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Preface


The interface between computer science and operations research has drawn much attention


recently especially in optimization which is a main tool in operations research. In optimiza-


tion area, the interest on this interface has rapidly increased in the last few years in order to


develop nonstandard algorithms that can deal with optimization problems which the stan-


dard optimization techniques often fail to deal with. Global optimization problems represent


a main category of such problems. Global optimization refers to finding the extreme value


of a given nonconvex function in a certain feasible region and such problems are classified


in two classes; unconstrained and constrained problems. Solving global optimization prob-


lems has made great gain from the interest in the interface between computer science and


operations research.


In general, the classical optimization techniques have difficulties in dealing with global


optimization problems. One of the main reasons of their failure is that they can easily be


entrapped in local minima. Moreover, these techniques cannot generate or even use the global


information needed to find the global minimum for a function with multiple local minima.


The interaction between computer science and optimization has yielded new practical solvers


for global optimization problems, called metaheuristics. The structures of metaheuristics are


mainly based on simulating nature and artificial intelligence tools. Metaheuristics mainly


invoke exploration and exploitation search procedures in order to diversify the search all over


the search space and intensify the search in some promising areas. Therefore, metaheuristics


cannot easily be entrapped in local minima. However, metaheuristics are computationally


costly due to their slow convergence. One of the main reasons for their slow convergence


is that they may fail to detect promising search directions especially in the vicinity of local


minima due to their random constructions.


In this study, both global optimization problem classes; unconstrained and constrained


problems, are considered in the continuous search space. New hybrid versions of metaheuris-


tics are proposed as promising solvers for the considered problems. The proposed methods
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aim to overcome the drawbacks of slow convergence and random constructions of meta-


heuristics. In these hybrid methods, local search strategies are inlaid inside metaheuristics


in order to guide them especially in the vicinity of local minima, and overcome their slow


convergence especially in the final stage of the search.


Metaheuristics are derivative-free methods so that direct search methods, which are also


derivative-free methods, are invoked to play the role of local search in the proposed hybrid


methods. Therefore, the hybrid methods proposed in this study confront the growth of many


optimization problems in which the gradient information is not available.


Kyoto, Japan Abdel-Rahman Hedar A. Ahmed


June 2004
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Chapter 1


Introduction


Many recent problems in science, engineering and economics can be expressed as comput-


ing globally optimal solutions [48, 49, 74, 75, 76]. Using classical nonlinear programming


techniques may fail to solve such problems because these problems usually contain multiple


local optima. Therefore, global search methods should be invoked in order to deal with


such problems. In recent years, there has been a great deal of interest in emerging some


artificial intelligence tools in the area of optimization. These tools which are normally called


metaheuristics are mainly proposed by simulating nature or by invoking intelligent learned


procedures [30, 73, 81].


One main category of global optimization problems contains the problems which are


characterized by one or more of the following properties:


• Calculation of the objective function (or constraint functions if exist) is very expensive


or time consuming.


• The exact gradient of the objective function (or constraint functions if exist) cannot


be computed, or its numerical approximation is very expensive or time consuming.


• The values of the objective function (or constraint functions if exist) contain noise.


Such problems exist in many real-world applications and achieving the exact global solution


is neither possible nor desirable. Therefore, using derivative-free global search methods


is highly needed in order to achieve acceptable solutions. Actually, metaheuristics fight


courageously when applied to these problems and they could obtain highly accurate solutions


in many cases [73]. The power of metaheuristics comes from the fact that they are robust


and can deal successfully with a wide range of problem areas. However, these methods,


especially when they are applied to complex problems, suffer from the slow convergence that
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brings about the high computational cost. The main reason for this slow convergence is that


these methods explore the global search space by creating random movements without using


much local information about promising search direction. In contrast, local search methods


have faster convergence due to their using local information to determine the most promising


search direction by creating logical movements. However, local search methods can easily


be entrapped in local minima.


One approach that recently has drawn much attention is to combine metaheuristics with


local search methods to design more efficient methods with relatively faster convergence than


the pure metaheuristics, see [37, 38, 39, 40, 41, 42] and references therein. Moreover, these


hybrid methods are not easily entrapped in local minima because they still maintain the


merits of the metaheuristics.


In this study, new hybrid methods that combine metaheuristics and direct search meth-


ods are proposed in order to deal with the global optimization problems that have the above


characteristics. Specifically, local search guidance in the direct search methods is invoked to


direct and control the global search features of metaheuristics to design more efficient hybrid


methods. In the rest of this chapter, some well-known direct search methods and metaheuris-


tics are introduced to be used throughout this study. The mathematical definitions of the


considered problems are given first.


1.1 Continuous Global Optimization Problems


In this study, both unconstrained and constrained global optimization problems in a continu-


ous space are considered. Without loss of generality, only minimization problems are studied


since maximization problems can be transformed to minimization problems by inverting the


sign of their objective functions. The mathematical definitions for the considered problems


are given below.


Unconstrained Problem


min
xǫRn


f(x), (1.1.1)


where f is a generally nonconvex, real valued function defined on Rn.


Constrained Problem


min
x


f (x) ,


s.t. gi (x) ≤ 0, i = 1, . . . , l,
hj (x) = 0, j = 1, . . . ,m,
x ∈ S,


(1.1.2)
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where f , gi and hj are real-valued functions defined on the search space S ⊆ Rn. Usually,


the search space S is defined as {x ∈ Rn : xi ∈ [li, ui] , i = 1, . . . , n}.


1.2 Metaheuristics


The term “metaheuristics” was first proposed by Glover [27]. The word “metaheuristics”


contains all heuristics methods that show evidence of achieving good quality solutions for


the problem of interest within an acceptable time. Usually, metaheuristics offer no guarantee


of obtaining the global solutions.


Metaheuristics can be classified into two classes; population-based methods and point-


to-point methods. In the latter methods, the search invokes only one solution at the end


of each iteration from which the search will start in the next iteration. On the other hand,


the population-based methods invoke a set of many solutions at the end of each iteration.


Below, we highlight the principles of genetic algorithm as an example of population-based


methods, and simulated annealing and tabu search as examples of point-to-point methods.


1.2.1 Genetic Algorithms


A genetic algorithm (GA) is a procedure that tries to mimic the genetic evolution of a species.


Specifically, GA simulates the biological processes that allow the consecutive generations in a


population to adapt to their environment. The adaptation process is mainly applied through


genetic inheritance from parents to children and through survival of the fittest. Therefore,


GA is a population-based search methodology. Some pioneering works traced back to the


middle of 1960s preceded the main presentation of the GAs of Holland [46] in 1975. However,


GAs were limitedly applied until their multipurpose presentation of Goldberg [34] in search,


optimization, design and machine learning areas. Nowadays, GAs are considered to be the


most widely known and applicable type of metaheuristics [7, 8, 68].


GA starts with an initial population whose elements are called chromosomes. The chro-


mosome consists of a fixed number of variables which are called genes. In order to evaluates


and rank chromosomes in a population, a fitness function based on the objective function


should be defined. Three operators must be specified to construct the complete structure


of the GA procedure; selection, crossover and mutation operators. The selection operator


cares with selecting an intermediate population from the current one in order to be used by


the other operators; crossover and mutation. In this selection process, chromosomes with
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higher fitness function values have a greater chance to be chosen than those with lower fitness


function values. Pairs of parents in the intermediate population of the current generation


are probabilistically chosen to be mated in order to reproduce the offspring. In order to in-


crease the variability structure, the mutation operator is applied to alter one or more genes


of a probabilistically chosen chromosome. Finally, another type of selection mechanism is


applied to copy the survival members from the current generation to the next one.


GA operators; selection, crossover and mutation have been extensively studied. Many


effective setting of these operators have been proposed to fit a wide variety of problems. More


details about GA elements are discussed below before stating a standard GA in Algorithm


1.2.1.


Fitness Function


Fitness function F is a designed function that measures the goodness of a solution. It should


be designed in the way that better solutions will have a higher fitness function value than


worse solutions. The fitness function plays a major role in the selection process.


Coding


Coding in GA is the form in which chromosomes and genes are expressed. There are mainly


two types of coding; binary and real. The binary coding was presented in the GA original


presentation [46] in which the chromosome is expressed as a binary string. Therefore, the


search space of the considered problem is mapped into a space of binary strings through a


coder mapping. Then, after reproducing an offspring, a decoder mapping is applied to bring


them back to their real form in order to compute their fitness function values. Actually,


many researchers still believe that the binary coding is the ideal. However, the real coding


is more applicable and easy in programming. Moreover, it seems that the real coding fits


the continuous optimization problems better than the binary coding [44].


Selection


Consider a population P , selection operator selects a set P ′ ⊆ P of the chromosomes that


will be given the chance to be mated and mutated. The size of P ′ is the same as that of


P but more fit chromosomes in P are chosen with higher probability to be included in P ′.


Therefore, the most fit chromosomes in P may be represented by more than one copy in P ′


and the least fit chromosomes in P may be not represented at all in P ′.
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Consider the population P = {x1, x2, . . . , xN}. The difference between selection operators


lies in the way of computing the probability of including a copy of chromosome xi ∈ P into the


set P ′, which is denoted by ps(xi). Using these probabilities, the population is mapped onto


a roulette wheel, where each chromosome xi is represented by a space that proportionally


corresponds to ps (xi). Chromosomes in the set P ′ are chosen by repeatedly spinning the


roulette wheel until all positions in P ′ are filled.


The most common selection operators are the proportional selection [46] and linear rank-


ing selection [9], see [6] for ease of explanation and comparison of different selection op-


erators. It is noteworthy that in the proportional selection mechanism, the probabilities


ps(xi), i = 1, . . . , N, are calculated by


ps(xi) =
F (xi)∑N


j=1 F (xj)
.


where F is the fitness function which must have positive values for all possible chromosomes


in order to be used in this selection mechanism. In linear ranking selection mechanism, the


chromosomes of P are sorted in the order of raw fitness, i.e.,


F (x1) ≤ F (x2) ≤ · · · ≤ F (xN).


Then the probabilities ps(xi), i = 1, . . . , N, are calculated by


ps(xi) =
1


M


(
ηmax − (ηmax − ηmin)


i − 1


N − 1


)
,


where ηmin = 2 − ηmax and 1 ≤ ηmax ≤ 2.


Crossover and Mutation


Crossover operator aims to interchange the information and genes between chromosomes.


Therefore, crossover operator combines two or more parents to reproduce new children,


then, one of these children may hopefully collect all good features that exist in his parents.


Crossover operator is not typically applied for all parents but it is applied with probability


pc which is normally set equal to 0.6. Actually, crossover operator plays a major role in


GA, so defining a proper crossover operator is highly needed in order to achieve a better


performance of GA. Different types of crossover operators have been studied, see [44] as a


condensed survey.


Mutation operator alters one or more gene in a chromosome. Mutation operator aims


to achieve some stochastic variability of GA in order to get a quicker convergence. The


probability pm of applying the mutation operator is usually set to be small, normally 0.01.
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Algorithm 1.2.1. Genetic Algorithm


1. Initialization. Generate an initial population P0. Set the crossover and


mutation probabilities pc ∈ (0, 1) and pm ∈ (0, 1), respectively. Set the gener-


ation counter t := 1.


2. Selection. Evaluate the fitness function F at all chromosomes in Pt. Select


an intermediate population P ′
t from the current population Pt.


3. Crossover. Associate a random number from (0, 1) with each chromosome


in P ′
t and add this chromosome to the parents pool set SP


t if the associated


number is less than pc. Repeat the following Steps 3.1 and 3.2 until all parents


in SP
t are mated:


3.1. Choose two parents p1 and p2 from SP
t . Mate p1 and p2 to reproduce


children c1 and c2.


3.2. Update the children pool set SC
t through SC


t := SC
t ∪ {c1, c2} and update


SP
t through SP


t := SP
t − {p1, p2}.


4. Mutation. Associate a random number from (0, 1) with each gene in each


chromosome in P ′
t , mutate this gene if the associated number is less than pm,


and add the mutated chromosome only to the children pool set SC
t .


5. Stopping Conditions. If stopping conditions are satisfied, then terminate.


Otherwise, select the next generation Pt+1 from Pt ∪SC
t . Set SC


t to be empty,


set t := t + 1, and go to Step 2.


1.2.2 Simulated Annealing


The original ideas of the simulated annealing (SA) methods dates back to 50s of the last cen-


tury. Exactly, in 1953, Metropolis et al. [65] introduced an efficient algorithm to simulated


the equilibrium of a collection of atoms at a given temperature. This pioneering technique
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had inspired Kirkpatrik et al. [53] to simulate it in optimization and call it Simulated An-


nealing (SA). Since the presentation of Kirkpatrik et al., a lot of studies that invoke SA


have emerged in the area of optimization. Actually, the theoretical aspects as well as the


applications of SA have been extensively studied, see [58, 57] and see [1, 43] as recent and


short surveys.


The SA algorithm successively generates a trial point in a neighborhood of the current


solution and determines whether or not the current solution is replaced by the trial point


based on a probability depending on the difference between their function values. Conver-


gence to an optimal solution can theoretically be guaranteed only after an infinite number


of iterations controlled by the procedure so-called cooling schedule. The main control pa-


rameter in the cooling schedule is the temperature parameter T . The main role of T is to let


the probability of accepting a new move be close to 1 in the earlier stage of the search and


to let it be almost zero in the final stage of the search. A proper cooling schedule is needed


in the finite-time implementation of SA to simulate the asymptotic convergence behavior of


the SA. Algorithm 1.2.2 states the steps of the standard SA method.


Algorithm 1.2.2. Simulated Annealing


1. Initialization. Choose an initial solution x0, and fix the cooling schedule


parameters; initial temperature Tmax, epoch length M, cooling reduction ratio


λ ∈ (0, 1), and minimum temperature Tmin. Set the temperature T := Tmax


and k := 0.


2. Epoch Loop. Repeat the following steps (2.1–2.3) M times.


2.1. Generate a trial point yk in the neighborhood of the current solution xk.


2.2. Evaluate f on the trial point yk, and compute


p :=







1, if f(yk) < f(xk);


exp
(−∆f


T


)
, otherwise,


where ∆f := f(yk) − f(xk).


2.3. Choose a random number u from (0, 1) . If p ≥ u, set xk+1 := yk. Otherwise,


set xk+1 := xk. Set k := k + 1.
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3. Termination Condition. If the cooling schedule is completed (T ≤ Tmin),


terminate. Otherwise, decrease the temperature by setting T := λT , and go


to Step 2.


One of the most powerful features of SA is its ability of easily escaping from being trapped


in local minima by accepting up-hill moves through a probabilistic procedure especially in


the earlier stages of the search. On the other hand, the main drawbacks that have been


noticed on SA are its suffering from slow convergence and its wandering around the optimal


solution if high accuracy is needed.


1.2.3 Tabu Search


Tabu Search (TS) is a heuristic method originally proposed by Glover in 1986 [27]. TS has


been proposed and developed for combinatorial optimization problems [28, 29, 31]. TS fights


courageously when applied to combinatorial optimization problems [31, 73, 81]. However,


there is a very limit number of TS contributions in continuous optimization problems [39].


The main feature of TS is its use of an adaptive memory and responsive exploration.


A simple TS combines a local search procedure with anti-cycling memory-based rules to


prevent the search from getting trapped in local minima. Specifically, TS restricts returning


to recently visited solutions by constructing a list of them called Tabu List (TL). In each


iteration of the simple TS illustrated in Algorithm 1.2.3, TS generates many trial solutions


in a neighborhood of the current solution. The trial solutions generation process is composed


to avoid generating any trial solution that is already recently visited. The best trial solution


found among the generated solutions will become the next solution. Therefore, TS can


accept uphill movements to avoid getting trapped in local minima. TS can be terminated


if the number of iterations without any improvement exceeds a predetermined maximum


number.


Algorithm 1.2.3. Simple Tabu Search


1. Choose an initial solution x0. Set the Tabu List (TL) to be empty, and set


the counter k := 0.


2. Generate neighborhood moves list M(xk) = {x′ : x′ ∈ N(xk)}, based on tabu


restrictions, where N(xk) is a neighborhood of xk.
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3. Set xk+1 equal to the best trial solution in M(xk), and update TL.


4. If stopping conditions are satisfied, terminate. Otherwise, go to Step 2.


A simple TS structure given in Algorithm 1.2.3 is called short-term memory TS. Updating


the memory-based TL can be modified and controlled by the following concepts:


• Tabu tenure: number of iterations in which a tabu move is considered to remain


tabu or forbidden;


• Aspiration criteria: accepting an improving solution even if generated by a tabu


move.


The short-term memory is built to keep the recency only. In order to achieve better per-


formance, long-term memory has been proposed to keep more important search features


besides the recency, such as the quality and the frequency [32]. Specifically, long-term mem-


ory in high-level TS records attributes of special characters like elite and frequently visited


solutions. Then, the search process of TS can adapt itself by using these special types of


solutions in:


• Intensification: giving priority to elite solutions in order to obtain much better


solutions in their vicinity.


• Diversification: discouraging attributes of frequently visited solutions in new move


selection functions in order to diversify the search to other areas of solution space.


1.3 Direct search methods


Direct search methods can be simply defined as the procedures which try to direct the search


for a minimum through the geometric intuition of the objective function by using function


values only without evaluating the gradients, see [54, 78, 93]. In order to show the reality


and the difficulty of the job that has been delegated to direct search methods, we borrow


John Dennis’ description of these methods which is stated and extended by Mike Powell in


[77]:


“It is to find the deepest point of a muddy lake, given a boat and a plump


line, when there is a price to be paid for each sounding. A specification of an


algorithm that is suitable for solving this problem would probably appeal to
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geometric intuition, and probably the procedure would require widely spaced


measurements to be taken, in order to smooth out any high frequency variations


in the depth of the lake. Experience has shown that many computer users find


such algorithms attractive for a wide range of optimization calculations.”


Direct search methods were originally proposed in the 1950s and 1960s to be justified in


terms of geometric intuition in low dimensional spaces without mathematical proof. Since


these methods are simple, easy to understand, easy to program, and widely applicable,


they have remained popular for real-world problems in chemistry, chemical engineering and


medicine. However, they failed to attract the mathematical optimization community until


the appearance of their mathematical analysis from only fifteen years ago. In this section,


Nelder-Mead and pattern search methods are presented as examples of direction search


methods.


1.3.1 Nelder-Mead method


The local search method called the Nelder-Mead method [72] is one of the most popular


derivative-free nonlinear optimization methods. Instead of using the derivative information


on the function to be minimized, the Nelder-Mead method maintains at each iteration a


nondegenerate simplex, a geometric figure in n dimensions of nonzero volume that is the


convex hull of n + 1 vertices, x1, x2, . . . , xn+1, and their respective function values. In each


iteration, new points are computed, along with their function values, to form a new simplex.


Four scalar parameters must be specified to define a complete Nelder-Mead method; coef-


ficients of reflection ρ, expansion χ, contraction γ, and shrinkage σ. These parameters are


chosen to satisfy


ρ > 0, χ > 1, 0 < γ < 1, and 0 < σ < 1.


The Nelder-Mead method consists of the following steps:


Algorithm 1.3.1. Nelder-Mead Method


1. Order. Order and re-label the n + 1 vertices as x1, x2, . . . , xn+1 so that


f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). Since we want to minimize f , we refer to x1


as the best vertex or point, to xn+1 as the worst point.
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2. Reflect. Compute the reflection point xr by


xr = x + ρ (x − xn+1) ,


where x is the centroid of the n best points, i.e., x =
∑


n
i=1xi/n. Evaluate


f(xr). If f(x1) ≤ f(xr) < f(xn), replace xn+1 with the reflected point xr and


go to Step 6.


3. Expand. If f(xr) < f(x1), compute the expansion point xe by


xe = x + χ (xr − x) .


Evaluate f(xe). If f(xe) < f(xr), replace xn+1 with xe and go to Step 6;


otherwise replace xn+1 with xr and go to Step 6.


4. Contract. If f(xr) ≥ f(xn), perform a contraction between x and the better


of xn+1 and xr.


4.1. Outside. If f(xn) ≤ f(xr) < f(xn+1) (i.e., xr is strictly better than


xn+1), perform an outside contraction: Calculate


xoc = x + γ (xr − x) .


Evaluate f(xoc). If f(xoc) ≤ f(xr), replace xn+1 with xoc and go to Step 6;


otherwise, go to Step 5.


4.2. Inside. If f(xr) ≥ f(xn+1), perform an inside contraction: Calculate


xic = x + γ (xn+1 − x) .


Evaluate f(xic). If f(xic) ≤ f(xn+1), replace xn+1 with xic and go to Step 6;


otherwise, go to Step 5.


5. Shrink. Evaluate f at the n new vertices


x′
i = x1 + σ (xi − x1) , i = 2, . . . , n + 1.
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Figure 1.1: The reflection, expansion, contraction and shrinkage points for a simplex in two


dimensions.


Replace the vertices x2, . . . , xn+1with the new vertices x′
2, . . . , x


′
n+1.


6. Stopping Condition. Order and re-label the vertices of the new simplex


as x1, x2, . . . , xn+1 such that f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). If f(xn+1) −


f(x1) < ε, then stop, where ε > 0 is a small predetermined tolerance. Other-


wise, go to Step 2.


Figure 1.1 shows the effects of reflection, expansion, contraction and shrinkage for a


simplex in two dimensions using the standard values of the coefficients


ρ = 1, χ = 2, γ =
1


2
, and σ =


1


2
.


After more than thirty years of studying and applying the Nelder-Mead method, McKin-


non [64] shows that the Nelder-Mead algorithm can stagnate and converge to a nonoptimal


point even for very simple problems. However, Kelley [51, 52] proposes a test for sufficient


decrease which, if passed for all iterations, will guarantee convergence of the Nelder-Mead


iteration to a stationary point under some appropriate conditions. Moreover, he modified the


Nelder-Mead method by invoking a reconstruction of the simplex called “oriented restarts”


whenever the decrease test does not hold. This new orientation of the simplex is intended to
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compensate for the kind of stagnation that was exhibited in [64]. However, this modification


improves the robustness of the method, but it does not solve all the problems on stagnation


of the Nelder-Mead method.


1.3.2 Pattern Search methods


Pattern search methods direct the search towards a local minimum through a pattern con-


taining a certain number of points. Although the original pattern search algorithm has been


proposed by Hooke and Jeeves [47], the pattern search methods as well as other direct search


methods were not wildly applicable until fifteen years ago. The renaissance of pattern search


methods began in 1989 with Torczon’s Ph. D. thesis [87] and reached its mature stage by her


paper [88] in which she has presented the generalized pattern search (GPS) as a framework


of pattern search methods.


Pattern search methods invoke a pattern containing at least n+1 points in each iteration.


One of these points is the current iterate and the other point are generated along search


directions starting from the current iterate with a certain step size. The search directions


used to generate the pattern points consist of a finite set of positive spanning directions


in Rn. However, in order to achieve quicker convergence, other promising search directions


may be included in addition to the positive spanning directions. Whenever the search fails


to obtain a better movement, the step size is decreased in order to refine the search.


A sample GPS algorithm is stated in Algorithm 1.3.2 based on the one presented in [4].


In the initialization step of GPS, a set D of positive spanning directions in Rn should be


chosen beside the initial solution and step size. For example, the set D can be set either


{e1, . . . , en,−e1, . . . ,−en} or {e1, . . . , en,−e} , where ei ∈ Rn is the ith unit vector in Rn and


e ∈ Rn is the vector of ones. In each iteration of GPS, the mesh point set Mk and the poll


points set Pk based on the set D should be computed as


Mk = {y : y = xk + ∆kdz ∈ X, d ∈ D, z ∈ Z
|D|
+ }, (1.3.1)


Pk = {y : y = xk + ∆kd ∈ X, d ∈ Dk}, (1.3.2)


where Z+ is the set of all positive integers. Moreover, the step size ∆k is updated at each


iteration in the way that it remains the same as its previous setting, or it is increased


whenever an improvement is achieved, and it is decreased otherwise. More details about the


step size updating process is given in [88] in order to fulfill some assumptions needed in the


mathematical analysis of GPS.
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The scenario of GPS starts with fitting the initial parameters, and then two search stages


are invoked before the updating step. The first search stage is called Search Step in which


any search procedure can be defined by the user to generate trial solutions from Mk. The


main role of the Search Step is to achieve faster convergence of GPS. The other search stage


called Poll Step is invoked as a systematic search in order to explore a region around the


current solution. If an improvement is obtained, then the search is going on with the same


step size or with a bigger step size if more promising solutions are expected. Otherwise, the


current iterate is called a mesh optimizer and the step size is reduced in order to refine the


mesh. GPS may be terminated when the step size becomes small enough.


Algorithm 1.3.2. Generalized Pattern Search


1. Initialization. Choose an initial solution x0, choose a positive spanning


directions set D, choose a step size ∆0 > 0 and set the counter number


k := 0.


2. Search Step: Compute the mesh Mk as in (1.3.1). Invoke a search strategy


to get an improved point from Mk. If an improvement is obtained go to Step


4.


3. Poll Step. Choose the search direction set Dk ⊂ D to be used in computing


the poll set Pk as in (1.3.2). Evaluate f at all points in Pk.


4. Update Step. If an improved point obtained in Step 2 or 3, set xk+1 equal


to this improved point, and set ∆k+1 ≥ ∆k. Otherwise, set xk+1 := xk, and


∆k+1 < ∆k.


5. Termination Conditions. If the termination conditions are satisfied, then


stop. Otherwise, set k := k + 1, and go to Step 2.


1.4 Organization and Contributions


In the subsequent chapters, we will introduce new hybrid methods that deal with the con-


tinuous global optimization problems in their two forms; unconstrained and constrained
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problems. Below, we summarize the organization of the rest of the thesis as well as brief


descriptions of the main contributions done in this study.


In Chapter 2, we give a new approach of hybrid direct search methods with metaheuristics


of simulated annealing for finding a global minimum of a nonlinear function with continuous


variables. First, we suggest a Simple Direct Search (SDS) method, which comes from some


ideas of other well known direct search methods. Since our goal is to find global minima and


the SDS method is still a local search method, we hybridize it with the standard simulated


annealing to design a new method, called Simplex Simulated Annealing (SSA) method,


which is expected to have some ability to look for a global minimum. To obtain faster


convergence, we first accelerate the cooling schedule in SSA, and in the final stage, we


apply Kelley’s modification of the Nelder-Mead method on the best solutions found by the


accelerated SSA method to improve the final results. We refer to this last method as the


Direct Search Simulated Annealing (DSSA) method. The performance of SSA and DSSA is


reported through extensive numerical experiments on some well known functions.


In Chapter 3, a new algorithm called Simplex Coding Genetic Algorithm (SCGA) is


proposed by hybridizing genetic algorithm and Nelder-Mead method. In the SCGA, each


chromosome in the population is a simplex and the gene is a vertex of this simplex. Selection,


new multi-parents crossover and mutation procedures are used to improve the initial pop-


ulation. Moreover, Nelder-Mead method is applied to improve the population in the initial


stage and every intermediate stage when new children are generated. Applying Nelder-


Mead method again on the best point visited is the final stage in the SCGA to accelerate


the search and to improve this best point. The efficiency of SCGA is tested on some well


known functions.


In Chapter 4, we present a new approach of hybrid simulated annealing method for


minimizing multimodel functions called the simulated annealing heuristic pattern search


(SAHPS) method. Two subsidiary methods are proposed to achieve the final form of the


global search method SAHPS. First, we introduce the approximate descent direction (ADD)


method, which is a derivative-free procedure with high ability of producing a descent di-


rection. Then, the ADD method is combined with a pattern search method with direction


pruning to construct the heuristic pattern search (HPS) method. The last method is hy-


bridized with simulated annealing to obtain the SAHPS method. The experimental results


through well-known test functions are shown to demonstrate the efficiency of the SAHPS


method.


In Chapter 5, we introduce a continuous TS called Directed Tabu Search (DTS) method.


In the DTS method, direct-search-based strategies are used to direct a tabu search. These
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strategies are based on the well-known Nelder-Mead method and a new pattern search proce-


dure called adaptive pattern search. Moreover, we introduce a new tabu list conception with


anti-cycling rules called Tabu Regions and Semi-Tabu Regions. In addition, Diversification


and Intensification search schemes are employed. Numerical results of the DTS method are


reported through extensive numerical experiments on several well known functions.


In Chapter 6, a simulated-annealing-based method called Filter Simulated Annealing


(FSA) method is proposed to deal with the constrained global optimization problem. The


considered problem is reformulated so as to take the form of optimizing two functions; the


objective function and the constraint violation function. Then, the FSA method is applied


to solve the reformulated problem. The FSA method invokes a multi-start diversification


scheme in order to achieve an efficient exploration process. To deal with the considered


problem, a filter-set-based procedure is built in the FSA structure. Finally, an intensification


scheme is applied as a final stage of the proposed method in order to overcome the slow


convergence of SA-based methods. The computational results obtained by the FSA method


are reported and compared with some population-based methods.


Chapter 7 gives brief summary and conclusions of the main contributions in the thesis.


Finally, the unconstrained test problems and the constrained test problems used throughout


the study are given in Appendixes A and B, respectively.







Chapter 2


Direct Search SA for Unconstrained
Global Optimization


2.1 Introduction


One approach that recently has drawn much attention is to combine simulated annealing


(SA) method with local search methods to design more efficient methods with relatively faster


convergence than the pure SA methods. Direct search methods, as local search methods, have


got much attention in these combinations. For instance, SA was hybridized with simplex-


based direct search method in [13, 79]. In addition, Kvasnicka and Pospichal [56] proposed


a hybrid of controlled random search method, which is a generalization of the Nelder-Mead


method, and SA.


In this chapter, we will hybridize SA and direct search methods to deal with the uncon-


strained optimization problem


min
xǫRn


f(x), (2.1.1)


where f is a generally nonconvex, real valued function defined on Rn. First, we suggest


a simple direct search (SDS) method, which comes from some ideas of other well known


direct search methods. Since our goal is to find global minima and the SDS method is


still a local search method, we hybridize it with the standard simulated annealing to design


a new method, called simplex simulated annealing (SSA) method, which is expected to


have some ability to look for global minima. The final method, called the direct search


simulated annealing (DSSA) method, can be obtained by modifying SSA. To obtain faster


convergence, we first accelerate the cooling schedule in SSA, and in the final stage, we apply


Kelley’s modification of the Nelder-Mead method [51, 52] on the best solutions found by the


accelerated SSA to improve the final results. These two modifications on SSA will comprise
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the final method DSSA. The performance of SSA and DSSA is reported through extensive


numerical experiments on some well known functions. Comparing their performance with


that of other metaheuristics methods shows that SSA and DSSA are promising in practice.


Especially, DSSA is shown to be very efficient and robust.


To the author’s knowledge, there are two main previous results on hybridizing simulated


annealing with simplex methods. Press and Teukolsky [79] add a positive logarithmically


distributed variable, proportional to the control annealing temperature T , to the function


associated with every vertex of the simplex. Likewise, they subtract a similar random


variable from the function value at every new replacement point. Then, their method may


accept a new simplex whose actual function values at its vertices are not better than those


at the previous simplex. This method was subsequently studied by Cardoso et al. [13,


14]. The other main result was presented by Kvasnicka and Pospichal [56]. Their method


depends on the use of the simulated annealing acceptance in a controlled random search


method. More precisely, the controlled random search uses a simplex method on randomly


selected simplex sets from the population. So, to avoid being entrapped in local minima,


they applied simulated annealing acceptance on the updating procedure. The common


idea underlying these hybrid approaches and also our approach is to use simplex method to


generate new logical movements while applying simulated annealing. However, the approach


proposed in this chapter is different from the above mentioned approaches. We try to fix


some disadvantages of simulated annealing like its slowness and its wandering near the global


minimum in the final stage of search. So, we use a new simplex method to generate the


movements trying to explore the function domain more carefully while applying accelerated


simulated annealing, and also use another simplex method to accelerate the final stage in


the search.


This chapter is organized as follows. In Section 2.2, we state the description of the


proposed methods. Experimental results along with the initialization of some parameters


and the setting of the control parameters of the proposed methods are discussed in Section


2.3. The conclusion of the contribution of this chapter makes up Section 2.4.


2.2 The description of the proposed methods


In this section, we describe the SDS, SSA and DSSA methods and introduce the initial and


control parameters that are required by these methods. The values of these parameters used


in the experiments will be given in Section 2.3.
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2.2.1 Simple direct search (SDS)


Before we state the steps of the SDS method, we will introduce the main ideas which SDS


comes from. The most famous simplex based direct search method was proposed by Nelder


and Mead [72] in 1965. Nelder-Mead method has been studied extensively. In 1991, Dennis


and Torczon [23] proposed a new form of direct search method, called the multidirectional


search method, which can be considered an effective modification of Nelder-Mead method


in the parallel computing environment. The main difference between Nelder-Mead method


and the multidirectional search method is that the number of points used in the reflection


step equals n in the latter method and equals one in Nelder-Mead method. Recently, Tseng


[86] proposed a general framework of the simplex based direct search method which con-


tains Nelder-Mead and the multidirectional search methods as subclasses and uses a varying


number of reflected points in a flexible manner.


In the SDS method, we will start with an initial simplex with n + 1 vertices. Then, we


will try to get a better movement by reflecting the worst vertex in this simplex with respect


to the remaining vertices. If the new vertex is not better than the worst one, we reflect the


two worst vertices. If it fails to get a better point, then we reflect the three worst vertices


and so on. If we reach the case of reflecting the n worst vertices and we still fail to get any


better movement, then we will shrink the simplex.


Algorithm 2.2.1 below is a formal description of the SDS method. We require that the


initial simplex S be a non-degenerate simplex with vertices x1, x2, . . . , xn+1. We assume


throughout that the vertices are sorted according to the objective function values


f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). (2.2.1)


We will refer to x1 as the best vertex and xn+1 as the worst. Two scalar parameters ρ and


σ that represent coefficients of reflection and shrinkage, respectively, must be specified to


define the SDS method. We suppose that these parameters satisfy


ρ > 0, 0 < σ < 1. (2.2.2)


Algorithm 2.2.1. SDS(S, f, ǫ)


1. Initialization. Choose parameters ρ and σ satisfying (2.2.2). Select an


initial simplex S with vertices x1, x2, . . . , xn+1. Choose a sufficiently small


number ǫ > 0.
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2. Order. Order and re-label the vertices of S so that (2.2.1) holds.


3. If f(xn+1) − f(x1) ≤ ǫ, then terminate. Otherwise, go to Step 4.


4. Let k := 1. (k is the number of reflected points.)


5. If k ≤ n, then go to Step 6 to perform the reflection. Otherwise, go to Step 7


to perform the shrinkage.


6. Reflect. Compute the k reflected points {xr
i}n+1


i=n−k+2 by


xr
i := x + ρ(x − xi), i = n + 1, n, . . . , n − k + 2,


where x is the centroid of the set {x1, x2, . . . , xn−k+1}, i.e.,


x :=
1


n − k + 1


n−k+1∑


i=1


xi. (2.2.3)


Evaluate f(xr
i ), i = n+1, n, . . . , n−k+2. If minn−k+2≤i≤n+1{f(xr


i )} < f(x1),


then put xi := xr
i , i = n + 1, n, . . . , n − k + 2, and go to Step 2. Otherwise,


let k := k + 1 and go to Step 5.


7. Shrink. Evaluate the function f at the n new vertices


xi := x1 + σ(xi − x1), i = 2, 3, . . . , n + 1. (2.2.4)


Go to Step 2.


The coefficient of reflection ρ, in Algorithm 2.2.1, can be randomly chosen from the


interval (0.9, 1.1) to make more effective exploration. Algorithm 2.2.1 terminates when the


function values at all the vertices become close to each other. However, if the number of


iterations exceeds the predetermined allowed number of iterations, then we may terminate


the algorithm.


SDS as well as other Simplex methods maintains at each iteration a nondegenerate sim-


plex and the function values at the vertices. When one or more test points, along with their


function values, are computed, we proceed to the next iteration with a new simplex. A most


general approach of simplex methods was proposed by Tseng [86]. In this general approach,
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an integer m (1 ≤ m ≤ n) is chosen to specify the number of “good” vertices to be retained


in constructing the initial trial simplices. The other vertices will be reflected, and then either


expanded or contracted, at each iteration. If it fails to get a better point, then the whole


simplex will be shrunk with respect to the best vertex. However, in Algorithm 2.2.1, we


simply intensify the search by only repeating the reflection step in many directions and if it


fails to get a better point, then we shrink the simplex with respect to the best vertex. It is


noteworthy that the main aim of SDS is to enhance the exploration role to be a good seed


to generate the global optimization methods SSA and DSSA. So, we will not compare the


behavior of SDS with the other simplex based direct search methods in our experiments.


2.2.2 Simplex simulated annealing (SSA)


Since the SDS method is still a local search method, we hybridize it with the standard


SA to perform simplex simulated annealing (SSA) method, which is expected to have the


ability to look for a global minimum. We will apply this SA acceptance condition on the


reflected points in the SDS method to obtain SSA method. In other words, we allow the


possibility of accepting reflected points which do not include any better solution. Algorithm


2.2.2 describes the steps of SSA method and shows how we apply the simulated annealing


acceptance and the cooling schedule with the lower limit temperature Tmin.


Algorithm 2.2.2. SSA(S, f, ǫ, Tmin,M)


1. Initialization. Choose parameter σ ∈ (0, 1). Select an initial simplex S


with vertices x1, x2, . . . , xn+1. Set the parameters of the cooling schedule: the


initial temperature T, Tmin and M. Choose a sufficiently small number ǫ > 0.


2. Order. Order and re-label the vertices of S so that (2.2.1) holds.


3. If f(xn+1)− f(x1) ≤ ǫ or T < Tmin, then terminate. Otherwise, go to Step 4.


4. Repeat the following Steps 4.1-4.5 M times.


4.1. Let k := 1.


4.2. If k ≤ n, then go to Step 4.3 to perform the reflection. Otherwise, go to


Step 4.4 to perform the shrinkage.
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4.3. Reflect. Compute the k reflected points {xr
i}n+1


i=n−k+2 by


xr
i := x + ρ(x − xi), i = n + 1, n, . . . , n − k + 2,


where ρ is randomly chosen from the interval (0.9, 1.1) and x is defined


by (2.2.3). Evaluate f(xr
i ), i = n + 1, n, . . . , n − k + 2, and put f̂ :=


minn−k+2≤i≤n+1{f(xr
i )}.


4.3.1. If f̂ < f(x1), then go to Step 4.3.3.


4.3.2. Compute p := exp{−(f̂ − f(x1))/T} and choose u randomly from the


interval (0, 1). If p ≥ u, then go to Step 4.3.3. Otherwise, let k := k + 1 and


go to Step 4.2.


4.3.3. Set xi := xr
i , i = n + 1, n, . . . , n − k + 2. Go to Step 4.5.


4.4. Shrink. Shrink the simplex by determining n vertices by (2.2.4). Go to


Step 4.5


4.5. Sort. Sort the vertices of S so that (2.2.1) holds.


5. Reduce the temperature T and go to Step 3.


In Algorithm 2.2.2, the coefficient of reflection ρ is determined by choosing a random


number from the interval (0.9, 1.1) . SSA method terminates when the function values at


the vertices are close to each other or the cooling schedule is completed. The main role of


M, the number of inner iterations per each temperature, is to get closer to the equilibrium


because it has been proved [57, 58] that when M is sufficiently large and the temperature T


is slowly reduced, the solution x will eventually be frozen at the global minimum.


2.2.3 Direct search simulated annealing (DSSA)


It is known that the standard SA may quickly approach the neighborhood of the global


minimum but has a difficulty in obtaining some required accuracy. So, it is suitable to finish


the algorithm with a faster convergent method. According to this idea, we modify SSA


method to obtain the DSSA method as follows:
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1. Accelerate the cooling schedule in SSA, i.e., use a smaller reduction factor for the


temperature T.


2. Set the coefficient of shrinkage σ equals one to maintain the size of the initial simplex


large enough. Actually, setting 0 < σ < 1 is effective for achieving good behavior near


a minimum in SSA, especially, in the final stage of search. However, in DSSA, the


situation is different because we use the simplex simulated annealing part in exploring


the whole domain and storing the best visited point in a list. So, perfect behavior


near a minimum is not pursued in this part but it will be considered in the last part of


DSSA using a complete local search method starting from each point in the best point


list. In fact, it is known that local search methods have much better behavior near a


minimum than global methods.


3. Store the best solutions found by the accelerated SSA in a list called “best list” as


mentioned earlier and apply another local search method starting from each element


of the best list to improve further these best solutions.


According to these modifications of SSA, we can state the steps of the DSSA method in


Algorithm 2.2.3.


Algorithm 2.2.3. DSSA(S, f, ǫ, Tmin,M)


1. Initialization. Select an initial simplex S with vertices x1, x2, . . . , xn+1. Set


the parameters of the cooling schedule: the initial temperature T, Tmin and


M. Set the size of the best list. Choose a sufficiently small number ǫ > 0.


2. Order. Order and re-label the vertices of S so that (2.2.1) holds.


3. Best list. Store the m best points in the best list.


4. If f(xn+1) − f(x1) ≤ ǫ or T < Tmin, then go to Step 7. Otherwise, go to Step


5.


5. Repeat the following Steps 5.1-5.4 M times.


5.1. Let k := 1.
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5.2. Reflect. Compute the k reflected points {xr
i}n+1


i=n−k+2 by


xr
i := x + ρ(x − xi), i = n + 1, n, . . . , n − k + 2,


where ρ is randomly chosen from the interval (0.9, 1.1) and x is defined


by (2.2.3). Evaluate f(xr
i ), i = n + 1, n, . . . , n − k + 2, and put f̂ :=


minn−k+2≤i≤n+1{f(xr
i )}.


5.2.1. If f̂ < f(x1), then go to Step 5.2.3.


5.2.2. Compute p := exp{−(f̂ − f(x1))/T} and choose u randomly from the


interval (0, 1). If p ≥ u, then go to Step 5.2.3. Otherwise, let k := k + 1 and


go to Step 5.4.


5.2.3. Set xi := xr
i , i = n + 1, n, . . . , n − k + 2. Go to Step 5.3.


5.3. Sort. Sort the vertices of S so that (2.2.1) holds and update the best list.


5.4. If k ≤ n, then go to Step 5.2.


6. Reduce the temperature T and go to Step 3.


7. From each point in the best list, construct a smaller simplex. Then, apply


Kelley’s modification of the Nelder-Mead method on each of these simplices.


In the DSSA method, we use the Kelley’s modification [51] of the Nelder-Mead method


to refine the points stored in the best list.


2.3 Experimental results


The performance of SDS, SSA and DSSA methods has been evaluated to show how simu-


lated annealing can affect the local search method SDS toward its generalization in global


optimization. Moreover, the comparison between the results of SSA and DSSA shows the


effect of the acceleration of convergence to improve the final results. Finally, the performance


of our final method DSSA has been compared with some other metaheuristics methods. The
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comparison was made using a set of some well known functions, which are listed in Appendix


A.


2.3.1 Setting of parameters


Some initial parameters and control parameters must be specified to define the complete


implementation of the methods SDS, SSA and DSSA.


Choosing the initial simplex


First, we randomly choose an initial orientation x1 from some predetermined range of initial


points for each function. Then, we take a step in each coordinate direction, called the edge


of the simplex, to construct a right-angled simplex with vertices x1, x2, . . . , xn+1. The edge


length of the simplex is chosen to fit the range of initial points for each function. For all test


functions the edge length is varied from 0.125 to 4 depending on the range of initial points


of each function. Moreover, we start with some suitable edge length and if the difference


of the functional values at the simplex vertices is very small, then this edge length will be


doubled until we get an improvement on the condition of the initial simplex or reach the


maximum allowed edge length. This method of choosing the initial simplex is applied on all


methods SDS, SSA and DSSA.


The cooling schedule


The cooling schedule consists of the initial temperature Tmax, the cooling function, the epoch


length M and the stopping condition. As in Kirkparick et al. [53], we choose the value of


Tmax large enough to make the initial probability of accepting transition close to 1. We set


the initial probability equal to 0.9. Then, Tmax is calculated from the equation


Tmax = −f(xn+1) − f(x1)


ln(0.9)
.


The temperature is reduced with a so-called cooling function F, i.e., the temperature at


the kth epoch is determined with Tk = F (Tk−1). In the standard SA, this equation will be


Tk = αTk−1, where α ∈ [0.5, 0.99] is a parameter called cooling ratio. In SSA algorithm,


we set α = 0.9. Since the DSSA algorithm is designed by accelerating SSA, we set α = 0.5,


and the computational experience shows that this value of α gives good results for most of


the test functions. However, for some hard functions; Shekel functions, Shubert function
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and Griewank function, we have observed that it is more effective to slow down the cooling


schedule by setting α = 0.7. Epoch length M is the number of trials allowed at each


temperature and we set it equal to 10n in SSA and n in DSSA. Finally, the stopping condition


is comprised of the minimum allowed temperature Tmin which equals 10−5 × Tmax in both


methods SSA and DSSA.


Termination criteria


The termination criteria of SDS, SSA and DSSA algorithms are intended to reflect the


progress of these algorithms. So, we terminate these algorithms when the function values at


all the vertices become close to each other, i.e.,


f(xn+1) − f(x1) ≤ ǫ,


where the tolerance ǫ is a small positive number and we set it 10−6 in SDS, SSA and 10−8 in


DSSA. Moreover, SSA algorithm and the simulated annealing part of the DSSA algorithm


can also be terminated if the cooling schedule is completed. However, if the number of


iterations exceeds the predetermined allowed number of iterations, then we may terminate


the algorithms. This maximum number equals 50n in SDS and DSSA and equals 1000n


in SSA. We remark that, for Easom function, DSSA has had some difficulty in finding its


minimum because it lies in a very narrow hole and outside this narrow hole the graph the


function is almost flat. Termination before reaching this narrow hole could be avoided by


repeating the algorithm with reducing the edge length of the simplex in each time until we


get a very small edge length equal to 10−4.


Best list


The remaining parameter is the number of the best points stored during the search in the


DSSA method. This parameter is set equal to n except for the two types hard functions,


Shekel functions and Griewank function, for which we set it equal to 2n.


2.3.2 Numerical results


To examine the performance of our algorithms, we tested them on some well known functions


[13, 15, 92], which are given in Appendix A. The behavior of these test functions varies;


we have functions with some studded local minima such as Goldstein and Price function,
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Table 2.1: Percentage of successful trials for SDS, SSA and DSSA


Function SDS SSA DSSA Function SDS SSA DSSA
RC 100 99 100 S4,5 14 61 81
ES 12 68 93 S4,7 19 60 84
GP 41 91 100 S4,10 15 59 77
B1 76 100 100 R5 4 67 100
HM 100 100 100 Z5 100 87 100
SH 59 57 94 H6,4 52 49 92
R2 12 93 100 GR 36 82 90
Z2 100 99 100 R10 0 78 100
DJ 100 100 100 Z10 0 66 100
H3,4 88 86 100


functions with many crowded local minima such as Shubert function, functions with a global


minimum lying in a very narrow hole such as Easom function, functions with a narrow valley


such as Rosenbrock function, and smooth functions such as De Joung function and Zakharov


function. For each function we made 100 trials with different starting points. The average


number of function evaluations and the average error are related to only successful trials.


First, to demonstrate the effect of hybridizing simulated annealing with SDS to design


SSA and DSSA, we show in Table 2.1 the percentage of successful trials. From Table 2.1,


we see that the rate of success for SSA is generally better than that for SDS. However, the


behavior of SDS for Zakharov function Z5 is better than that of SSA due to the fixed cooling


schedule in SSA for all functions. We note that the behavior of these methods has changed


drastically when the dimension n of function Zn is increased to 10. Moreover, Table 2.1


clearly shows that the behavior of DSSA is the best of the three methods in terms of the


rate of success.


In Table 2.2, we show the effect of accelerating the cooling schedule in SSA and applying


a local search method on the final results obtained by the accelerated SSA to design DSSA.


The results in Table 2.2 reveal that the acceleration procedure successfully affects the rate


of success, the average number of function evaluations (Av. f -evals.), and the average error


(Av. Error).


To show to what extent DSSA succeed in accelerating SA, we compare its results with


other simplex SA method like SIMPSA and NE-SIMPSA [13]. Table 2.3 shows the average
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Table 2.2: Results of SSA and DSSA
Rate of Success Av. f -evals. Av. Error


f SSA DSSA SSA DSSA SSA DSSA
RC 99 100 12225 118 9E-3 4E-7
ES 68 93 4318 1442 4E-3 3E-9
GP 91 100 11238 261 5E-3 4E-9
B1 100 100 4564 252 7E-3 5E-9
HM 100 100 10157 225 0.01 5E-8
SH 57 94 10237 457 0.1 9E-6
R2 93 100 7387 306 3E-3 4E-9
Z2 99 100 5868 186 8E-3 4E-9
DJ 100 100 6743 273 3E-3 5E-9
H3,4 86 100 17756 572 0.1 2E-6
S4,5 61 81 7856 993 6E-3 2E-6
S4,7 60 84 9047 932 0.01 6E-7
S4,10 59 77 9062 992 0.01 1E-5
R5 67 100 11115 2685 0.03 3E-9
Z5 87 100 11527 914 0.03 5E-9
H6,4 49 92 37467 1737 0.02 2E-6
GR 82 90 12208 1830 0.1 5E-9
R10 78 100 22306 16785 0.02 7E-9
Z10 66 100 23883 12501 0.04 7E-9


Table 2.3: Average number of function evaluations in DSSA and other simplex SA methods


Function DSSA SIMPSA NE-SIMPSA
R2 306 10780 4508
R4 1682 21177 (99%) 3053 (94%)
CV 1592 22615 3443
DX 6941 52556 (93%) 8613 (94%)


number of function evaluations obtained by each method starting from the same starting


point as in [13]. The data for SIMPSA and NE-SIMPSA are taken from [13]. Actually, the


reference [13] reports many results for SIMPSA and NE-SIMPSA depending on the search


domain but we prefer to make our method more general without any constrains during the


search. Moreover, we have chosen the best results obtained by SIMPSA and NE-SIMPSA


from Table 2.3 in [13] to make the comparison simpler and fair.


Next we compare the DSSA method with three other metaheuristics methods based on


simulated annealing, tabu search, and genetic algorithm. These methods are:


1. Enhanced Continuous Tabu Search (ECTS) [15].
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2. Enhanced Simulated Annealing (ESA) [85].


3. Real-value Coding Genetic Algorithm (RCGA) [11].


Table 2.4 shows the average number of function evaluations needed by each algorithm.


The results of ECTS, ESA and RCGA are taken from their original references [15, 85, 11].


For all test functions, we use the same condition as that used by ECTS [15] to judge the


success of a trial which is given by


|f ∗ − fDSSA| < ǫ1 |f ∗| + ǫ2, (2.3.1)


where fDSSA refers to the best function value obtained by DSSA and f ∗ refers to the exact


global minimum. We set ǫ1 = 10−4 and ǫ2 = 10−6. The ESA method used the same condition


for testing the successful trials with smaller ǫ1 and ǫ2. However, for the results marked by


(⊗) in Table 2.4, their original corresponding data in Table 2 in [15] and Table I in [85] seem


to contain some inconsistencies. Since the authors of [15] used the same condition as (2.3.1)


to test the successful trials, the average errors for the functions R2, R5 and Z5 must be less


than 10−6 because f ∗ = 0 for all these functions. However, the average errors corresponding


to these functions are reported to be greater than 10−6. For instance, the average error


corresponding to the function R5 in Table 2 in [15] is 0.08, i.e., there are some trials that did


not satisfy the successful trial condition but the authors reported that the rate of success


equals 100%. Moreover, the results corresponding to the functions RC,ES,GP, H3,4 and


H6,4 in Table 2 in [15] also contain the same kind of inconsistencies. For the same reasons,


the ESA results marked by (⊗) suffer from the same inconsistencies. The comparison given


in Table 2.4 shows that DSSA outperforms the others for some functions and has similar


behavior for other functions. However, Table 2.5 shows that DSSA generally produces more


accurate solutions than the others. It is noteworthy that the efficiency of the simplex method


dwindles with dimensionality, which explains the greatest margin of superiority for DSSA


on Z5 while it does not outperform the others on Z10.


2.4 Conclusion


The simulated annealing method usually suffers from slow convergence due to its random


nature of movements. Moreover, simulated annealing also suffers from the difficulty in ob-
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Table 2.4: Average number of function evaluations in DSSA and other metaheuristics


Function DSSA ECTS ESA RCGA
RC 118 245⊗ - 490
ES 1442 (93%) 1284⊗ - 642
GP 261 231⊗ 783⊗ 270
SH 457 (94%) 370 - 946
R2 306 480⊗ 796 596
Z2 186 195 15820 437
DJ 273 338 - 395
H3,4 572 548⊗ 698⊗ 324
S4,5 993 (81%) 825 (75%) 1137⊗ (54%) 1158 (62%)
S4,7 932 (84%) 910 (80%) 1223⊗ (54%) 1143 (70%)
S4,10 992 (77%) 989 (75%) 1189⊗ (50%) 1235 (58%)
R5 2685 2142⊗ 5364 4150 (60%)
Z5 914 2254⊗ 96799 1115
H6,4 1737 (92%) 1520⊗ 2638⊗ 937
R10 16785 15720 (85%) 12403⊗ 8100 (70%)
Z10 12501 4630 15820⊗ 2190


Table 2.5: Average errors in function value in DSSA and other metaheuristics


Function DSSA ECTS ESA RCGA
RC 4E-7 5E-2 - 3E-3
ES 3E-9 1E-2 - 3E-9
GP 4E-9 2E-3 9E-3 1E-9
SH 9E-6 1E-3 - 6E-4
R2 4E-9 2E-2 - 1E-12
Z2 4E-9 2E-7 - 1E-10
DJ 5E-9 3E-8 - 6E-4
H3,4 2E-6 9E-2 5E-4 7E-3
S4,5 2E-6 1E-2 4E-3 1E-3
S4,7 6E-7 1E-2 8E-3 1E-4
S4,10 1E-5 1E-2 4E-2 4E-3
R5 3E-9 8E-2 - 1E-1
Z5 5E-9 4E-6 - 9E-4
H6,4 2E-6 5E-2 6E-2 3E-2
R10 7E-9 2E-2 4E-2 1E-1
Z10 7E-9 2E-7 2E-3 3E-3
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taining some required accuracy although it may quickly approach the neighborhood of the


global minimum. In this chapter, we have focused on the importance of creating direct-


search-based logical movements while applying simulated annealing and the importance of


accelerating the final stage of simulated annealing by using a faster convergent method.


The obtained results demonstrate that these two concepts can be successfully realized by


effectively combining direct search methods with simulated annealing. Moreover, the exper-


imental results show that the DSSA method is very efficient and robust.
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Chapter 3


Simplex Coding GA for


Unconstrained Global Optimization


3.1 Introduction


Genetic algorithms (GAs) are one of the most efficient metaheuristics [34, 68], that have


been employed in a wide variety of problems. However, GAs, like other metaheuristics,


suffer from the slow convergence that brings about the high computational cost. Recently,


several new approaches have been developed to furnish GAs with the ability to simulate the


fast convergence of local search methods. Most of these approaches hybridize local search


methods with GAs to obtain more efficient methods with relatively faster convergence. This


chapter pursues in that direction and proposes a new hybrid method that combines GA with


Nelder-Mead method [72] to deal with the unconstrained optimization problem


min
xǫRn


f(x), (3.1.1)


where f is a generally nonconvex, real valued function defined on Rn. In the combined


method, called the simplex coding genetic algorithm (SCGA), we consider the members of


the population to be simplices, i.e., each chromosome is a simplex and the gene is a vertex


of this simplex. Selection, crossover and mutation procedures are used to improve the initial


population. Moreover, Nelder-Mead method is applied to improve the population in the


initial stage and every intermediate stage when new children are generated. In the SCGA,


we use the linear ranking selection scheme [9] to choose some fit parents to be mated. Then,
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using a new scheme of a multi-parents crossover, new children are reproduced and a few of


them are mutated. Applying Kelley’s modification [51, 52] of Nelder-Mead method on the


best point visited is the final stage in the SCGA to accelerate the search and to improve this


best point.


There have been some attempts to utilize the idea of hybridizing local search methods


with GA. Simple hybrid methods use the GA or local search methods to generate the points


for the new population and then apply the other technique to improve this new population


[35, 96]. Other hybrid methods do some modifications in the GA operations; selection,


crossover and mutation using local search methods [71, 80, 94, 95]. However, the method


proposed in this chapter is different from those hybrid methods as we will see in the next


section. The next section briefly reviews some hybrid GA methods that use Nelder-Mead


method. The description of the proposed method is given in Section 3.3. Section 3.4 discusses


the experimental results along with the initialization of some parameters and the setting of


the control parameters of the proposed method. The conclusion of the contribution of this


chapter follows the experimental results and makes up Section 3.5.


3.2 Simplex-Based Genetic Algorithms


In this section, we review some earlier methods that hybridize GAs and simplex methods.


The Nelder-Mead method is the most popular simplex-type method that has been used to


design a hybrid simplex-based GA method. There have been several attempts to hybridize


GA with simplex-based direct search methods. Remarkable features underlying these hybrid


methods are global exploration and parallelism in GA, and local exploitation in direct search


methods. Moreover, both GA and direct search methods only use the function values rather


than derivatives, which makes those hybrid methods applicable to a broad class of problems.


In the following, we briefly summarize some of the hybrid simplex-based GA methods.


Renders and Bersini method [80]. In this method the population is divided into λ


groups of n+1 chromosomes. Then, one of the following operations is applied to each group


with some predetermined probabilities to reproduce exactly one child.


• Discrete crossover. Each gene in a child can be chosen from the corresponding gene


in a parent which is randomly chosen from the group. This child replaces the worst


parent in this group.


• Average crossover. The average of all n + 1 parents in the group replaces the worst


parent in this group.
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• Simplex crossover. Apply the Nelder-Mead method with slight modification to repro-


duce a new point.


The algorithm terminates if some convergence criterion is reached.


Yang and Douglas method [94]. M points are selected randomly from the search


space to form the initial population. GA’s reproduction schemes (selection, crossover, and


mutation) are used to generate k (0 < k < M) children. The rest of the offspring will be


generated by repeating the following procedure M − k times. Using some selection scheme,


construct a subcommunity of S points from the M old points. Try to get a better child


by applying a simplex method. Otherwise, a child is generated randomly within the search


space. If the best point of the new generation is not better than the best one of the old


generation, then replace the worst point of the new generation by the best point of the old


generation. Moreover, some comparisons are made between the old generation and the new


one to copy some of the best points in the old generation into the new one. The algorithm


terminates if either a predetermined iteration number is reached or an acceptable objective


function value is obtained.


Yen, Liao, Lee, and Randolph method [95]. This simplex GA hybrid method


uses a modification of the Nelder-Mead method called the concurrent simplex method. The


initial population consists of M chromosomes and the concurrent simplex method is applied


to the top S (n < S < M) chromosomes in the population to produce S − n children. The


top n chromosomes are copied to the next generation. The GA’s reproduction operations,


crossover and mutation, are used to generate the remaining M − S chromosomes. The


algorithm terminates when it satisfies a convergence criterion or reaches a predetermined


maximum number of fitness evaluations.


Musil, Wilmut, and Chapman method [71]. The initial population consists of M


chromosomes generated at random. The cycle starts by selecting n + 1 random pairs of


parents from the population. The binary operations (crossover and mutation) are applied


on the parents to reproduce children. One child is selected from each of the n + 1 pairs


of children and this results in n + 1 new children. The Nelder-Mead method runs for k


iterations starting with the simplex that consist of these n+1 children. The point that gives


the lowest objective function value obtained by Nelder-Mead iterations replaces the one with


the highest objective function value in the population. The cycle is terminated when the


parameters in the population have converged. At this point, other Nelder-Mead iterations


start with the chromosome with the lowest objective function value in the population to


refine this chromosome and to get the solution.


Our hybrid method SCGA presented in the next section is different from these hybrid
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methods in many aspects. One of the main differences lies in the coding representation. We


use a simplex coding in which the chromosome is a simplex and its genes are the vertices


of this simplex. It is expected that using this coding type and applying some iteration of


Nelder-Mead method starting from each chromosome in the initial population and from each


child chromosome will increase the local exploitation and will improve these chromosomes.


The other main difference consists in the crossover operation. We introduce a new kind


of multi-parents crossover that gives the chance for more than two parents to cooperate in


reproducing children and exploring the region around these parents.


3.3 Description of SCGA


In this section, we describe the proposed method SCGA. The SCGA uses the main functions


of the GA; selection, crossover and mutation, on a population of simplices to encourage the


exploration process. Moreover, the SCGA tries to improve the initial members and new


children by applying a local search method to enhance the exploitation process. This kind


of exploration-exploitation procedure is sometimes called “Memetic Algorithm”, see [70].


Finally, the SCGA applies an effective local search method on the best point reached by the


previous exploration-exploitation procedure. The purpose of this local search is to accelerate


the final stages of the GA procedure. This strategy is expected to be effective because the GA


has a difficulty in obtaining some required accuracy although the GA may quickly approach


the neighborhood of the global minimum.


3.3.1 Initialization


The SCGA starts with the following initialization procedure:


1. Generate the initial population P0 that consists of M chromosomes (simplices), i.e.,


P0 =
{


Sj : Sj =
{
xj,i


}n+1


i=1
; xj,i ∈ Rn, j = 1, . . . ,M


}
.


2. Order the vertices of each simplex Sj, j = 1, 2, . . . ,M, so that


f(xj,1) ≤ f(xj,2) ≤ · · · ≤ f(xj,n+1). (3.3.1)


3. Apply a small number of iterations of the Nelder-Mead method with each Sj as an


initial simplex to improve the chromosomes in the initial population P0.
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4. Order the simplices Sj = {xj,i}n+1
i=1 , j = 1, . . . ,M in the improved population P0 so


that


f(x1,1) ≤ f(x2,1) ≤ · · · ≤ f(xM,1). (3.3.2)


3.3.2 GA loop


Repeat the following procedures; selection, crossover and mutation, and reduction of the


population, described below until the stopping conditions are not satisfied.


Selection


We describe how we select the set Q ⊆ P of the members that will be given the chance to


be mated from the current population P . For each generation, the size of Q is the same as


that of P but more fit members in P are chosen with higher probability to be included in


Q. We use Baker’s scheme called “linear ranking selection” [9] to select the new members in


Q. In this scheme, the chromosomes Sj ∈ P, j = 1, 2, . . . ,M, are sorted in the order of raw


fitness as in (3.3.2), and then the probability of including a copy of chromosome Sj into the


set Q is calculated by


ps(S
j) =


1


M


(
ηmax − (ηmax − ηmin)


j − 1


M − 1


)
,


where ηmin = 2 − ηmax and 1 ≤ ηmax ≤ 2. Using these probabilities, the population is


mapped onto a roulette wheel, where each chromosome Sj is represented by a space that


proportionally corresponds to ps (Sj) . Chromosomes in the set Q are chosen by repeatedly


spinning the roulette wheel until all positions in Q are filled.


Crossover and mutation


Choose a random number from the unit interval (0, 1) for each chromosome in Q. If this


number is less than the predetermined crossover probability pc, then this chromosome is


chosen as a parent. Repeat the following steps until all parents are mating.


1. Select a number nc from the set {2, . . . , n + 1} randomly to determine the number of


parents chosen to be mated together.


2. Compute new children Ci =
{
xi,k


c


}n+1


k=1
, i = 1, . . . , nc by


xi,k
c = xk + d ri, k = 1, . . . , n + 1, (3.3.3)
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Figure 3.1: An example of SCGA crossover in two dimensions.


where ri, i = 1, . . . , nc, are random vectors of length less than 1, d is the maximum


distance between pairs of parents and xk is the average of the kth vertices of all parents,


i.e.,


xk =
1


nc


nc∑


i=1


xi,k, k = 1, . . . , n + 1. (3.3.4)


Figure 3.1 shows an example of crossover in two dimensions. In Figure 3.1(a), we use


Equations (3.3.4) to compute the dotted simplex whose vertices are the average of the


vertices of the parents S1, S2 and S3. By using Equations (3.3.3), we move this dotted


simplex randomly inside the circle to create the children C1, C2 and C3, as in Figure


3.1(b).


3. Choose a random number from the unit interval (0, 1) for each child Ci, i = 1, . . . , nc.


If this number is less than the predetermined mutation probability pm, then this child


is mutated. Let Im be the index set of those children who are mutated.


4. Apply the following procedure for each child Ci =
{
xi,k


c


}n+1


k=1
, i ∈ Im. Select a number


ni from the set {1, 2, . . . , n + 1} randomly to determine the vertex that is reflected as


a mutation. Compute the mutated child C̃i =
{
xi,k


m


}n+1


k=1
by


xi,k
m = xi,k


c , k = 1, . . . , ni − 1, ni + 1, . . . , n + 1,
xi,ni


m = x + u (x − xi,ni
c ) ,


where u is a random number in the interval [0.5, 1.5] and x is the average of vectors


xi,1
c , . . . , xi,ni−1


c , xi,ni+1
c , . . . , xi,n+1


c . Replace the child Ci by the mutated one C̃i. Figure
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x1,1
c = x1,1


m


x1,3
c = x1,3


m


x1,2
c


p1


p2


Figure 3.2: An example of SCGA mutation in two dimensions.


3.2 shows an example of mutation in two dimensions, where the mutated simplex


consists of the vertices x1,1
m , x1,2


m and x1,3
m , where the vertex x1,2


m is randomly chosen on


the line segment p1p2.


5. Apply a small number of iterations of the Nelder-Mead method with each child Ci, i =


1, . . . , nc as an initial simplex to improve the chromosomes.


6. The population in the next generation consists of the M best ones from the set P ∪
{Ci}nc


i=1 . Re-order the chromosomes in the new population so that (3.3.1) and (3.3.2)


hold.


Reduction of the population


After every predetermined number of generations, remove some of the worst members in the


population P .


3.3.3 Acceleration in the final stage


From the best point obtained in GA loop, construct a small simplex. Then, apply Kelley’s


modification [51, 52] of the Nelder-Mead method on this simplex to obtain the final solution.
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x1


x2


l1 u1


u2


l2


Figure 3.3: Initial population in two dimensions.


3.4 Experimental Results


3.4.1 Parameter setting


In this subsection, we specify suggested values of the initial and control parameters.


Generating the initial population


Let [L,U ] = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, 2, . . . , n} be the domain in which the initial


points are chosen and let this domain be divided into an equal distance grid. The pop-


ulation consists of simplices distributed on this grid and in each coordinate direction there


are µ simplices, i.e., the size M of population equals µn. We distribute the simplices in such


a way that each simplex is put in a neighborhood of one of the knots in the grid. We consider


all possible positions of simplices if n = 2, and some best positions of them if 3 ≤ n ≤ 10.


However, for n > 10, we employ another procedure for choosing the initial simplices as will


be discussed later. From each one of these main vertices we construct a right-angled simplex


by taking a step in each coordinate direction. This step size is called edge length. Figure


3.3 shows an example of the distribution of the population in two dimensions. The values


of the parameters used in generating the initial population are given as follows.


1. The number µ of simplices per coordinate direction is varied from 2 to 5 according


the estimated density of the local minima of the test function and the number n of


variables.
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2. The edge length is set equal to max1≤i≤n (ui − li) /10.


3. The number of Nelder-Mead iterations in the local search for the initial population is


set equal to 2.


In the case of n > 10, the main vertices in the initial population are generated in a


different way. First, we choose a random point x1,1 ∈ [L,U ] . Then we generate the other


main vertices xj,1, j = 2, . . . ,M, by using the following procedure:


1. Generate xj,1.


2. If min1≤k≤j−1 max1≤i≤n |xj,1
i − xk,1


i |/ (ui − li) ≥ h for some prescribed h ∈ (0, 1), then


accept this vertex xj,1. Otherwise, return to step 1.


We set the probability of accepting the new main vertex equal to 0.7. From these main


vertices, we construct the simplices of the initial population as in the case of n ≤ 10.


GA loop parameters


The steps of the GA loop have been described in the previous section. Here we specify the


values of the parameters used in this loop.


1. The control parameter ηmax in the selection procedure is chosen to be 1.1 according to


the original setting in [9].


2. The crossover probability pc and the mutation probability pm are set equal to 0.6 and


0.1, respectively.


3. The number of Nelder-Mead iterations in the local search for the new children is fixed


at 2.


4. At every 3n generations, we remove the n worst chromosomes from the population


unless the number of its chromosomes is less than 2n.


Termination criteria


The SCGA is terminated when one of the following termination conditions is satisfied.
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1. The function values at all vertices of the simplex that contains the best point become


close to each other, i.e.,


f(x1,n+1) − f(x1,1) ≤ ǫ,


where the tolerance ǫ is a small positive number and set equal to 10−8.


2. The number of generations exceeds the predetermined number that is set equal to


min (10n, 100) .


3.4.2 Numerical results


The performance of the SCGA was tested on a number of well known functions [11, 12, 37,


94, 95], which are given in Appendix A. The behavior of these test functions varies to cover


many kinds of difficulties that face unconstrained global optimization problems. For each


function we made 100 trials with different initial populations. To judge the success of a trial,


we used the condition


|f ∗ − f̂ | < ǫ1 |f ∗| + ǫ2, (3.4.1)


where f̂ refers to the best function value obtained by SCGA, f ∗ refers to the known exact


global minimum, and ǫ1 and ǫ2 are small positive numbers. We set ǫ1 and ǫ2 equal to 10−4


and 10−6, respectively, when n ≤ 10, but for n > 10 we relax this test condition by increasing


the value of ǫ2 to 10−4. The results are shown in Table 3.1, where the average number of


function evaluations (Av. f -evals.) and the average error (Av. Error) are related to only


successful trials. Table 3.1 shows that the SCGA reached the global minima in a very good


success rate for the majority of the tested functions. Moreover, the numbers of function


evaluations and the average errors show the efficiency of the method.


In Table 3.2, we compare the results of the SCGA with those of three other metaheuristic


methods. These methods are:


1. Real-value Coding Genetic Algorithm (RCGA) [11].


2. Continuous Genetic Algorithm (CGA) [16].


3. Direct Search Simulated Annealing (DSSA) proposed in Chapter 2.
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Table 3.1: Results of SCGA
f Rate of success Av. f -evals. Av. Error
RC 100 173 3.62e-07
ES 100 715 4.97e-09
GP 100 191 4.81e-09
HM 100 176 5.23e-08
SH 98 742 8.83e-06
MZ 100 179 3.40e-06
B1 99 460 5.11e-09
B2 99 471 5.43e-09
B3 100 468 5.14e-09
R2 100 222 4.60e-09
Z2 100 170 4.68e-09
DJ 100 187 5.12e-09
H3,4 100 201 2.14e-06
S4,5 79 1086 3.28e-07
S4,7 81 1087 4.06e-05
S4,10 84 1068 9.81e-06
R5 90 3629 5.88e-09
Z5 100 998 7.10e-09
H6,4 99 989 2.00e-06
GR 100 906 8.46e-09
R10 90 6340 1.85e-08
Z10 100 1829 1.76e-08
R20 90 33134 7.59e-05
Z20 100 33106 5.79e-07
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Table 3.2: Average number of function evaluations in SCGA and other metaheuristics


Function SCGA RCGA [11] CGA⊗ [16] DSSA
RC 173 490 620 118
ES 715 642 1504 1442 (93%)
GP 191 270 410 261
HM 176 - - 225
SH 742 (98%) 946 575 457 (94%)
MZ 179 452 - -
B1 460 (99%) - 430 252
B2 471 (99%) 493 - -
R2 222 596 960 306
Z2 170 437 620 186
DJ 187 395 750 273
H3,4 201 342 582 572
S4,5 1086 (79%) 1158 (62%) 610 (76%) 993 (81%)
S4,7 1087 (81%) 1143 (70%) 680 (83%) 932 (84%)
S4,10 1068 (84%) 1235 (58%) 650 (81%) 992 (77%)
R5 3629 (90%) 4150 (60%) 3990 2685
Z5 998 1115 1350 914
H6,4 989 (99%) 973 970 1737 (92%)
GR 906 - - 1830 (90%)
R10 6340 (90%) 8100 (70%) 21563 (80%) 16785
Z10 1829 2190 6991 12501


The figures for RCGA and CGA methods in Table 3.2 are taken from the original ref-


erences. For those results of the CGA which are marked by (⊗) in Table 3.2, their original


corresponding data in Table 1 in [16] seem to contain some inconsistencies. In fact, since


the same condition as (3.4.1) is used in CGA [16] to test the successful trials, the average


errors for the tested functions must be less than the right-hand side of (3.4.1) for all these


functions. However, the average errors corresponding to the tested functions in [16] are


reported to be greater than the right-hand side of (3.4.1). The comparison given in Table


3.2 shows the SCGA outperforms the others for many of those functions.


Next, we try to compare SCGA with some of the other simplex-based GA methods de-


scribed in Section 3.2. Actually, for many reasons, it is not so easy to make clear comparisons


between SCGA and other simplex-based GA methods of [71, 80, 94, 95]. In fact, some of


these hybrid methods such as [71, 95] are concentrated on a certain complicated specific
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Table 3.3: The results for F1 function


Function evaluations SCGA Simplex GA [94]
Average 351 660
Min 259 32
Max 452 9538


problem. Moreover, for some of these methods, computational experiments reported in their


original references do not show much helpful information for comparison. For instance, the


successful trial test is not mentioned in [94, 95] and the number of the test problems is very


small in [71, 80, 94]. Nevertheless, in Tables 3.3 and 3.4, we give the available comparisons


between SCGA and the other Simplex GA methods of [80, 94, 95]. First, we compare SCGA


with the Simplex GA [94] using two functions F1 (n = 2) and F2 (n = 10), see Appendix A.


The results for F1 are shown in Table 3.3 and the results for both SCGA and the Simplex


GA [94] are taken over 100 trials. It is seen that for this function, SCGA outperforms the


Simplex GA [94] with regard to the average function evaluations. For the other function


F2, many results for the Simplex GA are reported in [94] and the best of them is 0.0002 for


the best function value with 6400 function evaluations. On the other hand, the results of


SCGA for this function are slightly worse, that is, 0.0008 for the best function value with


8127 function evaluations. However, there is another function with n = 10 studied in [94]


for which the Simplex GA [94] needed to generate 640 generations to obtain the accuracy


10−3, whereas SCGA needed only 60 generation to obtain the accuracy 10−9.


SCGA is also compared with the Simplex GA methods of [80, 95] using De Joung F5


function, see Appendix A. All these methods have the same rate of success (100%), but the


Simplex GA [80] required a large number of function evaluations, as shown in Table 3.4. We


note that the results for the Simplex GA methods of [80, 95], which are cited from [95], are


the average taken over 10 trials. However, the reference [95] does not give the condition used


to judge the success of trials for both of the Simplex GA methods of [80, 95], whereas the


results for SCGA are taken over 100 trials and we use condition (3.4.1) with ǫ1 = 10−4 and


ǫ2 = 10−6 to judge the success of trials. It is noteworthy that the average error obtained by


SCGA for De Joung function F5 is 1.6 × 10−7.
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Table 3.4: The results for De Joung F5 function


Average number of
Method function evaluations
SCGA 1570
Simplex GA [80] 14924
Simplex GA [95] 1695


3.5 Conclusion


In this chapter, we have introduced a simplex coding genetic algorithm that uses a set


of simplices as the population. Applying the Nelder-Mead local search method on these


simplices in addition to the ordinary GA operations such as selection, crossover and mutation


enhances the exploration process and accelerates the convergence of the GA. We also have


introduced a new kind of multi-parents crossover that gives more than two parents the


chance to cooperate in reproducing children and exploring the region around these parents.


Moreover, using a local search method again in the final stage helps the GA in obtaining good


accuracy quickly. Finally, the computational results show that the SCGA works successfully


on some well known test functions.







Chapter 4


Heuristic Pattern Search SA for


Unconstrained Global Optimization


4.1 Introduction


Simulated annealing (SA) [1, 53, 57, 58] is one of the most effective metaheuristics not only


for combinatorial optimization but also for continuous global optimization. However, SA


suffers from slow convergence and also it may wander around the optimal solution if high


accuracy is needed. In continuous optimization, combining SA with direct search methods is


a practical remedy to overcome the slow convergence of SA as shown previously in Chapter


2. In this chapter, we present a new hybrid method that combines SA with a new pattern


search method to deal with the unconstrained optimization problem


min
xǫRn


f(x), (4.1.1)


where f is a generally nonconvex, real valued function defined on Rn.


We will make use of two new ideas to form the main parts of the hybrid algorithm. We


first introduce a derivative-free heuristic method to produce an approximate descent direction


at the current solution, which we call the Approximate Descent Direction (ADD) method.


Some preliminary numerical results show that the ADD method has a high ability to obtain


a descent direction. Next, we use the ADD method to design a new PS method called the


Heuristic Pattern Search (HPS) method. In the HPS method, the ADD method is recalled
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to obtain an approximate descent direction v at the current iterate. If no improvement is


obtained along the vector v, then we use v to prune the set of pattern search directions to


generate other exploratory moves. Finally, we hybridize SA and HPS to construct a global


search method, called the Simulated Annealing Heuristic Pattern Search (SAHPS) method.


The SAHPS tries to get better movements through the SA acceptance procedure or by using


the HPS procedure. More specifically, we first introduce a new exploring neighborhood


search to generate a number of SA trial points. If some of these trail points can be accepted


by the SA acceptance procedure, this means the search can go further and there is no need


to use a local search method. Otherwise, we apply some iterations of the HPS method to


generate more local exploratory trial points. In the final stage of the search, we apply a


direct search method to refine the best solution obtained so far. Numerical results with 19


well-known test functions indicate that the SAHPS exhibits a very promising performance


to obtain global minima of multimodal functions.


This chapter is organized as follows. We introduce the ADD and the HPS methods


with some numerical results to show their performances in Section 4.2 and Section 4.3,


respectively. The description of the main SAHPS method is given in Section 4.4. In Section


4.5, we discuss the experimental results along with the initialization of some parameters and


the setting of the control parameters of the SAHPS method. Finally, the conclusion of the


contribution of this chapter makes up Section 4.6.


4.2 Approximate Descent Direction


In this section, we present the ADD method in which we use m close exploring points to


generate an approximate descent direction. Given a point p ∈ Rn, we want to obtain an


approximate descent direction v ∈ Rn of f at p. We randomly generate m points {yi}m
i=1


close to p and compute the direction v at p as follows:


v =
m∑


i=1


wiei, (4.2.1)


where
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p


y2 y1


v
f(y1) ≥ f(p)


f(y2) < f(p)


Figure 4.1: An ADD example in R2.


wi =
∆fi∑m


j=1 |∆fj|
, i = 1, 2, . . . ,m, (4.2.2)


ei = − (yi − p)


‖yi − p‖ , i = 1, 2, . . . ,m,


∆fi = f(yi) − f(p), i = 1, 2, . . . ,m.


By means of (4.2.1), the direction v is composed toward the vectors −sign (∆fi) (yi − p)


with weights proportional to |∆fi| , i = 1, 2, . . . ,m. Figure 4.1 shows an example of compos-


ing an ADD in two dimensions. Given a point p ∈ R2, the ADD v is composed in Figure


4.1 toward


• the vector − (y1 − p) , since the inequality f (y1) ≥ f (p) suggests that the function


value is not likely to decrease along the direction y1 − p, and


• the vector y2 − p, since the inequality f (y2) < f (p) suggests that the function value


is likely to decrease along the direction y2 − p.


We can show some theoretical results concerning the descent property of the direction v


in the following two special cases.


The linear case. If f is a linear function, i.e., f (x) = cT x + b, c ∈ Rn, b ∈ R, then the
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vector v in (4.2.1) can be written as


v =
−1∑m


j=1 |∆fj|


m∑


i=1


∆fi
(yi − p)


‖yi − p‖


=
−1∑m


j=1 |∆fj|


m∑


i=1


cT (yi − p)
(yi − p)


‖yi − p‖


=
−1∑m


j=1 |∆fj|


(
m∑


i=1


(yi − p) (yi − p)T


‖yi − p‖


)
c


= −γAc,


where γ = 1/
∑m


j=1 |∆fj| and A =
∑m


i=1 (yi − p) (yi − p)T / ‖yi − p‖ . Note that matrix A


is positive semidefinite, since xT Ax =
∑m


i=1


(
(yi − p)T x


)2


/ ‖yi − p‖ ≥ 0 for any x ∈ Rn.


Therefore, it holds that ∇f (p)T v = −γcT Ac ≤ 0, i.e., v is a descent direction.


The nonlinear case. If f is a differentiable nonlinear function, we can approximate


f around point p as f (x) ∼= f (p) + ∇f(p)T (x − p) ,∀x ∈ N (p) , where N (p) is a small


neighborhood of p. Therefore, if points yi, i = 1, . . . ,m, are chosen from the neighborhood


N (p) , then the vector v in (4.2.1) can be represented approximately as


v =
−1∑m


j=1 |∆fj|


m∑


i=1


∆fi
(yi − p)


‖yi − p‖


∼= −1∑m
j=1 |∆fj|


m∑


i=1


∇f (p)T (yi − p)
(yi − p)


‖yi − p‖


=
−1∑m


j=1 |∆fj|


(
m∑


i=1


(yi − p) (yi − p)T


‖yi − p‖


)
∇f (p) (4.2.3)


= −γA∇f (p) , (4.2.4)


where A and γ are defined as before. Since A is positive semidefinite, we obtain ∇f (p)T v ∼=
−γ∇f (p)T A∇f (p) ≤ 0, i.e., v is expected to be a descent direction.


Remark 4.2.1. The vector −∇f (p) , which is referred to as the steepest descent direction


of f at p, provides the direction along which the function f decreases most rapidly. Since


our aim is to minimize f , it is therefore plausible to try to obtain a direction v that imitates


−∇f (p). Actually, we can show that the vector v in (4.2.1) can simulate the steepest descent


direction −∇f (p) under some conditions. Specifically, the vector v becomes approximately
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proportional to −∇f (p) by setting m = n and choosing the points {yi}n
i=1 so as to meet the


following conditions:


• The points {yi}n
i=1 are in equal distance from p, i.e., ‖yi − p‖ = ǫ, i = 1, 2, . . . , n, for


some ǫ > 0;


• the vectors {(yi − p)}n
i=1 are orthogonal to each other.


In fact, by letting ui = (yi − p) / ‖yi − p‖ for i = 1, . . . , n, we may rewrite the formula (4.2.3)


as follows:


v ∼= −ǫ∑n
j=1 |∆fj|


(
n∑


i=1


uiu
T
i


)
∇f (p)


=
−ǫ∑n


j=1 |∆fj|
Q ∇f(p),


where Q =
∑


n
i=1uiu


T
i . Since Qui = ui, i = 1, . . . , n, we can readily see Q = In, and this


shows that v is approximately proportional to −∇f(p). This result provides a controlled way


to generate the exploring points {yi}m
i=1 rather than a complete random choice of them. Both


of these two ways of generating the points {yi}m
i=1 are tested numerically at the end of this


section.


Remark 4.2.2. In general, it is not easy to know how small the neighborhood N(p) should


be in order to ensure the validity of approximation (4.2.4). Let N(p) = {x : ‖x − p‖ ≤ ǫ}


and M = sup{∇2f(ζ) : ζ ∈ N(p)}. Then we have for any x ∈ N(p)


∣∣f (x) − f(p) −∇f(p)T (x − p)
∣∣ =


∣∣∣∣
1


2
(x − p)T∇2f(p + θ (x − p))(x − p)


∣∣∣∣ ≤
1


2
Mǫ2


where θ ∈ (0, 1) . This estimate may suggest a proper choice of radius ǫ of the neighbor-


hood. However, a priori knowledge of M is not available except for some special cases. Our


numerical experiments reported below suggest that the choice ǫ = 10−3 practically works well.
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The previous theoretical analysis uses an approximation of f in the nonlinear case. Here


we give some numerical results to show the effectiveness of the ADD method in obtaining


a descent direction. We test this procedure using Easom (ES), Goldstein and Price (GP),


Griewank (GR ) and Rosenbrock (Rn, n = 2, 4, 10, 20, 50) functions, as shown in Table 4.1.


See Appendix A for the analytical formulae and search domains for these test functions. For


each test function, three different test points pj, j = 1, 2, 3, are randomly chosen from its


search domains. In addition, three test points pj, j = 4, 5, 6, are chosen to be close to the


global minimum x∗ for each test function such that p4 = x∗ − 0.1e, p5 = x∗ − 0.01e and


p6 = x∗ − 0.001e, where e ∈ Rn is the vector of ones. An approximate descent direction v


is computed 100 times for each point using different exploring points {yi}m
i=1 in each trial.


The success rate for obtaining a descent direction in these 100 trials are reported in Table


4.1. The following two methods are used to generate the exploring points {yi}m
i=1 close to


each point p = pj, j = 1, . . . , 6 :


1. Random: Let m = 2 and choose points {yi}2
i=1 randomly from the neighborhood


N (p, ǫ) = {x ∈ Rn : ‖p − x‖ ≤ ǫ} .


2. Orthogonal: Let m = n and choose points {yi}n
i=1 such that {(yi − p)}n


i=1 are parallel


to the coordinate axes and ‖yi − p‖ = ǫ, i = 1, . . . , n, for some ǫ > 0.


As to the neighborhood radius ǫ, smaller value of ǫ is expected to yield higher possibility of


obtaining a descent direction. To examine how small ǫ is enough to achieve this goal, we


have tested three values of ǫ, which are 10−1, 10−3 and 10−5. If two percentages are reported


in the same space in Table 4.1, the first one is related to Random and the second one is


related to Orthogonal. If only one percentage is reported, this means both of them have this


percentage.


The results in Table 4.1 show that using the neighborhood radius ǫ = 10−3 or 10−5 is very


effective in obtaining a descent direction even in a vicinity of the global minimum. Moreover,


there is no significant difference between the results obtained using these two values of ǫ. It


is noteworthy that although the Random method uses only two random exploring points, it


succeeds to obtain a descent direction with a high rate even for higher dimensional functions.
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Table 4.1: Success rates of obtaining descent direction for the test functions


f ǫ p1(%) p2(%) p3(%) p4(%) p5(%) p6(%)
10−1 100 100 100 100 55/49 45/46


R2 10−3 100 100 100 100 100 100
10−5 100 100 100 100 100 100
10−1 100 100 100 96/100 54/63 42/35


R4 10−3 100 100 100 100 100 96/100
10−5 100 100 100 100 100 100
10−1 100 100 100 94/100 55/47 51/55


R10 10−3 100 100 100 100 100 95/100
10−5 100 100 100 100 100 100
10−1 100 100 100 95/100 52/52 57/38


R20 10−3 100 100 100 100 99/100 98/100
10−5 100 100 100 100 100 100
10−1 100 100 100 92/100 56/57 48/31


R50 10−3 100 100 100 100 100 97/100
10−5 100 100 100 100 100 100
10−1 100 100 100 99/100 90/70 58/76


ES 10−3 100 100 100 100 100 99/100
10−5 100 100 100 100 100 100
10−1 100 100 87/48 100 52/45 52/48


GP 10−3 100 100 100 100 100 99/100
10−5 100 100 100 100 100 100
10−1 93/100 96/100 87/100 89/100 80/65 51/48


GR 10−3 94/100 96/100 83/100 92/100 91/100 89/100
10−5 95/100 97/100 89/100 95/100 87/100 90/100
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4.3 Heuristic Pattern Search


In this section, we describe the details of the new pattern search method HPS. At the


iteration k with iterate xk ∈ Rn, the HPS uses the ADD method to generate a direction v


at xk. If we could obtain a better movement along direction v with a certain step size, then


we proceed to the next iteration by updating the current iterate. Otherwise, the HPS, like


conventional pattern search (PS) algorithms [88], uses a finite set D of positive spanning


directions in Rn to generate a mesh of points. To avoid searching randomly in all these


direction, we prune the positive spanning direction set D, by using a control parameter


β ∈ (−1, 1), to select only those directions which lie within the angle cos−1 (β) from vector


v or −v, depending on whether v is a descent direction or not, respectively. Thus, we have


the following two cases:


1. If v is a descent direction, we prune the positive spanning direction set D to obtain


the pruned direction set Dp
k as


Dp
k =


{
d ∈ D : dT v ≥ β ‖d‖ ‖v‖


}
. (4.3.1)


2. If v is not a descent direction, the pruned direction set Dp
k is obtained as


Dp
k =


{
d ∈ D : dT v ≤ −β ‖d‖ ‖v‖


}
. (4.3.2)


Since we do not want to evaluate the (computationally expensive) gradient of f, we judge


whether or not v is a descent direction by using a sufficiently small step size α > 0. That is,


if f (xk + αv) < f (xk) , we consider v a descent direction. Otherwise, we do not consider v


a descent direction. It is noteworthy that Abramson et al. [2] use the gradient to prune the


positive spanning direction set D by means of (4.3.1) with v = −∇f (xk) and β = 0. The use


of gradients, however, may not be appropriate in the case where they are computationally so


expensive that a derivative-free method such as a PS method becomes a method of choice.


Algorithm 4.3.1 below describes the steps of the HPS method. In the ADD step, we


may use either the Random method or the Orthogonal method described in the previous


section. In practice, we prefer to use the Random method since the Orthogonal method is


computationally more expensive. Moreover, the positive spanning direction set D used in


the PS step can be set either {e1, . . . , en,−e1, . . . ,−en} or {e1, . . . , en,−e} , where ei ∈ Rn


is the ith unit vector in Rn and e ∈ Rn is the vector of ones.


Algorithm 4.3.1. HPS(f, x0, ∆0, α, σ)
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1. Initialization. Choose an initial solution x0, fix an initial mesh size ∆0 > 0,


choose the shrinkage coefficient σ of the mesh size from (0, 1), fix a sufficiently


small step size α > 0, set the pruning control parameter β ∈ (−1, 1) , and set


the iteration counter k := 0.


2. ADD. Calculate the vector v at xk as in (4.2.1). If f (xk + ∆kv) < f (xk) ,


then set xk+1 := xk + ∆kv, and go to Step 5.


3. PS. If f (xk + αv) < f (xk) , then use (4.3.1) to obtain Dp
k. Otherwise, use


(4.3.2) to obtain Dp
k. Evaluate f on the trial points {pj = xk+∆kdj : dj ∈ Dp


k,


j = 1, . . . , |Dp
k|}.


4. Parameter Update. If min1≤j≤|Dp
k| f(pj) < f (xk) , then set xk+1 :=


arg min1≤j≤|Dp
k| f(pj). Otherwise, decrease ∆k through the rule ∆k+1 := σ∆k.


5. If the stopping condition is satisfied, then terminate. Otherwise, let k := k+1


and return to step 2.


To implement Algorithm 4.3.1, we have to determine a proper value of the pruning


control parameter β. We use the standard 2n directions, D = {e1, . . . , en, −e1, . . . ,−en, }
as a positive spanning direction set. In this case, a proper value for β can be chosen from


(−1, 1√
n
) to guarantee that the pruned direction set Dp


k contains at least one direction. In


the following, we study the tuning of parameter β through some numerical experiments.


Four values β = 1√
n
, 1


2
√


n
, 0, −1


2
√


n
have been chosen to make some numerical simulations using


Rosenbrock function R2, De Joung function DJ, and Zakharov functions Zn, n = 2, 4, 10, 20,


see Appendix A for the analytical formulae of these test functions. Note that the global


minimum values of all these functions are 0. Figures 4.2–4.7 show that β = 1√
n


generally


gives faster convergence toward the global minima than the other values of β. It is notable


from these figures that the performance of the HPS method for the function R2 is different


from that for other functions. Figure 4.3 shows that the HPS method with β = 1√
n


works


well in the early stage of the search, while it suffers from slow convergence in the later stage


compared with the method using other values. However, this difference in performance is


expected since the HPS method uses the ADD method and descent-type methods usually


suffer from slow convergence when applied to R2.







56 Heuristic Pattern Search SA for Unconstrained Global Optimization


0 20 40 60 80 100 120 140 160 180
10


−9


10
−8


10
−7


10
−6


10
−5


10
−4


10
−3


10
−2


10
−1


10
0


10
1


Number of function evaluations


B
es


t f
un


ct
io


n 
va


lu
e


β = 1/21/2


β = 0.5/21/2


β = 0
β = −0.5/21/2


Z
2
  Function


Figure 4.2: The HPS performance for Zakharov function Z2.
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Figure 4.3: The HPS performance for Rosenbrock function R2.







4.3 Heuristic Pattern Search 57


0 50 100 150 200 250
10


−8


10
−7


10
−6


10
−5


10
−4


10
−3


10
−2


10
−1


10
0


10
1


Number of function evaluations


B
es


t f
un


ct
io


n 
va


lu
e


β = 1/31/2


β = 0.5/31/2


β = 0
β = −0.5/31/2


DJ Function  


Figure 4.4: The HPS performance for De Joung function.
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Figure 4.5: The HPS performance for Zakharov function Z4.
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Figure 4.6: The HPS performance for Zakharov function Z10.
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Figure 4.7: The HPS performance for Zakharov function Z20.
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Table 4.2: Results of PS and HPS for Zakharov functions


No. f -evals. Best f value
f
Z2


Z4


Z10


Z20


PS HPS
97 132
353 234
7821 1547


50000+ 11140


PS HPS
3.0E–9 2.6E–8
9.1E–9 3.1E–7
2.6E–6 8.4E–5
4.4E–2 1.7E–3


A question that arises when we test the performance of the HPS method is to what extent


the ADD used in HPS helps the PS to get better results. To examine this issue, we compare


the HPS method with the plain PS method on Zakharov functions Zn, n = 2, 4, 10, 20. We


use the standard 2n directions, D = {e1, . . . , en,−e1, . . . ,−en} , to generate the pattern


search directions in each method. Table 4.2 shows the best function value (Best f value)


and the number of function evaluations (No. f -evals.) achieved by each method. We use


the same starting points for all methods. Since there is no random step in the PS method,


it was run only once for each problem. On the other hand, the HPS method was run 100


times and the Best f value and the No. f -evals. are the average of these 100 trials. The


pruning control parameter β was set equal to 1√
n
. Moreover, the shrinkage coefficient σ is


set equal to 0.5, which is the standard value of the shrinkage coefficient in direct search


methods. The initial mesh size should be chosen big enough for more efficient local search,


so that we set ∆0 equal to 1. The step size α is set equal to 10−3, which is small enough


to avoid misleading the search especially in the vicinity of a local minimum. The iteration


was terminated in Step 5 when the mesh size became smaller than 10−4, or the number of


function evaluations exceeded 50, 000.


From the results shown in Table 4.2, we may observe that using the ADD in the HPS


method can reduce the number of function evaluations in the plain PS method especially for


higher dimensional problems.


4.4 Simulated Annealing HPS


In this section we give the details of our main hybrid method SAHPS. The SA approach


is combined with the HPS to form the hybrid method SAHPS, which is expected to have


a higher ability to detect global minima. At each major iteration of the SAHPS method,
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we first repeat the simulated annealing acceptance trials m1 times. In each time, a trial


point is generated by using an exploring point to guide the SA search along a promising


direction and to avoid making a blind random search. Specifically, we generate an exploring


point zk close to the current iterate xk and a SA trial is generated along the direction


sign(f(xk)− f(zk))(zk − xk), with a certain step size. If more than mac out of m1 trials are


accepted, then we immediately proceed to the next major iteration of SAHPS. Otherwise,


within the same major iteration, we repeat the HPS iterations m2 times. In the early stage of


the search, the diversification is more needed than the intensification, however, the converse


is needed in the final stage of the search. Since the HPS represents the intensification part


of the SAHPS, it is better to initialize the value of m2 at a moderate value and increase it


while the search is going on. In the end of the search, we complete the algorithm by applying


a fast local search method to refine the best point obtained by the search so far. We prefer


to use the Kelley’s modification [51, 52] of the Nelder-Mead method [72] in this final step.


More detailed and formal description of the SAHPS method is shown in the following


Algorithm 4.4.1. The setting of parameters used in this algorithm will be discussed later in


next section.


Algorithm 4.4.1. SAHPS(f, x0, ∆0, r, α, ǫ)


1. Initialization. Choose an initial solution x0, fix an initial mesh size ∆0 > 0,


choose the shrinkage coefficient σ of the mesh size from (0, 1), fix the SA trial


point radius r, fix a sufficiently small step size α > 0, and fix a sufficiently


small neighborhood radius ǫ > 0. Fix the cooling schedule parameters; initial


temperature Tmax, epoch length M, cooling reduction ratio λ ∈ (0.5, 0.99), and


minimum temperature Tmin. Set the temperature T := Tmax.


2. The main iteration. Repeat the following Global SA Search (Step 2.1) m1


times. If more than mac out of m1 trial points are accepted, then skip the


Local HPS (Step 2.2) and proceed to Step 3.


2.1 Global SA search. Given the current iterate xk, generate an exploring


point zk randomly in the neighborhood of xk with radius ǫ. Generate a trial
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point xSA in the neighborhood of the current solution xk by


xSA =







xk + ηr (zk − xk) / ‖zk − xk‖ , if f (zk) ≤ f (xk) ,


xk − ηr (zk − xk) / ‖zk − xk‖ , otherwise,


where η is a random number in (0.1, 1). Evaluate f on the trial point xSA,


and accept it, i.e. xk+1 := xSA, if


i. ∆f := f(xSA) − f(xk) < 0, or


ii. ∆f ≥ 0, and p = exp
(−∆f


T


)
≥ u, where u is a random number in (0, 1) .


2.2. Local HPS. Repeat the following procedure m2 times.


2.2.a. ADD. Calculate the vector v at xk as in (4.2.1). If f (xk + ∆kv) <


f (xk) , then set xk+1 := xk + ∆kv, and proceed to the next iteration of the


Local HPS loop.


2.2.b. PS. If f (xk + αv) < f (xk) , then use (4.3.1) to obtain Dp
k. Otherwise,


use (4.3.2) to obtain Dp
k. Evaluate f on the trial points {pj := xk + ∆kdj :


dj ∈ Dp
k, j = 1, . . . , |Dp


k|}.


2.2.c. Parameter update. If min1≤j≤|Dp
k| f(pj) < f (xk) , then set xk+1 :=


arg min1≤j≤|Dp
k| f(pj). Otherwise, decrease ∆k through the following rule:


∆k+1 := σ∆k. (4.4.1)


3. If the epoch length, which corresponds to M iterations of Global SA Search,


is not achieved, then go to Step 2.


4. If the cooling schedule is completed (T ≤ Tmin) or the function values of two


consecutive improvement trials become close to each other or the number of


iterations exceeds 50n, then go to Step 5. Otherwise, decrease the temperature
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by setting T := λT , increase m2 slightly, decrease r slightly, and go to Step


2.


5. From the best point found, apply the modified Nelder-Mead method [51, 52].


4.5 Experimental Results


4.5.1 Setting of Parameters


Below we elaborate on the implementation of Algorithm 4.4.1.


Initial trial. The initial point x0 is chosen randomly from the predetermined range


[L,U ] of the initial points for each test function, where


[L,U ] = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n} .


Cooling schedule. Generally, choosing a proper cooling schedule is not a trivial task.


Our cooling schedule is designed based on some common choice of parameters suggested in


the literature, or according to our observation gained through some preliminary numerical


experiments. First, the initial temperature Tmax is set large enough to make the initial


probability of accepting transition close to 1. Beside the initial point x0, another point x̃0


is generated in a neighborhood of x0 to calculate Tmax as


Tmax := − 1


ln(0.9)
|f(x̃0) − f(x0)| .


The cooling ratio λ is normally chosen to be between 0.9 and 0.99 [57]. Actually, in the


original SA method, Kirkpatrick et al. [53] suggested λ = 0.95, which has become a common


choice. However, in our experiments, we observed that the results obtained with λ = 0.95


were not significantly different from those with λ = 0.9. The main reason for this insignificant


difference is due to the use of refining local search method at the final stage. Since setting


λ equal to 0.95 is more computationally costly, we set λ equal to 0.9. A common choice of


the number of trials allowed at each temperature, which is called epoch length M , is to let


it depend on the size of the problem [58]. Although Kirkpatrick et al. [53] set the value of


M equal to n, our preliminary experiments have revealed that setting M equal to 2n fits


the SAHPS algorithm well. Therefore, we set M equal to 2n. In the implementation of SA,


the cooling schedule is terminated when the temperature reaches a fixed minimum value
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Tmin [58]. We observed that setting Tmin equal to min (10−3, 10−3Tmax) can give a complete


cooling schedule in the sense that the acceptance probability at the end is almost zero.


Neighborhood radius. The neighborhood radius ǫ, which is used in generating the


exploring points zk in the Global SA Search and in generating the exploring points used to


compute vector v in the ADD step, is set equal to 10−3.


SA trial point radius. The radius r, which is used in generating the SA trial points,


is initialized as r0 := max1≤i≤n (ui − li) /5 to fit the search domain of each test func-


tion, and then r is reduced in parallel to the reduction of temperature T by setting r :=


max {0.95r, 0.02r0} .


HPS parameters. The mesh size is initialized as ∆0 := max1≤i≤n (ui − li) /10, and


when no improvement is achieved, its shrinkage factor σ in (4.4.1) is set equal to 0.7. Actually,


the standard value of the shrinkage coefficient in direct search methods is 0.5 but, in our


experiments, we observed that using the value 0.7 gives more ability of efficient exploration


than the value 0.5, because the latter may decrease the step size prematurely before reaching


a proper exploration process. We set the step size α used in Step 2.2.a equal to 10−3. The


pattern search strategy described in Section 4.3 is adopted in the Local HPS step.


Loop repetitions. The repetition numbers of the Global SA Search and Local HPS


steps, m1 and m2, are both set equal to n initially, which is equal to the half of the epoch


length M . However, m2 is updated as m2 := min{5n, 1.05m2} in Step 4 at every major


iteration. The control parameter mac, the desired number of accepted points in the Global


SA Search step, is set equal to 1.


Termination conditions. Beside the completeness of the cooling schedule, Algorithm


4.4.1 may be terminated in Step 4, if the difference between the function values of two


consecutive improvement trials becomes less than Tol = 10−8, or the number of iterations


exceeds Itmax = 50n.


In Table 4.3, we summarize all parameters used in the SAHPS algorithm with their


assigned values.


4.5.2 Numerical Results


Algorithm 4.4.1 was programmed in Matlab and applied to 19 well-known test functions


[15, 37], see Appendix A. For each function, this Matlab code was run 100 times with


different initial points. To judge the success of a trial, we used the condition
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Table 4.3: SAHPS Parameters


Parameter Definition Value
Tmax maximum (initial) temperature − 1


ln(0.9)
|f(x̃0) − f(x0)|


Tmin minimum temperature min (10−3, 10−3Tmax)
λ cooling ratio 0.9
M epoch length 2n
ǫ neighborhood radius 10−3


r0 initial radius for generating SA trial points min1≤i≤n (ui − li) /5
∆0 initial mesh size min1≤i≤n (ui − li) /10
σ reduction factor of mesh size 0.7
α step size for checking descent directions 10−3


m1 Global SA Search repetition number n


m2 Local HPS repetition number


{
initial: n
update: min{5n, 1.05m2}


mac number of accepted points in Global SA Search 1
Itmax maximum number of iterations 50n
Tol termination tolerance 10−8


|f ∗ − f̂ | < ǫ1 |f ∗| + ǫ2, (4.5.1)


where f̂ refers to the best function value obtained by SAHPS, f ∗ refers to the known exact


global minimum value, and ǫ1 and ǫ2 are small positive numbers. We set ǫ1 and ǫ2 equal to


10−4 and 10−6, respectively. The average number of function evaluations (Av. f -evals.) and


the average errors (Av. Error) reported in Table 4.4 are those for the successful trials. It


is noteworthy that, for some of the functions that fail to achieve the 100% success rate, the


success rate can be improved by relaxing the maximum number of iterations or by slowing


down the cooling schedule. For example, the success rate for SH function can be improved


to 95% with Av. f -evals. of 822 and Av. Error of 9E–6, if we set the maximum number of


iterations equal to 100n instead of 50n.


To complete the testing of the SAHPS method, we compare it with other SA-based


methods, Enhanced Simulated Annealing (ESA) [85] and Direct Search Simulated Annealing


(DSSA) proposed in Chapter 2. The results of ESA are taken from its original reference [85],


as well as [15]. The results of DSSA are the same as those shown in Table 2.2.


The results shown in Table 4.4 indicate that SAHPS generally outperforms the ESA.


Since ESA is a plain SA method without any combination with a local search method, we


may conclude that hybridizing HPS with SA significantly improves the performance of SA.
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Table 4.4: Results of SAHPS and other SA methods


Av. f -evals. Av. Error
f
RC
ES
GP
B1


HM
SH
Z2


R2


DJ
H3,4


S4,5


S4,7


S4,10


Z5


R5


H6,4


GR
Z10


R10


SAHPS ESA DSSA
318 – 118
432(96%) – 1442(93%)
311 783 261
346 – 252
278 – 225
450(86%) – 457(94%)
276 15820 186
357 796 306
398 – 273
517(95%) 698 572
1073(48%) 1137(54%) 993(81%)
1059(57%) 1223(54%) 932(84%)
1031(48%) 1189(50%) 992(77%)
716 96799 914
1104(91%) 5364 2685
997(72%) 1638 1737(92%)
795 – 1830(90%)
2284 15820 12501
4603(87%) 12403 16785


SAHPS ESA DSSA
4E–7 – 4E–7
5E–9 – 3E–9
5E–9 9E–3 4E–9
8E–9 – 5E–9
5E–8 – 5E–8
9E–6 – 9E–6
7E–9 – 4E–9
6E–9 – 4E-9
6E–9 – 5E–9
2E–6 5E–4 2E–6
3E–7 4E–3 2E–6
4E–5 8E–3 6E–7
1E–5 4E–2 1E–5
8E–9 – 5E–9
7E–9 – 3E-9
2E–6 6E–2 2E–6
8E–9 – 5E–9
3E–8 2E–3 7E–9
2E-8 4E-2 7E-9


On the other hand, the comparison between SAHPS and DSSA does not seem to yield a


definitive answer. The performance of DSSA is better for the problems with n < 5 but


SAHPS outperforms DSSA in higher dimensional problems, i.e., n ≥ 5, in terms of the


number of function evaluations.


4.6 Conclusion


In this chapter, we have presented a new hybrid global search method in which a direct


search method is combined with the SA procedure to remedy the slow convergence of the


latter method. Two new methods have been introduced to design the SAHPS method; one


is the ADD method that produces an approximate descent direction, the other is the HPS


method that is used to make a local exploratory search in the main SAHPS method. The
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latter has turned out to be particularly effective because the HPS method shows a superior


performance in reducing the computational expense of the plain PS method.







Chapter 5


Directed TS for Unconstrained Global


Optimization


5.1 Introduction


Tabu Search (TS) is one of the recent metaheuristics originally developed for combinatorial


optimization problems [31, 33]. TS has shown an appropriate performance when applied


to these problems [31]. However, contributions of TS to solving continuous optimization


problems are still very limited compared with other metaheuristics like Simulated Annealing


and Genetic Algorithms. In this chapter, we introduce a TS approach that deals with the


continuous unconstrained optimization problem


min
xǫRn


f(x), (5.1.1)


where f is a generally nonconvex, real valued function defined on Rn. Specifically, we present


continuous versions of TS called Directed Tabu Search (DTS) by hybridizing TS with direct


search methods. The role of direct search methods is to stabilize the search especially in the


vicinity of a local minimum. Specifically, instead of using completely blind random search


in generating neighborhood trial moves, appropriate direct search strategies are responsible


to generate these neighborhood moves. Moreover, new implementations of TS elements are


employed in the proposed method.


Since the main presentation of Glover [28, 29], a lot of studies have emerged in the area


of TS. The majority of these studies are related to combinatorial optimization problems
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and relatively few attempts have been made to deal with continuous optimization problems


[3, 10, 15, 20, 21, 26, 50]. One of the earliest TS methods was presented by Hu [50] for


constrained optimization problems. Cvijovic and Klinowski [20, 21] extented and generalized


the TS to functions with variables that may be continuous or, if discrete, need not take integer


values. Battiti and Tecchiolli [10] introduced an interesting continuous TS method called the


Continuous Reactive Tabu Search. Their method tries to locate the most promising boxes,


and then starting points for the local search are generated within those boxes. Al-Sultan


and Al-Fawzan [3] gave a hybrid method that combines TS with the local search method of


Hooke and Jeeves.


Recently, intensive studies on continuous TS have been conducted in [15, 26]. In [15],


Chelouah and Siarry introduced a new algorithm called Enhanced Continuous Tabu Search


(ECTS), which aims to follow Glover’s basic approach as closely as possible. In order to


cover a wide domain of possible solutions, the ECTS algorithm first performs a diversification


search to locate the most promising areas. When the most promising areas are located, the


algorithm proceeds to an intensification search within one promising area of the solution


space. In [26], Franze and Speciale presented a novel TS algorithm that explores a grid


of points with a distance dynamically adjusted. When it collapses to a local minimum, it


continues the local search from that point while accepting some non-improving points to


allow the exploration of new regions in the search space.


The DTS method proposed in this chapter differs from the previous continuous TS meth-


ods in many aspects. In the DTS method, three search procedures are employed; Explo-


ration, Diversification and Intensification. In the Exploration Search, a new local search pro-


cedure is introduced to generate trial moves, based on the well-known Nelder-Mead method


[72] and the heuristic pattern search method proposed in Chapter 4. Moreover, novel con-


cepts of TS memory elements called Tabu Regions (TRs), Semi-TRs and a multi-ranked


Tabu List (TL) are introduced to provide anti-cycling rules. Another memory element


called Visited Regions List (VRL) is also introduced as a tool for the Diversification Search


to diversify the search to unvisited areas of the solution space. Finally, assuming that one of


the best points obtained by the Exploration and Diversification Searches is close to a global


minimum, the Intensification Search is applied again at the final stage to refine the elite so-


lutions visited so far. Actually, the proposed Diversification and Intensification Searches try


to follow some known strategies from the high level TS with a long term memory. Moreover,


the DTS can be classified as a multi-start method. The multi-start methods aim to construct


powerful search procedures by guidance of global exploration and local searches; as surveys


for multi-start methods the reader is referred to [62, 63, 84]. Multi-start methods have been
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successfully applied to both nonlinear global optimization and combinatorial problems, see


[63] and references therein. Finally, the numerical results reported below show the promise


of the proposed method especially in producing high quality solutions.


The rest of this chapter is organized as follows. The next section gives a detailed descrip-


tion of the proposed TS memory elements. In Section 5.3, we introduce neighborhood and


local search strategies used to generate the trial moves. The main DTS method is presented


elaborately in Section 5.4. Section 5.5 discusses the implementation of the proposed method


and reports comprehensive experimental results. The conclusion of the contribution of this


chapter makes up Section 5.6.


5.2 TS Memory Elements


The concept of memory plays a major role in TS, especially when it is used in a kind of


learning process as in high level TS with long term memory. Using an effective memory


conception in intensification and diversification schemes makes TS behave as an intelligent


search technique [31]. The optimization search methods can be classified in two categories;


point-to-point methods and population-based methods. TS belongs to the first category.


Keeping the diversity is one of the main problems that face the point-to-point methods


compared with the population-based methods. However, the long term memory in TS makes


it competitive with the population-based methods in keeping the diversity. In TS with


long term memory, the search can be restarted from new diverse solutions whenever the


diversification is needed, or can be intensified to improve the elite solutions whenever the


intensification is needed. These TS concepts of diversification and intensification have turned


out to be effective in many combinatorial optimization problems, see [31, 61] for example.


In this section, we introduce some new conceptions and implementations of the TS memory


elements to continuous optimization problems. First, we let the multi-ranked Tabu List (TL)


be a set of some visited solutions. The points in the TL are ranked and saved according to


their recency and their objective function values. Therefore, some positions in the TL are


kept for the best visited solutions, which helps an intensification scheme to refine the search


from these best solutions at the final stage. Around each solution saved in the TL, two types


of regions are specified in the search space. The first one is a Tabu Region (TR) in which no


new trial point is allowed to be generated. The other is a Semi-Tabu Region (Semi-TR) that


comprises a surrounding region around TR. The main role of the Semi-TRs is to generate


neighboring trial points in a special way so that returning back to a visited TR is avoided
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when the trial solution lies inside a Semi-TR. Another memory element introduced in this


section is the Visited Region List (VRL). The centers of the visited regions and the frequency


of visiting these regions are saved in the VRL in order to direct a diversification scheme to


explore the space outside these visited regions.


5.2.1 Multi-Ranked Tabu List (TL)


Some of the previously visited solutions are stored in the TL. Let TL = {ti}L
i=1 . The elements


in TL are ranked in ascending order according to their recency using the rank indices Ir
i , i =


1, . . . , L, i.e., if the most recent element in TL is tk, then Ir
k = 1, while if the most ancient


element is tk′ , then Ir
k′ = L. Also, the elements in TL are ranked in ascending order according


to their objective function values using another set of rank indices Ifv
i , i = 1, . . . , L, i.e., if


the best element in TL is tj, then Ifv
j = 1, and if the worst element is tj′ , then Ifv


j′ = L. In


the ordering, ties are broken arbitrarily. We consider the TL to be a fuzzy set and associate


its elements {ti}L
i=1 the membership values:


mi = max
{


mr
i ,m


fv
i


}
, i = 1, . . . , L, (5.2.1)


where mr
i ,m


fv
i ∈ [0, 1] are the recency and the function-value ranked values, respectively, for


element ti and they are computed as follows:


• The recency ranked value mr. We use a linear ranking procedure that gives the most


recent element the maximum ranked value ηmax and the most ancient element the


minimum ranked value ηmin, where 0 ≤ ηmin < ηmax ≤ 1. Specifically, the recency


ranked value for each element of TL is given by


mr
i = ηmin + (ηmax − ηmin)


(
L − Ir


i


L − 1


)
, i = 1, . . . , L.


• The function-value ranked value mfv. To avoid reserving excessively many positions


in the TL for the best elements and to give the recency some priority, this procedure


ranks only L best elements so that the best element is given the ranked value µmax, and


the worst L − L + 1 elements are given the ranked value µmin, where 1 ≤ L ≤ L and


0 ≤ µmin < µmax ≤ 1. Specifically, the function-value ranked value for each element of


TL is given by


mfv
i =


{
µmin + (µmax − µmin)


(
L−Ifv


i


L−1


)
, if Ifv


i = 1, . . . , L,


µmin, if Ifv
i = L + 1, . . . , L.







5.2 TS Memory Elements 71


The Tabu Regions (TRs) are defined to be spheres with radius rTR and their centers being


the points of TL, where rTR > 0 . For each TR, we define Semi-TR to be the surrounding


region around this TR with outer radius rSTR from its center, where rSTR > rTR. If a trial


solution lies in Semi-TRs, then a specific procedure is applied to create special neighborhood


trial points to avoid returning back to a vicinity of a previously visited solution. We suggest


the following procedure for this purpose.


Procedure 5.2.1. Trial Solution Generation in Semi-TRs


1. Let a trial point x lie in ν Semi-TRs with centers t1, . . . , tν . Compute the


centroid t of the Semi-TRs’ centers and the maximum distance dmax between


x and these centers, i.e.,


t =
1


ν


ν∑


i=1


ti,


dmax = max
i=1,...,ν


{‖x − ti‖} .


2. Construct neighborhood search directions that are parallel to the coordinate


axes but point towards the direction x− t, i.e., the neighborhood search direc-


tions are determined as sign
(
(x)i −


(
t
)


i


)
ei, i = 1, . . . , n, where ei ∈ Rn is


the ith unit vector in Rn. Neighborhood trial points are generated along these


search directions with a suitable step size β > 0. In the case of ν > 1, the step


size β should be chosen greater than dmax + rTR in order to avoid generating


trial points inside a TR.


Figure 5.1 illustrates how Procedure 5.2.1 works when a solution x lies in Semi-TRs in


two dimensions. In this example, the solution x lies in two Semi-TRs with center t1 and t2.


According to Procedure 5.2.1, the neighborhood search directions d1 and d2 are constructed


to follow the vector
(
x − t


)
, where t is the centroid of the Semi-TRs ’ centers. It is noteworthy


that the step size used to generate a trial point along search directions d1 and d2 is chosen


to be greater than rTR + max {‖x − t1‖ , ‖x − t2‖} , to make sure that the close TRs with


centers t1 and t2 will not be hit.







72 Directed TS for Unconstrained Global Optimization


t1


t2


t̄ x


β(x − t̄)


d1


d2


Semi-TR


Semi-TR


TR


TR


Figure 5.1: Neighborhood search from a point in Semi-TRs.


5.2.2 Visited Region List (VRL)


Some historical information about the previously visited regions is stored in the VRL.


More specifically, the center ζi of a visited region, which is a sphere with radius ρi, and


the frequency ϕi of visiting this region comprise the information stored in the VRL, i.e.,


VRL = {(ζi, ρi, ϕi)}M
i=1 , where M is the number of all listed visited regions. The informa-


tion in VRL will be used to direct the search towards new regions whenever the current TS


procedure fails to get improvement or whenever a diversification scheme is needed. As a


diversification scheme, we try to generate new trial points outside the visited regions. How-


ever, generating trial points near to more frequently visited regions is discouraged. To this


end, a function Φ(ϕ) is introduced to distinguish between more and less frequently visited


regions. Specifically, we define the function Φ as


Φ(ϕ) = γ
(
1 − e−γ(ϕ−1)


)
, (5.2.2)


where γ ∈ (0, 1] is a given constant. Note that the function Φ is strictly increasing and


bounded above by the value γ. We will describe the role of γ in the diversification scheme


after we state Procedure 5.2.2 below.


In the following, we suggest a procedure that uses the VRL information to generate a new


solution. The procedure allows accepting a trial point outside the visited regions, especially


the more frequently visited ones.


Procedure 5.2.2. Diverse Solution Generation
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1. Generate a trial point x randomly in the search domain of f.


2. Compute the quantities di = ‖x − ζi‖/(1 + Φ(ϕi)), i = 1, . . . ,M, where Φ(ϕ)


is defined by (5.2.2). If min1≤i≤M di/ρi ≥ 1, then accept x. Otherwise, return


to Step 1.


A point x is accepted by Procedure 5.2.2 if it satisfies ‖x − ζi‖/ρi ≥ 1 + Φ(ϕi) for all


i = 1, . . . ,M. This means that no point can be accepted inside a previously visited region.


Moreover, a point close to more frequently visited regions is hardly accepted. Therefore, the


higher the value of γ is, the lower the possibility of accepting a point close to more frequently


visited regions is. To avoid infinitely cycling in Procedure 5.2.2, we may also terminate it


after a predetermined number of iterations and return with x corresponding to the maximum


of the values of min1≤i≤M di/ρi over all iterations.


5.3 Neighborhood-Local Search Strategies


To explore the region around a solution and to generate the next move, we use neighborhood


and local search strategies in which direct search methods are employed. Specifically, two


search strategies are introduced to handle that job; Nelder-Mead Search (NMS) strategy and


Adaptive Pattern Search (APS) strategy, which are based on the well-known Nelder-Mead


method [72] and the heuristic pattern search method proposed in Chapter 4, respectively.


These neighborhood-local search strategies are invoked to generate trial points in the Explo-


ration Search of the DTS method. More specifically, two types of trial points are generated


by the neighborhood-local search strategy; neighborhood trial points and local trial points,


which are needed in the Neighborhood Search and Local Search Steps, respectively, in Algo-


rithms 5.4.1 and 5.4.2 stated in the next section. First, p trial points {yi}p
i=1 are generated


in a neighborhood of the current solution x. This procedure is called a neighborhood search,


and the trial points {yi}p
i=1 are called neighborhood trial points. Then, we try to improve


the neighborhood trial points {yi}p
i=1 by executing another search procedure, which is called


a local search, to generate q trial points {yp+i}q
i=1 , which are called local trial points. The


details of the neighborhood-local search strategies, NMS and APS, are given below.
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5.3.1 Nelder-Mead Search (NMS) Strategy


In the NMS strategy, we generate p(= n) neighborhood trial points {yi}n
i=1 , and q(= 1 or


0) local trial point. The neighborhood trial points are generated along search directions


parallel to the coordinates axes starting from the current solution x with suitable step sizes.


If the current solution x lies in a Semi-TR or in Semi-TRs, we apply Procedure 5.2.1 to


construct the search directions and the step sizes. Otherwise, we construct search directions


parallel to the coordinate axes in a random way, i.e., each of them is parallel to a positive


or a negative coordinate direction. To generate a local trial point, we construct a simplex S


that consists of the current solution x and the current n neighborhood trial points {yi}n
i=1,


i.e., S = {x, y1, . . . , yn} . Some iterations of the NM method are applied starting from S. If


an improvement point is obtained from these NM iterations, then we set the local trial point


yn+1 equal to this improvement point, i.e., q = 1. Otherwise, there is no trial point, i.e.,


q = 0.


For more explanation of the NMS strategy, we show an example in two dimensions in


Fig. 5.2. Given the current solution x, two neighborhood trial points y1 and y2 are generated


in a neighborhood of x as in Fig. 5.2 (a). To find a local trial point, we construct a simplex


whose vertices are S = {x, y1, y2} , as in Fig. 5.2 (b). Assuming that the worst point in S is


y2, we apply the Nelder-Mead method operations described in Fig. 5.2 (c) to find a better


movement. If one exists, we refer to this better movement as a local trial point.


5.3.2 Adaptive Pattern Search (APS) Strategy


The main idea behind the APS strategy is based on the approximate descent direction (ADD)


method proposed in Chapter 4. We implement a similar procedure as in ADD method to


produce a new adaptive direction from standard pattern directions. Specifically, we construct


n pattern directions parallel to the coordinate axes emanating from the point x and generate


n trial points {yi}n
i=1 along these directions with a suitable step size. The adaptive direction


v, along which we may expect to decrease the function value, is computed using these trial


points as follows:


v =
n∑


i=1


ωiui, (5.3.1)


where
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Figure 5.2: NMS strategy in two dimensions.
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ωi =
∆fi∑n


j=1 |∆fj|
, i = 1, 2, . . . , n,


ui = − (yi − x)


‖yi − x‖ , i = 1, 2, . . . , n,


∆fi = f(yi) − f(x), i = 1, 2, . . . , n.


In the APS strategy, we generate p(= n) neighborhood trial points {yi}n
i=1 using the


standard pattern directions, and q(= 2) local trial points using an adaptive pattern direction.


More specifically, we construct n pattern directions parallel to the coordinate axes emanating


from the current solution x and generate n neighborhood trial points {yi}n
i=1 along these


directions with some step size. The adaptive pattern direction v at x is computed using


(5.3.1). Two local trial points yn+1 and yn+2 are generated along the vector v with two


different step sizes.


An example in two dimensions is illustrated in Fig. 5.3 to describe the APS strategy.


Two neighborhood trial points y1 and y2 are generated in a neighborhood of the current


solution x as in Fig. 5.3 (a). An approximate descent direction v is computed at x using


the points y1 and y2, as in (5.3.1). If we assume that x is better than y1 and y2, then, by


means of (5.3.1), the vector v is composed toward the vectors x− y1 and x− y2 with weights


inversely proportional to |f(x) − f(y1)| and |f(x) − f(y2)|, see Fig. 5.3 (b). Finally, two


local trial points y3 and y4 are generated along the vector v with two different step sizes in


order to explore the area along the promising direction v as in Fig. 5.3 (c).


5.4 Directed Tabu Search (DTS)


In this section, we describe some details about how a TS method is modified with the


memory elements and neighborhood-local search strategies introduced in Sections 5.2 and


5.3 to compose the DTS method.


In the DTS method, three basic search procedure are used; Exploration, Diversification


and Intensification search procedures. In the Exploration Search, we use the neighborhood-


local search strategies, which are described in Section 5.3, to explore the solution space.


Moreover, the multi-ranked TL, TR and Semi-TR restriction rules are applied to avoid


revisiting recently visited solutions or being entrapped in local minima. Then, the Diversi-


fication Search is needed in order to diversify the search to other areas of the solution space


that may have been overlooked in the Exploration Search. We use the VRL and Procedure
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Figure 5.3: APS strategy in two dimensions.


5.2.2 to manage the Diversification Search. Finally, in order to explore the close regions


around the best points visited so far, the Intensification Search is applied to refine these best


points. These search procedures are applied in such a way that they give the DTS method


a better chance to explore the search space efficiently. Actually, the Exploration and Diver-


sification search procedures are assembled to compose the DTS main loop and are repeated


until the termination conditions are satisfied. Moreover, the Exploration Search procedure


is included as an inner loop within the diversification loop. We will use the superscript


j = 0, 1, . . . , to represent the main loop iteration counter, the subscript k = 0, 1, . . . , to rep-


resent the inner loop iteration counter, and x
(j)
k to denote a general iterate. In other words,


the Exploration and Diversification search procedures compose a multi-start procedure with


a long term memory. At the final stage, the Intensification Search procedure based on elite


TS is needed to complete the DTS method. The main structure of the DTS method is shown


in Fig. 5.4. More detailed description of the search procedures is given below.


5.4.1 Exploration-Diversification Loop


The main loop of the DTS method, which consists of Exploration and Diversification Searches,


starts with an initial solution x
(0)
0 . In each main loop iteration j, the Exploration Search pro-
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Figure 5.4: Main structure of the DTS method.
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cedure is repeatedly applied to obtain improvement by means of neighborhood-local search


strategies, and then the Diversification Search procedure is applied to locate a new initial


trial point x
(j+1)
0 , from which the Exploration Search is restarted again. This main loop is


repeated at most ℓmain times, where ℓmain is a predetermined positive integer.


Exploration Search. The Exploration Search starts with an initial solution x
(j)
0 at


each main loop iteration j. In each iteration of the Exploration Search, a neighborhood-


local search (NMS or APS) strategy is used to generate n neighborhood trial points {yi}n
i=1


in a neighborhood of the current iterate x
(j)
k . If a better movement is found among these


trial points, we update the current iterate and proceed to the next inner loop iteration.


Otherwise, i.e., x
(j)
k is still better than all neighborhood trial points, the neighborhood-local


search strategy continues to generate q local trial points {yn+i}q
i=1 , where q = 0 or 1 in the


NMS strategy and q = 2 in the APS strategy. Then, the current iterate x
(j)
k is updated to


be the best of neighborhood and local trial points, i.e., x
(j)
k+1 := arg mini=1,...,n+q {f (yi)} . TL


is also updated by letting x
(j)
k replace the element with the smallest membership value. If


a new region is reached, then VRL should be updated by adding the information on this


region. This Exploration Search loop is repeated at most ℓinner times, where ℓinner is a


predetermined positive integer.


Diversification Search. The Diversification Search is carried out when the Exploration


Search either spends the inner iterations ℓinner times or fails to obtain an improvement in


some consecutive iterations. With the current VRL, Procedure 5.2.2 is applied to generate a


trial point x
(j+1)
0 in some new region. Then the Exploration Search is repeated again starting


from x
(j+1)
0 .


5.4.2 Intensification Search


According to the principle of the multi-ranked TL, it reserves the best points visited so far.


In order to improve these points, we complete the DTS method by applying another local


search method starting from some of these points, which we call Intensification Search. We


use Kelley’s modification [51, 52] of the Nelder-Mead (NM) method as a local search method


for this task.


5.4.3 Main Algorithm


We have two versions of the DTS method; DTSNMS and DTSAPS that use the NMS strategy


and APS strategy, respectively, as neighborhood-local search strategies. First, a specific and
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formal description of DTSNMS is given in the following Algorithm 5.4.1.


Algorithm 5.4.1. DTSNMS(f, x
(0)
0 )


1. Initialization. Choose positive integers ℓmain, ℓ′main, ℓinner and ℓ′inner.


Choose an initial solution x
(0)
0 , and set TL and VRL to be empty.


2. Exploration-Diversification Search (Main Loop). Let j := 0 and repeat


this main loop until ℓ′main consecutive main iterations fail to obtain improve-


ment or the main loop iteration counter j exceeds ℓmain.


2.1. Exploration Search(NMS) (Inner Loop). Let k := 0 and repeat this


inner loop until ℓ′inner consecutive inner iterations fail to obtain improvement


or the inner loop iteration counter k exceeds ℓinner.


2.1.1. Search Directions. If the current iterate x
(j)
k lies in Semi-TRs, use


Procedure 5.2.1 to construct search directions {di}n
i=1 and to choose step sizes


{∆i}n
i=1 . Otherwise, construct search directions di := (−1)τi ei, i = 1, . . . , n,


where ei ∈ Rn is the ith unit vector in Rn and τi is a random integer number,


and choose suitable step sizes {∆i}n
i=1 .


2.1.2. Neighborhood Search. Generate n neighborhood trial points yi :=


x
(j)
k + ∆idi, i = 1, . . . , n. Whenever a better movement is found during this


process, stop generating points, set x
(j)
k+1 equal to this better movement, and


go to Step 2.1.4.


2.1.3. Local Search. Apply n iterations of the NM method starting from


the simplex S :=
{


x
(j)
k , y1, . . . , yn


}
. If an improvement point is obtained from


these NM iterations, set local trial point yn+1 equal to this improvement point,


and set q := 1. Otherwise, set q := 0. Set x
(j)
k+1 := arg mini=1,...,n+q {f (yi)} .


2.1.4. Parameter Update. Let x
(j)
k replace the element with the smallest
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membership value in TL and re-rank the TL elements using (5.2.1). Update


the VRT and set k := k + 1.


2.2. Diversification Search. Generate a trial point x
(j+1)
0 using Procedure


5.2.2. Update the TL and VRT, and set j := j + 1.


3. Intensification Search. Apply the Kelley’s modification [51] of the NM


method starting from some elite solutions in the TL.


The DTSAPS algorithm is the same as Algorithm 5.4.1 except Step 2.1, which should be


changed to follow the structure of APS strategy as shown in Algorithm 5.4.2. Only Step


2.1 of Algorithm 5.4.2 is stated since other steps are the same as the corresponding steps in


Algorithm 5.4.1.


Algorithm 5.4.2. DTSAPS(f, x
(0)
0 )


· · ·


2.1. Exploration Search(APS) (Inner Loop). Let k := 0, initialize a vector


v to be a random vector in Rn, and repeat this inner loop until ℓ′inner consec-


utive inner iterations fail to obtain improvement or the inner loop iteration


counter k exceeds ℓinner.


2.1.1. Search Directions. If the current iterate x
(j)
k lies in Semi-TRs, use


Procedure 5.2.1 to construct search directions {di}n
i=1 and to choose step sizes


{∆i}n
i=1 . Otherwise, construct search directions di := sign(vi)ei, i = 1, . . . , n,


where ei ∈ Rn is the ith unit vector in Rn and vi is the ith component of v,


and choose suitable step sizes {∆i}n
i=1 .


2.1.2. Neighborhood Search. Generate n neighborhood trial points yi :=


x
(j)
k + ∆idi, i = 1, . . . , n. Whenever a better movement is found during this


process, stop generating points, set x
(j)
k+1 equal to this better movement, and


go to Step 2.1.4.
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2.1.3. Local Search. Compute the direction v at x
(j)
k using {yi}n


i=1 as in


(5.3.1). Choose two suitable step sizes α1 and α2 to generate local trial points


yn+i = x
(j)
k + αiv/ ‖v‖ , i = 1, 2. Set x


(j)
k+1 := arg mini=1,...,n+2 {f (yi)} .


2.1.4. Parameter Update. Let x
(j)
k replace the element with the smallest


membership value in TL and re-rank the TL elements using (5.2.1). Update


the VRT and set k := k + 1.


· · ·


5.5 Implementation and Experiments


In this section, we give more details about the implementation as well as the experimental


results of the DTS algorithms.


5.5.1 Setting Parameters


In this subsection, we discuss the suggested values of the parameters needed in the im-


plementation of the DTS algorithms and the sensitivity of these parameters. First, the


initial trial solution x
(0)
0 is chosen randomly from the predetermined range [L,U] of the ini-


tial points for each test function, where [L,U] := {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n} . The


other parameters can be classified into the following groups.


• TR and Semi-TR parameters: the radius rTR of each TR, and the outer radius


rSTR of the Semi-TR.


• TL parameters: the number L of elements in TL, the maximum and minimum


recency ranked values ηmax and ηmin, respectively, the number L of the function-value


ranked elements, and the maximum and minimum function-value ranked values µmax


and µmin, respectively.


• VRL parameters: the radii ρj, j = 1, . . . ,M, of the visited regions.


• Step sizes: the step sizes ∆i, i = 1, . . . , n, used in generating neighborhood trial


points in DTSNMS and DTSAPS, and α1 and α2 used to generate local trial points in


DTSAPS.
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• Diversification trials: the parameter γ used in (5.2.2) and the maximum number


Itmax of iterations allowed in Procedure 5.2.2.


• Intensification trials: the number Nbest of best points that are used in the Intensi-


fication Search.


• Termination conditions: the loop termination numbers ℓmain, ℓ′main, ℓinner and ℓ′inner.


Proper values of these parameters have been studied through extensive numerical experi-


ments by using the functions Branin (RC), Goldstein&Price (GP ), Rosenbrock (R2) and


Zakhrov (Z2) and (Z5). In the tuning parameters experiments, we have tried to find a


standard setting of the DTS parameters which is problem-independent as much as possible.


Moreover, some relations between the parameters have been discussed to guide the user to


set the DTS parameters whenever new implementations of the DTS algorithm are invoked.


Below, we highlight the conclusion we got from the tuning parameters experiments.


First, the values of the parameter γ that we have studied are 0.10, 0.15, 0.2, . . . , 0.4. Recall


that the main role of this parameter is to avoid generating a new diverse trial solution near


to the more frequently visited regions. Since large γ may lead to a big area surrounding


the more frequently visited regions left without exploration, we did not test a value of γ


higher than 0.4. The performance of the DTS algorithms is almost the same for all runs


using the above-mentioned values of γ. Moreover, at the end of running the DTS algorithms


on many test functions, the centers of the visited regions listed in the VRL are distributed


almost uniformly for all tested values of γ. However, the value γ = 0.25 produces slightly


more scattered distributions than the other values. Therefore, we set γ equal to 0.25. The


parameter Itmax is set equal to 100n.


Most of the DTS parameters listed above are distance parameters. These distance pa-


rameters are rTR, rSTR, ρ, ∆i, i = 1, . . . , n, α1 and α2. Note that the radii ρj, j = 1, . . . ,M,


of all visited regions are set equal to ρ. For more accurate setting of the values of these


distance parameters, we consider the following:


1. Since Semi-TRs are surrounding TRs, we let rSTR > rTR. For easily escaping from


TRs and Semi-TRs, it is desirable to let ∆i > rSTR. Moreover, to avoid producing too


many small visited regions, we let ρ > ∆i. This means that the desirable order of the


distance parameters is rTR < rSTR < ∆i < ρ. Since the step sizes α1 and α2, are used


to search the area along an approximate descent direction, it is appropriate to let one


of them be smaller than the usual step size ∆i and the other be greater than ∆i.
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Table 5.1: Distance parameters.


Parameter Tested values Suggested value
rTR 0.01δ, 0.02δ, 0.03δ, 0.04δ 0.01δ
∆i 0.08δ, 0.1δ, 0.12δ 0.1δ
ρ 0.15δ, 0.2δ, 0.25δ 0.15δ


2. To keep the distance parameters in the above order, we let their values relate to only one


parameter δ which is the diameter of the range [L,U] defined as δ := max1≤i≤n (ui − li) .


The performance of the DTS algorithms were tested using different values for these param-


eters through many test functions. The suggested values of these parameters are given in


Table 5.1, and rSTR is set equal to 2rTR. The performance of the DTS algorithms were al-


most insensitive with regard to all tested values of the distance parameters. In Table 5.1, we


also suggest the value for each parameter which produces the best performance. For more


efficient search, the step sizes may be randomly chosen close to some fixed mean values,


rather than being set at fixed values. Specifically, we set the step sizes as follows:


∆i = (0.1 + 0.025ωi)δ, i = 1, . . . , n,


α1 = (0.1 − 0.05θ1)δ,


α2 = (0.1 + 0.05θ2)δ,


where ωi, i = 1, . . . , n, are random numbers from the interval (−1, 1), and θ1 and θ2 are


random numbers from the interval (0, 1).


For the TL parameters, the values 5n, 6n, 7n and 8n and the values 2n, 3n and 4n


have been tested as possible choices for L and L, respectively. The performance of the DTS


algorithms using these values of L and L is almost the same. So, to avoid storing unnecessary


information, we set L and L equal to the least possible values, i.e., L = 5n and L = 2n. The


other TL parameters are set as ηmax = µmax = 1 and ηmin = µmin = 1/L.


The parameter Nbest is set equal to 1 because the numerical results show that the best


point found in the Exploration-Diversification Search is close to global minima for most of


the test function.


The last group of parameters are related to the termination conditions. Actually, choosing


sufficient large values for the loop termination numbers ℓmain, ℓ′main, ℓinner and ℓ′inner is highly


needed to avoid premature termination of the method. The numerical results have shown
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that the lowest values of these parameters that can give an acceptable performance of the


DTS algorithms are ℓmain = ℓinner = 5n, and ℓ′main = ℓ′inner = 2n. However, higher values


for these numbers can increase the ability of finding global minima for some difficult test


problems.


5.5.2 Numerical Results


In this subsection, we discuss the performance of the DTS algorithms through two main


experiments. The first experiment is to compare the results obtained by the DTSNMS and


DTSAPS and then compare the best version of them with other continuous versions of TS. In


the second experiment, the performance of the best DTS algorithms is also compared with


other metaheuristics.


Numerical Results of DTS and other TS methods


To examine the performance of the DTS algorithms DTSNMS and DTSAPS , we tested them


on some well known functions [25, 39] listed as Set A in Table 5.2 , see Appendix A for


more details of these test functions. The characteristics of these test functions are diverse


enough to cover many kinds of difficulties that arise in unconstrained global optimization


problems. To complete the evaluation of the DTS algorithms, they should be compared


with other continuous versions of TS. However, it is not easy to show complete and fair


comparisons due to the lack of some information especially on the quality of solutions ob-


tained by those continuous TS methods. Therefore, we try to compare our algorithms with


other continuous TS methods in terms of the ability of obtaining global minima, the cost of


function evaluations and the quality of computed solutions. Three continuous TS methods


chosen to compare with the DTS algorithms are continuous reactive TS (CRTS) [10], En-


hanced Continuous Tabu Search (ECTS) [15], and TS-based algorithm called DOPE [26].


The ECTS and DOPE methods are the most recent continuous TS methods and the quality


of computed solutions are stated clearly in their original references.


For each function in Set A, we applied the DTS codes 100 times with different starting


points. For all these test functions, we used the same values of the DTS parameters as those


presented in Subsection 5.5.1. Moreover, we used the same condition as that used by ECTS


[15] to judge the success of a trial, which is given by
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Table 5.2: Test functions (Set A).


No. f Function name n No. f Function name n
1 RC Branin RCOS 2 9 S4,5 Shekel 4
2 ES Easom 2 10 S4,7 Shekel 4
3 GP Goldstein&Price 2 11 S10,7 Shekel 4
4 SH Shubert 2 12 Z5 Zakharov 5
5 Z2 Zakharov 2 13 R5 Rosenbrock 5
6 R2 Rosenbrock 2 14 H6,4 Hartmann 6
7 DJ De Joung 3 15 Z10 Zakharov 10
8 H3,4 Hartmann 3 16 R10 Rosenbrock 10


∣∣∣f ∗ − f̃
∣∣∣ < ǫ1 |f ∗| + ǫ2, (5.5.1)


where f̃ refers to the best function value obtained by the algorithm, f ∗ refers to the exact


global minimum, and ǫ1 and ǫ2 are set equal to 10−4 and 10−6, respectively. Note that the


conditions for successful trials are not stated for CRTS and DOPE in the original references


[10, 26].


The results of the two versions of DTS method, DTSNMS and DTSAPS, are reported in


Table 5.3. These results represent the average number of function evaluations (Av. f -evals.)


with minimum and maximum numbers in parentheses, the average errors (Av. Error) and the


success rates (Suc.) for each function. The average number of function evaluations and the


average error only relate to successful trials. The results shown in Table 5.3 reveal that the


performance of DTSAPS is consistently better than DTSNMS in terms of function evaluations


and the ability of obtaining global minima. Moreover, it seems that DTSNMS suffers from


the curse of dimensionality as is seen from the Av. f -evals. for higher dimensional problems.


Table 5.4 compares DTSAPS with the above-mentioned continuous TS methods in terms


of the average number of function evaluations. The results of CRTS, ECTS and DOPE


methods are taken from their original references [10, 15, 26]. The percentages in parentheses


represent the success rates of reaching global minima. The quality of the computed solutions


by those methods except the CRTS method is shown in Table 5.5, where the errors are


measured in terms of function values at the computed and exact solutions. The quality of


the produced solutions by the CRTS method is not stated clearly in [10], but it is only said


that the statistical error on the CRTS is about 3%. Before judging the comparison of these
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Table 5.3: Results of DTS algorithms.


DTSNMS DTSAPS


f
RC
ES
GP
SH
Z2


R2


DJ
H3,4


S4,5


S4,7


S4,10


Z5


R5


H6,4


Z10


R10


Av. f-evals.(min/max) Av. Er. Suc.


274(252/296) 4e–7 100%
271(202/285) 5e–9 30%
293(276/324) 5e–9 88%
298(282/319) 9e–6 44%
273(247/291) 6e–9 100%
358(272/489) 6e–9 100%
650(600/694) 5e–9 100%
670(613/789) 2e–6 97%


1426(1342/1473) 7e–7 39%
1425(1372/1487) 4e–5 29%
1438(1340/1493) 1e–5 22%
2458(2301/2597) 6e–9 100%
2895(2523/3473) 7e–9 75%
3978(3618/4308) 2e–6 68%


16392(14235/17821) 2e–8 100%
19139(16844/22416) 2e–8 78%


Av. f evals.(min/max) Av. Er. Suc.


212(181/243) 4e–7 100%
223(156/244) 4e–9 82%
230(207/282) 5e–9 100%
274(260/307) 9e–6 92%
201(183/225) 5e–9 100%
254(207/321) 5e–9 100%
446(393/516) 4e–9 100%
438(389/493) 2e–6 100%
819(669/989) 3e–7 75%
812(675/973) 4e–5 65%
828(706/963) 1e–5 52%


1003(903/1093) 7e–9 100%
1684(1326/2093) 6e–9 85%
1787(1489/2036) 2e–6 83%
4032(3689/4809) 2e–8 100%
9037(6701/12879) 2e–8 85%


methods, some remarks are made in regard to the reported success rates of ECTS and the


termination condition of DOPE.


• The ECTS method uses condition (5.5.1) to test the success of a trial [15]. However,


the results marked by (⊛) in Tables 5.4 and 5.5 seem to contain some inconsistencies.


In fact, from condition (5.5.1), the average errors for functions R2, R5 and Z5 must be


less than 10−6 because f ∗ = 0 for all these functions. However, in Table 5.5, they are


reported to be greater than 10−6. For instance, the average error for function R5 in


Table 5.5 is 0.08, which means that there are some trials that did not satisfy condition


(5.5.1). Nevertheless, the rate of success is reported to be 100%. Moreover, the results


of ECTS for functions RC,ES,GP, H3,4 and H6,4 in Tables 5.4 and 5.5 also contain


similar inconsistencies.


• According to [26], DOPE is terminated when either a maximum number of function


evaluations is reached or the global minimum (if it is a priori known) is found. Since


the information on global minima is not available in practice, we did not use the latter


termination condition in our numerical experiments. This termination condition may


explain the extremely small number of function evaluations of DOPE for some test


functions.
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From these remarks, the comparisons of the DTS methods with the ECTS and DOPE


methods do not seem to yield a definitive fair answer. However, in terms of the quality


of computed solutions, the DTSAPS algorithm seems to outperform ECTS and DOPE as


shown in Table 5.5. Moreover, the DTSAPS algorithm seems to outperform ECTS in terms


of the number of function evaluations for functions in Set A. However, the drawback we have


noticed on the DTS algorithms is its deterioration in high dimensional problems (n > 30).


Actually, this can be expected since the search in the DTS algorithms is mainly controlled


by direct search methods and it has been shown, for instance, in [54] that the latter methods


deteriorate with the increase of the dimension, i.e., suffer from the curse of dimensionality.


To show the limit of deterioration of the DTS performance with the dimensionality, we report


some results for high dimensional problems. The results have been obtained by running the


Matlab code of DTSAPS, with the parameter setting given in Subsection 5.5.1, on Pentium


2.8-GHz machine. For Rosenbrock R50 function, the DTSAPS algorithm converged to a


point close to the global minimum with function value 4.46 × 10−7 using 510, 505 function


evaluations in 1085 CPU seconds. For Zakharov Z50 and Rosenbrock R100 functions, the


DTSAPS algorithm obtained points not so close to the global minimum at distances 1.404


and 4.1057 with function values 1.972 and 4.106 using 177, 125 and 3, 202, 879 function


evaluations in 1, 043 and 15, 270 CPU seconds, respectively. These results of Z50 and R100


are the best among 5 runs. For Zakharov Z100, the DTSAPS algorithm failed to obtain a


point near the global minimum by 5 runs using the same setting of parameters. As far as


the results in Table 5.4 common to all methods are concerned, CRTS may be considered the


best among the continuous TS methods in terms of the ability of obtaining global minima


and the number of function evaluations.


The performance of DTSAPS against other metaheuristics


The performance of DTSAPS is compared with other metaheuristics using the test functions


listed as Set B in Table 5.6 [59], see Appendix A for more details of these test functions. We


choose two other metaheuristics proposed for the continuous optimization problem; Genetic


algorithm for numerical optimization of constrained problems (Genocop III) [67], and Scatter


Search (SS) [59].
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Table 5.4: Average numbers of function evaluations for continuous TS methods.


DTSAPS ECTS DOPE CRTS
f
RC
ES
GP
SH
Z2


R2


DJ
H3,4


S4,5


S4,7


S4,10


Z5


R5


H6,4


Z10


R10


212
223(82%)


230
274(92%)


201
254
446
438


819(75%)
812(65%)
828(52%)


1003
1684(85%)
1787(83%)


4032
9037(85%)


245⊛


1284⊛


231⊛


370
195
480⊛


338
548⊛


825(75%)
910(80%)
898(75%)


2254⊛


2142⊛


1520⊛


4630
15720(85%)


31
290
248
466
81
692
131
135
–
–
–


424
2512
421
8695
5133


CRTSAve CRTSMin


38 41
– –


248 171
– –
– –
– –
– –


513 609
812 664
960 871
921 693
– –
– –


750 1245
– –
– –


Table 5.5: Average errors for continuous TS methods.


f DTSAPS ECTS DOPE f DTSAPS ECTS DOPE
RC
ES
GP
SH
Z2


R2


DJ
H3,4


4e–7
4e–9
5e–9
9e–6
5e–9
5e–9
5e–9
2e–6


5e–2⊛


1e–2⊛


2e–3⊛


1e–3
2e–7
2e–2⊛


3e–8
9e–2⊛


5e–2
1e–2
2e–3
1e–3
2e–7
2e–2
3e–8
9e–2


S4,5


S4,7


S4,10


Z5


R5


H6,4


Z10


R10


3e–7
4e–5
1e–5
7e–9
6e–9
2e–6
2e–8
2e–8


1e–2
1e–2
1e–2
4e–6⊛


8e–2⊛


5e–2⊛


2e–7
2e–2


–
–
–


4e–6
8e–2
5e–2
2e–2
2e–7
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Table 5.6: Test functions (Set B).


No. f Function name n No. f Function name n
1 RC Branin RCOS 2 21 PS8,18,44,114 Power Sum 4
2 B2 Bohachevsky 2 22 H6,4 Hartmann 6
3 ES Easom 2 23 SC6 Schwefel 6
4 GP Goldstein&Price 2 24 T6 Trid 6
5 SH Shubert 2 25 T10 Trid 10
6 BL Beale 2 26 RT10 Rastrigin 10
7 BO Booth 2 27 G10 Griewank 10
8 MT Matyas 2 28 SS10 Sum Squares 10
9 HM Hump 2 29 R10 Rosenbrock 10
10 SC2 Schwefel 2 30 Z10 Zakharov 10
11 R2 Rosenbrock 2 31 RT20 Rastrigin 20
12 Z2 Zakharov 2 32 G20 Griewank 20
13 DJ De Joung 3 33 SS20 Sum Squares 20
14 H3,4 Hartmann 3 34 R20 Rosenbrock 20
15 CV Colville 4 35 Z20 Zakharov 20
16 S4,5 Shekel 4 36 PW24 Powell 24
17 S4,7 Shekel 4 37 DP25 Dixon&Price 25
18 S4,10 Shekel 4 38 L30 Levy 30
19 P4,0.5 Perm 4 39 SR30 Sphere 30
20 P 0


4,0.5 Perm 4 40 AK30 Ackley 30
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Table 5.7: Average optimality gap values.


f -evals. 100 500 1000 5000 10000 20000 50000
Genocop III1 5.37E+25 2.39E+17 1.13E+14 636.37 399.52 320.84 313.34
Genocop III2 1335.45 611.30 379.03 335.81 328.66 324.72 321.20
Scatter Search 134.45 26.34 14.66 4.96 3.60 3.52 3.46
DTSAPS 5.04E+04 43.06 24.26 4.22 1.80 1.70 1.29


1 Average values for all test functions.
2 Average values for all test functions except function 23.


We define the optimality gap (GAP) [59] as the quantity on the left-hand side of (5.5.1).


Table 5.7 shows the average GAP for all 40 test functions in Set B. In Table 5.7, the figures


related to Genocop III and SS are taken from [59] and represent the average GAP for all test


functions in Set B at intermediate stages during the search. Since the DTSAPS algorithm


consists of two complementary parts (Exploration-Diversification Search and Intensification


Search), its results in Table 5.7 are the average GAP for all test functions in Set B obtained


by running the DTSAPS code 7 times for each test function with the termination condition


that the number of function evaluations exceeds 100, 500, 1000, 5000, 10000, 20000 and


50000, respectively. Since Genocop III has a bad performance on the test function No. 23


(SC6), the results excluding this function are also included.


According to the results in Table 5.7, the performance of DTSAPS is generally better


than Genocop III and SS when the number of function evaluations is greater than 1000.


However, in the early stage of computations, SS performs better than DTSAPS. This can


be expected since DTSAPS is a point-to-point search method while SS is a population-


based search method. So, DTSAPS may need more iterations, and therefore more function


evaluations, to explore the search space well especially for high dimensional functions (n ≥ 6).


Since the data related to Genocop III and SS in Fig. 5.5 are taken from [59], we also


made the successful trial test [59] for the DTSAPS results in our experiments. We say that


a method approximately finds an optimal solution if


GAP ≤
{


0.001, if f ∗ 6= 0,
0.001f ∗, otherewise.


The graphs in Fig. 5.5 show the number of test functions from Set B that were approxi-


mately solved by each method. Fig. 5.5 shows that DTSAPS could approximately find global


minima for 14 test functions within only 100 function evaluations. Actually, the dimensions


of these 14 test functions are less than or equal to 6. Fig. 5.5 also shows that DTSAPS


generally outperforms the other two methods, Genocop III and SS.
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Figure 5.5: Number of solved problems.


5.6 Conclusion


In this chapter, we have presented a continuous TS method called Directed Tabu Search


(DTS) method. First, neighborhood-local search strategies are introduced to provide more


powerful search procedures to generate trial moves. A new pattern search procedure and


the NM method are used to construct these neighborhood-local search strategies. Moreover,


new memory elements called TR, Semi-TR and multi-ranked TL are applied to compose


anti-cycling rules and to escape from local minima. Finally, a diversification scheme based


on the memory element VRL is introduced to explore broad areas of the solution space. The


numerical results show the promise of the proposed method.







Chapter 6


Filter SA for Constrained Global


Optimization


6.1 Introduction


In Chapters 2 and 4, SA-based methods have been proposed to deal with unconstrained


global optimization problems. This chapter aims to extend the SA-based methods coverage


to constrained global optimization problems. Actually, implementing SA on the continuous


constrained optimization problem is still very limited in comparison with some other meta-


heuristics like the Evolutionary Algorithms (EAs). The SA approaches for constrained global


optimization problems have been proposed by Wah, Wang and Chen, see [17, 89, 90, 91].


Another SA approach has been proposed by Romeijn and Smith [82]. These approaches


are regarded as a pure SA. In this chapter we propose a hybrid SA approach which invokes


some intelligent concepts from other metaheuristics and local search methods. Specifically,


we propose a SA-based approach called Filter Simulated Annealing (FSA) method for the


constrained optimization problem


min
x


f (x) ,


s.t. gi (x) ≤ 0, i = 1, . . . , l,
hj (x) = 0, j = 1, . . . ,m,
x ∈ S,


(P )
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where f , gi and hj are real-valued functions defined on the search space S ⊆ Rn. Usually, the


search space S is defined as {x ∈ Rn : xi ∈ [li, ui] , i = 1, . . . , n} . The feasible region defined


by the constraints is denoted by F ⊆ S.


Most of the metaheuristics which have been proposed to solve problem (P ) are Evolu-


tionary Algorithms (EAs). The optimization methods can be classified in two categories;


the point-to-point methods which SA belongs to, and the population-based methods which


EAs belong to. Metaheuristics from both categories have been successfully applied to the


continuous unconstrained optimization problem. However, invoking point-to-point methods


to deal with continuous constrained optimization problems is still very limited in comparison


with the population-based methods. The main reason for unpopularity of SA for constrained


global optimization problems, as well as most of the point-to-point methods, is its difficulty


in keeping diversity. Especially, when the feasible region consists of several disjointed sub-


regions, it is not so easy for a point-to-point method without a guidance of a diversification


scheme to explore such regions effectively. Moreover, the point-to-point methods can be


divided in two classes; single-start methods and multi-start methods. The latter methods


have shown efficient performance when applied to difficult optimization problems [62, 63, 84].


The standard SA belongs to the class of single-start methods. Therefore, there is a need


to modify the standard SA in order to obtain an efficient method that can deal with the


general case of problem (P ).


In order to compose a powerful point-to-point-based method for solving problem (P ), it


is highly needed to consider the following things:


• In order to achieve efficient exploration of the space of interest, the designed method


should consist of multi-start stages with a guidance of an effective diversification


scheme. Otherwise, in the case of having disjointed feasible sub-regions, the method


may be trapped in the first hit feasible sub-region.


• An efficient exploration process should also invoke a search procedure which has the


ability to explore both of feasible and infeasible regions, rather than exploring the


feasible region only. This is needed to reach the global solution specially in the following


cases:


- the global solution lies on the boundary of the feasible region,


- the global solution lies in a feasible sub-region which differs from the currently con-


sidered sub-region in the case of having several disjointed feasible sub-regions.
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• In most cases of constrained optimization problems like problem (P ), optimal solutions


usually lie on the boundary of the feasible region. In order to explore the region near the


boundary between the feasible and infeasible regions effectively, the designed method


should invoke a solution generation procedure which is able to intensify the solution


generation process.


• An elite-based intensification scheme is needed in the final stage in order to refine the


best solution found so far. Especially, if the method is SA-based, a quicker intensifi-


cation scheme is highly needed to overcome the slowness of SA in its final stage.


We have considered all the above in designing the FSA method. So the FSA method is a


multi-start method with a diversification scheme. The FSA method uses the filter set concept


[24] in accepting new trial solutions, which gives it the ability to explore both of feasible


and infeasible regions. Moreover, the FSA method generates more trial solutions whenever


the region near the boundary is reached. Finally, two types of intensification schemes are


applied in order to refine the best solution visited so far. Thus, the FSA method is a hybrid


method which takes advantage of low computational cost of point-to-point methods and


efficient exploration of population-based methods. In other words, the FSA method is an


attempt to design a point-to-point method that behaves like a population-based method


without spending a big computational cost.


The numerical results shown later indicate that the proposed FSA method is very promis-


ing in the quality of obtained solutions as well as the computational costs especially for


dealing with constraints. Moreover, the numerical results also show that the FSA method


is competitive with the population-based methods in the quality of solution and it is much


cheaper than them in the computational costs. In the next section, we give some preliminar-


ies needed throughout this chapter. In Section 6.3, we highlight the main components of the


proposed FSA method. The study of the FSA parameters is given in Section 6.4. In Sections


6.5 and 6.6, we report numerical results for the FSA method. Finally, the conclusion of the


contribution of this chapter makes up Section 6.7.


6.2 Preliminaries


This section highlights the idea of reformulating problem (P ) as a multiobjective optimiza-


tion problem and the concepts of filter set and filtered points. To achieve that, the concept


of Pareto dominance in multiobjective optimization should be defined first.
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6.2.1 Pareto Dominance


Pareto Dominance is the most common concept of optimality in the multiobjective opti-


mization field. Multiobjective optimization seeks to optimize a vector of objective functions


within a feasible decision variable space. For the multiobjective minimization problem with


the objective functions ϕ1 (x) , . . . , ϕq (x) , defined on the search space SM ⊆ Rn, the Pareto


Dominance is defined as follows:


Definition 6.2.1. An objective vector Φ(y) = (ϕ1 (y) , . . . , ϕq (y)) is said to dominate an-


other objective vector Φ (z) = (ϕ1 (z) , . . . , ϕq (z)), written Φ(y) ≺ Φ(z), if and only if


ϕi (y) ≤ ϕi (z) ,∀i = 1, . . . , q and there exists at least one j ∈ {1, . . . , q} such that ϕj (y) <


ϕj (z) .


We will write Φ(y) ¹ Φ(z) to indicate that either Φ(y) ≺ Φ(z) or Φ(y) = Φ(z). In the


rest of this chapter, we will simply write y ≺ z and y ¹ z instead of writing Φ(y) ≺ Φ(z)


and Φ(y) ¹ Φ(z), respectively.


6.2.2 Problem Reformulation


An effective approach to handle constraints is to use multiobjective optimization techniques,


see for example [18, 19]. Such approaches reformulate the constrained problem as a multiob-


jective problem involving the original objective function and constraint violation functions.


More specifically, by introducing the constraint violation functions


Gi (x) = (max [0, gi (x)])α , i = 1, . . . , l,


Gl+j (x) = |hj (x)|α , j = 1, . . . ,m, (6.2.1)


where α is normally chosen to be 1 or 2, problem (P ) can be reformulated as the following


multiobjective optimization problem:


min
x∈S


[f (x) , G1 (x) , . . . , Gm+l (x)] . (PM)


Alternatively, we may consider another reformulation of problem (P ) as the following bi-


objective optimization problem:


min
x∈S


[f (x) , G (x)] , (PB)


where G (x) =
∑


m+l
i=1 Gi (x). The method proposed in this chapter will deal with problem (P )


through the reformulated problem (PB). In particular, we will denote x ≺ y if x dominates


y with respect to the vector function Φ(x) = (f(x), G(x)).
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6.2.3 Filter Set and Filtered Points


The filter set F is defined as a finite set of infeasible1 points in S such that x ≺ y does not


hold for any x and y in F. The point xF with the minimum function value f(x) found so far


in the feasible region F = {x ∈ S : G(x) = 0} is saved and treated separately as a single


filter point. This definition is taken from [5] which differs slightly from the original definition


in [24]. A point y is called a filtered point [5], if one of the following holds:


• y º x for some x ∈ F.


• G(y) ≥ Gmax, where Gmax > 0 is maximum value allowed on the constraint violation


function G (x).


• G(y) = 0, and f(y) ≥ fF , where fF = f(xF ) is the minimum function value found so


far in the feasible region.


In other words, we have three kinds of filtered point sets:


F̄I = {y ∈ S : y º x for some x ∈ F} ,


F̄II = {y ∈ S : G(y) ≥ Gmax} ,


F̄III =
{
y ∈ S : G(y) = 0, f(y) ≥ fF


}
.


Therefore, the set of all filtered points is defined as F̄ = F̄I ∪ F̄II ∪ F̄III. Unfiltered points are


used to update F̄ by adding them and deleting the old ones which are dominated by the new


added points.


6.3 The FSA method


The FSA method starts with a diversification generation procedure to generate a set of


diverse solutions called DivSet. The initial solution is chosen from the DivSet. Then, the


DivSet stands by to provide the search with a diverse solution whenever further diversifica-


tion is needed. In the FSA method, we introduce a ranking procedure for comparing and


ordering solutions. This ranking procedure is based on the filter set as well as objective


function and constraint violation function values. The scenario in the FSA method can be


1Throughout this chapter, the feasibility is related only to problem (P ) rather than PM or PB, that is,


we call a point x ∈ S feasible if G(x) = 0, and infeasible if G(x) > 0.
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described as follows. Let the current trial solution be Sol. Using the FSA ranking procedure,


Sol is initialized to be the best ranked one in DivSet. Then, trial solutions are generated in


a neighborhood of Sol using a trial solution generation procedure based on the approximate


descent direction (ADD) method proposed in Chapter 4. The trial solution generation pro-


cedure generates trial solutions in such a way that the objective function value is likely to


decrease if Sol is feasible, and the constraint violation function value is likely to decrease if


Sol is infeasible. Moreover, the trial solution generation procedure intensifies the solution


generation process if Sol is close to the boundary of the feasible region. We try to update Sol


with one of the generated trial solutions using the simulated annealing acceptance concept.


Specifically, if an unfiltered trial solution is obtained, we accept it with probability 1. Oth-


erwise, a trial solution is accepted with a certain probability controlled by the temperature


parameter. Whenever the number of consecutive iterations without accepting a new trial


solution exceeds a predetermined maximum number, a new diverse solution is chosen from


DivSet and the re-annealing process is applied, i.e., the temperature is re-initialized. While


the search proceeds, DivSet is updated by removing any of its elements if the search reaches


a region close to this element. We terminate this main stage of the FSA method when the


cooling schedule is completed with an empty DivSet. Finally, two intensification schemes are


invoked to refine the best solution found so far. The best solution is defined to be the best


feasible solution if the feasible region is reached. Otherwise, the best solution is defined to be


the infeasible solution with the least constraint violation function value. The temperature


parameter at the best solution found so far in the previous search stage is saved to be used


in the first intensification scheme which applies an annealing process with slower cooling


schedule and smaller step sizes. The second intensification scheme applies a greedy local


search method on a penalty function of problem (P ) starting from the best solution found


so far. Figure 6.1 shows the outline of the FSA method. Below, we describe the details of


the FSA main steps sketched above and state the FSA algorithm formally at the end of this


section.


6.3.1 Diversification Generation Procedure


In the FSA method, we use the scatter search diversification generation Method [59, 60] to


generate a diverse solution set DivSet. In that method, the interval (ui−li) of each variable is


divided into 4 sub-intervals of equal size. For each sub-interval of each variable, a frequency


count is defined as the number of solutions which are perviously chosen in this sub-interval.


To generate a new solution to be added to DivSet, one has to
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Figure 6.1: Outline of the FSA method.
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• choose one sub-interval for each variable randomly with a probability inversely pro-


portional to its frequency count, and


• choose a random value for each variable that lies in the corresponding selected sub-


interval.


While the search proceeds, the DivSet is updated by eliminating any of its elements lying


close to a visited solution. Specifically, when the current solution is x, the DivSet is updated


through the rule


DivSet = DivSet − {y : y ∈ DivSet,
n∑


i=1


(xi − yi)
2


H2
i


≤ 1}, (6.3.1)


where HDiv = (H1, . . . , Hn) is a predetermined constant vector with positive components.


When the diversification is needed, the solution with the largest distance from the current


solution is chosen from the DivSet to be a new diverse solution.


6.3.2 Ranking Procedure


To order the solutions in a set S = {x1, x2, . . . , xµ}, we introduce the following ranking


procedure. The solutions are ordered based on three rank functions as given below.


1. Dominance Rank (rd): The best feasible point xF is given the rank value rd = 1, and


other feasible points are given the rank value rd = 2. The points in F are given the


rank value rd = 1, and any other infeasible point x is given the rank value rd = ν + 1,


where ν is the number of points in F which dominate x.


2. f -value Rank (rf ): According to their objective function values f (xi) , xi ∈ S, the


best point is given the rank value rf = 1, the second best point is given the rank value


rf = 2, and so on.


3. G-value Rank (rG): According to their constraint violation function values G (xi) , xi ∈
S, the best point is given the rank value rG = 1, the second best point is given the


rank value rG = 2, and so on.


In each ranking described above, ties are broken arbitrarily. Then, the total ranking


function r is defined by


r(xi) = rd(xi) +
λ


µ
rf (xi) +


(1 − λ)


µ
rG(xi), xi ∈ S, (6.3.2)
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where λ ∈ [0, 1] . The solutions of S are ordered and relabeled such that


r (x1) ≤ r (x2) ≤ · · · ≤ r (xn+1) . (6.3.3)


The main role of the parameter λ is to control the priority in the ranking between the


objective function value and the feasibility. Actually, the ranking function r is basically


based on the dominance rank rd and, within the same dominance rank value, the parameter


λ gives a greater value to either of the ranking values rf and rG. Specifically, setting


λ ∈ [0, 0.5) gives some priority to the feasible points and setting λ ∈ (0.5, 1] gives some


priority to points with lower objective function values. In the FSA method, the value of


λ is chosen to be less than 1/µ in order to accept a better feasible solution when it is


found. Moreover, this ranking procedure allows a new infeasible solution which reduces the


constraint violation function to be highly accepted, compared with a new feasible solution


which is worse than the best feasible solution found so far. This gives the search process


more flexibility to explore the boundary region.


6.3.3 Trial Solution Generation Procedure


We use the Approximate Descent Direction (ADD) method proposed in Chapter 4 to gen-


erate trial solutions in the FSA method. Specifically, we use the ADD method to generate


a search direction d at a given solution x, and then use it to generate new trial solutions in


a neighborhood of x. To achieve that, we first generate p exploring points {yi}p
i=1 close to x


and generate the search direction d as follows:


1. If x is feasible, we apply the ADD method with {yi}p
i=1 and (4.2.1) to compute an


approximate descent direction v of f at x. Then, we set the search direction d :=


v/ ‖v‖ .


2. If x is infeasible, we apply the ADD method with {yi}p
i=1 and use (4.2.1) to compute


an approximate descent direction v of G at x. Then, we set the search direction d :=


v/ ‖v‖ .


Trial solutions can be generated along the search direction d with suitable step sizes.


Moreover, it is known that, in most cases, optimal solutions can be found on the boundary


of the feasible region. So, in order to encourage the search to explore the region near the


boundary effectively, more trial solutions should be generated whenever the current solution


is close to the boundary. To implement this idea in the FSA method, another trial solution
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Figure 6.2: An example of generating trial solutions.


will be generated between the current solution and the trial solution if the feasibility status


is changed between them. Figure 6.2 shows an example of the two types of generating trial


solutions in the neighborhood of a current solution x. In Figure 6.2(a), a trial solution y is


generated along the search direction d and since x and y are feasible, no more trial solution


will be generated. However, in Figure 6.2(b), x is feasible but y is infeasible, and so another


trial solution y′ is generated between x and y. Formally, we can define the trial solution set


as


TS(x) = {y : y = x + δi∆d, i ∈ I}, (6.3.4)


where ∆ is a step size and δi are random numbers. The set I is given by I = {1} if the


feasibility status at x + δ1∆d is the same as that at x, i.e., G(x + δ1∆d) = G(x) = 0, or


G(x + ∆d) > 0 and G(x) > 0, and I = {1, 2}, otherwise. The random numbers δi give


the search some stochastic behavior to achieve more efficient exploration. For example, we


may let δ1 be uniformly distributed in the interval (0, 1) and δ2 be normally distributed with


mean 1/2 and a suitable variance σ2.


6.3.4 Intensification


In the FSA method, we compose two stages of intensification process. The first one is SA-


based procedure, called SA Intensification, in which up-hill movements may be accepted in


order to avoid the case where the region around the best solution visited so far is prematurely


explored in the previous search stages. The other stage of intensification is a greedy process


that accepts only down-hill movements, which we call Local Search Intensification. This


greedy-type intensification is needed since it has been reported that the SA can reach a


region near global minima, however, it may wander around the optimal solution if high
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accuracy is required [41, 92]. The outline of these intensification stages is given below.


• SA Intensification. In the previous stage of the search, we save the temperature


parameter value recorded at the best solution found so far. Then, in order to refine


that solution, a slower cooling schedule, i.e., a schedule with a higher cooling ratio, is


started from the saved value of the temperature parameter. Moreover, the step size


used in generating trial solutions is reduced to refine the search steps for more accurate


exploration.


• Local Search Intensification. A direct search method is applied, starting from the


best solution found so far, to minimize the penalty function


p(x) = f(x) + ρG(x), (6.3.5)


where ρ is a penalty parameter. The Kelley’s modification [51, 52] of the Nelder-


Mead method [72] is used to minimize the function p(x) in N consecutive times using


gradually increasing penalty parameters ρ1, ρ2, . . . , ρN .


6.3.5 FSA Algorithm


The formal description of the FSA method is given below.


Algorithm FSA


1. Initialization. Construct DivSet using the diversification generation proce-


dure. Set the best ranked point in DivSet to be the initial point x0. Choose


the cooling schedule parameters; initial temperature Tmax, final temperature


Tmin and cooling ratio γ ∈ (0, 1), and the epoch length M and set T := Tmax.


Set F0 to be empty, set xbest = x0, choose a step size ∆ > 0, choose a positive


integer Kmax, and set k := 0.


2. Main Loop.


2.1. Compute a trial solution set TS(xk) as in (6.3.4) with the step size ∆.


Set yk equal to the best ranked point in TS(xk).


2.2. The trial point yk is accepted with the probability


p =


{
1, if yk /∈ F̄k,
min{1, exp (−∆fG/T )}, otherwise,


(6.3.6)


where ∆fG = max {f (yk) − f (xk) , G (yk) − G (xk)} .
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2.3. If yk is accepted, then set xk+1 := yk; otherwise, set xk+1 := xk. Update


Fk, xbest and DivSet, and set k := k + 1.


2.4. Diversification. If the number of consecutive iterations without accepting


a new solution exceeds Kmax, and DivSet 6= φ, then choose xk ∈ DivSet, set


T := Tmax, set Fk to be empty, and go to Step 2.1. Otherwise, go to Step 2.5.


2.5. If the epoch length M is attained, then go to Step 2.6. Otherwise, go to


Step 2.1.


2.6. If T > Tmin, then set T := γT and go to Step 2.1. Otherwise, go to Step


3.


3. Intensification.


3.1. SA Intensification. Set xk equal to xbest, set T equal to the saved


temperature at that point, and set a final temperature T ′
min, an epoch length


M ′ and a cooling ratio γ′ > γ.


3.1.1 Compute a trial solution set TS(xk) as in (6.3.4) with the step size ∆.


Set yk equal to the best ranked point in TS(xk).


3.1.2 Accept yk with the probability p given by (6.3.6). Set xk+1 := yk if yk is


accepted; otherwise, set xk+1 := xk. Update Fk and xbest, and set k := k + 1.


3.1.3 If the epoch length M ′ is attained, then go to Step 3.1.4. Otherwise,


go to Step 3.1.1.


3.1.4 If T > T ′
min, then set T := γ′T and go to Step 3.1.1. Otherwise, go to


Step 3.2.


3.2. Local Search Intensification. For ρ = ρ1, ρ2, . . . , ρN :


3.2.1 Apply a local search method to the function f(x)+ρG(x) starting from


xbest.


3.2.2 Update xbest and go to Step 3.2.1.


6.4 Setting FSA Parameters


In this section, setting the FSA parameters is discussed to complete the implementation


of the FSA algorithm stated in the previous section. These parameters can be classified as


shown Table 6.1, which contains all FSA parameters and their definitions. Some preliminary


numerical experiments have been done in order to find proper values of these parameters.


Moreover, these experiments of tuning parameters aim to obtain a standard setting of pa-


rameters which is problem-independent as much as possible. The values of some parameters
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Table 6.1: The FSA parameters


Parameter Group Parameter Definition
Constraint Violation α Power factor used in (6.2.1)
Function ǫ Small positive number used for


reformulating equality constraints
Diversification |DivSet| Size of DivSet


HDiv Distance vector used to update DivSet
Kmax Maximum number of iterations allowed


without acceptance
Cooling Schedule Tmax, Tmin Initial and final temperatures


M Epoch length
γ Cooling ratio


Trial Solutions p Number of exploring points used in ADD
r Neighborhood radius used in ADD
∆ Step size used in (6.3.4)
σ2 Variance of the normal distribution of δ2


λ Rank ordering parameter
Gmax Maximum value allowed on G (x)


Intensification T ′
min Final temperature in SA Intensification


M ′ Epoch length
γ′ Cooling ratio in SA Intensification
ρ1, ρ2, . . . , ρN Penalty parameters


are assigned to their standard setting reported in the literature. Below, we state the sug-


gested values of the FSA parameters as well as the conclusion of what we got from the tuning


parameters experiments.


6.4.1 Constraint Violation Function Parameters


The power factor α used in (6.2.1) is set equal to 2, since using this value showed notably


better performance of the FSA method than that of using the value 1. Treating the equality


constraints as in (6.2.1) does not seem efficient in the implementation. It was observed that


reformulating the equality constraint h(x) = 0 as the inequality constraint |h(x)| − ǫ ≤
0, where ǫ is a small positive number, yielded a better performance of the FSA method.


Moreover, using a large value of ǫ in the first stage of search and reducing its value in the


intensification stage gave better results. Therefore, we set ǫ equal to 10−3 in reformulating
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all equality constraints in all FSA search stages except in the local search intensification


stage in which ǫ is set equal to 10−6.


6.4.2 Diversification Parameters


The size of DivSet depends on many factors such as the wideness of the search space, the


number of disjoint feasible sub-regions, and the multimodality of the objective function. We


observed that setting the size of DivSet equal to 50 almost fits all the considered problems.


The distance vector HDiv = (H1, . . . , Hn) used to update the DivSet is set so as to fit


the size of the search space. Specifically, we set Hi = ui−li
|DivSet|/n


, i = 1, . . . , n, where the


denominator represents the average line density of distributing the solutions of DivSet along


each coordinate direction, so that the value of Hi represents the average distance along the


coordinate direction i between two neighboring diverse solutions. The maximum number


Kmax of iterations allowed without accepting new trial solutions is set equal to 10.


6.4.3 Cooling Schedule Parameters


The initial temperature Tmax is set large enough to make the initial probability of accept-


ing transition close to 1. Beside the initial point x0, another point x̃0 is generated in a


neighborhood of x0 to calculate Tmax as


Tmax := − 1


ln(0.9)
|f(x̃0) − f(x0)| .


At the beginning of each re-annealing process, a new Tmax is computed in a similar manner.


The cooling ratio γ is normally chosen to be between 0.9 and 0.99 [57]. In our experiments,


we set γ equal to 0.9 and a higher value is used in the intensification stage as we will state


later. A common choice of the epoch length M is to let it depend on the size of the problem


[53, 58]. In our experiments, we set M equal to 2n. The cooling schedule is terminated


when the temperature reaches a fixed minimum value Tmin. We observed that setting Tmin


equal to min (10−5, 10−5Tmax) could give a complete cooling schedule in the sense that the


acceptance probability at the end is almost zero.


6.4.4 Trial Solutions Parameters


The parameters used in computing the search directions vf and vG are the number p of


exploring points, and the radius r of the neighborhood in which the exploring points are
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generated. We set p = 2 and r = 10−3 as suggested in Chapter 4. The ranking parameter


λ is set equal to 0.5/µ, where µ is the number of solutions to be ranked or compared.


This setting allows the best feasible solution to have the highest rank, whenever it exists,


among the compared solutions. Setting a proper value of step size ∆ is very effective in


the performance of the FSA algorithm, because setting too big a value for ∆ may yield a


premature termination of the algorithm and setting too small a value for ∆ will not yield


an efficient exploration process for the whole search space. We tested many values of ∆


and found that the value ∆ = min (0.05
∑n


i=1(ui − li)/n, 10) gave the best performance. For


variance σ2 of the normal distribution of δ2, the values σ = 1/2, 1/3, 1/4 have been tested.


We observed that setting σ = 1/3 gave a slightly better performance than setting the other


values. The filter set contains only one parameter; the maximum value Gmax allowed on the


constraint violation function G (x). In the original reference of the filter set concept [24], the


value of Gmax is set equal to max(1.25G(x0), 100), where x0 is the initial solution. However,


in the FSA algorithm, we use a higher value, since our goal is to explore the whole search


space effectively and reaching a global minimum, which differs from the goal of [24], i.e.,


finding a local minimum. So we set Gmax equal to 10 max(1.25GDiv
max, 100), where GDiv


max is


the maximum value of the constraint violation function G(x) computed at each point in the


DivSet.


6.4.5 Intensification Parameters


For the SA Intensification Parameters, final temperature T ′
min, epoch length M ′ and cooling


ratio γ′ are set equal to 10−5Tbest, 2n and 0.99, respectively, where Tbest is the temperature


saved at the best solution found so far. The number N of times the local search method is


applied in the local search intensification stage is set equal to 4. The penalty parameters


used in these local searches are ρ1 = 10β+2, ρ1 = 10β+4, ρ1 = 10β+6 and ρ1 = 10β+10, where


β is the number that appears in the floating point form α1.α2α3 · · · × 10β of the best point


found so far.


6.5 Numerical Results


In this section, we report the performance of the FSA algorithm on 13 well-known test


problems G1–G13 [45, 55, 69], which are shown in Appendix B. The characteristics of those


test problems are diverse enough to cover many kinds of difficulties that constrained global
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optimization problems face. More experimental results on three other application problems


will be shown in the next section.


The FSA code was applied to solve each considered problem 30 times with different


starting solutions. For all test problems, the values of the FSA parameters remained constant


at those values which have been presented in the previous section. Table 6.2 summarizes the


FSA results obtained for each test problem as well as the best known objective function value


for each problem. Problems G2, G3 and G8 are maximization problems originally so that


they were solved by converting them to minimization problems. In Table 6.2, the best and


the worst objective function values obtained from 30 runs are reported for each test problem.


In order to show more details concerning the quality of the obtained solutions, the average


and the standard deviation of the obtained objective function values are also reported in


Table 6.2. Moreover, the average numbers Av. f -evals. and Av. c-evals. of objective and


constraint functions evaluations, respectively, are shown in the last two columns of Table


6.2. It is noteworthy that the FSA method is very economical in computing the constraint


function values as shown in Table 6.2.


The results obtained by the FSA method are quite satisfactory, except for problem G2


which has the highest dimension among all test problems G1–G13. On the other hand, the


results for problem G12 are very promising since the feasible region of this problem consists


of 93 disjointed spheres with radus 0.25. The FSA method could successfully find global


minima in all runs with low computational costs as shown in Table 6.2. This indicates the


success of the multi-start diversification scheme invoked in the FSA method. For problem


G11, the FSA method reached a point with objective function value 0.7499990 for all 30 runs.


However, by decreasing the parameter ǫ, which is used to convert the equality constraint to


the inequality one, from 10−6 to 10−10 in the local search intensification, the FSA method


easily reached the exact global minimum with objective function value 0.75 in all runs.


To complete examining the FSA performance, its results are compared with those of


other EA-based methods proposed for dealing with problem (P ). The EA-based methods


that we used in the comparison are


1. Homomorphous Mappings (HM) method [55],


2. Stochastic Ranking (SR) method [83],


3. Adaptive Segregational Constraint Handling EA (ASCHEA) method [36],


4. Simple Multimembered Evolution Strategy (SMES) method [66].
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Table 6.2: FSA results for problems G1–G13


Pr. Type Best Known Best Av. Worst S.D. Av. f -evals. Av. c-evals.


G1 min –15 –14.999105 –14.993316 –14.979977 0.004813 205,748 87,701


G2 max 0.803619 0.7549125 0.3717081 0.2713110 0.098023 227,832 101,903


G3∗ max 1 1.0000015 0.9991874 0.9915186 0.001653 314,938 118,404


G4 min –30665.539 –30665.5380 –30665.4665 –30664.6880 0.173218 86,154 37,000


G5∗ min 5126.4981 5126.4981 5126.4981 5126.4981 0.000000 47,661 17,757


G6 min –6961.81388 –6961.81388 –6961.81388 –6961.81388 0.000000 44,538 15,817


G7 min 24.3062091 24.310571 24.3795271 24.644397 0.071635 404.501 171,299


G8 max 0.095825 0.095825 0.095825 0.095825 0.000000 56,476 23,219


G9 min 680.6300573 680.63008 680.63642 680.69832 0.014517 324,569 147,035


G10 min 7049.3307 7059.86350 7509.32104 9398.64920 542.3421 243,520 93,667


G11∗ min 0.75 0.7499990 0.7499990 0.7499990 0.000000 23,722 8,485


G12 min –1 –1.0000000 –1.0000000 –1.0000000 0.000000 59,355 25,818


G13∗ min 0.0539498 0.0539498 0.2977204 0.4388511 0.188652 120,268 42,268


∗ Problems contain equality constraints.


The challenge that the FSA method faces is to what extent a point-to-point method behaves


like a population-based method or even better. To examine this issue, two measurements


are considered; solution qualities and computational costs. First, we discuss the solution


qualities and, later at the end of this section, we will discuss computational costs. The results


of the compared methods, which are taken from their original references [36, 55, 66, 83], as


well as those of the FSA method are reported in Table 6.3 to show the solution qualities


obtained by them. It is not easy to draw a definite conclusion from comparisons due to


different accuracies used in the respective results. However, we state below some comments


on the results reported in Table 6.3. All the results in Table 6.3 are obtained from 30 runs of


each method except those of HM method, which are obtained from 20 runs. The HM method


could obtain the optimal solution in all runs for only problem G11. For the other methods


SR, ASCHEA, and SMES, they could obtain the optimal solutions in all runs for problems


{G1,G3,G4,G8,G11,G12}, {G4,G6,G8,G11} and {G1,G4,G8,G12}, respectively. The FSA


method could obtain the optimal solutions in all runs for problems {G5,G6,G8,G11,G12}. It


is noteworthy that the FSA method could obtain the optimal solution in all runs for problem


G5, whereas the other methods failed to obtain it even in a single run. Moreover, the FSA


method could obtain the optimal solution of problem G13 in 7 out of 30 runs, while the


other methods failed to obtain it.


The computational costs of the considered EA-based methods are extremely expensive


compared with those of the FSA method. Since there is no automatic termination criteria
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for the considered EA-based methods, thy were terminated when the number of genera-


tions exceeds a predetermined maximum number. Therefore, the computational costs of


these methods are problem-independent, i.e., the number of objective and constraint func-


tions evaluation remains constant for each test problem. Specifically, computational costs


for HM, SR, ASCHEA and SMES used in each test problem, which are taken from their


original references [36, 55, 66, 83], are 1400000, 350000, 1500000 and 250000 fitness function


evaluations, respectively, and each fitness function evaluation requires one evaluation of the


objective function and one evaluation of each constraint function. The main reason for these


high computational costs is that EAs are not equipped with automatic termination crite-


ria and this is one main drawback of EAs. For some of the test problems, the considered


EA-based methods could obtain an optimal solution in an early stage of the search, but


they were not learned enough to judge whether they could terminate. On the other hand,


the EA-based methods have less parameters than SA-based methods. However, in the FSA


method as well as SA-based methods, some preliminary experiments on tuning parameters


will let them learn applicable termination criteria.


6.6 More Numerical Experiments


In this section, we discuss the results of the FSA method on some application problems.


Three problems from the engineering optimization area are considered.


6.6.1 Welded Beam Design Problem


The welded beam design problem [19, 22] yields an optimization problem which has four


design variables x = (x1, x2, x3, x4) and takes the following form:


min
x


f(x) = 1.10471x2
1x2 + 0.04811x2x2(14 + x2),


s.t. g1(x) = τ(x) − 13000 ≤ 0,
g2(x) = σ(x) − 30000 ≤ 0,
g3(x) = x1 − x2 ≤ 0,
g4(x) = 6000 − Pc(x) ≤ 0,
g5(x) = δ(x) − 0.25 ≤ 0,
0.125 ≤ x1 ≤ 10, 0.1 ≤ x2, x2, x2 ≤ 10,
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Table 6.3: Results of FSA and other EA-based methods for problems G1–G13


Pr. Type Best Known HM SR ASCHEA SMES FSA


Best –14.7864 –15 –15 –15 –14.999105


G1 min –15 Av. –14.7082 –15 –14.84 –15 –14.993316


Worst –14.6154 –15 N.A. –15 –14.979977


Best 0.79953 0.803515 0.785 0.803601 0.7549125


G2 max 0.803619 Av. 0.79671 0.781975 0.59 0.785238 0.3717081


Worst 0.79119 0.726288 N.A. 0.751322 0.2713110


Best 0.9997 1.000 1 1.001038 1.0000015


G3∗ max 1 Av. 0.9989 1.000 0.99989 1.000989 0.9991874


Worst 0.9978 1.000 N.A. 1.000579 0.9915186


Best –30664.5 –30665.539 –30665.5 –30665.539062 –30665.5380


G4 min –30665.539 Av. –30655.3 –30665.539 –30665.5 –30665.539062 –30665.4665


Worst –30645.9 –30665.539 N.A. –30665.539062 –30664.6880


Best – 5126.497 5126.5 5126.599609 5126.4981


G5∗ min 5126.4981 Av. – 5128.881 5141.65 5174.492301 5126.4981


Worst – 5142.472 N.A. 5304.166992 5126.4981


Best –6952.1 –6961.814 –6961.81 –6961.813965 –6961.81388


G6 min –6961.81388 Av. –6342.6 –6875.940 –6961.81 –6961.283984 –6961.81388


Worst –5473.9 –6350.262 N.A. –6961.481934 –6961.81388


Best 24.620 24.307 24.3323 24.326715 24.310571


G7 min 24.3062091 Av. 24.826 24.374 24.6636 24.474926 24.3795271


Worst 25.069 24.642 N.A. 24.842829 24.644397


Best 0.0958250 0.095825 0.09582 0.095826 0.095825


G8 max 0.095825 Av. 0.0891568 0.095825 0.09582 0.095826 0.095825


Worst 0.0291438 0.095825 N.A. 0.095826 0.095825


Best 680.91 680.630 680.630 680.631592 680.63008


G9 min 680.6300573 Av. 681.16 680.656 680.641 680.643410 680.63642


Worst 683.18 680.763 N.A. 680.719299 680.69832


Best 7147.9 7054.316 7061.13 7051.902832 7059.86350


G10 min 7049.3307 Av. 8163.6 7559.192 7497.434 7253.047005 7509.32104


Worst 9659.3 8835.655 N.A. 7638.366211 9398.64920


Best 0.75 0.750 0.75 0.749090 0.7499990


G11∗ min 0.75 Av. 0.75 0.750 0.75 0.749358 0.7499990


Worst 0.75 0.750 N.A. 0.749830 0.7499990


Best –0.999999857 –1.000000 N.A. –1.000000 –1.000000


G12 min –1 Av. –0.999134613 –1.000000 N.A. –1.000000 –1.000000


Worst –0.991950498 –1.000000 N.A. –1.000000 –1.000000


Best N.A. 0.053957 N.A. 0.053986 0.0539498


G13∗ min 0.0539498 Av. N.A. 0.057006 N.A. 0.166385 0.2977204


Worst N.A. 0.216915 N.A. 0.468294 0.4388511


∗ Problems contain equality constraints.
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Table 6.4: Results for the welded beam design problem


Method Best Av. Worst S.D. Av. f -evals. Av. c-evals.


GA [19] 1.728226 1.792654 1.993408 0.074713 80,000 80,000


FSA 1.7250022 1.7564428 1.8843960 0.0424175 58,238 24,971


where


τ(x) =


√
(τ1(x))2 + (τ2(x))2 + x2τ1(x)τ2(x)√


0.25[x2
2+(x1+x2)2]


,


τ1(x) = 6000√
2x1x2


, τ2(x) =
6000(14+0.5x2)


√
0.25[x2


2+(x1+x2)2]


2[0.707x1x2(x2
2/12+0.25(x1+x2)2)]


,


σ(x) = 504000
x2
2x2


, Pc(x) = 64746.022(1 − 0.0282346x2)x2x
3
2, δ(x) = 2.1952


x3
2x2


.


This problem has been well studied, see [19, 22] and references therein. However, the


FSA method could obtain a new solution for it which is better than the one known in the


literature. Specifically, the FSA method obtained the solution


x∗ = (0.20564426101885, 3.47257874213172, 9.03662391018928, 0.20572963979791)


with objective function value 1.7250022, while the known solution has the objective function


value 1.728226 as reported in [19]. Moreover, the performance of the FSA method is com-


pared against the GA-based method [19] which found the previously known solution. The


best, the average, the worst and the standard deviation of objective function values obtained


by 30 runs of both methods are reported in Table 6.4. Moreover, the average numbers Av.


f -evals. and Av. c-evals. of objective and constraint functions evaluations, respectively, are


also shown in Table 6.4. The results related to the GA-based method are taken from the


original reference [19]. The figures shown in Table 6.4 indicate the superior performance of


the FSA method.
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Table 6.5: Results for the pressure vessel design problem


Method Best Av. Worst S.D. Av. f -evals. Av. c-evals.


GA [19] 6059.946341 6177.253268 6469.322010 130.929702 80,000 80,000


FSA 5868.764836 6164.585867 6804.328100 257.473670 108,883 49,253


6.6.2 Pressure Vessel Design Problem


The optimization problem derived from the pressure vessel design problem [19] has four


design variables x = (x1, x2, x3, x4). This problem can be stated as follows:


min
x


f(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2


1x4 + 19.84x2
1x3,


s.t. g1(x) = −x1 + 0.0193x3 ≤ 0,
g2(x) = −x2 + 0.00954x3 ≤ 0,
g3(x) = −πx2


3x4 − 4
3
πx3


3 + 1296000 ≤ 0,
g4(x) = x4 − 240 ≤ 0.


The FSA code was run 30 times to solve this problem and the obtained results are


summarized in Table 6.5. The results contain the best, the average, the worst and the


standard deviation of objective function values, and the average numbers of objective and


constraint functions evaluations. The corresponding results of the GA-based method in


Table 6.5 are taken from the original reference [19]. The FSA method could obtain a better


solution for this problem at


x∗ = (0.768325709391, 0.379783796302, 39.809622248187, 207.225559518596)


with the objective function values 5868.764836.


6.6.3 Tension-Compression String Problem


The problem of minimizing the weight of a tension-compression string [19] can be expressed


as the following optimization problem with three design variables x = (x1, x2, x3):


min
x


f(x) = x2
1x2(x3 + 2),


s.t. g1(x) = 1 − x3
2x3


71,785x4
1


≤ 0,


g2(x) =
4x2


2−x1x2


12,566x3
1(x2−x1)


+ 1
5,108x2


1
− 1 ≤ 0,


g3(x) = 1 − 140.45x1


x3x2
2


≤ 0,


g4(x) = x1+x2


1.5
− 1 ≤ 0.
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Table 6.6: Results for the tension-compression string problem


Method Best Av. Worst S.D. Av. f -evals. Av. c-evals.


GA [19] 0.012681 0.012742 0.012973 0.000059 80,000 80,000


FSA 0.012665285 0.012665299 0.012665338 0.000000022 49,531 18,802


The FSA code was called 30 times with different starting solutions in order to examine


the performance of the FSA method. The results obtained in all runs, as well as those of the


GA-based method [19], are reported in Table 6.6. The results of the GA-based method are


borrowed from the original reference [19]. The FSA method could obtain the better solution


x∗ = (0.05174250340926, 0.35800478345599, 11.21390736278739)


with the objective function value 0.012665285. The figures in Table 6.6 show that the results


obtained by the FSA method are stable for this problem. Moreover, the worst solution


obtained by the FSA method is still better than the best one obtained by the GA-based


method [19]. Finally, the computational costs of the FSA method are much cheaper than


those of the GA-based method [19].


6.7 Conclusion


The hybrid multi-start point-to-point FSA method is proposed. The structure of the FSA


method stands on simulated annealing, filter set concept, a new solution generation pro-


cedure, and diversification and intensification schemes. These strategies are hybridized in


the FSA method in such a way that a point-to-point method behaves like a population-


based method without spending much computational cost. The computational results for 13


well-known test problems as well as three application problems are shown to demonstrate


the efficiency of the FSA method. A superior behavior of the proposed method against


population-based methods in saving the computational costs especially for the constraint


function evaluations has been observed.







Chapter 7


Summary and Conclusions


In this study, the continuous global optimization problems in their two forms; unconstrained
and constrained problems, have been considered. Derivative-free hybrid methods that com-
bine metaheuristics and direct search methods have been proposed to deal with these prob-
lems.


For the unconstrained global optimization problems, four main global search methods
have been proposed in Chapters 2–5 based on simulated annealing, genetic algorithm and
tabu search. Moreover, direct search methods based on Nelder-Mead, multidirectional search
and pattern search methods as well as new proposed methods have been invoked in the four
main global search methods in order to overcome the drawbacks of metaheuristics. The
numerical results shown in Chapters 2–5 lead to the following remarks:


• Creating direct-search-based logical movements while applying metaheuristics in the
proposed methods give better performance of metaheuristics.


• Accelerating the final stage of metaheuristics by applying a complete local search
method extricates metaheuristics from wandering around the optimal solution. In other
words, applying a complete local search method in the final stage of metaheuristics
helps them to obtain good accuracy quickly.


• The proposed methods are promising in practice and competitive with the other com-
pared methods in terms of computational costs and the success of obtaining the global
solutions.


• The proposed methods show a superior performance in terms of the solution qualities
against the compared methods.


In Chapter 6, SA-based method has been proposed as a hybrid method that combines
specific strategies to fit the constrained global optimization problems. Moreover, its compu-
tational results shown in Chapter 6 lead to the following remarks:
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• A guidance of an effective diversification scheme helps to achieve an efficient exploration
of the search domain especially in the case of having disjointed feasible sub-regions.


• An elite-based intensification scheme applied in the final stage can overcome the slow-
ness of SA in its final stage and helps in achieving higher quality solutions.


• The proposed method, which is a point-to-point method, is promising in practice
and competitive with some other population-based methods in terms of the solution
qualities. Moreover, the latter methods are more expensive than the proposed method.







Appendix A


Unconstrained Test Problems


(AKn) Ackley Functions


Definition: AKn(x) = 20 + e − 20e−
1
5


√
1
n


∑n
i=1 x2


i − e−
1
n


∑n
i=1 cos(2πxi).


Search space: −15 ≤ xi ≤ 30, i = 1, 2, . . . , n.


Global minimum: x∗ = (0, . . . , 0); AKn(x∗) = 0.


(Bm) Bohachevsky Functions


Definitions: B1(x1, x2) = x2
1 + 2x2


2 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7.


B2(x1, x2) = x2
1 + 2x2


2 − 0.3 cos(3πx1) cos(4πx2) + 0.3.


B3(x1, x2) = x2
1 + 2x2


2 − 0.3 cos(3πx1 + 4πx2) + 0.3.


Search space: −50 ≤ xi ≤ 100, i = 1, 2.


Global minimum: x∗ = (0, 0); Bm(x∗) = 0, m = 1, 2, 3.


(BL) Beale Function


Definition: BL(x) = (1.5 − x1 + x1x2)
2 + (2.25 − x1 + x1x


2
2)


2
+ (2.625 − x1 + x1x


3
2)


2
.


Search space: −4.5 ≤ xi ≤ 4.5, i = 1, 2.


Global minimum: x∗ = (3, 0.5); BL(x∗) = 0.


(BO) Booth Function


Definition: BO(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 ,


Search space: −10 ≤ xi ≤ 10, i = 1, 2


Global minimum: x∗ = (1, 3); BO(x∗) = 0.
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(CV) Colville Function


Definition: CV(x) = 100(x2
1 − x2)


2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2
3 − x4)


2 +


10.1 ((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1).


Search space: −10 ≤ xi ≤ 10, i = 1, . . . , 4.


Global minimum: x∗ = (1, 1, 1, 1); CV(x∗) = 0.


(DJ) De Joung Function


Definition: DJ(x) = x2
1 + x2


2 + x2
3.


Search space: −2.56 ≤ xi ≤ 5.12, i = 1, 2, 3.


Global minimum: x∗ = (0, 0, 0); DJ(x∗) = 0.


(DPn) Dixon&Price Functions


Definition: DPn(x) = (x1 − 1)2 +
∑n


i=2 i (2x2
i − xi−1)


2
.


Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n.


Global minimum: x∗
i = 2


−
(


2i
−2


2i


)


, i = 1, . . . , n; DPn(x∗) = 0.


(DX) Dixon Functions


Definition: DX(x) = (1 − x1)
2 + (1 − x10)


2 +
∑9


j=1(x
2
i − xi+1)


2.


Search space: −10 ≤ xi ≤ 10, i = 1, . . . , 10.


Global minimum: x∗ = (1, 1, 1, 1); DX(x∗) = 0.


(ES) Easom Function


Definition: ES(x) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2).


Search space: −100 ≤ xi ≤ 100, i = 1, 2.


Global minimum: x∗ = (π, π); ES(x∗) = −1.


(F1) Function


Definition: F1(x1, x2) = x2
1 + x2


2 − cos(18x1) − cos(18x2).


Search space: −1 < xj < 1, j = 1, 2.


Global minimum: (x1, x2)
∗ = (0, 0); F1((x1, x2)


∗) = −2.
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(F2) Function


Definition: F2(x) =
∑10


j=1 min {|xj − 0.2| + a, |xj − 0.4| , |xj − 0.7| + a} , a = 0.05.


Search space: 0 < xj < 1, j = 1, . . . , 10.


Global minimum: x∗ = (0.4, 0.4, . . . , 0.4); F2(x
∗) = 0.


(F5) De Joung Function


Definition: F5(x1, x2) =
(
0.002 +


∑25
j=1


1
j+


∑2
i=1(xi−aij)


6


)−1


,


a1j = −32,−16, 0, 16, 32 for j = 1, 2, . . . , 5,


a1k = a1j for k = j + 5, j + 10, j + 15, j + 20, and j = 1, 2, . . . , 5,


a2j = −32,−16, 0, 16, 32 for j = 1, 6, 11, 16, 21,


a2k = a2j for k = j + 1, j + 2, j + 3, j + 4, and j = 1, 6, 11, 16, 21.


Search space: −65.536 < xi < 65.536, i = 1, 2.


Global minimum: (x1, x2)
∗ = (−32,−32); F5((x1, x2)


∗) = 0.998004.


(Gn) Griewank Functions


Definition: Gn(x) =
∑n


i=1
x2


i


4000
−


∏n
i=1 cos


(
xi/


√
i
)


+ 1.


Search space: −300 ≤ xi ≤ 600, i = 1, . . . , n.


Global minimum: x∗ = (0, . . . , 0), Gn(x∗) = 0.


(GP) Goldstein&Price Function


Definition: GP(x) = (1 + (x1 + x2 + 1)2 (19 − 14x1 + 13x2
1 − 14x2 + 6x1x2 + 3x2


2)) ∗
(30 + (2x1 − 3x2)


2 (18 − 32x1 + 12x2
1 − 48x2 − 36x1x2 + 27x2


2)) .


Search space: −2 ≤ xi ≤ 2, i = 1, 2.


Global minimum: x∗ = (0,−1); GP(x∗) = 3.


(H3,4) Hartmann Function


Definition: H3,4(x) = −
∑4


i=1 αi exp
[
−


∑3
j=1 Aij (xj − Pij)


2
]
,


α = [1, 1.2, 3, 3.2]T , A =






3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35



 , P = 10−4






6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828



 .


Search space: 0 ≤ xi ≤ 1, i = 1, 2, 3.


Global minimum: x∗ = (0.114614, 0.555649, 0.852547); H3,4(x
∗) = −3.86278.
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(H6,4) Hartmann Function


Definition: H6,4(x) = −∑4
i=1 αi exp


[
−∑6


j=1 Bij (xj − Qij)
2
]
,


α = [1, 1.2, 3, 3.2]T , B =






10 3 17 3.05 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14



 ,


Q = 10−4






1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381



 .


Search space: 0 ≤ xi ≤ 1, i = 1, . . . , 6.


Global minimum: x∗ = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300);


H6,4(x
∗) = −3.32237.


(HM) Hump Function


Definition: HM(x) = 4x2
1 − 2.1x4


1 + 1
3
x6


1 + x1x2 − 4x2
2 + 4x4


2.


Search space: −5 ≤ xi ≤ 5, i = 1, 2.


Global minimum: x∗ = (0.0898,−0.7126), (−0.0898, 0.7126); HM(x∗) = 0.


(Ln) Levy Functions


Definition: Ln(x) = sin2 (πy1) +
∑n−1


i=1


[
(yi − 1)2 (


1 + 10 sin2 (πyi + 1)
)]


+ (yn − 1)2 (
1 + 10 sin2 (2πyn)


)
, yi = 1 + xi−1


4
, i = 1, . . . , n.


Search space: −10 ≤ xi ≤ 10, i = 1, . . . , n.


Global minimum: x∗ = (1, . . . , 1); Ln(x∗) = 0.


(MT) Matyas Function


Definition: MT(x) = 0.26 (x2
1 + x2


2) − 0.48x1x2.


Search space: −5 ≤ xi ≤ 10, i = 1, 2.


Global minimum: x∗ = (0, 0); MT(x∗) = 0.


(MZ) Michalewicz Function


Definition: MZ(x1, x2) = −∑2
j=1 sin (xj)


(
sin


(
jx2


j/π
))2m


; m = 10.


Search space: 0 ≤ xj ≤ π, j = 1, 2.


Global minima: MZ((x1, x2)
∗) = −1.8013.







121


(Pn,β) Perm Functions


Definition: Pn,β(x) =
∑n


k=1


[∑n
i=1


(
ik + β


) (
(xi/i)


k − 1
)]2


.


Search space: −n ≤ xi ≤ n, i = 1, . . . , n.


Global minimum: x∗ = (1, 2, . . . , n); Pn,β(x∗) = 0.


(P0
n,β) Perm Functions


Definition: P0
n,β(x) =


∑n
k=1


[∑n
i=1 (i + β)


(
xk


i − (1/i)k
)]2


.


Search space: −n ≤ xi ≤ n, i = 1, . . . , n.


Global minimum: x∗ = (1, 1
2
, . . . , 1


n
); P0


n,β(x∗) = 0.


(PSb1,...,bn
) Power Sum Functions


Definition: PSb1,...,bn
(x) =


∑n
k=1


[(∑n
i=1 xk


i


)
− bk


]2
.


Search space: 0 ≤ xi ≤ n, i = 1, . . . , n.


Global minimum for PS8,18,44,114(x): x∗ = (1, 2, 2, 3); PS8,18,44,114(x
∗) = 0.


(PWn) Powell Functions


Definition: PWn(x) =
∑n/4


i=1 (x4i−3 + 10x4i−2)
2 + 5 (x4i−1 − x4i)


2 + (x4i−2 − x4i−1)
4 +


10 (x4i−3 − x4i)
4 .


Search space: −4 ≤ xi ≤ 5, i = 1, . . . , n.


Global minimum: x∗ = (3,−1, 0, 1, 3, . . . , 3,−1, 0, 1); PWn(x∗) = 0.


(Rn) Rosenbrock Functions


Definition: Rn(x) =
∑n−1


i=1


[
100 (x2


i − xi+1)
2
+ (xi − 1)2


]
.


Search space: −5 ≤ xi ≤ 10, i = 1, 2, . . . , n.


Global minimum: x∗ = (1, . . . , 1), Rn(x∗) = 0.


(RC) Branin RCOS Function


Definition: RC(x) = (x2 − 5
4π2 x


2
1 + 5


π
x1 − 6)2 + 10(1 − 1


8π
) cos(x1) + 10.


Search space: −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.


Global minima: x∗ = (−π, 12.275), (π, 2.275), (9.42478, 2.475); RC(x∗) = 0.397887.
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(RTn) Rastrigin Functions


Definition: RTn(x) = 10n +
∑n


i=1 (x2
i − 10 cos (2πxi)) .


Search space: −2.56 ≤ xi ≤ 5.12, i = 1, . . . , n.


Global minimum: x∗ = (0, . . . , 0), RTn(x∗) = 0.


(S4,m) Shekel Functions


Definition: S4,m(x) = −
∑m


j=1


[∑4
i=1 (xi − Cij)


2 + βj


]−1
,


β = 1
10


[1, 2, 2, 4, 4, 6, 3, 7, 5, 5]T , C =






4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6



 .


Search space: 0 ≤ xi ≤ 10, i = 1, . . . , 4.


Global minima: x∗ = (4, 4, 4, 4); S4,5(x
∗) = −10.1532, S4,7(x


∗) = −10.4029 and S4,10(x
∗) =


−10.5364.


(SCn) Schwefel Functions


Definition: SCn(x) = 418.9829n − ∑n
i=1


(
xi sin


√
|xi|


)
.


Search space: −500 ≤ xi ≤ 500, i = 1, 2, . . . , n.


Global minimum: x∗ = (1, . . . , 1), SCn(x∗) = 0.


(SH) Shubert Function


Definition: SH(x) =
(∑5


i=1 i cos ((i + 1) x1 + i)
) (∑5


i=1 i cos ((i + 1) x2 + i)
)
,


Search space: −10 ≤ xi ≤ 10, i = 1, 2


Global minima: 18 global minima and SH(x∗) = −186.7309.


(SRn) Sphere Functions


Definition: SRn(x) =
∑n


i=1 x2
i ,


Search space: −2.56 ≤ xi ≤ 5.12, i = 1, . . . , n


Global minimum: x∗ = (0, . . . , 0), SRn(x∗) = 0.


(SSn) Sum Squares Functions


Definition: SSn(x) =
∑n


i=1 ix2
i ,


Search space: −5 ≤ xi ≤ 10, i = 1, . . . , n


Global minimum: x∗ = (0, . . . , 0), SSn(x∗) = 0.
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(Tn) Trid Functions


Definition: Tn(x) =
∑n


i=1 (xi − 1)2 − ∑n
i=2 xixi−1,


Search space: −n2 ≤ xi ≤ n2, i = 1, . . . , n


Global minima: a) n = 6, x∗
i = i (7 − i) , i = 1, . . . , n, Tn(x∗) = −50,


b) n = 10, x∗
i = i (11 − i) , i = 1, . . . , n, Tn(x∗) = −210,


(Zn) Zakharov Functions


Definition: Zn(x) =
∑n


i=1 x2
i + (


∑n
i=1 0.5ixi)


2
+ (


∑n
i=1 0.5ixi)


4
.


Search space: −5 ≤ xi ≤ 10, i = 1, 2, . . . , n


Global minimum: x∗ = (0, . . . , 0), Zn(x∗) = 0.
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Appendix B


Constrained Test Problems


Problem G11


min
x


f (x) = 5
∑4


i=1 xi − 5
∑4


i=1 x2
i −


∑13
i=5 xi,


s.t. g1 (x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,
g2 (x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,
g3 (x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,
g4 (x) = −8x1 + x10 ≤ 0,
g5 (x) = −8x2 + x11 ≤ 0,
g6 (x) = −8x3 + x12 ≤ 0,
g7 (x) = −2x4 − x5 + x10 ≤ 0,
g8 (x) = −2x6 − x7 + x11 ≤ 0,
g9 (x) = −2x8 − x9 + x12 ≤ 0,
xi ≥ 0, i = 1, . . . , 13,
xi ≤ 1, i = 1, . . . , 9, 13.


The bounds: U = (1, 1, 1, 1, 1, 1, 1, 1, 1, 100, 100, 100, 1) and L = (0, . . . , 0).


Global minimum: x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) , f (x∗) = −15.


Problem G2


max
x


f (x) = |
∑n


i=1 cos4(xi)−2
∏n


i=1 cos2(xi)√∑n
i=1 ix2


i


|,
s.t. g1 (x) = −∏n


i=1 xi + 0.75 ≤ 0,
g2 (x) =


∑n
i=1 xi − 7.5n ≤ 0.


The bounds: U = (10, . . . , 10) and L = (0, . . . , 0).


Best known: f (x∗) = 0.803619, for n = 20.


1The formula of G1 is presented as its common form in the literature [25]. However, variable x13 can be
eliminated since its value of the global solution, which is x13 = 1, can be easily derived.
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Problem G3


max
x


f (x) = (
√


n)
n ∏n


i=1 xi,


s.t. h1 (x) =
∑n


i=1 x2
i − 1 = 0


The bounds: U = (1, . . . , 1) and L = (0, . . . , 0).


Global minimum: x∗ =
(


1√
n
, . . . , 1√


n


)
, f (x∗) = 1.


Problem G4


min
x


f (x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141,


s.t. g1 (x) = u (x) − 92 ≤ 0,
g2 (x) = −u (x) ≤ 0,
g3 (x) = v (x) − 110 ≤ 0,
g4 (x) = −v (x) + 90 ≤ 0,
g5 (x) = w (x) − 25 ≤ 0,
g6 (x) = −w (x) + 20 ≤ 0,


where


u (x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5,


v (x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3,


w (x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4.


The bounds: U = (102, 45, 45, 45, 45) and L = (78, 33, 27, 27, 27).


Global minimum: x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) ,


f (x∗) = −30665.539.


Problem G5


min
x


f (x) = 3x1 + 10−6x3
1 + 2x2 + 2


3
× 10−6x3


2,


s.t. g1 (x) = x3 − x4 − 0.55 ≤ 0,
g2 (x) = x4 − x3 − 0.55 ≤ 0,
h1 (x) = 1000 [sin (−x3 − 0.25) + sin (−x4 − 0.25)] + 894.8 − x1 = 0,
h2 (x) = 1000 [sin (x3 − 0.25) + sin (x3 − x4 − 0.25)] + 894.8 − x2 = 0,
h3 (x) = 1000 [sin (x4 − 0.25) + sin (x4 − x3 − 0.25)] + 1294.8 = 0.


The bounds: U = (1200, 1200, 0.55, 0.55) and L = (0, 0,−0.55,−0.55).


Best known: x∗ = (679.9453, 1026, 0.118876,−0.3962336) , f (x∗) = 5126.4981.
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Problem G6


min
x


f (x) = (x1 − 10)3 + (x2 − 20)3 ,


s.t. g1 (x) = (x1 − 5)2 + (x2 − 5)2 + 100 ≤ 0,


g2 (x) = (x1 − 5)2 + (x2 − 5)2 − 82.81 ≤ 0.


The bounds: U = (100, 100) and L = (13, 0).


Global minimum: x∗ = (14.095, 0.84296) , f (x∗) = −6961.81388.


Problem G7


min
x


f (x) = x2
1 + x2


2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2


+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,


s.t. g1 (x) = 4x1 + 5x2 − 3x7 + 9x8 − 105 ≤ 0,
g2 (x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,
g3 (x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0,
g4 (x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2


3 − 7x4 − 120 ≤ 0,
g5 (x) = 5x2


1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0,
g6 (x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2


5 − x6 − 30 ≤ 0,
g7 (x) = x2


1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0,
g8 (x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0.


The bounds: U = (10, . . . , 10) and L = (−10, . . . ,−10).


Global minimum: x∗ = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574,


1.321644, 9.828726, 8.280092, 8.375927), f (x∗) = 24.3062091.


Problem G8


max
x


f (x) = sin3(2πx1) sin(2πx2)


x3
1(x1+x2)


,


s.t. g1 (x) = x2
1 − x2 + 1 ≤ 0,


g2 (x) = 1 − x1 + (x2 − 4)2 ≤ 0.


The bounds: U = (10, 10) and L = (0, 0).


Global minimum: x∗ = (1.2279713, 4.2453733) , f (x∗) = 0.095825.
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Problem G9


min
x


f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6


5 + 7x2
6 + x4


7 − 4x6x7


−10x6 − 8x7,
s.t. g1 (x) = 2x2


1 + 3x4
2 + x3 + 4x2


4 + 5x5 − 127 ≤ 0,
g2 (x) = 7x1 + 3x2 + 10x2


3 + x4 − x5 − 282 ≤ 0,
g3 (x) = 23x1 + x2


2 + 6x2
6 − 8x7 − 196 ≤ 0,


g4 (x) = 4x2
1 + x2


2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0.


The bounds: U = (10, . . . , 10) and L = (−10, . . . ,−10).


Global minimum: x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131,


1.594227), f (x∗) = 680.6300573.


Problem G10


min
x


f (x) = x1 + x2 + x3,


s.t. g1 (x) = −1 + 0.0025(x4 + x6) ≤ 0,
g2 (x) = −1 + 0.0025(−x4 + x5 + x7) ≤ 0,
g3 (x) = −1 + 0.01(−x5 + x8) ≤ 0,
g4 (x) = 100x1 − x1x6 + 833.33252x4 − 83333.333 ≤ 0,
g5 (x) = x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0,
g6 (x) = x3x5 − x3x8 − 2500x5 + 1250000 ≤ 0.


The bounds: U = (10000, 10000, 10000, 1000, 1000, 1000, 1000, 1000) and


L = (100, 1000, 1000, 10, 10, 10, 10, 10).


Global minimum: x∗ = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162,


395.5979), f (x∗) = 7049.3307.


Problem G11


min
x


f (x) = x2
1 + (x2 − 1)2,


s.t. h1 (x) = x2 − x2
1 = 0.


The bounds: U = (1, 1) and L = (−1,−1).


Global minimum: x∗ =
(
± 1√


2
, 1


2


)
, f (x∗) = 0.75.
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Problem G12


min
x


f (x) = 1 − 0.01[(x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2],


s.t. gi,j,k (x) = (x1 − i)2 + (x2 − j)2 + (x3 − k)2 − 0.0625 ≤ 0,


where i, j, k = 1, 2, . . . , 9.


The bounds: U = (10, 10, 10) and L = (0, 0, 0).


Global minimum: x∗ = (5, 5, 5) , f (x∗) = 1.


Problem G13


min
x


f (x) = ex1x2x3x4x5 ,


s.t. h1 (x) = x2
1 + x2


2 + x2
3 + x2


4 + x2
5 − 10 = 0,


h2 (x) = x2x3 − 5x4x5 = 0,
h3 (x) = x3


1 + x3
2 + 1 = 0.


The bounds: U = (2.3, 2.3, 3.2, 3.2, 3.2) and L = (−2.3,−2.3,−3.2,−3.2,−3.2).


Global minimum: x∗ = (−1.717143, 1.595709, 1.827247,−0.7636413,−0.763645) , f (x∗) =


0.0539498.
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