trial point outside the visited regions, especially

the more frequently visited ones.

Procedure 5.2.2. Diverse Solution Generation

5.3 Neighborhood-Local Search Strategies 73

1. Generate a trial point x randomly in the search domain of f.

2. Compute the quantities di = ‖x − ζi‖/(1 + Φ(ϕi)), i = 1, . . . ,M, where Φ(ϕ)

is defined by (5.2.2). If min1≤i≤M di/ρi ≥ 1, then accept x. Otherwise, return

to Step 1.

A point x is accepted by Procedure 5.2.2 if it satisfies ‖x − ζi‖/ρi ≥ 1 + Φ(ϕi) for all

i = 1, . . . ,M. This means that no point can be accepted inside a previously visited region.

Moreover, a point close to more frequently visited regions is hardly accepted. Therefore, the

higher the value of γ is, the lower the possibility of accepting a point close to more frequently

visited regions is. To avoid infinitely cycling in Procedure 5.2.2, we may also terminate it

after a predetermined number of iterations and return with x corresponding to the maximum

of the values of min1≤i≤M di/ρi over all iterations.

5.3 Neighborhood-Local Search Strategies

To explore the region around a solution and to generate the next move, we use neighborhood

and local search strategies in which direct search methods are employed. Specifically, two

search strategies are introduced to handle that job; Nelder-Mead Search (NMS) strategy and

Adaptive Pattern Search (APS) strategy, which are based on the well-known Nelder-Mead

method [72] and the heuristic pattern search method proposed in Chapter 4, respectively.

These neighborhood-local search strategies are invoked to generate trial points in the Explo-

ration Search of the DTS method. More specifically, two types of trial points are generated

by the neighborhood-local search strategy; neighborhood trial points and local trial points,

which are needed in the Neighborhood Search and Local Search Steps, respectively, in Algo-

rithms 5.4.1 and 5.4.2 stated in the next section. First, p trial points {yi}p
i=1 are generated

in a neighborhood of the current solution x. This procedure is called a neighborhood search,

and the trial points {yi}p
i=1 are called neighborhood trial points. Then, we try to improve

the neighborhood trial points {yi}p
i=1 by executing another search procedure, which is called

a local search, to generate q trial points {yp+i}q
i=1 , which are called local trial points. The

details of the neighborhood-local search strategies, NMS and APS, are given below.

74 Directed TS for Unconstrained Global Optimization

5.3.1 Nelder-Mead Search (NMS) Strategy

In the NMS strategy, we generate p(= n) neighborhood trial points {yi}n
i=1 , and q(= 1 or

0) local trial point. The neighborhood trial points are generated along search directions

parallel to the coordinates axes starting from the current solution x with suitable step sizes.

If the current solution x lies in a Semi-TR or in Semi-TRs, we apply Procedure 5.2.1 to

construct the search directions and the step sizes. Otherwise, we construct search directions

parallel to the coordinate axes in a random way, i.e., each of them is parallel to a positive

or a negative coordinate direction. To generate a local trial point, we construct a simplex S

that consists of the current solution x and the current n neighborhood trial points {yi}n
i=1,

i.e., S = {x, y1, . . . , yn} . Some iterations of the NM method are applied starting from S. If

an improvement point is obtained from these NM iterations, then we set the local trial point

yn+1 equal to this improvement point, i.e., q = 1. Otherwise, there is no trial point, i.e.,

q = 0.

For more explanation of the NMS strategy, we show an example in two dimensions in

Fig. 5.2. Given the current solution x, two neighborhood trial points y1 and y2 are generated

in a neighborhood of x as in Fig. 5.2 (a). To find a local trial point, we construct a simplex

whose vertices are S = {x, y1, y2} , as in Fig. 5.2 (b). Assuming that the worst point in S is

y2, we apply the Nelder-Mead method operations described in Fig. 5.2 (c) to find a better

movement. If one exists, we refer to this better movement as a local trial point.

5.3.2 Adaptive Pattern Search (APS) Strategy

The main idea behind the APS strategy is based on the approximate descent direction (ADD)

method proposed in Chapter 4. We implement a similar procedure as in ADD method to

produce a new adaptive direction from standard pattern directions. Specifically, we construct

n pattern directions parallel to the coordinate axes emanating from the point x and generate

n trial points {yi}n
i=1 along these directions with a suitable step size. The adaptive direction

v, along which we may expect to decrease the function value, is computed using these trial

points as follows:

v =
n∑

i=1

ωiui, (5.3.1)

where

5.3 Neighborhood-Local Search Strategies 75

x

y2

y1 x

y2

x

y2

y1 x

y2

(a) (b)

Reflection

Expansion

Contraction Contraction

“inside” “outside”

Shrinkage

(c)

Figure 5.2: NMS strategy in two dimensions.

76 Directed TS for Unconstrained Global Optimization

ωi =
∆fi∑n

j=1 |∆fj|
, i = 1, 2, . . . , n,

ui = − (yi − x)

‖yi − x‖ , i = 1, 2, . . . , n,

∆fi = f(yi) − f(x), i = 1, 2, . . . , n.

In the APS strategy, we generate p(= n) neighborhood trial points {yi}n
i=1 using the

standard pattern directions, and q(= 2) local trial points using an adaptive pattern direction.

More specifically, we construct n pattern directions parallel to the coordinate axes emanating

from the current solution x and generate n neighborhood trial points {yi}n
i=1 along these

directions with some step size. The adaptive pattern direction v at x is computed using

(5.3.1). Two local trial points yn+1 and yn+2 are generated along the vector v with two

different step sizes.

An example in two dimensions is illustrated in Fig. 5.3 to describe the APS strategy.

Two neighborhood trial points y1 and y2 are generated in a neighborhood of the current

solution x as in Fig. 5.3 (a). An approximate descent direction v is computed at x using

the points y1 and y2, as in (5.3.1). If we assume that x is better than y1 and y2, then, by

means of (5.3.1), the vector v is composed toward the vectors x− y1 and x− y2 with weights

inversely proportional to |f(x) − f(y1)| and |f(x) − f(y2)|, see Fig. 5.3 (b). Finally, two

local trial points y3 and y4 are generated along the vector v with two different step sizes in

order to explore the area along the promising direction v as in Fig. 5.3 (c).

5.4 Directed Tabu Search (DTS)

In this section, we describe some details about how a TS method is modified with the

memory elements and neighborhood-local search strategies introduced in Sections 5.2 and

5.3 to compose the DTS method.

In the DTS method, three basic search procedure are used; Exploration, Diversification

and Intensification search procedures. In the Exploration Search, we use the neighborhood-

local search strategies, which are described in Section 5.3, to explore the solution space.

Moreover, the multi-ranked TL, TR and Semi-TR restriction rules are applied to avoid

revisiting recently visited solutions or being entrapped in local minima. Then, the Diversi-

fication Search is needed in order to diversify the search to other areas of the solution space

that may have been overlooked in the Exploration Search. We use the VRL and Procedure

5.4 Directed Tabu Search (DTS) 77

x

y2

y1 x

y2

x

y2

y1 x

y2

(a) (b) v

x

y2

y1 x

y2

y3

y4

(c)

Figure 5.3: APS strategy in two dimensions.

5.2.2 to manage the Diversification Search. Finally, in order to explore the close regions

around the best points visited so far, the Intensification Search is applied to refine these best

points. These search procedures are applied in such a way that they give the DTS method

a better chance to explore the search space efficiently. Actually, the Exploration and Diver-

sification search procedures are assembled to compose the DTS main loop and are repeated

until the termination conditions are satisfied. Moreover, the Exploration Search procedure

is included as an inner loop within the diversification loop. We will use the superscript

j = 0, 1, . . . , to represent the main loop iteration counter, the subscript k = 0, 1, . . . , to rep-

resent the inner loop iteration counter, and x
(j)
k to denote a general iterate. In other words,

the Exploration and Diversification search procedures compose a multi-start procedure with

a long term memory. At the final stage, the Intensification Search procedure based on elite

TS is needed to complete the DTS method. The main structure of the DTS method is shown

in Fig. 5.4. More detailed description of the search procedures is given below.

5.4.1 Exploration-Diversification Loop

The main loop of the DTS method, which consists of Exploration and Diversification Searches,

starts with an initial solution x
(0)
0 . In each main loop iteration j, the Exploration Search pro-

78 Directed TS for Unconstrained Global Optimization

Initial Solution

Neighborhood Search

Local Search

Solution Update

Diversification Search

Intensification Search

Exploration Search

Figure 5.4: Main structure of the DTS method.

5.4 Directed Tabu Search (DTS) 79

cedure is repeatedly applied to obtain improvement by means of neighborhood-local search

strategies, and then the Diversification Search procedure is applied to locate a new initial

trial point x
(j+1)
0 , from which the Exploration Search is restarted again. This main loop is

repeated at most ℓmain times, where ℓmain is a predetermined positive integer.

Exploration Search. The Exploration Search starts with an initial solution x
(j)
0 at

each main loop iteration j. In each iteration of the Exploration Search, a neighborhood-

local search (NMS or APS) strategy is used to generate n neighborhood trial points {yi}n
i=1

in a neighborhood of the current iterate x
(j)
k . If a better movement is found among these

trial points, we update the current iterate and proceed to the next inner loop iteration.

Otherwise, i.e., x
(j)
k is still better than all neighborhood trial points, the neighborhood-local

search strategy continues to generate q local trial points {yn+i}q
i=1 , where q = 0 or 1 in the

NMS strategy and q = 2 in the APS strategy. Then, the current iterate x
(j)
k is updated to

be the best of neighborhood and local trial points, i.e., x
(j)
k+1 := arg mini=1,...,n+q {f (yi)} . TL

is also updated by letting x
(j)
k replace the element with the smallest membership value. If

a new region is reached, then VRL should be updated by adding the information on this

region. This Exploration Search loop is repeated at most ℓinner times, where ℓinner is a

predetermined positive integer.

Diversification Search. The Diversification Search is carried out when the Exploration

Search either spends the inner iterations ℓinner times or fails to obtain an improvement in

some consecutive iterations. With the current VRL, Procedure 5.2.2 is applied to generate a

trial point x
(j+1)
0 in some new region. Then the Exploration Search is repeated again starting

from x
(j+1)
0 .

5.4.2 Intensification Search

According to the principle of the multi-ranked TL, it reserves the best points visited so far.

In order to improve these points, we complete the DTS method by applying another local

search method starting from some of these points, which we call Intensification Search. We

use Kelley’s modification [51, 52] of the Nelder-Mead (NM) method as a local search method

for this task.

5.4.3 Main Algorithm

We have two versions of the DTS method; DTSNMS and DTSAPS that use the NMS strategy

and APS strategy, respectively, as neighborhood-local search strategies. First, a specific and

80 Directed TS for Unconstrained Global Optimization

formal description of DTSNMS is given in the following Algorithm 5.4.1.

Algorithm 5.4.1. DTSNMS(f, x
(0)
0)

1. Initialization. Choose positive integers ℓmain, ℓ′main, ℓinner and ℓ′inner.

Choose an initial solution x
(0)
0 , and set TL and VRL to be empty.

2. Exploration-Diversification Search (Main Loop). Let j := 0 and repeat

this main loop until ℓ′main consecutive main iterations fail to obtain improve-

ment or the main loop iteration counter j exceeds ℓmain.

2.1. Exploration Search(NMS) (Inner Loop). Let k := 0 and repeat this

inner loop until ℓ′inner consecutive inner iterations fail to obtain improvement

or the inner loop iteration counter k exceeds ℓinner.

2.1.1. Search Directions. If the current iterate x
(j)
k lies in Semi-TRs, use

Procedure 5.2.1 to construct search directions {di}n
i=1 and to choose step sizes

{∆i}n
i=1 . Otherwise, construct search directions di := (−1)τi ei, i = 1, . . . , n,

where ei ∈ Rn is the ith unit vector in Rn and τi is a random integer number,

and choose suitable step sizes {∆i}n
i=1 .

2.1.2. Neighborhood Search. Generate n neighborhood trial points yi :=

x
(j)
k + ∆idi, i = 1, . . . , n. Whenever a better movement is found during this

process, stop generating points, set x
(j)
k+1 equal to this better movement, and

go to Step 2.1.4.

2.1.3. Local Search. Apply n iterations of the NM method starting from

the simplex S :=
{

x
(j)
k , y1, . . . , yn

}
. If an improvement point is obtained from

these NM iterations, set local trial point yn+1 equal to this improvement point,

and set q := 1. Otherwise, set q := 0. Set x
(j)
k+1 := arg mini=1,...,n+q {f (yi)} .

2.1.4. Parameter Update. Let x
(j)
k replace the element with the smallest

5.4 Directed Tabu Search (DTS) 81

membership value in TL and re-rank the TL elements using (5.2.1). Update

the VRT and set k := k + 1.

2.2. Diversification Search. Generate a trial point x
(j+1)
0 using Procedure

5.2.2. Update the TL and VRT, and set j := j + 1.

3. Intensification Search. Apply the Kelley’s modification [51] of the NM

method starting from some elite solutions in the TL.

The DTSAPS algorithm is the same as Algorithm 5.4.1 except Step 2.1, which should be

changed to follow the structure of APS strategy as shown in Algorithm 5.4.2. Only Step

2.1 of Algorithm 5.4.2 is stated since other steps are the same as the corresponding steps in

Algorithm 5.4.1.

Algorithm 5.4.2. DTSAPS(f, x
(0)
0)

· · ·

2.1. Exploration Search(APS) (Inner Loop). Let k := 0, initialize a vector

v to be a random vector in Rn, and repeat this inner loop until ℓ′inner consec-

utive inner iterations fail to obtain improvement or the inner loop iteration

counter k exceeds ℓinner.

2.1.1. Search Directions. If the current iterate x
(j)
k lies in Semi-TRs, use

Procedure 5.2.1 to construct search directions {di}n
i=1 and to choose step sizes

{∆i}n
i=1 . Otherwise, construct search directions di := sign(vi)ei, i = 1, . . . , n,

where ei ∈ Rn is the ith unit vector in Rn and vi is the ith component of v,

and choose suitable step sizes {∆i}n
i=1 .

2.1.2. Neighborhood Search. Generate n neighborhood trial points yi :=

x
(j)
k + ∆idi, i = 1, . . . , n. Whenever a better movement is found during this

process, stop generating points, set x
(j)
k+1 equal to this better movement, and

go to Step 2.1.4.

82 Directed TS for Unconstrained Global Optimization

2.1.3. Local Search. Compute the direction v at x
(j)
k using {yi}n

i=1 as in

(5.3.1). Choose two suitable step sizes α1 and α2 to generate local trial points

yn+i = x
(j)
k + αiv/ ‖v‖ , i = 1, 2. Set x

(j)
k+1 := arg mini=1,...,n+2 {f (yi)} .

2.1.4. Parameter Update. Let x
(j)
k replace the element with the smallest

membership value in TL and re-rank the TL elements using (5.2.1). Update

the VRT and set k := k + 1.

· · ·

5.5 Implementation and Experiments

In this section, we give more details about the implementation as well as the experimental

results of the DTS algorithms.

5.5.1 Setting Parameters

In this subsection, we discuss the suggested values of the parameters needed in the im-

plementation of the DTS algorithms and the sensitivity of these parameters. First, the

initial trial solution x
(0)
0 is chosen randomly from the predetermined range [L,U] of the ini-

tial points for each test function, where [L,U] := {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n} . The

other parameters can be classified into the following groups.

• TR and Semi-TR parameters: the radius rTR of each TR, and the outer radius

rSTR of the Semi-TR.

• TL parameters: the number L of elements in TL, the maximum and minimum

recency ranked values ηmax and ηmin, respectively, the number L of the function-value

ranked elements, and the maximum and minimum function-value ranked values µmax

and µmin, respectively.

• VRL parameters: the radii ρj, j = 1, . . . ,M, of the visited regions.

• Step sizes: the step sizes ∆i, i = 1, . . . , n, used in generating neighborhood trial

points in DTSNMS and DTSAPS, and α1 and α2 used to generate local trial points in

DTSAPS.

5.5 Implementation and Experiments 83

• Diversification trials: the parameter γ used in (5.2.2) and the maximum number

Itmax of iterations allowed in Procedure 5.2.2.

• Intensification trials: the number Nbest of best points that are used in the Intensi-

fication Search.

• Termination conditions: the loop termination numbers ℓmain, ℓ′main, ℓinner and ℓ′inner.

Proper values of these parameters have been studied through extensive numerical experi-

ments by using the functions Branin (RC), Goldstein&Price (GP), Rosenbrock (R2) and

Zakhrov (Z2) and (Z5). In the tuning parameters experiments, we have tried to find a

standard setting of the DTS parameters which is problem-independent as much as possible.

Moreover, some relations between the parameters have been discussed to guide the user to

set the DTS parameters whenever new implementations of the DTS algorithm are invoked.

Below, we highlight the conclusion we got from the tuning parameters experiments.

First, the values of the parameter γ that we have studied are 0.10, 0.15, 0.2, . . . , 0.4. Recall

that the main role of this parameter is to avoid generating a new diverse trial solution near

to the more frequently visited regions. Since large γ may lead to a big area surrounding

the more frequently visited regions left without exploration, we did not test a value of γ

higher than 0.4. The performance of the DTS algorithms is almost the same for all runs

using the above-mentioned values of γ. Moreover, at the end of running the DTS algorithms

on many test functions, the centers of the visited regions listed in the VRL are distributed

almost uniformly for all tested values of γ. However, the value γ = 0.25 produces slightly

more scattered distributions than the other values. Therefore, we set γ equal to 0.25. The

parameter Itmax is set equal to 100n.

Most of the DTS parameters listed above are distance parameters. These distance pa-

rameters are rTR, rSTR, ρ, ∆i, i = 1, . . . , n, α1 and α2. Note that the radii ρj, j = 1, . . . ,M,

of all visited regions are set equal to ρ. For more accurate setting of the values of these

distance parameters, we consider the following:

1. Since Semi-TRs are surrounding TRs, we let rSTR > rTR. For easily escaping from

TRs and Semi-TRs, it is desirable to let ∆i > rSTR. Moreover, to avoid producing too

many small visited regions, we let ρ > ∆i. This means that the desirable order of the

distance parameters is rTR < rSTR < ∆i < ρ. Since the step sizes α1 and α2, are used

to search the area along an approximate descent direction, it is appropriate to let one

of them be smaller than the usual step size ∆i and the other be greater than ∆i.

84 Directed TS for Unconstrained Global Optimization

Table 5.1: Distance parameters.

Parameter Tested values Suggested value
rTR 0.01δ, 0.02δ, 0.03δ, 0.04δ 0.01δ
∆i 0.08δ, 0.1δ, 0.12δ 0.1δ
ρ 0.15δ, 0.2δ, 0.25δ 0.15δ

2. To keep the distance parameters in the above order, we let their values relate to only one

parameter δ which is the diameter of the range [L,U] defined as δ := max1≤i≤n (ui − li) .

The performance of the DTS algorithms were tested using different values for these param-

eters through many test functions. The suggested values of these parameters are given in

Table 5.1, and rSTR is set equal to 2rTR. The performance of the DTS algorithms were al-

most insensitive with regard to all tested values of the distance parameters. In Table 5.1, we

also suggest the value for each parameter which produces the best performance. For more

efficient search, the step sizes may be randomly chosen close to some fixed mean values,

rather than being set at fixed values. Specifically, we set the step sizes as follows:

∆i = (0.1 + 0.025ωi)δ, i = 1, . . . , n,

α1 = (0.1 − 0.05θ1)δ,

α2 = (0.1 + 0.05θ2)δ,

where ωi, i = 1, . . . , n, are random numbers from the interval (−1, 1), and θ1 and θ2 are

random numbers from the interval (0, 1).

For the TL parameters, the values 5n, 6n, 7n and 8n and the values 2n, 3n and 4n

have been tested as possible choices for L and L, respectively. The performance of the DTS

algorithms using these values of L and L is almost the same. So, to avoid storing unnecessary

information, we set L and L equal to the least possible values, i.e., L = 5n and L = 2n. The

other TL parameters are set as ηmax = µmax = 1 and ηmin = µmin = 1/L.

The parameter Nbest is set equal to 1 because the numerical results show that the best

point found in the Exploration-Diversification Search is close to global minima for most of

the test function.

The last group of parameters are related to the termination conditions. Actually, choosing

sufficient large values for the loop termination numbers ℓmain, ℓ′main, ℓinner and ℓ′inner is highly

needed to avoid premature termination of the method. The numerical results have shown

5.5 Implementation and Experiments 85

that the lowest values of these parameters that can give an acceptable performance of the

DTS algorithms are ℓmain = ℓinner = 5n, and ℓ′main = ℓ′inner = 2n. However, higher values

for these numbers can increase the ability of finding global minima for some difficult test

problems.

5.5.2 Numerical Results

In this subsection, we discuss the performance of the DTS algorithms through two main

experiments. The first experiment is to compare the results obtained by the DTSNMS and

DTSAPS and then compare the best version of them with other continuous versions of TS. In

the second experiment, the performance of the best DTS algorithms is also compared with

other metaheuristics.

Numerical Results of DTS and other TS methods

To examine the performance of the DTS algorithms DTSNMS and DTSAPS , we tested them

on some well known functions [25, 39] listed as Set A in Table 5.2 , see Appendix A for

more details of these test functions. The characteristics of these test functions are diverse

enough to cover many kinds of difficulties that arise in unconstrained global optimization

problems. To complete the evaluation of the DTS algorithms, they should be compared

with other continuous versions of TS. However, it is not easy to show complete and fair

comparisons due to the lack of some information especially on the quality of solutions ob-

tained by those continuous TS methods. Therefore, we try to compare our algorithms with

other continuous TS methods in terms of the ability of obtaining global minima, the cost of

function evaluations and the quality of computed solutions. Three continuous TS methods

chosen to compare with the DTS algorithms are continuous reactive TS (CRTS) [10], En-

hanced Continuous Tabu Search (ECTS) [15], and TS-based algorithm called DOPE [26].

The ECTS and DOPE methods are the most recent continuous TS methods and the quality

of computed solutions are stated clearly in their original references.

For each function in Set A, we applied the DTS codes 100 times with different starting

points. For all these test functions, we used the same values of the DTS parameters as those

presented in Subsection 5.5.1. Moreover, we used the same condition as that used by ECTS

[15] to judge the success of a trial, which is given by

86 Directed TS for Unconstrained Global Optimization

Table 5.2: Test functions (Set A).

No. f Function name n No. f Function name n
1 RC Branin RCOS 2 9 S4,5 Shekel 4
2 ES Easom 2 10 S4,7 Shekel 4
3 GP Goldstein&Price 2 11 S10,7 Shekel 4
4 SH Shubert 2 12 Z5 Zakharov 5
5 Z2 Zakharov 2 13 R5 Rosenbrock 5
6 R2 Rosenbrock 2 14 H6,4 Hartmann 6
7 DJ De Joung 3 15 Z10 Zakharov 10
8 H3,4 Hartmann 3 16 R10 Rosenbrock 10

∣∣∣f ∗ − f̃
∣∣∣ < ǫ1 |f ∗| + ǫ2, (5.5.1)

where f̃ refers to the best function value obtained by the algorithm, f ∗ refers to the exact

global minimum, and ǫ1 and ǫ2 are set equal to 10−4 and 10−6, respectively. Note that the

conditions for successful trials are not stated for CRTS and DOPE in the original references

[10, 26].

The results of the two versions of DTS method, DTSNMS and DTSAPS, are reported in

Table 5.3. These results represent the average number of function evaluations (Av. f -evals.)

with minimum and maximum numbers in parentheses, the average errors (Av. Error) and the

success rates (Suc.) for each function. The average number of function evaluations and the

average error only relate to successful trials. The results shown in Table 5.3 reveal that the

performance of DTSAPS is consistently better than DTSNMS in terms of function evaluations

and the ability of obtaining global minima. Moreover, it seems that DTSNMS suffers from

the curse of dimensionality as is seen from the Av. f -evals. for higher dimensional problems.

Table 5.4 compares DTSAPS with the above-mentioned continuous TS methods in terms

of the average number of function evaluations. The results of CRTS, ECTS and DOPE

methods are taken from their original references [10, 15, 26]. The percentages in parentheses

represent the success rates of reaching global minima. The quality of the computed solutions

by those methods except the CRTS method is shown in Table 5.5, where the errors are

measured in terms of function values at the computed and exact solutions. The quality of

the produced solutions by the CRTS method is not stated clearly in [10], but it is only said

that the statistical error on the CRTS is about 3%. Before judging the comparison of these

5.5 Implementation and Experiments 87

Table 5.3: Results of DTS algorithms.

DTSNMS DTSAPS

f
RC
ES
GP
SH
Z2

R2

DJ
H3,4

S4,5

S4,7

S4,10

Z5

R5

H6,4

Z10

R10

Av. f-evals.(min/max) Av. Er. Suc.

274(252/296) 4e–7 100%
271(202/285) 5e–9 30%
293(276/324) 5e–9 88%
298(282/319) 9e–6 44%
273(247/291) 6e–9 100%
358(272/489) 6e–9 100%
650(600/694) 5e–9 100%
670(613/789) 2e–6 97%

1426(1342/1473) 7e–7 39%
1425(1372/1487) 4e–5 29%
1438(1340/1493) 1e–5 22%
2458(2301/2597) 6e–9 100%
2895(2523/3473) 7e–9 75%
3978(3618/4308) 2e–6 68%

16392(14235/17821) 2e–8 100%
19139(16844/22416) 2e–8 78%

Av. f evals.(min/max) Av. Er. Suc.

212(181/243) 4e–7 100%
223(156/244) 4e–9 82%
230(207/282) 5e–9 100%
274(260/307) 9e–6 92%
201(183/225) 5e–9 100%
254(207/321) 5e–9 100%
446(393/516) 4e–9 100%
438(389/493) 2e–6 100%
819(669/989) 3e–7 75%
812(675/973) 4e–5 65%
828(706/963) 1e–5 52%

1003(903/1093) 7e–9 100%
1684(1326/2093) 6e–9 85%
1787(1489/2036) 2e–6 83%
4032(3689/4809) 2e–8 100%
9037(6701/12879) 2e–8 85%

methods, some remarks are made in regard to the reported success rates of ECTS and the

termination condition of DOPE.

• The ECTS method uses condition (5.5.1) to test the success of a trial [15]. However,

the results marked by (⊛) in Tables 5.4 and 5.5 seem to contain some inconsistencies.

In fact, from condition (5.5.1), the average errors for functions R2, R5 and Z5 must be

less than 10−6 because f ∗ = 0 for all these functions. However, in Table 5.5, they are

reported to be greater than 10−6. For instance, the average error for function R5 in

Table 5.5 is 0.08, which means that there are some trials that did not satisfy condition

(5.5.1). Nevertheless, the rate of success is reported to be 100%. Moreover, the results

of ECTS for functions RC,ES,GP, H3,4 and H6,4 in Tables 5.4 and 5.5 also contain

similar inconsistencies.

• According to [26], DOPE is terminated when either a maximum number of function

evaluations is reached or the global minimum (if it is a priori known) is found. Since

the information on global minima is not available in practice, we did not use the latter

termination condition in our numerical experiments. This termination condition may

explain the extremely small number of function evaluations of DOPE for some test

functions.

88 Directed TS for Unconstrained Global Optimization

From these remarks, the comparisons of the DTS methods with the ECTS and DOPE

methods do not seem to yield a definitive fair answer. However, in terms of the quality

of computed solutions, the DTSAPS algorithm seems to outperform ECTS and DOPE as

shown in Table 5.5. Moreover, the DTSAPS algorithm seems to outperform ECTS in terms

of the number of function evaluations for functions in Set A. However, the drawback we have

noticed on the DTS algorithms is its deterioration in high dimensional problems (n > 30).

Actually, this can be expected since the search in the DTS algorithms is mainly controlled

by direct search methods and it has been shown, for instance, in [54] that the latter methods

deteriorate with the increase of the dimension, i.e., suffer from the curse of dimensionality.

To show the limit of deterioration of the DTS performance with the dimensionality, we report

some results for high dimensional problems. The results have been obtained by running the

Matlab code of DTSAPS, with the parameter setting given in Subsection 5.5.1, on Pentium

2.8-GHz machine. For Rosenbrock R50 function, the DTSAPS algorithm converged to a

point close to the global minimum with function value 4.46 × 10−7 using 510, 505 function

evaluations in 1085 CPU seconds. For Zakharov Z50 and Rosenbrock R100 functions, the

DTSAPS algorithm obtained points not so close to the global minimum at distances 1.404

and 4.1057 with function values 1.972 and 4.106 using 177, 125 and 3, 202, 879 function

evaluations in 1, 043 and 15, 270 CPU seconds, respectively. These results of Z50 and R100

are the best among 5 runs. For Zakharov Z100, the DTSAPS algorithm failed to obtain a

point near the global minimum by 5 runs using the same setting of parameters. As far as

the results in Table 5.4 common to all methods are concerned, CRTS may be considered the

best among the continuous TS methods in terms of the ability of obtaining global minima

and the number of function evaluations.

The performance of DTSAPS against other metaheuristics

The performance of DTSAPS is compared with other metaheuristics using the test functions

listed as Set B in Table 5.6 [59], see Appendix A for more details of these test functions. We

choose two other metaheuristics proposed for the continuous optimization problem; Genetic

algorithm for numerical optimization of constrained problems (Genocop III) [67], and Scatter

Search (SS) [59].

5.5 Implementation and Experiments 89

Table 5.4: Average numbers of function evaluations for continuous TS methods.

DTSAPS ECTS DOPE CRTS
f
RC
ES
GP
SH
Z2

R2

DJ
H3,4

S4,5

S4,7

S4,10

Z5

R5

H6,4

Z10

R10

212
223(82%)

230
274(92%)

201
254
446
438

819(75%)
812(65%)
828(52%)

1003
1684(85%)
1787(83%)

4032
9037(85%)

245⊛

1284⊛

231⊛

370
195
480⊛

338
548⊛

825(75%)
910(80%)
898(75%)

2254⊛

2142⊛

1520⊛

4630
15720(85%)

31
290
248
466
81
692
131
135
–
–
–

424
2512
421
8695
5133

CRTSAve CRTSMin

38 41
– –

248 171
– –
– –
– –
– –

513 609
812 664
960 871
921 693
– –
– –

750 1245
– –
– –

Table 5.5: Average errors for continuous TS methods.

f DTSAPS ECTS DOPE f DTSAPS ECTS DOPE
RC
ES
GP
SH
Z2

R2

DJ
H3,4

4e–7
4e–9
5e–9
9e–6
5e–9
5e–9
5e–9
2e–6

5e–2⊛

1e–2⊛

2e–3⊛

1e–3
2e–7
2e–2⊛

3e–8
9e–2⊛

5e–2
1e–2
2e–3
1e–3
2e–7
2e–2
3e–8
9e–2

S4,5

S4,7

S4,10

Z5

R5

H6,4

Z10

R10

3e–7
4e–5
1e–5
7e–9
6e–9
2e–6
2e–8
2e–8

1e–2
1e–2
1e–2
4e–6⊛

8e–2⊛

5e–2⊛

2e–7
2e–2

–
–
–

4e–6
8e–2
5e–2
2e–2
2e–7

90 Directed TS for Unconstrained Global Optimization

Table 5.6: Test functions (Set B).

No. f Function name n No. f Function name n
1 RC Branin RCOS 2 21 PS8,18,44,114 Power Sum 4
2 B2 Bohachevsky 2 22 H6,4 Hartmann 6
3 ES Easom 2 23 SC6 Schwefel 6
4 GP Goldstein&Price 2 24 T6 Trid 6
5 SH Shubert 2 25 T10 Trid 10
6 BL Beale 2 26 RT10 Rastrigin 10
7 BO Booth 2 27 G10 Griewank 10
8 MT Matyas 2 28 SS10 Sum Squares 10
9 HM Hump 2 29 R10 Rosenbrock 10
10 SC2 Schwefel 2 30 Z10 Zakharov 10
11 R2 Rosenbrock 2 31 RT20 Rastrigin 20
12 Z2 Zakharov 2 32 G20 Griewank 20
13 DJ De Joung 3 33 SS20 Sum Squares 20
14 H3,4 Hartmann 3 34 R20 Rosenbrock 20
15 CV Colville 4 35 Z20 Zakharov 20
16 S4,5 Shekel 4 36 PW24 Powell 24
17 S4,7 Shekel 4 37 DP25 Dixon&Price 25
18 S4,10 Shekel 4 38 L30 Levy 30
19 P4,0.5 Perm 4 39 SR30 Sphere 30
20 P 0

4,0.5 Perm 4 40 AK30 Ackley 30

5.5 Implementation and Experiments 91

Table 5.7: Average optimality gap values.

f -evals. 100 500 1000 5000 10000 20000 50000
Genocop III1 5.37E+25 2.39E+17 1.13E+14 636.37 399.52 320.84 313.34
Genocop III2 1335.45 611.30 379.03 335.81 328.66 324.72 321.20
Scatter Search 134.45 26.34 14.66 4.96 3.60 3.52 3.46
DTSAPS 5.04E+04 43.06 24.26 4.22 1.80 1.70 1.29

1 Average values for all test functions.
2 Average values for all test functions except function 23.

We define the optimality gap (GAP) [59] as the quantity on the left-hand side of (5.5.1).

Table 5.7 shows the average GAP for all 40 test functions in Set B. In Table 5.7, the figures

related to Genocop III and SS are taken from [59] and represent the average GAP for all test

functions in Set B at intermediate stages during the search. Since the DTSAPS algorithm

consists of two complementary parts (Exploration-Diversification Search and Intensification

Search), its results in Table 5.7 are the average GAP for all test functions in Set B obtained

by running the DTSAPS code 7 times for each test function with the termination condition

that the number of function evaluations exceeds 100, 500, 1000, 5000, 10000, 20000 and

50000, respectively. Since Genocop III has a bad performance on the test function No. 23

(SC6), the results excluding this function are also included.

According to the results in Table 5.7, the performance of DTSAPS is generally better

than Genocop III and SS when the number of function evaluations is greater than 1000.

However, in the early stage of computations, SS performs better than DTSAPS. This can

be expected since DTSAPS is a point-to-point search method while SS is a population-

based search method. So, DTSAPS may need more iterations, and therefore more function

evaluations, to explore the search space well especially for high dimensional functions (n ≥ 6).

Since the data related to Genocop III and SS in Fig. 5.5 are taken from [59], we also

made the successful trial test [59] for the DTSAPS results in our experiments. We say that

a method approximately finds an optimal solution if

GAP ≤
{

0.001, if f ∗ 6= 0,
0.001f ∗, otherewise.

The graphs in Fig. 5.5 show the number of test functions from Set B that were approxi-

mately solved by each method. Fig. 5.5 shows that DTSAPS could approximately find global

minima for 14 test functions within only 100 function evaluations. Actually, the dimensions

of these 14 test functions are less than or equal to 6. Fig. 5.5 also shows that DTSAPS

generally outperforms the other two methods, Genocop III and SS.

92 Directed TS for Unconstrained Global Optimization

100 500 1000 5000 10000 20000 50000
0

5

10

15

20

25

30

35

Number of function evaluations

N
um

be
r

of
 s

ol
ve

d
pr

ob
le

m
s

Genocop III
Scatter Search
DTS

APS

Figure 5.5: Number of solved problems.

5.6 Conclusion

In this chapter, we have presented a continuous TS method called Directed Tabu Search

(DTS) method. First, neighborhood-local search strategies are introduced to provide more

powerful search procedures to generate trial moves. A new pattern search procedure and

the NM method are used to construct these neighborhood-local search strategies. Moreover,

new memory elements called TR, Semi-TR and multi-ranked TL are applied to compose

anti-cycling rules and to escape from local minima. Finally, a diversification scheme based

on the memory element VRL is introduced to explore broad areas of the solution space. The

numerical results show the promise of the proposed method.

Chapter 6

Filter SA for Constrained Global

Optimization

6.1 Introduction

In Chapters 2 and 4, SA-based methods have been proposed to deal with unconstrained

global optimization problems. This chapter aims to extend the SA-based methods coverage

to constrained global optimization problems. Actually, implementing SA on the continuous

constrained optimization problem is still very limited in comparison with some other meta-

heuristics like the Evolutionary Algorithms (EAs). The SA approaches for constrained global

optimization problems have been proposed by Wah, Wang and Chen, see [17, 89, 90, 91].

Another SA approach has been proposed by Romeijn and Smith [82]. These approaches

are regarded as a pure SA. In this chapter we propose a hybrid SA approach which invokes

some intelligent concepts from other metaheuristics and local search methods. Specifically,

we propose a SA-based approach called Filter Simulated Annealing (FSA) method for the

constrained optimization problem

min
x

f (x) ,

s.t. gi (x) ≤ 0, i = 1, . . . , l,
hj (x) = 0, j = 1, . . . ,m,
x ∈ S,

(P)

94 Filter SA for Constrained Global Optimization

where f , gi and hj are real-valued functions defined on the search space S ⊆ Rn. Usually, the

search space S is defined as {x ∈ Rn : xi ∈ [li, ui] , i = 1, . . . , n} . The feasible region defined

by the constraints is denoted by F ⊆ S.

Most of the metaheuristics which have been proposed to solve problem (P) are Evolu-

tionary Algorithms (EAs). The optimization methods can be classified in two categories;

the point-to-point methods which SA belongs to, and the population-based methods which

EAs belong to. Metaheuristics from both categories have been successfully applied to the

continuous unconstrained optimization problem. However, invoking point-to-point methods

to deal with continuous constrained optimization problems is still very limited in comparison

with the population-based methods. The main reason for unpopularity of SA for constrained

global optimization problems, as well as most of the point-to-point methods, is its difficulty

in keeping diversity. Especially, when the feasible region consists of several disjointed sub-

regions, it is not so easy for a point-to-point method without a guidance of a diversification

scheme to explore such regions effectively. Moreover, the point-to-point methods can be

divided in two classes; single-start methods and multi-start methods. The latter methods

have shown efficient performance when applied to difficult optimization problems [62, 63, 84].

The standard SA belongs to the class of single-start methods. Therefore, there is a need

to modify the standard SA in order to obtain an efficient method that can deal with the

general case of problem (P).

In order to compose a powerful point-to-point-based method for solving problem (P), it

is highly needed to consider the following things:

• In order to achieve efficient exploration of the space of interest, the designed method

should consist of multi-start stages with a guidance of an effective diversification

scheme. Otherwise, in the case of having disjointed feasible sub-regions, the method

may be trapped in the first hit feasible sub-region.

• An efficient exploration process should also invoke a search procedure which has the

ability to explore both of feasible and infeasible regions, rather than exploring the

feasible region only. This is needed to reach the global solution specially in the following

cases:

- the global solution lies on the boundary of the feasible region,

- the global solution lies in a feasible sub-region which differs from the currently con-

sidered sub-region in the case of having several disjointed feasible sub-regions.

6.2 Preliminaries 95

• In most cases of constrained optimization problems like problem (P), optimal solutions

usually lie on the boundary of the feasible region. In order to explore the region near the

boundary between the feasible and infeasible regions effectively, the designed method

should invoke a solution generation procedure which is able to intensify the solution

generation process.

• An elite-based intensification scheme is needed in the final stage in order to refine the

best solution found so far. Especially, if the method is SA-based, a quicker intensifi-

cation scheme is highly needed to overcome the slowness of SA in its final stage.

We have considered all the above in designing the FSA method. So the FSA method is a

multi-start method with a diversification scheme. The FSA method uses the filter set concept

[24] in accepting new trial solutions, which gives it the ability to explore both of feasible

and infeasible regions. Moreover, the FSA method generates more trial solutions whenever

the region near the boundary is reached. Finally, two types of intensification schemes are

applied in order to refine the best solution visited so far. Thus, the FSA method is a hybrid

method which takes advantage of low computational cost of point-to-point methods and

efficient exploration of population-based methods. In other words, the FSA method is an

attempt to design a point-to-point method that behaves like a population-based method

without spending a big computational cost.

The numerical results shown later indicate that the proposed FSA method is very promis-

ing in the quality of obtained solutions as well as the computational costs especially for

dealing with constraints. Moreover, the numerical results also show that the FSA method

is competitive with the population-based methods in the quality of solution and it is much

cheaper than them in the computational costs. In the next section, we give some preliminar-

ies needed throughout this chapter. In Section 6.3, we highlight the main components of the

proposed FSA method. The study of the FSA parameters is given in Section 6.4. In Sections

6.5 and 6.6, we report numerical results for the FSA method. Finally, the conclusion of the

contribution of this chapter makes up Section 6.7.

6.2 Preliminaries

This section highlights the idea of reformulating problem (P) as a multiobjective optimiza-

tion problem and the concepts of filter set and filtered points. To achieve that, the concept

of Pareto dominance in multiobjective optimization should be defined first.

96 Filter SA for Constrained Global Optimization

6.2.1 Pareto Dominance

Pareto Dominance is the most common concept of optimality in the multiobjective opti-

mization field. Multiobjective optimization seeks to optimize a vector of objective functions

within a feasible decision variable space. For the multiobjective minimization problem with

the objective functions ϕ1 (x) , . . . , ϕq (x) , defined on the search space SM ⊆ Rn, the Pareto

Dominance is defined as follows:

Definition 6.2.1. An objective vector Φ(y) = (ϕ1 (y) , . . . , ϕq (y)) is said to dominate an-

other objective vector Φ (z) = (ϕ1 (z) , . . . , ϕq (z)), written Φ(y) ≺ Φ(z), if and only if

ϕi (y) ≤ ϕi (z) ,∀i = 1, . . . , q and there exists at least one j ∈ {1, . . . , q} such that ϕj (y) <

ϕj (z) .

We will write Φ(y) ¹ Φ(z) to indicate that either Φ(y) ≺ Φ(z) or Φ(y) = Φ(z). In the

rest of this chapter, we will simply write y ≺ z and y ¹ z instead of writing Φ(y) ≺ Φ(z)

and Φ(y) ¹ Φ(z), respectively.

6.2.2 Problem Reformulation

An effective approach to handle constraints is to use multiobjective optimization techniques,

see for example [18, 19]. Such approaches reformulate the constrained problem as a multiob-

jective problem involving the original objective function and constraint violation functions.

More specifically, by introducing the constraint violation functions

Gi (x) = (max [0, gi (x)])α , i = 1, . . . , l,

Gl+j (x) = |hj (x)|α , j = 1, . . . ,m, (6.2.1)

where α is normally chosen to be 1 or 2, problem (P) can be reformulated as the following

multiobjective optimization problem:

min
x∈S

[f (x) , G1 (x) , . . . , Gm+l (x)] . (PM)

Alternatively, we may consider another reformulation of problem (P) as the following bi-

objective optimization problem:

min
x∈S

[f (x) , G (x)] , (PB)

where G (x) =
∑

m+l
i=1 Gi (x). The method proposed in this chapter will deal with problem (P)

through the reformulated problem (PB). In particular, we will denote x ≺ y if x dominates

y with respect to the vector function Φ(x) = (f(x), G(x)).

6.3 The FSA method 97

6.2.3 Filter Set and Filtered Points

The filter set F is defined as a finite set of infeasible1 points in S such that x ≺ y does not

hold for any x and y in F. The point xF with the minimum function value f(x) found so far

in the feasible region F = {x ∈ S : G(x) = 0} is saved and treated separately as a single

filter point. This definition is taken from [5] which differs slightly from the original definition

in [24]. A point y is called a filtered point [5], if one of the following holds:

• y º x for some x ∈ F.

• G(y) ≥ Gmax, where Gmax > 0 is maximum value allowed on the constraint violation

function G (x).

• G(y) = 0, and f(y) ≥ fF , where fF = f(xF) is the minimum function value found so

far in the feasible region.

In other words, we have three kinds of filtered point sets:

F̄I = {y ∈ S : y º x for some x ∈ F} ,

F̄II = {y ∈ S : G(y) ≥ Gmax} ,

F̄III =
{
y ∈ S : G(y) = 0, f(y) ≥ fF

}
.

Therefore, the set of all filtered points is defined as F̄ = F̄I ∪ F̄II ∪ F̄III. Unfiltered points are

used to update F̄ by adding them and deleting the old ones which are dominated by the new

added points.

6.3 The FSA method

The FSA method starts with a diversification generation procedure to generate a set of

diverse solutions called DivSet. The initial solution is chosen from the DivSet. Then, the

DivSet stands by to provide the search with a diverse solution whenever further diversifica-

tion is needed. In the FSA method, we introduce a ranking procedure for comparing and

ordering solutions. This ranking procedure is based on the filter set as well as objective

function and constraint violation function values. The scenario in the FSA method can be

1Throughout this chapter, the feasibility is related only to problem (P) rather than PM or PB, that is,

we call a point x ∈ S feasible if G(x) = 0, and infeasible if G(x) > 0.

98 Filter SA for Constrained Global Optimization

described as follows. Let the current trial solution be Sol. Using the FSA ranking procedure,

Sol is initialized to be the best ranked one in DivSet. Then, trial solutions are generated in

a neighborhood of Sol using a trial solution generation procedure based on the approximate

descent direction (ADD) method proposed in Chapter 4. The trial solution generation pro-

cedure generates trial solutions in such a way that the objective function value is likely to

decrease if Sol is feasible, and the constraint violation function value is likely to decrease if

Sol is infeasible. Moreover, the trial solution generation procedure intensifies the solution

generation process if Sol is close to the boundary of the feasible region. We try to update Sol

with one of the generated trial solutions using the simulated annealing acceptance concept.

Specifically, if an unfiltered trial solution is obtained, we accept it with probability 1. Oth-

erwise, a trial solution is accepted with a certain probability controlled by the temperature

parameter. Whenever the number of consecutive iterations without accepting a new trial

solution exceeds a predetermined maximum number, a new diverse solution is chosen from

DivSet and the re-annealing process is applied, i.e., the temperature is re-initialized. While

the search proceeds, DivSet is updated by removing any of its elements if the search reaches

a region close to this element. We terminate this main stage of the FSA method when the

cooling schedule is completed with an empty DivSet. Finally, two intensification schemes are

invoked to refine the best solution found so far. The best solution is defined to be the best

feasible solution if the feasible region is reached. Otherwise, the best solution is defined to be

the infeasible solution with the least constraint violation function value. The temperature

parameter at the best solution found so far in the previous search stage is saved to be used

in the first intensification scheme which applies an annealing process with slower cooling

schedule and smaller step sizes. The second intensification scheme applies a greedy local

search method on a penalty function of problem (P) starting from the best solution found

so far. Figure 6.1 shows the outline of the FSA method. Below, we describe the details of

the FSA main steps sketched above and state the FSA algorithm formally at the end of this

section.

6.3.1 Diversification Generation Procedure

In the FSA method, we use the scatter search diversification generation Method [59, 60] to

generate a diverse solution set DivSet. In that method, the interval (ui−li) of each variable is

divided into 4 sub-intervals of equal size. For each sub-interval of each variable, a frequency

count is defined as the number of solutions which are perviously chosen in this sub-interval.

To generate a new solution to be added to DivSet, one has to

6.3 The FSA method 99

Stop

Start

Generate DivSet,

Choose Sol ∈ DivSet

Generate TrialSol,
Update Sol

Choose Sol ∈ DivSet,
Re-annealing

Reduce

Epoch Length
Condition

Diversification
Condition

Stopping

Conditions

No

No

Yes

Yes

Intensification

No

Yes

temperature

Figure 6.1: Outline of the FSA method.

100 Filter SA for Constrained Global Optimization

• choose one sub-interval for each variable randomly with a probability inversely pro-

portional to its frequency count, and

• choose a random value for each variable that lies in the corresponding selected sub-

interval.

While the search proceeds, the DivSet is updated by eliminating any of its elements lying

close to a visited solution. Specifically, when the current solution is x, the DivSet is updated

through the rule

DivSet = DivSet − {y : y ∈ DivSet,
n∑

i=1

(xi − yi)
2

H2
i

≤ 1}, (6.3.1)

where HDiv = (H1, . . . , Hn) is a predetermined constant vector with positive components.

When the diversification is needed, the solution with the largest distance from the current

solution is chosen from the DivSet to be a new diverse solution.

6.3.2 Ranking Procedure

To order the solutions in a set S = {x1, x2, . . . , xµ}, we introduce the following ranking

procedure. The solutions are ordered based on three rank functions as given below.

1. Dominance Rank (rd): The best feasible point xF is given the rank value rd = 1, and

other feasible points are given the rank value rd = 2. The points in F are given the

rank value rd = 1, and any other infeasible point x is given the rank value rd = ν + 1,

where ν is the number of points in F which dominate x.

2. f -value Rank (rf): According to their objective function values f (xi) , xi ∈ S, the

best point is given the rank value rf = 1, the second best point is given the rank value

rf = 2, and so on.

3. G-value Rank (rG): According to their constraint violation function values G (xi) , xi ∈
S, the best point is given the rank value rG = 1, the second best point is given the

rank value rG = 2, and so on.

In each ranking described above, ties are broken arbitrarily. Then, the total ranking

function r is defined by

r(xi) = rd(xi) +
λ

µ
rf (xi) +

(1 − λ)

µ
rG(xi), xi ∈ S, (6.3.2)

6.3 The FSA method 101

where λ ∈ [0, 1] . The solutions of S are ordered and relabeled such that

r (x1) ≤ r (x2) ≤ · · · ≤ r (xn+1) . (6.3.3)

The main role of the parameter λ is to control the priority in the ranking between the

objective function value and the feasibility. Actually, the ranking function r is basically

based on the dominance rank rd and, within the same dominance rank value, the parameter

λ gives a greater value to either of the ranking values rf and rG. Specifically, setting

λ ∈ [0, 0.5) gives some priority to the feasible points and setting λ ∈ (0.5, 1] gives some

priority to points with lower objective function values. In the FSA method, the value of

λ is chosen to be less than 1/µ in order to accept a better feasible solution when it is

found. Moreover, this ranking procedure allows a new infeasible solution which reduces the

constraint violation function to be highly accepted, compared with a new feasible solution

which is worse than the best feasible solution found so far. This gives the search process

more flexibility to explore the boundary region.

6.3.3 Trial Solution Generation Procedure

We use the Approximate Descent Direction (ADD) method proposed in Chapter 4 to gen-

erate trial solutions in the FSA method. Specifically, we use the ADD method to generate

a search direction d at a given solution x, and then use it to generate new trial solutions in

a neighborhood of x. To achieve that, we first generate p exploring points {yi}p
i=1 close to x

and generate the search direction d as follows:

1. If x is feasible, we apply the ADD method with {yi}p
i=1 and (4.2.1) to compute an

approximate descent direction v of f at x. Then, we set the search direction d :=

v/ ‖v‖ .

2. If x is infeasible, we apply the ADD method with {yi}p
i=1 and use (4.2.1) to compute

an approximate descent direction v of G at x. Then, we set the search direction d :=

v/ ‖v‖ .

Trial solutions can be generated along the search direction d with suitable step sizes.

Moreover, it is known that, in most cases, optimal solutions can be found on the boundary

of the feasible region. So, in order to encourage the search to explore the region near the

boundary effectively, more trial solutions should be generated whenever the current solution

is close to the boundary. To implement this idea in the FSA method, another trial solution

102 Filter SA for Constrained Global Optimization

Feasible Region Feasible Region

Infeasible Region Infeasible Region

x
y x

y

y′

d d

(a) (b)

Figure 6.2: An example of generating trial solutions.

will be generated between the current solution and the trial solution if the feasibility status

is changed between them. Figure 6.2 shows an example of the two types of generating trial

solutions in the neighborhood of a current solution x. In Figure 6.2(a), a trial solution y is

generated along the search direction d and since x and y are feasible, no more trial solution

will be generated. However, in Figure 6.2(b), x is feasible but y is infeasible, and so another

trial solution y′ is generated between x and y. Formally, we can define the trial solution set

as

TS(x) = {y : y = x + δi∆d, i ∈ I}, (6.3.4)

where ∆ is a step size and δi are random numbers. The set I is given by I = {1} if the

feasibility status at x + δ1∆d is the same as that at x, i.e., G(x + δ1∆d) = G(x) = 0, or

G(x + ∆d) > 0 and G(x) > 0, and I = {1, 2}, otherwise. The random numbers δi give

the search some stochastic behavior to achieve more efficient exploration. For example, we

may let δ1 be uniformly distributed in the interval (0, 1) and δ2 be normally distributed with

mean 1/2 and a suitable variance σ2.

6.3.4 Intensification

In the FSA method, we compose two stages of intensification process. The first one is SA-

based procedure, called SA Intensification, in which up-hill movements may be accepted in

order to avoid the case where the region around the best solution visited so far is prematurely

explored in the previous search stages. The other stage of intensification is a greedy process

that accepts only down-hill movements, which we call Local Search Intensification. This

greedy-type intensification is needed since it has been reported that the SA can reach a

region near global minima, however, it may wander around the optimal solution if high

6.3 The FSA method 103

accuracy is required [41, 92]. The outline of these intensification stages is given below.

• SA Intensification. In the previous stage of the search, we save the temperature

parameter value recorded at the best solution found so far. Then, in order to refine

that solution, a slower cooling schedule, i.e., a schedule with a higher cooling ratio, is

started from the saved value of the temperature parameter. Moreover, the step size

used in generating trial solutions is reduced to refine the search steps for more accurate

exploration.

• Local Search Intensification. A direct search method is applied, starting from the

best solution found so far, to minimize the penalty function

p(x) = f(x) + ρG(x), (6.3.5)

where ρ is a penalty parameter. The Kelley’s modification [51, 52] of the Nelder-

Mead method [72] is used to minimize the function p(x) in N consecutive times using

gradually increasing penalty parameters ρ1, ρ2, . . . , ρN .

6.3.5 FSA Algorithm

The formal description of the FSA method is given below.

Algorithm FSA

1. Initialization. Construct DivSet using the diversification generation proce-

dure. Set the best ranked point in DivSet to be the initial point x0. Choose

the cooling schedule parameters; initial temperature Tmax, final temperature

Tmin and cooling ratio γ ∈ (0, 1), and the epoch length M and set T := Tmax.

Set F0 to be empty, set xbest = x0, choose a step size ∆ > 0, choose a positive

integer Kmax, and set k := 0.

2. Main Loop.

2.1. Compute a trial solution set TS(xk) as in (6.3.4) with the step size ∆.

Set yk equal to the best ranked point in TS(xk).

2.2. The trial point yk is accepted with the probability

p =

{
1, if yk /∈ F̄k,
min{1, exp (−∆fG/T)}, otherwise,

(6.3.6)

where ∆fG = max {f (yk) − f (xk) , G (yk) − G (xk)} .

104 Filter SA for Constrained Global Optimization

2.3. If yk is accepted, then set xk+1 := yk; otherwise, set xk+1 := xk. Update

Fk, xbest and DivSet, and set k := k + 1.

2.4. Diversification. If the number of consecutive iterations without accepting

a new solution exceeds Kmax, and DivSet 6= φ, then choose xk ∈ DivSet, set

T := Tmax, set Fk to be empty, and go to Step 2.1. Otherwise, go to Step 2.5.

2.5. If the epoch length M is attained, then go to Step 2.6. Otherwise, go to

Step 2.1.

2.6. If T > Tmin, then set T := γT and go to Step 2.1. Otherwise, go to Step

3.

3. Intensification.

3.1. SA Intensification. Set xk equal to xbest, set T equal to the saved

temperature at that point, and set a final temperature T ′
min, an epoch length

M ′ and a cooling ratio γ′ > γ.

3.1.1 Compute a trial solution set TS(xk) as in (6.3.4) with the step size ∆.

Set yk equal to the best ranked point in TS(xk).

3.1.2 Accept yk with the probability p given by (6.3.6). Set xk+1 := yk if yk is

accepted; otherwise, set xk+1 := xk. Update Fk and xbest, and set k := k + 1.

3.1.3 If the epoch length M ′ is attained, then go to Step 3.1.4. Otherwise,

go to Step 3.1.1.

3.1.4 If T > T ′
min, then set T := γ′T and go to Step 3.1.1. Otherwise, go to

Step 3.2.

3.2. Local Search Intensification. For ρ = ρ1, ρ2, . . . , ρN :

3.2.1 Apply a local search method to the function f(x)+ρG(x) starting from

xbest.

3.2.2 Update xbest and go to Step 3.2.1.

6.4 Setting FSA Parameters

In this section, setting the FSA parameters is discussed to complete the implementation

of the FSA algorithm stated in the previous section. These parameters can be classified as

shown Table 6.1, which contains all FSA parameters and their definitions. Some preliminary

numerical experiments have been done in order to find proper values of these parameters.

Moreover, these experiments of tuning parameters aim to obtain a standard setting of pa-

rameters which is problem-independent as much as possible. The values of some parameters

6.4 Setting FSA Parameters 105

Table 6.1: The FSA parameters

Parameter Group Parameter Definition
Constraint Violation α Power factor used in (6.2.1)
Function ǫ Small positive number used for

reformulating equality constraints
Diversification |DivSet| Size of DivSet

HDiv Distance vector used to update DivSet
Kmax Maximum number of iterations allowed

without acceptance
Cooling Schedule Tmax, Tmin Initial and final temperatures

M Epoch length
γ Cooling ratio

Trial Solutions p Number of exploring points used in ADD
r Neighborhood radius used in ADD
∆ Step size used in (6.3.4)
σ2 Variance of the normal distribution of δ2

λ Rank ordering parameter
Gmax Maximum value allowed on G (x)

Intensification T ′
min Final temperature in SA Intensification

M ′ Epoch length
γ′ Cooling ratio in SA Intensification
ρ1, ρ2, . . . , ρN Penalty parameters

are assigned to their standard setting reported in the literature. Below, we state the sug-

gested values of the FSA parameters as well as the conclusion of what we got from the tuning

parameters experiments.

6.4.1 Constraint Violation Function Parameters

The power factor α used in (6.2.1) is set equal to 2, since using this value showed notably

better performance of the FSA method than that of using the value 1. Treating the equality

constraints as in (6.2.1) does not seem efficient in the implementation. It was observed that

reformulating the equality constraint h(x) = 0 as the inequality constraint |h(x)| − ǫ ≤
0, where ǫ is a small positive number, yielded a better performance of the FSA method.

Moreover, using a large value of ǫ in the first stage of search and reducing its value in the

intensification stage gave better results. Therefore, we set ǫ equal to 10−3 in reformulating

106 Filter SA for Constrained Global Optimization

all equality constraints in all FSA search stages except in the local search intensification

stage in which ǫ is set equal to 10−6.

6.4.2 Diversification Parameters

The size of DivSet depends on many factors such as the wideness of the search space, the

number of disjoint feasible sub-regions, and the multimodality of the objective function. We

observed that setting the size of DivSet equal to 50 almost fits all the considered problems.

The distance vector HDiv = (H1, . . . , Hn) used to update the DivSet is set so as to fit

the size of the search space. Specifically, we set Hi = ui−li
|DivSet|/n

, i = 1, . . . , n, where the

denominator represents the average line density of distributing the solutions of DivSet along

each coordinate direction, so that the value of Hi represents the average distance along the

coordinate direction i between two neighboring diverse solutions. The maximum number

Kmax of iterations allowed without accepting new trial solutions is set equal to 10.

6.4.3 Cooling Schedule Parameters

The initial temperature Tmax is set large enough to make the initial probability of accept-

ing transition close to 1. Beside the initial point x0, another point x̃0 is generated in a

neighborhood of x0 to calculate Tmax as

Tmax := − 1

ln(0.9)
|f(x̃0) − f(x0)| .

At the beginning of each re-annealing process, a new Tmax is computed in a similar manner.

The cooling ratio γ is normally chosen to be between 0.9 and 0.99 [57]. In our experiments,

we set γ equal to 0.9 and a higher value is used in the intensification stage as we will state

later. A common choice of the epoch length M is to let it depend on the size of the problem

[53, 58]. In our experiments, we set M equal to 2n. The cooling schedule is terminated

when the temperature reaches a fixed minimum value Tmin. We observed that setting Tmin

equal to min (10−5, 10−5Tmax) could give a complete cooling schedule in the sense that the

acceptance probability at the end is almost zero.

6.4.4 Trial Solutions Parameters

The parameters used in computing the search directions vf and vG are the number p of

exploring points, and the radius r of the neighborhood in which the exploring points are

6.5 Numerical Results 107

generated. We set p = 2 and r = 10−3 as suggested in Chapter 4. The ranking parameter

λ is set equal to 0.5/µ, where µ is the number of solutions to be ranked or compared.

This setting allows the best feasible solution to have the highest rank, whenever it exists,

among the compared solutions. Setting a proper value of step size ∆ is very effective in

the performance of the FSA algorithm, because setting too big a value for ∆ may yield a

premature termination of the algorithm and setting too small a value for ∆ will not yield

an efficient exploration process for the whole search space. We tested many values of ∆

and found that the value ∆ = min (0.05
∑n

i=1(ui − li)/n, 10) gave the best performance. For

variance σ2 of the normal distribution of δ2, the values σ = 1/2, 1/3, 1/4 have been tested.

We observed that setting σ = 1/3 gave a slightly better performance than setting the other

values. The filter set contains only one parameter; the maximum value Gmax allowed on the

constraint violation function G (x). In the original reference of the filter set concept [24], the

value of Gmax is set equal to max(1.25G(x0), 100), where x0 is the initial solution. However,

in the FSA algorithm, we use a higher value, since our goal is to explore the whole search

space effectively and reaching a global minimum, which differs from the goal of [24], i.e.,

finding a local minimum. So we set Gmax equal to 10 max(1.25GDiv
max, 100), where GDiv

max is

the maximum value of the constraint violation function G(x) computed at each point in the

DivSet.

6.4.5 Intensification Parameters

For the SA Intensification Parameters, final temperature T ′
min, epoch length M ′ and cooling

ratio γ′ are set equal to 10−5Tbest, 2n and 0.99, respectively, where Tbest is the temperature

saved at the best solution found so far. The number N of times the local search method is

applied in the local search intensification stage is set equal to 4. The penalty parameters

used in these local searches are ρ1 = 10β+2, ρ1 = 10β+4, ρ1 = 10β+6 and ρ1 = 10β+10, where

β is the number that appears in the floating point form α1.α2α3 · · · × 10β of the best point

found so far.

6.5 Numerical Results

In this section, we report the performance of the FSA algorithm on 13 well-known test

problems G1–G13 [45, 55, 69], which are shown in Appendix B. The characteristics of those

test problems are diverse enough to cover many kinds of difficulties that constrained global

108 Filter SA for Constrained Global Optimization

optimization problems face. More experimental results on three other application problems

will be shown in the next section.

The FSA code was applied to solve each considered problem 30 times with different

starting solutions. For all test problems, the values of the FSA parameters remained constant

at those values which have been presented in the previous section. Table 6.2 summarizes the

FSA results obtained for each test problem as well as the best known objective function value

for each problem. Problems G2, G3 and G8 are maximization problems originally so that

they were solved by converting them to minimization problems. In Table 6.2, the best and

the worst objective function values obtained from 30 runs are reported for each test problem.

In order to show more details concerning the quality of the obtained solutions, the average

and the standard deviation of the obtained objective function values are also reported in

Table 6.2. Moreover, the average numbers Av. f -evals. and Av. c-evals. of objective and

constraint functions evaluations, respectively, are shown in the last two columns of Table

6.2. It is noteworthy that the FSA method is very economical in computing the constraint

function values as shown in Table 6.2.

The results obtained by the FSA method are quite satisfactory, except for problem G2

which has the highest dimension among all test problems G1–G13. On the other hand, the

results for problem G12 are very promising since the feasible region of this problem consists

of 93 disjointed spheres with radus 0.25. The FSA method could successfully find global

minima in all runs with low computational costs as shown in Table 6.2. This indicates the

success of the multi-start diversification scheme invoked in the FSA method. For problem

G11, the FSA method reached a point with objective function value 0.7499990 for all 30 runs.

However, by decreasing the parameter ǫ, which is used to convert the equality constraint to

the inequality one, from 10−6 to 10−10 in the local search intensification, the FSA method

easily reached the exact global minimum with objective function value 0.75 in all runs.

To complete examining the FSA performance, its results are compared with those of

other EA-based methods proposed for dealing with problem (P). The EA-based methods

that we used in the comparison are

1. Homomorphous Mappings (HM) method [55],

2. Stochastic Ranking (SR) method [83],

3. Adaptive Segregational Constraint Handling EA (ASCHEA) method [36],

4. Simple Multimembered Evolution Strategy (SMES) method [66].

6.5 Numerical Results 109

Table 6.2: FSA results for problems G1–G13

Pr. Type Best Known Best Av. Worst S.D. Av. f -evals. Av. c-evals.

G1 min –15 –14.999105 –14.993316 –14.979977 0.004813 205,748 87,701

G2 max 0.803619 0.7549125 0.3717081 0.2713110 0.098023 227,832 101,903

G3∗ max 1 1.0000015 0.9991874 0.9915186 0.001653 314,938 118,404

G4 min –30665.539 –30665.5380 –30665.4665 –30664.6880 0.173218 86,154 37,000

G5∗ min 5126.4981 5126.4981 5126.4981 5126.4981 0.000000 47,661 17,757

G6 min –6961.81388 –6961.81388 –6961.81388 –6961.81388 0.000000 44,538 15,817

G7 min 24.3062091 24.310571 24.3795271 24.644397 0.071635 404.501 171,299

G8 max 0.095825 0.095825 0.095825 0.095825 0.000000 56,476 23,219

G9 min 680.6300573 680.63008 680.63642 680.69832 0.014517 324,569 147,035

G10 min 7049.3307 7059.86350 7509.32104 9398.64920 542.3421 243,520 93,667

G11∗ min 0.75 0.7499990 0.7499990 0.7499990 0.000000 23,722 8,485

G12 min –1 –1.0000000 –1.0000000 –1.0000000 0.000000 59,355 25,818

G13∗ min 0.0539498 0.0539498 0.2977204 0.4388511 0.188652 120,268 42,268

∗ Problems contain equality constraints.

The challenge that the FSA method faces is to what extent a point-to-point method behaves

like a population-based method or even better. To examine this issue, two measurements

are considered; solution qualities and computational costs. First, we discuss the solution

qualities and, later at the end of this section, we will discuss computational costs. The results

of the compared methods, which are taken from their original references [36, 55, 66, 83], as

well as those of the FSA method are reported in Table 6.3 to show the solution qualities

obtained by them. It is not easy to draw a definite conclusion from comparisons due to

different accuracies used in the respective results. However, we state below some comments

on the results reported in Table 6.3. All the results in Table 6.3 are obtained from 30 runs of

each method except those of HM method, which are obtained from 20 runs. The HM method

could obtain the optimal solution in all runs for only problem G11. For the other methods

SR, ASCHEA, and SMES, they could obtain the optimal solutions in all runs for problems

{G1,G3,G4,G8,G11,G12}, {G4,G6,G8,G11} and {G1,G4,G8,G12}, respectively. The FSA

method could obtain the optimal solutions in all runs for problems {G5,G6,G8,G11,G12}. It

is noteworthy that the FSA method could obtain the optimal solution in all runs for problem

G5, whereas the other methods failed to obtain it even in a single run. Moreover, the FSA

method could obtain the optimal solution of problem G13 in 7 out of 30 runs, while the

other methods failed to obtain it.

The computational costs of the considered EA-based methods are extremely expensive

compared with those of the FSA method. Since there is no automatic termination criteria

110 Filter SA for Constrained Global Optimization

for the considered EA-based methods, thy were terminated when the number of genera-

tions exceeds a predetermined maximum number. Therefore, the computational costs of

these methods are problem-independent, i.e., the number of objective and constraint func-

tions evaluation remains constant for each test problem. Specifically, computational costs

for HM, SR, ASCHEA and SMES used in each test problem, which are taken from their

original references [36, 55, 66, 83], are 1400000, 350000, 1500000 and 250000 fitness function

evaluations, respectively, and each fitness function evaluation requires one evaluation of the

objective function and one evaluation of each constraint function. The main reason for these

high computational costs is that EAs are not equipped with automatic termination crite-

ria and this is one main drawback of EAs. For some of the test problems, the considered

EA-based methods could obtain an optimal solution in an early stage of the search, but

they were not learned enough to judge whether they could terminate. On the other hand,

the EA-based methods have less parameters than SA-based methods. However, in the FSA

method as well as SA-based methods, some preliminary experiments on tuning parameters

will let them learn applicable termination criteria.

6.6 More Numerical Experiments

In this section, we discuss the results of the FSA method on some application problems.

Three problems from the engineering optimization area are considered.

6.6.1 Welded Beam Design Problem

The welded beam design problem [19, 22] yields an optimization problem which has four

design variables x = (x1, x2, x3, x4) and takes the following form:

min
x

f(x) = 1.10471x2
1x2 + 0.04811x2x2(14 + x2),

s.t. g1(x) = τ(x) − 13000 ≤ 0,
g2(x) = σ(x) − 30000 ≤ 0,
g3(x) = x1 − x2 ≤ 0,
g4(x) = 6000 − Pc(x) ≤ 0,
g5(x) = δ(x) − 0.25 ≤ 0,
0.125 ≤ x1 ≤ 10, 0.1 ≤ x2, x2, x2 ≤ 10,

6.6 More Numerical Experiments 111

Table 6.3: Results of FSA and other EA-based methods for problems G1–G13

Pr. Type Best Known HM SR ASCHEA SMES FSA

Best –14.7864 –15 –15 –15 –14.999105

G1 min –15 Av. –14.7082 –15 –14.84 –15 –14.993316

Worst –14.6154 –15 N.A. –15 –14.979977

Best 0.79953 0.803515 0.785 0.803601 0.7549125

G2 max 0.803619 Av. 0.79671 0.781975 0.59 0.785238 0.3717081

Worst 0.79119 0.726288 N.A. 0.751322 0.2713110

Best 0.9997 1.000 1 1.001038 1.0000015

G3∗ max 1 Av. 0.9989 1.000 0.99989 1.000989 0.9991874

Worst 0.9978 1.000 N.A. 1.000579 0.9915186

Best –30664.5 –30665.539 –30665.5 –30665.539062 –30665.5380

G4 min –30665.539 Av. –30655.3 –30665.539 –30665.5 –30665.539062 –30665.4665

Worst –30645.9 –30665.539 N.A. –30665.539062 –30664.6880

Best – 5126.497 5126.5 5126.599609 5126.4981

G5∗ min 5126.4981 Av. – 5128.881 5141.65 5174.492301 5126.4981

Worst – 5142.472 N.A. 5304.166992 5126.4981

Best –6952.1 –6961.814 –6961.81 –6961.813965 –6961.81388

G6 min –6961.81388 Av. –6342.6 –6875.940 –6961.81 –6961.283984 –6961.81388

Worst –5473.9 –6350.262 N.A. –6961.481934 –6961.81388

Best 24.620 24.307 24.3323 24.326715 24.310571

G7 min 24.3062091 Av. 24.826 24.374 24.6636 24.474926 24.3795271

Worst 25.069 24.642 N.A. 24.842829 24.644397

Best 0.0958250 0.095825 0.09582 0.095826 0.095825

G8 max 0.095825 Av. 0.0891568 0.095825 0.09582 0.095826 0.095825

Worst 0.0291438 0.095825 N.A. 0.095826 0.095825

Best 680.91 680.630 680.630 680.631592 680.63008

G9 min 680.6300573 Av. 681.16 680.656 680.641 680.643410 680.63642

Worst 683.18 680.763 N.A. 680.719299 680.69832

Best 7147.9 7054.316 7061.13 7051.902832 7059.86350

G10 min 7049.3307 Av. 8163.6 7559.192 7497.434 7253.047005 7509.32104

Worst 9659.3 8835.655 N.A. 7638.366211 9398.64920

Best 0.75 0.750 0.75 0.749090 0.7499990

G11∗ min 0.75 Av. 0.75 0.750 0.75 0.749358 0.7499990

Worst 0.75 0.750 N.A. 0.749830 0.7499990

Best –0.999999857 –1.000000 N.A. –1.000000 –1.000000

G12 min –1 Av. –0.999134613 –1.000000 N.A. –1.000000 –1.000000

Worst –0.991950498 –1.000000 N.A. –1.000000 –1.000000

Best N.A. 0.053957 N.A. 0.053986 0.0539498

G13∗ min 0.0539498 Av. N.A. 0.057006 N.A. 0.166385 0.2977204

Worst N.A. 0.216915 N.A. 0.468294 0.4388511

∗ Problems contain equality constraints.

112 Filter SA for Constrained Global Optimization

Table 6.4: Results for the welded beam design problem

Method Best Av. Worst S.D. Av. f -evals. Av. c-evals.

GA [19] 1.728226 1.792654 1.993408 0.074713 80,000 80,000

FSA 1.7250022 1.7564428 1.8843960 0.0424175 58,238 24,971

where

τ(x) =

√
(τ1(x))2 + (τ2(x))2 + x2τ1(x)τ2(x)√

0.25[x2
2+(x1+x2)2]

,

τ1(x) = 6000√
2x1x2

, τ2(x) =
6000(14+0.5x2)

√
0.25[x2

2+(x1+x2)2]

2[0.707x1x2(x2
2/12+0.25(x1+x2)2)]

,

σ(x) = 504000
x2
2x2

, Pc(x) = 64746.022(1 − 0.0282346x2)x2x
3
2, δ(x) = 2.1952

x3
2x2

.

This problem has been well studied, see [19, 22] and references therein. However, the

FSA method could obtain a new solution for it which is better than the one known in the

literature. Specifically, the FSA method obtained the solution

x∗ = (0.20564426101885, 3.47257874213172, 9.03662391018928, 0.20572963979791)

with objective function value 1.7250022, while the known solution has the objective function

value 1.728226 as reported in [19]. Moreover, the performance of the FSA method is com-

pared against the GA-based method [19] which found the previously known solution. The

best, the average, the worst and the standard deviation of objective function values obtained

by 30 runs of both methods are reported in Table 6.4. Moreover, the average numbers Av.

f -evals. and Av. c-evals. of objective and constraint functions evaluations, respectively, are

also shown in Table 6.4. The results related to the GA-based method are taken from the

original reference [19]. The figures shown in Table 6.4 indicate the superior performance of

the FSA method.

6.6 More Numerical Experiments 113

Table 6.5: Results for the pressure vessel design problem

Method Best Av. Worst S.D. Av. f -evals. Av. c-evals.

GA [19] 6059.946341 6177.253268 6469.322010 130.929702 80,000 80,000

FSA 5868.764836 6164.585867 6804.328100 257.473670 108,883 49,253

6.6.2 Pressure Vessel Design Problem

The optimization problem derived from the pressure vessel design problem [19] has four

design variables x = (x1, x2, x3, x4). This problem can be stated as follows:

min
x

f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3,

s.t. g1(x) = −x1 + 0.0193x3 ≤ 0,
g2(x) = −x2 + 0.00954x3 ≤ 0,
g3(x) = −πx2

3x4 − 4
3
πx3

3 + 1296000 ≤ 0,
g4(x) = x4 − 240 ≤ 0.

The FSA code was run 30 times to solve this problem and the obtained results are

summarized in Table 6.5. The results contain the best, the average, the worst and the

standard deviation of objective function values, and the average numbers of objective and

constraint functions evaluations. The corresponding results of the GA-based method in

Table 6.5 are taken from the original reference [19]. The FSA method could obtain a better

solution for this problem at

x∗ = (0.768325709391, 0.379783796302, 39.809622248187, 207.225559518596)

with the objective function values 5868.764836.

6.6.3 Tension-Compression String Problem

The problem of minimizing the weight of a tension-compression string [19] can be expressed

as the following optimization problem with three design variables x = (x1, x2, x3):

min
x

f(x) = x2
1x2(x3 + 2),

s.t. g1(x) = 1 − x3
2x3

71,785x4
1

≤ 0,

g2(x) =
4x2

2−x1x2

12,566x3
1(x2−x1)

+ 1
5,108x2

1
− 1 ≤ 0,

g3(x) = 1 − 140.45x1

x3x2
2

≤ 0,

g4(x) = x1+x2

1.5
− 1 ≤ 0.

114 Filter SA for Constrained Global Optimization

Table 6.6: Results for the tension-compression string problem

Method Best Av. Worst S.D. Av. f -evals. Av. c-evals.

GA [19] 0.012681 0.012742 0.012973 0.000059 80,000 80,000

FSA 0.012665285 0.012665299 0.012665338 0.000000022 49,531 18,802

The FSA code was called 30 times with different starting solutions in order to examine

the performance of the FSA method. The results obtained in all runs, as well as those of the

GA-based method [19], are reported in Table 6.6. The results of the GA-based method are

borrowed from the original reference [19]. The FSA method could obtain the better solution

x∗ = (0.05174250340926, 0.35800478345599, 11.21390736278739)

with the objective function value 0.012665285. The figures in Table 6.6 show that the results

obtained by the FSA method are stable for this problem. Moreover, the worst solution

obtained by the FSA method is still better than the best one obtained by the GA-based

method [19]. Finally, the computational costs of the FSA method are much cheaper than

those of the GA-based method [19].

6.7 Conclusion

The hybrid multi-start point-to-point FSA method is proposed. The structure of the FSA

method stands on simulated annealing, filter set concept, a new solution generation pro-

cedure, and diversification and intensification schemes. These strategies are hybridized in

the FSA method in such a way that a point-to-point method behaves like a population-

based method without spending much computational cost. The computational results for 13

well-known test problems as well as three application problems are shown to demonstrate

the efficiency of the FSA method. A superior behavior of the proposed method against

population-based methods in saving the computational costs especially for the constraint

function evaluations has been observed.

Chapter 7

Summary and Conclusions

In this study, the continuous global optimization problems in their two forms; unconstrained
and constrained problems, have been considered. Derivative-free hybrid methods that com-
bine metaheuristics and direct search methods have been proposed to deal with these prob-
lems.

For the unconstrained global optimization problems, four main global search methods
have been proposed in Chapters 2–5 based on simulated annealing, genetic algorithm and
tabu search. Moreover, direct search methods based on Nelder-Mead, multidirectional search
and pattern search methods as well as new proposed methods have been invoked in the four
main global search methods in order to overcome the drawbacks of metaheuristics. The
numerical results shown in Chapters 2–5 lead to the following remarks:

• Creating direct-search-based logical movements while applying metaheuristics in the
proposed methods give better performance of metaheuristics.

• Accelerating the final stage of metaheuristics by applying a complete local search
method extricates metaheuristics from wandering around the optimal solution. In other
words, applying a complete local search method in the final stage of metaheuristics
helps them to obtain good accuracy quickly.

• The proposed methods are promising in practice and competitive with the other com-
pared methods in terms of computational costs and the success of obtaining the global
solutions.

• The proposed methods show a superior performance in terms of the solution qualities
against the compared methods.

In Chapter 6, SA-based method has been proposed as a hybrid method that combines
specific strategies to fit the constrained global optimization problems. Moreover, its compu-
tational results shown in Chapter 6 lead to the following remarks:

116 Summary and Conclusions

• A guidance of an effective diversification scheme helps to achieve an efficient exploration
of the search domain especially in the case of having disjointed feasible sub-regions.

• An elite-based intensification scheme applied in the final stage can overcome the slow-
ness of SA in its final stage and helps in achieving higher quality solutions.

• The proposed method, which is a point-to-point method, is promising in practice
and competitive with some other population-based methods in terms of the solution
qualities. Moreover, the latter methods are more expensive than the proposed method.

Appendix A

Unconstrained Test Problems

(AKn) Ackley Functions

Definition: AKn(x) = 20 + e − 20e−
1
5

√
1
n

∑n
i=1 x2

i − e−
1
n

∑n
i=1 cos(2πxi).

Search space: −15 ≤ xi ≤ 30, i = 1, 2, . . . , n.

Global minimum: x∗ = (0, . . . , 0); AKn(x∗) = 0.

(Bm) Bohachevsky Functions

Definitions: B1(x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7.

B2(x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3.

B3(x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1 + 4πx2) + 0.3.

Search space: −50 ≤ xi ≤ 100, i = 1, 2.

Global minimum: x∗ = (0, 0); Bm(x∗) = 0, m = 1, 2, 3.

(BL) Beale Function

Definition: BL(x) = (1.5 − x1 + x1x2)
2 + (2.25 − x1 + x1x

2
2)

2
+ (2.625 − x1 + x1x

3
2)

2
.

Search space: −4.5 ≤ xi ≤ 4.5, i = 1, 2.

Global minimum: x∗ = (3, 0.5); BL(x∗) = 0.

(BO) Booth Function

Definition: BO(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 ,

Search space: −10 ≤ xi ≤ 10, i = 1, 2

Global minimum: x∗ = (1, 3); BO(x∗) = 0.

118 Unconstrained Test Problems

(CV) Colville Function

Definition: CV(x) = 100(x2
1 − x2)

2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2
3 − x4)

2 +

10.1 ((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1).

Search space: −10 ≤ xi ≤ 10, i = 1, . . . , 4.

Global minimum: x∗ = (1, 1, 1, 1); CV(x∗) = 0.

(DJ) De Joung Function

Definition: DJ(x) = x2
1 + x2

2 + x2
3.

Search space: −2.56 ≤ xi ≤ 5.12, i = 1, 2, 3.

Global minimum: x∗ = (0, 0, 0); DJ(x∗) = 0.

(DPn) Dixon&Price Functions

Definition: DPn(x) = (x1 − 1)2 +
∑n

i=2 i (2x2
i − xi−1)

2
.

Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n.

Global minimum: x∗
i = 2

−
(

2i
−2

2i

)

, i = 1, . . . , n; DPn(x∗) = 0.

(DX) Dixon Functions

Definition: DX(x) = (1 − x1)
2 + (1 − x10)

2 +
∑9

j=1(x
2
i − xi+1)

2.

Search space: −10 ≤ xi ≤ 10, i = 1, . . . , 10.

Global minimum: x∗ = (1, 1, 1, 1); DX(x∗) = 0.

(ES) Easom Function

Definition: ES(x) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2).

Search space: −100 ≤ xi ≤ 100, i = 1, 2.

Global minimum: x∗ = (π, π); ES(x∗) = −1.

(F1) Function

Definition: F1(x1, x2) = x2
1 + x2

2 − cos(18x1) − cos(18x2).

Search space: −1 < xj < 1, j = 1, 2.

Global minimum: (x1, x2)
∗ = (0, 0); F1((x1, x2)

∗) = −2.

119

(F2) Function

Definition: F2(x) =
∑10

j=1 min {|xj − 0.2| + a, |xj − 0.4| , |xj − 0.7| + a} , a = 0.05.

Search space: 0 < xj < 1, j = 1, . . . , 10.

Global minimum: x∗ = (0.4, 0.4, . . . , 0.4); F2(x
∗) = 0.

(F5) De Joung Function

Definition: F5(x1, x2) =
(
0.002 +

∑25
j=1

1
j+

∑2
i=1(xi−aij)

6

)−1

,

a1j = −32,−16, 0, 16, 32 for j = 1, 2, . . . , 5,

a1k = a1j for k = j + 5, j + 10, j + 15, j + 20, and j = 1, 2, . . . , 5,

a2j = −32,−16, 0, 16, 32 for j = 1, 6, 11, 16, 21,

a2k = a2j for k = j + 1, j + 2, j + 3, j + 4, and j = 1, 6, 11, 16, 21.

Search space: −65.536 < xi < 65.536, i = 1, 2.

Global minimum: (x1, x2)
∗ = (−32,−32); F5((x1, x2)

∗) = 0.998004.

(Gn) Griewank Functions

Definition: Gn(x) =
∑n

i=1
x2

i

4000
−

∏n
i=1 cos

(
xi/

√
i
)

+ 1.

Search space: −300 ≤ xi ≤ 600, i = 1, . . . , n.

Global minimum: x∗ = (0, . . . , 0), Gn(x∗) = 0.

(GP) Goldstein&Price Function

Definition: GP(x) = (1 + (x1 + x2 + 1)2 (19 − 14x1 + 13x2
1 − 14x2 + 6x1x2 + 3x2

2)) ∗
(30 + (2x1 − 3x2)

2 (18 − 32x1 + 12x2
1 − 48x2 − 36x1x2 + 27x2

2)) .

Search space: −2 ≤ xi ≤ 2, i = 1, 2.

Global minimum: x∗ = (0,−1); GP(x∗) = 3.

(H3,4) Hartmann Function

Definition: H3,4(x) = −
∑4

i=1 αi exp
[
−

∑3
j=1 Aij (xj − Pij)

2
]
,

α = [1, 1.2, 3, 3.2]T , A =

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

 , P = 10−4

6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 .

Search space: 0 ≤ xi ≤ 1, i = 1, 2, 3.

Global minimum: x∗ = (0.114614, 0.555649, 0.852547); H3,4(x
∗) = −3.86278.

120 Unconstrained Test Problems

(H6,4) Hartmann Function

Definition: H6,4(x) = −∑4
i=1 αi exp

[
−∑6

j=1 Bij (xj − Qij)
2
]
,

α = [1, 1.2, 3, 3.2]T , B =

10 3 17 3.05 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 ,

Q = 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 .

Search space: 0 ≤ xi ≤ 1, i = 1, . . . , 6.

Global minimum: x∗ = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300);

H6,4(x
∗) = −3.32237.

(HM) Hump Function

Definition: HM(x) = 4x2
1 − 2.1x4

1 + 1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2.

Search space: −5 ≤ xi ≤ 5, i = 1, 2.

Global minimum: x∗ = (0.0898,−0.7126), (−0.0898, 0.7126); HM(x∗) = 0.

(Ln) Levy Functions

Definition: Ln(x) = sin2 (πy1) +
∑n−1

i=1

[
(yi − 1)2 (

1 + 10 sin2 (πyi + 1)
)]

+ (yn − 1)2 (
1 + 10 sin2 (2πyn)

)
, yi = 1 + xi−1

4
, i = 1, . . . , n.

Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n.

Global minimum: x∗ = (1, . . . , 1); Ln(x∗) = 0.

(MT) Matyas Function

Definition: MT(x) = 0.26 (x2
1 + x2

2) − 0.48x1x2.

Search space: −5 ≤ xi ≤ 10, i = 1, 2.

Global minimum: x∗ = (0, 0); MT(x∗) = 0.

(MZ) Michalewicz Function

Definition: MZ(x1, x2) = −∑2
j=1 sin (xj)

(
sin

(
jx2

j/π
))2m

; m = 10.

Search space: 0 ≤ xj ≤ π, j = 1, 2.

Global minima: MZ((x1, x2)
∗) = −1.8013.

121

(Pn,β) Perm Functions

Definition: Pn,β(x) =
∑n

k=1

[∑n
i=1

(
ik + β

) (
(xi/i)

k − 1
)]2

.

Search space: −n ≤ xi ≤ n, i = 1, . . . , n.

Global minimum: x∗ = (1, 2, . . . , n); Pn,β(x∗) = 0.

(P0
n,β) Perm Functions

Definition: P0
n,β(x) =

∑n
k=1

[∑n
i=1 (i + β)

(
xk

i − (1/i)k
)]2

.

Search space: −n ≤ xi ≤ n, i = 1, . . . , n.

Global minimum: x∗ = (1, 1
2
, . . . , 1

n
); P0

n,β(x∗) = 0.

(PSb1,...,bn
) Power Sum Functions

Definition: PSb1,...,bn
(x) =

∑n
k=1

[(∑n
i=1 xk

i

)
− bk

]2
.

Search space: 0 ≤ xi ≤ n, i = 1, . . . , n.

Global minimum for PS8,18,44,114(x): x∗ = (1, 2, 2, 3); PS8,18,44,114(x
∗) = 0.

(PWn) Powell Functions

Definition: PWn(x) =
∑n/4

i=1 (x4i−3 + 10x4i−2)
2 + 5 (x4i−1 − x4i)

2 + (x4i−2 − x4i−1)
4 +

10 (x4i−3 − x4i)
4 .

Search space: −4 ≤ xi ≤ 5, i = 1, . . . , n.

Global minimum: x∗ = (3,−1, 0, 1, 3, . . . , 3,−1, 0, 1); PWn(x∗) = 0.

(Rn) Rosenbrock Functions

Definition: Rn(x) =
∑n−1

i=1

[
100 (x2

i − xi+1)
2
+ (xi − 1)2

]
.

Search space: −5 ≤ xi ≤ 10, i = 1, 2, . . . , n.

Global minimum: x∗ = (1, . . . , 1), Rn(x∗) = 0.

(RC) Branin RCOS Function

Definition: RC(x) = (x2 − 5
4π2 x

2
1 + 5

π
x1 − 6)2 + 10(1 − 1

8π
) cos(x1) + 10.

Search space: −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

Global minima: x∗ = (−π, 12.275), (π, 2.275), (9.42478, 2.475); RC(x∗) = 0.397887.

122 Unconstrained Test Problems

(RTn) Rastrigin Functions

Definition: RTn(x) = 10n +
∑n

i=1 (x2
i − 10 cos (2πxi)) .

Search space: −2.56 ≤ xi ≤ 5.12, i = 1, . . . , n.

Global minimum: x∗ = (0, . . . , 0), RTn(x∗) = 0.

(S4,m) Shekel Functions

Definition: S4,m(x) = −
∑m

j=1

[∑4
i=1 (xi − Cij)

2 + βj

]−1
,

β = 1
10

[1, 2, 2, 4, 4, 6, 3, 7, 5, 5]T , C =

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

 .

Search space: 0 ≤ xi ≤ 10, i = 1, . . . , 4.

Global minima: x∗ = (4, 4, 4, 4); S4,5(x
∗) = −10.1532, S4,7(x

∗) = −10.4029 and S4,10(x
∗) =

−10.5364.

(SCn) Schwefel Functions

Definition: SCn(x) = 418.9829n − ∑n
i=1

(
xi sin

√
|xi|

)
.

Search space: −500 ≤ xi ≤ 500, i = 1, 2, . . . , n.

Global minimum: x∗ = (1, . . . , 1), SCn(x∗) = 0.

(SH) Shubert Function

Definition: SH(x) =
(∑5

i=1 i cos ((i + 1) x1 + i)
) (∑5

i=1 i cos ((i + 1) x2 + i)
)
,

Search space: −10 ≤ xi ≤ 10, i = 1, 2

Global minima: 18 global minima and SH(x∗) = −186.7309.

(SRn) Sphere Functions

Definition: SRn(x) =
∑n

i=1 x2
i ,

Search space: −2.56 ≤ xi ≤ 5.12, i = 1, . . . , n

Global minimum: x∗ = (0, . . . , 0), SRn(x∗) = 0.

(SSn) Sum Squares Functions

Definition: SSn(x) =
∑n

i=1 ix2
i ,

Search space: −5 ≤ xi ≤ 10, i = 1, . . . , n

Global minimum: x∗ = (0, . . . , 0), SSn(x∗) = 0.

123

(Tn) Trid Functions

Definition: Tn(x) =
∑n

i=1 (xi − 1)2 − ∑n
i=2 xixi−1,

Search space: −n2 ≤ xi ≤ n2, i = 1, . . . , n

Global minima: a) n = 6, x∗
i = i (7 − i) , i = 1, . . . , n, Tn(x∗) = −50,

b) n = 10, x∗
i = i (11 − i) , i = 1, . . . , n, Tn(x∗) = −210,

(Zn) Zakharov Functions

Definition: Zn(x) =
∑n

i=1 x2
i + (

∑n
i=1 0.5ixi)

2
+ (

∑n
i=1 0.5ixi)

4
.

Search space: −5 ≤ xi ≤ 10, i = 1, 2, . . . , n

Global minimum: x∗ = (0, . . . , 0), Zn(x∗) = 0.

124 Unconstrained Test Problems

Appendix B

Constrained Test Problems

Problem G11

min
x

f (x) = 5
∑4

i=1 xi − 5
∑4

i=1 x2
i −

∑13
i=5 xi,

s.t. g1 (x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,
g2 (x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,
g3 (x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,
g4 (x) = −8x1 + x10 ≤ 0,
g5 (x) = −8x2 + x11 ≤ 0,
g6 (x) = −8x3 + x12 ≤ 0,
g7 (x) = −2x4 − x5 + x10 ≤ 0,
g8 (x) = −2x6 − x7 + x11 ≤ 0,
g9 (x) = −2x8 − x9 + x12 ≤ 0,
xi ≥ 0, i = 1, . . . , 13,
xi ≤ 1, i = 1, . . . , 9, 13.

The bounds: U = (1, 1, 1, 1, 1, 1, 1, 1, 1, 100, 100, 100, 1) and L = (0, . . . , 0).

Global minimum: x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) , f (x∗) = −15.

Problem G2

max
x

f (x) = |
∑n

i=1 cos4(xi)−2
∏n

i=1 cos2(xi)√∑n
i=1 ix2

i

|,
s.t. g1 (x) = −∏n

i=1 xi + 0.75 ≤ 0,
g2 (x) =

∑n
i=1 xi − 7.5n ≤ 0.

The bounds: U = (10, . . . , 10) and L = (0, . . . , 0).

Best known: f (x∗) = 0.803619, for n = 20.

1The formula of G1 is presented as its common form in the literature [25]. However, variable x13 can be
eliminated since its value of the global solution, which is x13 = 1, can be easily derived.

126 Constrained Test Problems

Problem G3

max
x

f (x) = (
√

n)
n ∏n

i=1 xi,

s.t. h1 (x) =
∑n

i=1 x2
i − 1 = 0

The bounds: U = (1, . . . , 1) and L = (0, . . . , 0).

Global minimum: x∗ =
(

1√
n
, . . . , 1√

n

)
, f (x∗) = 1.

Problem G4

min
x

f (x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141,

s.t. g1 (x) = u (x) − 92 ≤ 0,
g2 (x) = −u (x) ≤ 0,
g3 (x) = v (x) − 110 ≤ 0,
g4 (x) = −v (x) + 90 ≤ 0,
g5 (x) = w (x) − 25 ≤ 0,
g6 (x) = −w (x) + 20 ≤ 0,

where

u (x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5,

v (x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3,

w (x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4.

The bounds: U = (102, 45, 45, 45, 45) and L = (78, 33, 27, 27, 27).

Global minimum: x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) ,

f (x∗) = −30665.539.

Problem G5

min
x

f (x) = 3x1 + 10−6x3
1 + 2x2 + 2

3
× 10−6x3

2,

s.t. g1 (x) = x3 − x4 − 0.55 ≤ 0,
g2 (x) = x4 − x3 − 0.55 ≤ 0,
h1 (x) = 1000 [sin (−x3 − 0.25) + sin (−x4 − 0.25)] + 894.8 − x1 = 0,
h2 (x) = 1000 [sin (x3 − 0.25) + sin (x3 − x4 − 0.25)] + 894.8 − x2 = 0,
h3 (x) = 1000 [sin (x4 − 0.25) + sin (x4 − x3 − 0.25)] + 1294.8 = 0.

The bounds: U = (1200, 1200, 0.55, 0.55) and L = (0, 0,−0.55,−0.55).

Best known: x∗ = (679.9453, 1026, 0.118876,−0.3962336) , f (x∗) = 5126.4981.

127

Problem G6

min
x

f (x) = (x1 − 10)3 + (x2 − 20)3 ,

s.t. g1 (x) = (x1 − 5)2 + (x2 − 5)2 + 100 ≤ 0,

g2 (x) = (x1 − 5)2 + (x2 − 5)2 − 82.81 ≤ 0.

The bounds: U = (100, 100) and L = (13, 0).

Global minimum: x∗ = (14.095, 0.84296) , f (x∗) = −6961.81388.

Problem G7

min
x

f (x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

s.t. g1 (x) = 4x1 + 5x2 − 3x7 + 9x8 − 105 ≤ 0,
g2 (x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,
g3 (x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0,
g4 (x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0,
g5 (x) = 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0,
g6 (x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0,
g7 (x) = x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0,
g8 (x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0.

The bounds: U = (10, . . . , 10) and L = (−10, . . . ,−10).

Global minimum: x∗ = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574,

1.321644, 9.828726, 8.280092, 8.375927), f (x∗) = 24.3062091.

Problem G8

max
x

f (x) = sin3(2πx1) sin(2πx2)

x3
1(x1+x2)

,

s.t. g1 (x) = x2
1 − x2 + 1 ≤ 0,

g2 (x) = 1 − x1 + (x2 − 4)2 ≤ 0.

The bounds: U = (10, 10) and L = (0, 0).

Global minimum: x∗ = (1.2279713, 4.2453733) , f (x∗) = 0.095825.

128 Constrained Test Problems

Problem G9

min
x

f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6 + x4

7 − 4x6x7

−10x6 − 8x7,
s.t. g1 (x) = 2x2

1 + 3x4
2 + x3 + 4x2

4 + 5x5 − 127 ≤ 0,
g2 (x) = 7x1 + 3x2 + 10x2

3 + x4 − x5 − 282 ≤ 0,
g3 (x) = 23x1 + x2

2 + 6x2
6 − 8x7 − 196 ≤ 0,

g4 (x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0.

The bounds: U = (10, . . . , 10) and L = (−10, . . . ,−10).

Global minimum: x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131,

1.594227), f (x∗) = 680.6300573.

Problem G10

min
x

f (x) = x1 + x2 + x3,

s.t. g1 (x) = −1 + 0.0025(x4 + x6) ≤ 0,
g2 (x) = −1 + 0.0025(−x4 + x5 + x7) ≤ 0,
g3 (x) = −1 + 0.01(−x5 + x8) ≤ 0,
g4 (x) = 100x1 − x1x6 + 833.33252x4 − 83333.333 ≤ 0,
g5 (x) = x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0,
g6 (x) = x3x5 − x3x8 − 2500x5 + 1250000 ≤ 0.

The bounds: U = (10000, 10000, 10000, 1000, 1000, 1000, 1000, 1000) and

L = (100, 1000, 1000, 10, 10, 10, 10, 10).

Global minimum: x∗ = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162,

395.5979), f (x∗) = 7049.3307.

Problem G11

min
x

f (x) = x2
1 + (x2 − 1)2,

s.t. h1 (x) = x2 − x2
1 = 0.

The bounds: U = (1, 1) and L = (−1,−1).

Global minimum: x∗ =
(
± 1√

2
, 1

2

)
, f (x∗) = 0.75.

129

Problem G12

min
x

f (x) = 1 − 0.01[(x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2],

s.t. gi,j,k (x) = (x1 − i)2 + (x2 − j)2 + (x3 − k)2 − 0.0625 ≤ 0,

where i, j, k = 1, 2, . . . , 9.

The bounds: U = (10, 10, 10) and L = (0, 0, 0).

Global minimum: x∗ = (5, 5, 5) , f (x∗) = 1.

Problem G13

min
x

f (x) = ex1x2x3x4x5 ,

s.t. h1 (x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0,

h2 (x) = x2x3 − 5x4x5 = 0,
h3 (x) = x3

1 + x3
2 + 1 = 0.

The bounds: U = (2.3, 2.3, 3.2, 3.2, 3.2) and L = (−2.3,−2.3,−3.2,−3.2,−3.2).

Global minimum: x∗ = (−1.717143, 1.595709, 1.827247,−0.7636413,−0.763645) , f (x∗) =

0.0539498.

130 Constrained Test Problems

Bibliography

[1] E. Aarts and J. Korst, Selected topics in simulated annealing, in: C.C. Ribeiro and
P. Hansen (Eds.), Essays and Surveys in Metaheuristics, Kluwer Academic Publishers,
Boston, MA, (2002) 1–37.

[2] M. A. Abramson, C. Audet, and J. E. Dennis Jr., Generalized pattern searches with
derivative information, Mathematical Programming, 100 (2004) 3-25.

[3] K.S. Al-Sultan and M. A. Al-Fawzan, A tabu search Hooke and Jeeves algorithm for
unconstrained optimization, European J. of Operational Research, 103 (1997) 198–208.

[4] C. Audet and J. E. Dennis, Jr., Analysis of generalized pattern searches, SIAM Journal
on Optimization, 13(3) (2003) 889–903.

[5] C. Audet and J.E. Dennis Jr., A pattern search filter method for nonlinear programming
without derivatives, SIAM Journal on Optimization, to appear.

[6] T. Bäck and F. Hoffmeister, Extended selection mechanisms in genetic algorithms, in:
R. Belew and L.B. Booker (Eds.), Proceedings of the Fourth International Conference
on Genetic Algorithms, Morgan Kaufmmann, San Mateo, (1991) 92–99.

[7] T. Bäck, D.B. Fogel and Z. Michalewicz (Eds.), Evolutionary Computation 1: Basic
Algorithms and Operators, Institute of Physics Publishing, 2000.

[8] T. Bäck, D.B. Fogel and Z. Michalewicz (Eds.), Evolutionary Computation 2: Advanced
Algorithms and Operators, Institute of Physics Publishing, 2000.

[9] J. E. Baker, Adaptive selection methods for genetic algorithms. In: J. J. Grefen-
stette (Ed.), Proceedings of the First International Conference on Genetic Algorithms,
Lawrence Erlbaum Associates, Hillsdale, MA, (1985) 101–111.

[10] R. Battiti and G. Tecchiolli, The continuous reactive tabu search: Blending combina-
torial optimization and stochastic search for global optimization, Annals of Operations
Research, 63 (1996) 153–188.

[11] M. Bessaou and P. Siarry, A genetic algorithm with real-value coding to optimize mul-
timodal continuous functions, Struct Multidisc Optim, 23 (2001) 63–74.

132 BIBLIOGRAPHY

[12] I. Bohachevsky, M. E. Johnson and M. L. Stein, Generalized simulated annealing for
function optimization, Technometrics, 28 (1986) 209–217.

[13] M. F. Cardoso, R. L. Salcedo and S. F. de Azevedo, The simplex-simulated annealing
approach to continuous non-linear optimization, Comput. Chem. Eng., 20 (1996) 1065–
1080.

[14] M. F. Cardoso, R. L. Salcedo, S. F. de Azevedo and D. Barbosa, A simulated annealing
approach to the solution of minlp problems, Comput. Chem. Eng., 21 (1997) 1349–1364.

[15] R. Chelouah and P. Siarry, Tabu search applied to global optimization, European J. of
Operational Reasearch, 123 (2000) 256–270.

[16] R. Chelouah and P. Siarry, A continuous genetic algorithm designed for the global
optimization of multimodal functions, J. Heuristics, 6 (2000) 191–213.

[17] Y.X. Chen, Optimal Anytime Search for Constrained Nonlinear Programming, M.Sc.
Thesis, Dept. of Computer Science, Univ. of Illinois, May 2001.

[18] C. A. Coello Coello, Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: A survey of the state of the art, Computer Methods in
Applied Mechanics and Engineering, 191 (2002), 1245–1287.

[19] C. A. Coello Coello and E. M. Montes, Constraint-handling in genetic algorithms
through the use of dominance-based tournament selection, Advanced Engineering In-
formatics, 16 (2002), 193–203.

[20] D. Cvijovic and J. Klinowski, Taboo search: An approach to the multiple minima
problem, Science, 667 (1995) 664–666.

[21] D. Cvijovic and J. Klinowski, Taboo search: An approach to the multiple-minima prob-
lem for continuous functions, in: P. M. Pardalos and H. E. Romeijn (Eds.), Handbook
of Global Optimization, Kluwer Academic Publishers, Boston, MA, (2002) 387–406.

[22] K. Deb, An efficient constraint handling method for genetic algorithms, Computer Meth-
ods in Applied Mechanics and Engineering, 186 (2000), 311–338.

[23] J. E. Dennis and V. Torczon, Direct search methods on parallel machines, SIAM J.
Optim., 1 (1991) 448–474.

[24] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math-
ematical Programming, 91 (2002), 239–269.

[25] C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. Gumus, S. T. Harding,
J. L. Klepeis, C. A. Meyer and C. A. Schweiger (Eds.), Handbook of Test Problems for
Local and Global Optimization, Kluwer Academic Publishers, Boston, MA, 1999.

BIBLIOGRAPHY 133

[26] F. Franze and N. Speciale, A tabu-search-based algorithm for continuous multiminima
problems, International Journal for Numerical Engineering, 50 (2001) 665–680.

[27] F. Glover, Future paths for integer programming and links to artificial intelligence,
Computers and Operations Research, 13(5) (1986) 533–549.

[28] F. Glover, Tabu search–Part I, ORSA Journal on Computing, 1 (1989) 190–206.

[29] F. Glover, Tabu search–Part II, ORSA Journal on Computing, 2 (1990) 4–32.

[30] F. Glover and G. Kochenberger (Eds.), Handbook of MetaHeuristics, Kluwer Academic
Publishers, Boston, MA, 2002.

[31] F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, MA, USA, 1997.

[32] F. Glover and M. Laguna, Tabu search, in: P. M. Pardalos and M. G. C. Resende
(Eds.), Handbook of Applied Optimization, Oxford University Press, (2002) 194–208.

[33] F. Glover, E. Taillard and D. Werra, A user’s guide to tabu search, Annals of Operations
Research, 41 (1993) 3–28.

[34] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, 1989.

[35] T. Günal, A hybrid approach to the synthesis of nonuniform lossy transmission-line
impedance-matching sections, Microwave and Optical Technology Letters, 24 (2000)
121–125.

[36] S. B. Hamida and M. Schoenauer. ASCHEA: New rsults using adaptive segregational
constraint handling, in: Proceedings of the Congress on Evolutionary Computation
(CEC2002), Piscataway, New Jersey, IEEE Service Center, 2002, pp. 884–889.

[37] A. Hedar and M. Fukushima, Hybrid simulated annealing and direct search method for
nonlinear unconstrained global optimization, Optimization Methods and Software, 17
(2002) 891–912.

[38] A. Hedar and M. Fukushima, Minimizing multimodal functions by simplex coding ge-
netic algorithm, Optimization Methods and Software, 18 (2003) 265–282.

[39] A. Hedar and M. Fukushima, Tabu Search directed by direct search methods for non-
linear global optimization, European J. of Operational Reasearch, to appear.

[40] A. Hedar and M. Fukushima, Simplex coding genetic algorithm for the global optimiza-
tion of nonlinear functions, in: T. Tanino, T. Tanaka and M. Inuiguchi (Eds.), Multi-
Objective Programming and Goal Programming, Springer-Verlag, Berlin-Heidelberg,
2003, pp. 135–140.

134 BIBLIOGRAPHY

[41] A. Hedar and M. Fukushima, Heuristic pattern search and its hybridization with simu-
lated annealing for nonlinear global optimization, Optimization Methods and Software,
19 (2004) 291–308.

[42] A. Hedar and M. Fukushima, Derivative-free filter simulated annealing method for
constrained continuous global optimization, Technical Report 2004-007, Department
of Applied Mathematics and Physics, Kyoto University, April (2004).

[43] D. Henderson, S. H. Jacobson and A. W. Johnson, The thoery and practice of simulated
annealing, in: F. Glover and G. Kochenberger (Eds.), Handbook of MetaHeuristics,
Kluwer Academic Publishers, Boston, MA, (2002) 287–319.

[44] F. Herrera, M. Lozano and J.L. Verdegay, Tackling real-coded genetic algorithms: Op-
erators and tools for behavioural analysis, Artificial Intelligence Review, 12 (1998) 265-
319.

[45] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes,
Springer-Verlag Berlin Heidelberg, 1981.

[46] J. Holland, Adaptation in Natural and Artifical Systems, University of Michigan Press,
Ann Arbor, 1975.

[47] R. Hooke and T. A. Jeeves, Direct search solution of numerical and statistical problems,
J. ACM, 8 (1961) 212-229.

[48] R. Horst and P. M. Pardalos (Eds), Handbook of Global Optimization, Kluwer Aca-
demic Publishers, Boston, MA, 1995.

[49] R. Horst, N.V. Thoai and P.M. Pardalos, Introduction to Global Optimization, Second
Edition, Kluwer Academic Publishers, Boston, MA, 2000.

[50] N. Hu, Tabu search method with random moves for globally optimal design, Interna-
tional Journal for Numerical Engineering, 35 (1992) 1055–1070.

[51] C. T. Kelley, Detection and remediation of stagnation in the Nelder-Mead algorithm
using a sufficient decrease condition, SIAM J. Optim., 10 (1999) 43–55.

[52] C. T. Kelley, Iterative Methods for Optimization, Frontiers Appl. Math. 18, SIAM,
Philadelphia, PA, 1999.

[53] S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, Optimisation by simulated annealing,
Science, 220 (1983) 671–680.

[54] T.G. Kolda, R.M. Lewis and V. Torczon, Optimization by direct search: New perspec-
tives on some classical and modern methods. SIAM Review, 45 (2003) 385–482.

BIBLIOGRAPHY 135

[55] S. Koziel and Z. Michalewicz, Evolutionary algorithms, homomorphous mappings, and
constrained parameter optimization, Evolutionary Computation, 7(1) (1999), 19–44.

[56] V. Kvasnicka and J. Pospichal, A hybrid of simplex method and simulated annealing,
Chemometrics and Intelligent Laboratory Systems, 39 (1997) 161-173.

[57] P. J. Laarhoven, Theoretical and Computational Aspects of Simulated Annealing,
Stichting Mathematisch Centrum, Amsterdam, 1988.

[58] P. J. Laarhoven and E. H. Aarts, Simulated Annealing: Theory and Applications, D.
Reidel Publishing Company, Dordrecht, Holland, 1987.

[59] M. Laguna and R. Mart́ı, Experimental testing of advanced scatter aearch designs for
global optimization of multimodal functions, Technical Report, University of Colorado
at Boulder, November (2002).

[60] M. Laguna and R. Marti, Scatter Search: Methodology and Implementations in C,
Kluwer Academic Publishers, Boston, 2003.

[61] M. Laguna, R. Mart́ı and V. Campos, Intensification and diversification with elite tabu
search solutions for the linear ordering problem, Computers and Operations Research
26 (1999) 1217–1230.

[62] R. Mart́ı, Multi-Start Methods , in: F. Glover and G. Kochenberger (Eds.), Handbook
of MetaHeuristics, Kluwer Academic Publishers, Boston, MA, (2002) 355–368.

[63] R. Mart́ı and J.M. Moreno, Métodos multi-arranque, Inteligencia Artificial 19 (2003)
49–60.

[64] K.I.M. McKinnon, Convergence of the Nelder-Mead simplex method to a nonstationary
point, SIAM J. Optim., 9 (1999) 148–158.

[65] M. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Equation of
state calculation by fast computing machines. Journal of Chemical Physics, 21 (1953)
1087–1092.

[66] E. Mezura-Montes and C. A. Coello Coello. A simple multimembered evolution strat-
egy to solve constrained optimization problems, Technical Report EVOCINV-04-2003,
Evolutionary Computation Group at CINVESTAV, Sección de Computación, Departa-
mento de Ingenieŕıa Eléctrica, CINVESTAV-IPN, México D.F., México, 2003.

[67] Z. Michalewicz and G. Nazhiyath, Genocop III: A co-evolutionary algorithm for nu-
merical optimization problems with nonlinear constraints, Proceedings of the 2nd IEEE
International Conference on Evolutionary Computation, Preth, Australia, (1995) 647–
651.

136 BIBLIOGRAPHY

[68] Z. Michalewicz, Genetic algorithms + Data structures = Evolution programs, Springer,
Berlin, Heidelberg, New York, 1996.

[69] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained parameter
optimization problems, Evolutionary Computation, 4(1) (1996), 1–32.

[70] P. Moscato, Memetic algorithms: An introduction, in: D. Corne, M. Dorigo and F.
Glover (Eds.), New Ideas in Optimization. McGraw-Hill, London, UK, (1999).

[71] M. Musil, M. J. Wilmut and R. Chapman, A hybrid simplex genetic algorithm for
estimating geoacoustic parameters using matched-field inversion, IEEE J. Oceanic Eng.,
24 (1999) 358–369.

[72] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J., 7
(1965) 308-313.

[73] I. H. Osman and J. P. Kelly, Meta-Heuristics: Theory and Applications, Kluwer Aca-
demic Publishers, Boston, MA, 1996.

[74] P. M. Pardalos and M. G. C. Resende (Eds.), Handbook of Applied Optimization,
Oxford University Press, Oxford, 2002.

[75] P.M. Pardalos and H. E. Romeijn (Eds.), Handbook of Global Optimization, Kluwer
Academic Publishers, Boston, MA, 2002.

[76] P. M. Pardalos, H. E. Romeijn and H. Tuy, Recent developments and trends in global
optimization, J. Comput. Appl. Math., 124 (2000) 209–228.

[77] M.J.D. Powell, A direct search optimization method that models the objective and
constraint functions by linear interpolation, in: S. Gomez and J.-P. Hennart (Eds.),
Advances in Optimization and Numerical Analysis, Math. Appl. 275, Kluwer Academic,
Dordrecht, The Netherlands, (1994) 51-67.

[78] M.J.D. Powell, Direct search algorithms for optimization calculations, Acta Numer., 7
(1998) 287-336.

[79] W. H. Press and S. A. Teukolsky, Simulated annealing optimization over continuous
spaces, Comput. Phys., 5 (1991) 426–429.

[80] J. M. Renders and H. Bersini, Hybridizing genetic algorithms with hill-climbing methods
for global optimization: Two possible ways, in: Z. Michalewicz, J. D. Schaffer, H.-P.
Schwefel. D. B. Fogel, and H. Kitano (Eds.), Proceedings of the First IEEE Conference
on Evolutionary Computation, IEEE Press, (1994) 312–317.

[81] C.C. Ribeiro and P. Hansen (Eds.), Essays and Surveys in Metaheuristics, Kluwer
Academic Publishers, Boston, MA, 2002.

BIBLIOGRAPHY 137

[82] H. E. Romeijn and R. L. Smith, Simulated annealing for global constrained optimiza-
tion, Journal Of Global Optimization, 5 (1994), 101–126.

[83] T. P. Runarsson and X. Yao, Stochastic Ranking for Constrained Evolutionary Opti-
mization. IEEE Transactions on Evolutionary Computation, 4(3) (2000), 284–294.

[84] F. Schoen, Two phase methods for globale optimization, in: P. M. Pardalos and H.
E. Romeijn (Eds.), Handbook of Global Optimization, Kluwer Academic Publishers,
Boston, MA, (2002) 151-178.

[85] P. Siarry, G. Berthiau, F. Durbin and J. Haussy, Enhanced simulated annealing for glob-
ally minimizing functions of many continuous variables, ACM Transactions on Mathe-
matical Software, 23 (1997) 209–228.

[86] P. Tseng, Fortified-descent simplicial search method: A general approach, SIAM J.
Optim., 10 (1999) 269–288.

[87] V. Torczon, Multi-Directional Search: A Direct Search Algorithm for Parallel Machines,
Ph.D. thesis, Department of Mathematical Sciences, Rice University, Houston, TX,
1989.

[88] V. Torczon, On the convergence of pattern search algorithms. SIAM J. Optim., 7 (1997)
1–25.

[89] B. W. Wah and Y. X. Chen, Optimal anytime constrained simulated annealing for
constrained global optimization, in: R. Dechter (Ed.), LNCS 1894, Springer-Verlag,
Sept. 2000, pp. 425–440.

[90] B. W. Wah and T. Wang, Tuning strategies of constrained simulated annealing for
nonlinear global optimization, International Journal on Artificial Intelligence Tools,
9(1) (2000), 3–25.

[91] T. Wang, Global Optimization of Constrained Nonlinear Programming, Ph.D. Thesis,
Dept. of Computer Science, Univ. of Illinois, Dec. 2000.

[92] P. P. Wang and D. S. Chen, Continuous optimization by a variant of simulated anneal-
ing, Computational Optimization and Applications, 6 (1996) 59–71.

[93] M.H. Wright, Direct search methods: Once scorned, now respectable, in: D. F. Griffiths
and G. A. Watson, (Eds.), Proceedings of the 1995 Dundee Biennial Conference in
Numerical Analysis, Pitman Res. Notes Math. Ser. 344, CRC Press, Boca Raton, FL,
(1996) 191-208.

[94] R. Yang and I. Douglas, Simple genetic algorithm with local tuning: Efficient global
optimizing technique, J. Optim. Theory Appl., 98 (1998) 449–465.

138 BIBLIOGRAPHY

[95] J. Yen, J. C. Liao, B. Lee and D. Randolph, A hybrid approach to modeling metabolic
systems using a genetic algorithm and simplex method, IEEE Trans. on Syst., Man,
and Cybern. B, 28 (1998) 173–191.

[96] R. Zentner, Z. Sipus and J. Bartolic, Optimization synthesis of broadband circularly
polarized microstrip antennas by hybrid genetic algorithm, Microwave and Optical Tech-
nology Letters, 31 (2001) 197–201.

