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Chapter 1

Introduction

Considering today’s competitive markets, the time for the development of technical sys-
tems should be as short as possible. Simultaneously, systems become very complex due to
manufacturing at the limits of technical feasibility. Furthermore, a high functionality is
desired with low power consumption, small size and high reliability. However, the devel-
opment of a system, e.g. in circuit design, is normally an iterative trial-and-error process.
After the basic structure of the design has been established, parameters are repeatedly
adjusted by the designer and the system is simulated to verify its performance. Due to
the complex interactions of parameters, this is a time-consuming process. The success
depends on the experience and knowledge of the designer. From this follows that the goal
of a short time-to-market becomes hard to achieve. Therefore, the need arises for fast,
easy-to-use optimization algorithms which can be integrated in design processes. Thus,
the time-consuming iterative trial-and-error process can be substituted by a structured
automated approach for finding optimal parameter settings.
However, a vast variety of optimization algorithms exists, making it difficult to choose
a suitable technique. If no (or only little) information is available about the properties
of an optimization problem, the application of optimization algorithms from the class of
evolutionary algorithms (EAs) and swarm intelligence (SI) has many advantages. They
are generally applicable methods which have almost no requirements concerning the op-
timization problem, e.g. no derivatives of the objective functions are needed. Thus, they
can also be applied if the objective functions are not given in analytical form, even if
the objective functions have to be simulated for every set of variables separately. The
algorithms are inspired by natural phenomena like evolution and swarm behavior which
makes them robust search methods for many problems because of the adaptation processes
that also characterize nature. In contrast to many other optimization algorithms, EAs
as well as algorithms from SI have the capability of finding the global optimum even of
highly multimodal functions because of their population-based structure and the involved
randomness. The general applicability of these algorithms also means that they can be
employed for problems from virtually any field of engineering or science. In this work the
focus concerning applications is on problems from electrical engineering.
Developers of optimization algorithms are mostly mathematicians or computer scientists
whereas users of optimization algorithms are often engineers or natural scientists because
many optimization problems arise in these disciplines. From this follows that the users are
often experts from their corresponding fields but not experienced concerning optimization
(see also [Lob00] where it is argued that the users actually should not be required to be
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optimization experts because toasters can also be used without knowing Ohm’s Law). As
a result, an important property of optimization algorithms should be ease of use. Because
one of the most significant sources of difficulties is the adjustment of control parameters
of the optimization algorithms, methods with a low number of control parameters should
be preferred. Furthermore, several algorithms require a coding of parameters (usually
binary, see Section 3.1). The need for coding also creates difficulties for users because a
suitable coding scheme has to be found. This necessity contradicts the demand of easy
applicability and should therefore be avoided.
Differential Evolution (DE) and Particle Swarm Optimization (PSO) are two relatively
new optimization algorithms which are well suited for many technical problems. One
advantage is their ease of use due to the presence of only few control parameters. Another
benefit is the real-valued representation that omits the need for coding of parameters.
Differential Evolution can be seen as a typical evolutionary algorithm because it closely
follows the "survival of the fittest" principle. In contrast to other EAs, DE relies on a
simple principle that nevertheless causes automatic adaptation of the step sizes during an
optimization run. This property leads to a high convergence speed and DE’s successful
use in many applications [Pri05].
Because Particle Swarm Optimization is derived from swarm intelligence, it has a different
background. Nevertheless, PSO has several similarities with evolutionary algorithms like
DE, thus it is also often regarded as an EA. In PSO the behavior of social groups is
simulated, hence optimization is achieved by cooperation of individuals and sharing of
information. Due to the incorporation of past experiences into the search, the step size
is also adapted during an optimization run. Many practical optimization problems have
already been successfully solved using PSO [Eng06].

1.1 Motivation and Contributions

Real-world problems are optimization problems which arise in an application, e.g. in en-
gineering or science, instead of being artificially created (see also Section 2.3). Real-world
problems are often difficult to optimize because they have characteristics that complicate
the application of optimization algorithms. In this work it is discussed which features are
associated with real-world problems and how optimization algorithms can be adjusted to
handle them.
It is not possible to regard every existing optimization algorithm due to the large number of
algorithms. Therefore, the examination must be limited to a small number of promising
algorithms which can be robustly used in many applications. Due to the advantages
discussed above, Differential Evolution and Particle Swarm Optimization are used in
this work. For both algorithms adaptations will be shown which enable them to cope
with the difficulties associated with real-world problems. Meanwhile explicit focus on
easy applicability is maintained due to the already mentioned discrepancy in knowledge
between developers and users of optimization algorithms. Although there are certain
similarities, there are also fundamental differences between these algorithms which arise
from the different background. Thus, they are compared here regarding their ability to
solve real-world problems.
For the application of DE and PSO to real-world problems, a software tool has been
developed that was used for conducting the experiments described in this work. The
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software tool has been programmed in C++ because the structure of both Differential
Evolution and Particle Swarm Optimization suggests using object-oriented programming.
For some special applications the software tool has been coupled with Spectre (circuit
design, see Section 5.5) and Matlab (optimization of a PI cascade control [Zie08b, Zie08a],
not regarded further here). The software tool has been extended based on the demands
of the respective problems, with emphasis on easily applicable methods.
One of the most commonly regarded problematic features of real-world optimization prob-
lems is the presence of constraints which occur e.g. due to physical limitations. Thus,
an efficient method for handling constraints must be found for DE and PSO. Several
methods have already been presented in the literature but often they introduce new pa-
rameters. Preferably these techniques should also be easy to use, e.g. they should include
as few control parameters as possible. This applies to the death penalty and the modified
replacement method which do not need any control parameters to be set, so they are
especially easy to apply. Furthermore, no comprehensive comparisons are available for
DE and PSO with focus on easily applicable methods. For other optimization algorithms
some examinations can be found in the literature but generally results are not transfer-
able. Therefore, the death penalty and the modified replacement method are compared
for DE and PSO in this work. As basis for the examination a power allocation problem is
used that occurs in a communication system. Because of the high demands concerning the
accuracy of fulfilling an equality constraint that arise in yield analysis, it is demonstrated
how a further adjustment for the handling of equality constraints improves the results of
DE and PSO.
Another aspect associated with real-world problems is that often multiple objectives
should be optimized simultaneously. The extension of evolutionary algorithms for multi-
objective optimization is not a trivial task because the goals in multi-objective optimiza-
tion differ significantly from the ones in single-objective optimization. Decisions about
many implementation details have to be made and their influence is often still not clear.
Especially in the context of DE and PSO, multi-objective optimization still is a rather
young field that requires more research for finding effective and efficient algorithms. In
this work an overview about the issues connected with extending DE and PSO for multi-
objective optimization is given. As an exemplary test case, the optimization of several
characteristics of an operational amplifier is shown. Multi-objective variants of both DE
and PSO are used, and it is shown that they can be successfully applied for this task.
Many real-world problems contain computationally expensive constraint and objective
functions, e.g. because the performance of a system must be evaluated via simulations.
This property leads to the need of reliable stopping criteria which are able to detect
when convergence has been reached. This is especially important if the algorithms should
be applied in automatic design processes, meaning an interactive combination of tools
for developing systems and optimizing them, e.g. for circuit design. Stopping criteria
are seldom examined in the literature although for practical applications the choice of
stopping criteria can significantly influence the duration of an optimization run. In the
literature the discussion is mostly limited to Genetic Algorithms and it is not clear if the
results are also valid for DE or PSO. Furthermore, a systematic classification considering
a large variety of stopping criteria is missing.
Therefore, in this work a detailed presentation and classification of stopping criteria is
shown. Stopping criteria from literature are regarded but also new approaches for ter-
minating optimization runs are introduced. It is shown that the same classification can
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be used for both single-objective optimization and multi-objective optimization although
the underlying mechanisms are different. Furthermore, the performance of the stopping
criteria is analyzed for DE and PSO. For this examination a real-world problem has been
used but also several test functions. The reason is that an extensive evaluation of many
stopping criteria was desired. Due to the computational cost of real-world problems, usu-
ally they cannot be used for such a study. Instead, a large number of test functions with
varying characteristics has been employed. These test functions contain many features
which can also be found in real-world problems, thus they are considered to be an ade-
quate substitute. This consideration holds also for some other parts of this work where
extensive studies have been done, e.g. the examination of adaptive approaches described
in the last paragraph of this section.
The choice of control parameter settings considerably influences the results of optimization
runs, regarding both the convergence probability and the convergence speed. Although
the number of control parameters is rather low in DE and PSO and some recommendations
regarding standard settings can be found in the literature, still some experimentation is
usually necessary to find suitable settings. The pursuit of easy applicability leads to
the examination of methods which set parameters adaptively, thus the user is relieved
from searching for appropriate settings. Several approaches have already been presented
in the literature but they usually neglect interactions of parameters. In this work a new
method is shown that does not only regard the performance of different control parameters
separately but that also considers interaction effects.
A problem in the optimization literature is that new algorithms are developed constantly
but there are not enough comparisons in the literature to assess which algorithms are
actually superior. Particularly, a disadvantage in comparisons from the literature is that
several components are changed at a time. Thus, it cannot be distinguished between
features that are useful and other components that only complicate the algorithm without
contributing to its performance. This especially holds for adaptive approaches because
they usually contain multiple individual components. Therefore, a detailed examination
of adaptive algorithms and their individual components is shown for DE that leads to a
deeper understanding of their effects.

1.2 Organization

In Chapter 2 the basic principles of optimization are presented. First, the general opti-
mization problem is defined mathematically. A classification of optimization algorithms is
given, and the motivation for using evolutionary algorithms is explained. Furthermore, for
readers who are inexperienced concerning optimization, a list of terminology and impor-
tant concepts is given that should simplify the reading and understanding of the following
chapters.
The most commonly used representatives of evolutionary algorithms are presented in
Chapter 3: Genetic Algorithms, Evolution Strategies, Evolutionary Programming and
Genetic Programming. As the focus of this work is on Differential Evolution and Particle
Swarm Optimization, the introduction of DE and PSO is the largest part of this chapter.
Both algorithms are introduced in their basic form for unconstrained single-objective
optimization whereas extended versions for constrained and multi-objective optimization
will be covered later.
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After the basics for this work have been explained in Chapters 2 and 3, the own con-
tributions are given in the following chapters. In Section 1.1 several aspects have been
identified which must be considered when optimizing real-world problems: Constraints,
multiple objectives, stopping criteria and adaptive parameter setting. These topics all
have their own unique problems and can be regarded independently from each other.
Thus, they are discussed in separate chapters in this work. The related literature is also
given separately for each part. Each of the following chapters contains a literature re-
view that is supplemented by own contributions where necessary for the optimization of
real-world problems.
Constrained optimization is discussed in Chapter 4. It is distinguished between boundary
constraints and constraint functions, and the constraint functions are further divided
into inequality and equality constraints. Several approaches from literature for dealing
with constraints using DE and PSO are given where the focus is on easily applicable
methods. Two of these methods are tested for an application example that consists of
optimizing a power allocation problem for a CDMA system with interference cancellation.
Specific methods for handling equality constraints from literature are also given, and the
optimization of a problem from yield analysis that requires an equality constraint to be
fulfilled very precisely is shown using DE and PSO. Because evolutionary algorithms are
stochastic methods for which it is difficult to obtain a convergence proof, the superiority
of DE and PSO in contrast to two simple random methods is shown on the basis of an
extensive set of constrained single-objective test problems.
Multi-objective optimization is introduced in Chapter 5. Evaluating solutions is con-
siderably more difficult in multi-objective optimization in contrast to single-objective
optimization, thus performance measures for the different goals in multi-objective opti-
mization are given. These will also be used for the definition of stopping criteria for multi-
objective optimization in Chapter 6. Additionally, the NSGA-II (Non-dominated Sorting
Genetic Algorithm II) is described because the adaptation of concepts from NSGA-II for
multi-objective DE is discussed afterwards. Literature surveys are given for both multi-
objective DE and multi-objective PSO. Furthermore, an application example is presented.
The model of an operational amplifier is introduced that can be simulated to verify its
performance. It is shown how DE and PSO can be used for the optimization of its char-
acteristics.
Stopping criteria for single-objective as well as multi-objective optimization are presented
in Chapter 6. Stopping criteria are sorted into classes based on the feature that they
operate on, and an evaluation of their performance is given.
The adaptive setting of control parameters is discussed in Chapter 7. Besides a literature
survey, a new approach considering interactions of control parameters is presented. Several
individual components of adaptive algorithms are examined and compared separately, and
it is indicated which methods result in superior performance for DE.
In Chapter 8 a summary of the most important results of this work is given. Additionally,
it is stated which further extensions may be desirable for future work.
In Appendix A some test problems for multi-objective optimization used in Section 5.3.3
as well as Section 6.2 are specified. Results of these examinations are shown in Appendix B
and C, respectively.
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Chapter 2

Basic Principles of Optimization

In this chapter the general optimization problem is defined. A short overview about dif-
ferent kinds of optimization algorithms is given, and the choice of evolutionary algorithms
for this work is explained. To simplify the reading of the following chapters, some gen-
eral terms and concepts are given for optimization in general as well as for evolutionary
algorithms in particular.

2.1 The General Optimization Problem
In this work an optimization problem is defined as the minimization1 of one (single-
objective) or several (multi-objective) objective functions:

Minimize �f(�x) (2.1)

where
�x = (x1, x2, . . . , xD) ∈ X ⊂ R

D (2.2)

is the parameter vector, X is called parameter space (or search space) and D is
the dimension of the problem.

�f(�x) = (f1(�x), f2(�x), . . . , fM(�x)) : X → Y ⊂ R
M (2.3)

is the objective function vector, Y is called objective space and M is the number
of objective functions. Other names used for objective functions in the literature are
cost functions (which are usually used for minimization problems) or fitness functions
(which are generally used for maximization problems). However, these terms are not
clearly defined, e.g. in [Run00] the fitness function is defined as the sum of the objective
function and penalty terms depending on the constraints. Several sets of parameters will
be introduced in this work, thus in the following it must be clearly distinguished between
the parameters �x which are the variables of the objective function, the control parameters
of the algorithms and also the parameters of the stopping criteria which will be introduced
in Chapter 6.
A general optimization problem also contains constraints. In this chapter constraints
are only mentioned shortly where needed to define the general optimization problem.
Further explanations will be provided in Chapter 4. Constraints are usually divided into

1Maximization is included in this formulation as max (f(�x)) = −min (−f(�x)).
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boundary constraints as well as constraint functions. Boundary constraints (also called
parametric constraints [Run00]) are of the form

xmin,d ≤ xd ≤ xmax,d (2.4)

where xmin,d and xmax,d are the lower and upper boundary for parameter d. Thus, the
boundary constraints define the search space X. Boundary constraints like given in Equa-
tion 2.4 are also sometimes called box constraints [Eng06] because this formulation leads
to a search space in the form of a hypercube. Theoretically, boundaries might also be
given in other formulations than a hypercube. Boundaries may be somehow curved, e.g.
resulting in a spherical search space. However, in the literature generally only search
spaces in the form of hypercubes can be found.
If an optimization problem contains only boundary constraints without additional con-
straint functions, it is referred to as an unconstrained problem [Eng06]. This expression
may be confusing due to the term "boundary constraints". The reason is that bound-
ary constraints are present in nearly every optimization problem, and they are relatively
easy to fulfill in contrast to constraint functions. Nevertheless, in this work boundary
constraints are discussed in Chapter 4 because of the formal similarity with constraint
functions. Theoretically, boundary constraints might even be handled like any other con-
straints although this might not make sense, see Section 4.1.
In contrast to the boundary constraints which define the search space, the constraint
functions define the feasible space (see Figure 2.1 where the gray area indicates the
search space and the shaded area indicates the feasible space). Constraint functions are
usually divided into inequality constraints

gj(�x) ≤ 0 j = 1, 2, . . . , J (2.5)

and equality constraints
hk(�x) = 0 k = 1, 2, . . . , K (2.6)

where J is the number of inequality constraints and K is the number of equality con-
straints. Some authors write Equation 2.5 as gj(�x) ≥ 0 (e.g. [Deb01a, Gol89]) while
others prefer it like given here (e.g. [Pri05, Eng06]; actually this seems to be the most
common form in the literature) but these formulations are equivalent. Only when actu-
ally implementing constraints and constraint-handling techniques in a computer program,
attention has to be paid that the same formulation is used consistently.

feasible space

search space

x1

x2

g1(�x)

g2(�x)

xmin,1 xmax,1

xmin,2

xmax,2

Figure 2.1: Search space and feasible space
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Because of numerical problems each equality constraint is usually transformed into an
inequality constraint of the form

|hk(�x)| − εe ≤ 0 k = 1, 2, . . . , K (2.7)

where εe defines the accuracy for fulfilling the equality constraint. If a solution �x ∈ X
satisfies all constraints it is called feasible. Thus, feasible space is defined as

F = {�x ∈ X|gj(�x) ≤ 0 ∀j and |hk(�x)| − εe ≤ 0 ∀k}. (2.8)

If the equation gj(�x) = 0 holds for an inequality constraint, it is said that constraint gj is
active at �x. From this follows that equality constraints are always active at all points of
the feasible space F .
In single-objective optimization the global optimal solution �x∗ is defined by

∀�x ∈ X : f(�x) ≥ f(�x∗), (2.9)

meaning that there does not exist another solution with a smaller objective function value
in the search space. For a local optimal solution �x′ this condition holds only in a certain
vicinity of the solution (see also Figure 2.3):

∃ε > 0 : ∀�x ∈ X : ρ(�x, �x′) < ε ⇒ f(�x) ≥ f(�x′) (2.10)

where ρ is a distance measure in parameter space X [Bäc97]. This common definition of a
local optimum (see also [Bro00]) does not prohibit that ε may be chosen in a way that the
vicinity of �x′ comprises the whole search space. Thus, the local optimum would become
a global optimum. However, in this work this case is excluded. Whenever mentioning a
local optimum, it is assumed that still a better solution exists in the search space.
If not one but several objective functions should be minimized, the definition of an optimal
solution is less obvious. Generally, the dominance relation is used to be able to com-
pare two solutions in multi-objective optimization. A solution �a ∈ X dominates another
solution �b ∈ X (�a ≺ �b) if no objective function value of �a is worse than the corresponding
objective function value of �b, and �a is better than �b in at least one objective:

∀m ∈ {1, . . . , M} : fm(�a) ≤ fm(�b) (2.11)

∃m ∈ {1, . . . , M} : fm(�a) < fm(�b). (2.12)

A solution �a′ ∈ X is called non-dominated regarding a set X ′ ⊆ X if no other solution
exists that dominates �a′:

� ∃�a ∈ X ′ : �a ≺ �a′. (2.13)

If �a′ is non-dominated regarding the whole search space X, it is called Pareto-optimal.
Because in multi-objective optimization usually conflicting goals are optimized (see Chap-
ter 5), generally several or even an infinite number of mutually non-dominated solu-
tions exist. These Pareto-optimal solutions correspond to the global optimum in single-
objective optimization. They are trade-off solutions from which the so-called decision
maker (usually a human being) selects the final solution to be used. The set of Pareto-
optimal solutions in objective space is referred to as the Pareto-optimal front whereas
the corresponding set of vectors in parameter space is called the Pareto-optimal set.
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Because multi-objective optimization algorithms do not necessarily find the (complete)
Pareto-optimal front, the results of an optimization algorithm will be referred to as the
approximation set (as in [Kno06], the term approximation set is also used synonymously
for the generated front here) or simply as non-dominated solutions.
In Figure 2.2 the dominance relation is illustrated: �b dominates �c and �d because �b is
better than �c regarding both objectives, and f2(�b) = f2(�d) but f1(�b) < f1(�d). �a and �b are
mutually non-dominated because �a is better concerning f1 but�b is better concerning f2. If
there are no other solutions in the search space which dominate them, they correspond to
the Pareto-optimal solutions. Examples of Pareto-optimal fronts with an infinite number
of solutions are shown in Appendix A.

f1

f2

�f(�a)

�f(�b)

�f(�c)

�f(�d)

Figure 2.2: Illustration of the dominance relation

2.2 Optimization Algorithms
A large variety of optimization algorithms exists which have been developed for different
kinds of problems. Thus, there are many ways for classifying optimization algorithms
based on the problems that they were designed for but also based on characteristics of
the algorithms themselves. In the following the main characteristics are given to define
what kinds of problems and algorithms will be examined in this work (other possibilities
for classifying optimization algorithms can be found in [Men04a, Pet01]). The first two
properties are related to the optimization problems whereas the latter two attributes refer
to the optimization methods.

• Static ↔ dynamic: Dynamic optimization means that an optimum should be found
while environmental conditions are varying, i.e. the optimum might be moving
[Sch95]. An example is constructing an optimal traffic lights schedule [Rak08] but
also the optimization of vehicle routing and scheduling problems [Sch07]. In con-
trast, the here regarded problems are static, meaning that the optimum is non-
changing. Therefore, dynamic optimization is not regarded here further.

• Continuous ↔ discrete: Depending on the nature of the parameters, discrete and
continuous problems are distinguished. An interesting discussion about the differ-
ences between discrete and continuous optimization can be found in [Cle06] but
here only the major differences are given to define the scope of this work. Discrete
problems may be combinatorial problems like the travelling salesman problem or
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vehicle routing and scheduling problems [Sch07] where a large but finite set of pa-
rameter combinations exists. Optimizing the performance of a circuit that is built
from discrete electronic components may also be seen as a discrete problem if only
certain sizes are available and it should be avoided to connect a large number of
components in series or in parallel to reach the desired value. Additionally, prob-
lems with integer or binary representation of the parameters are subsets of discrete
problems [Lam04]. In contrast, all optimization problems examined in this work
have continuous variables. Of course the use of computers for conducting the opti-
mization process actually leads to a limited precision but in practice the restrictions
are negligible.

• Deterministic ↔ stochastic (local ↔ global): Local optimization algorithms use
deterministic methods to find the optimum of a function. Because of their deter-
ministic nature they are generally not able to escape from local minima because they
try to move in the direction of descending values of the objective function. Hence,
they are dependent on the starting position and have problems with multimodal
functions [Jak04] (see Figure 2.3). In contrast, global optimization algorithms use
stochastic operators. Thus, they are generally able to find the global optimum of a
function regardless of the number of local minima. Due to this advantage, global
optimization algorithms are considered in this work.

Global optimum
Local optimum
“Good” starting position
“Bad” starting position

x

f(x)

Figure 2.3: Dependence of deterministic algorithms on starting positions

• Population-based ↔ one individual per generation: In this work methods are used
that regard more than one individual at the same time (generation). An advantage
of population-based methods over techniques with one individual per generation is
that information can be shared among the individuals, leading to a better coverage
of the search space.

To sum up, in this work population-based stochastic global optimization algorithms are
regarded which operate on continuous variables, and the objective function does not
change with time.
Evolutionary algorithms are the most widely used global optimization algorithms. They
are general methods which have almost no requirements concerning the optimization prob-
lem, e.g. they do not need derivatives of the objective function. They can be applied to
all problems which can be expressed as given in Section 2.1. Thus, it is sufficient that the

11



CHAPTER 2. BASIC PRINCIPLES OF OPTIMIZATION

values of constraint and objective functions can be computed for individual parameter
sets but the functions do not have to be given in analytical form. The only assumption is
that there is a certain coherence in the objective function, meaning that objective function
values of parameters which are close to each other are similar. If an objective function
is flat and only contains one peak somewhere, evolutionary algorithms do not have an
advantage over a pure random search [Jak04]. However, real-world optimization prob-
lems generally exhibit some correlation between nearby parameter values, so evolutionary
algorithms are preferable in contrast to random search. In Section 4.4 this property is
empirically demonstrated based on an extensive set of test functions which are assumed to
include several features that also occur in real-world problems. The comparison of blind
random search and brute force search with Differential Evolution and Particle Swarm
Optimization indeed shows the superiority of evolutionary algorithms over pure random
search methods.
In recent years optimization algorithms have been developed which have similar function-
ality as evolutionary algorithms but do not necessarily apply the principles of evolution
(mutation, recombination, selection). Instead, other biological mechanisms are used as
inspiration. Some of these new fields are swarm intelligence (with its main representa-
tives Particle Swarm Optimization and Ant Colony Optimization) and artificial immune
systems. For these algorithms generally the same advantages hold as discussed above for
evolutionary algorithms.
A general term which includes all these methods would be bio-inspired optimization algo-
rithms. However, due to the advantages already mentioned in Chapter 1, the emphasis lies
on Differential Evolution and Particle Swarm Optimization in this work. Both methods
may be classified as EAs, thus the term "evolutionary algorithms" is kept here.

2.3 Terminology and Concepts
As evolutionary algorithms are inspired from nature, the terminology is also mostly de-
rived from biology, especially genetics. For readers who are unfamiliar with EAs (and
optimization in general), an overview about important terms and concepts is given in the
following. First, some basics are explained which are absolutely necessary for understand-
ing an evolutionary algorithm. Afterwards, more specific terms are given which will also
be used in this work.

• Individual: Individuals may be seen as points in the search space. Besides the
position in the search space, they are also associated with information about the
violated constraints and the objective function value. Each of them represents a
solution of the optimization problem but not necessarily a good one. The term
solution is also used as a synonym for individual in the following.

• Population: A group of individuals which usually interact with each other.

• Parent: An individual that participates in the creation of a new individual which is
called its offspring.

• Child/offspring: Newly generated individual that is compared to its parent or to
some members of the parent population (depending on the algorithm) to determine
if it receives a place in the successive generation.
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• Generation: Discrete time unit. In each generation the evolutionary operators are
applied either to all individuals of the current population or to a selected subset,
depending on the algorithm. The term "iteration" is often used synonymously,
especially in Particle Swarm Optimization where the individuals are not replaced
by their offspring but rather move in the search space.

• Evolutionary operators: The operators which are used in evolutionary algorithms
to produce new individuals. The operators are named like their counterparts in
natural evolution: Crossover/recombination, mutation and selection.

• Crossover/recombination: Evolutionary operator. Several individuals (parents) in-
teract to produce an offspring. This is in contrast to the evolutionary operator
mutation that only operates on one individual. Crossover is a specific form of re-
combination in biology but in the literature of evolutionary algorithms these terms
are usually used synonymously.

• Mutation: Evolutionary operator. Mutation is generally applied after recombination
to further perturb the offspring. An exception is the DE algorithm where first
mutation and afterwards recombination is applied. In contrast to recombination
that exchanges components from already existing individuals, mutation is generally
used to bring new characteristics into the population. In the case of binary-coded
individuals, this may be the change of a bit from 0 to 1 or vice versa. For real-
coded individuals mutation may be implemented as a random change in a vector
component.

• Selection: Evolutionary operator. In EAs usually it has to be distinguished between
parent selection (selecting the solutions that participate in creating a new individ-
ual) and survivor selection (selecting the individuals which are part of the next
generation). In this work usually survivor selection is meant when mentioning the
term selection. It is indicated where the term is used with different meaning.

In the following several terms and concepts are clarified which are less basic. Most of
them do not occur throughout this work but only in limited areas. To simplify the search
for specific terms, they are given in alphabetical order.

• Adaptation: See (Self-)Adaptation.

• Convergence: Approaching of a stationary state is referred to as convergence. Usu-
ally, this means that the diversity of the population decreases, so that the population
is located in a small area of the search space. Convergence to the global minimum is
desired but also convergence to local minima may happen. The latter case is often
termed premature convergence although premature convergence might also mean a
loss of diversity without reaching any kind of optimum. In the literature it is often
not checked if a population has actually converged but rather if the optimum was
found with a specified accuracy εg. Using the given definition, convergence of the
population has not necessarily been reached (see Figure 2.4). For the comparison of
algorithms this approach is sufficient but it will be shown in Chapter 6 that conver-
gence must be regarded in its original meaning for the definition of stopping criteria.
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(a) The optimum has been found but the popula-
tion is not converged.

x

f(x)

(b) The population is nearly converged.

Figure 2.4: Convergence

• Convex optimization problem: An optimization problem is convex if all objective
functions as well as the feasible region are convex [Deb01a]. A function is convex if
the following holds for any two solutions x1 �= x2 and t ∈ [0, 1]:

f(t · x1 + (1 − t) · x2) ≤ t · f(x1) + (1 − t) · f(x2). (2.14)

This means that the value of the function f between the points x1 and x2 is always
below the connecting line of f(x1) and f(x2) (see Figure 2.5). It follows that a local
optimum is also a global optimum.

• Deceptive: An optimization problem is called deceptive if features of the problem
tend to lead optimization algorithms away from its global optimum, e.g. by a
gradient in the direction of a local optimum. A deceptive problem is usually difficult
to optimize.

• Diversity: Expresses how different individuals are, i.e. gives the degree of disper-
sion. Diversity usually refers to differences in parameter space. For example, in
Figure 2.4(a) a high diversity is present in the population whereas in Figure 2.4(b)
the diversity is low. Some ideas how to measure diversity are given in [Olo08, Shi08].

xx1 x2

f(x)

Figure 2.5: Convex function
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• Elitist/elitism: Elitist methods ensure that the previously found best population
member(s) survive to the next generation without being changed. Elitism can be
implemented in different ways, see e.g. Sections 3.5 and 5.3.1. Elitist strategies
generally result in faster convergence but the risk of converging to a local optimum
increases.

• Exploration vs. exploitation: Exploration means visiting previously unexplored
regions of the search space. In contrast, exploitation means using already gathered
information about good points in the search space in order to find other good or
preferably even better solutions. In an optimization run, early stages are typically
characterized by exploration whereas in later stages the task changes to exploitation
to fine-tune the solution.

• Feasible: A solution is called feasible if it satisfies all constraints.

• Flat region: A part of the search space where the objective function value does
not change. Flat regions make an optimization problem more difficult because
algorithms may have problems crossing it (see e.g. Section 3.5.1).

• Heuristic: In contrast to an algorithm which gives exact solutions to a problem and
which can be proven to succeed, a heuristic is able to yield approximate solutions
but usually no convergence proof exists. In other words, there is a risk of obtaining
a suboptimal solution. As for most evolutionary algorithms there is no convergence
proof, they can be classified as heuristics.

• Landscape: This term refers to properties, i.e. the shape, of the objective function
because of the resemblance with hills and valleys.

• No free lunch theorem: This theorem states that the performance of all optimization
algorithms is equivalent when averaged over all possible functions [Wol97]. At first
glance it may seem that the statement of this theorem is that all effort in designing
optimization algorithms is futile because a pure random search will have the same
performance on average. In fact it has to be distinguished between different classes of
problems. For random functions the performance of evolutionary algorithms will not
be better than the performance of random search (probably even worse because the
EA might get stuck in a local optimum). However, if functions contain regularities
that might guide a search algorithm towards regions with better function values,
evolutionary algorithms do have an advantage (see also Section 2.2, Section 4.4 or
[Men04a]). For multi-objective optimization a discussion about the validity of the
no free lunch theorem can be found in [Cor03].

• Real-world problem: In contrast to test functions which are usually artificially cre-
ated and do not have any meaning in the "real world", optimization problems en-
countered in various disciplines of e.g. engineering or science are called real-world
problems. They are often characterized by a large number of parameters and ad-
ditionally they commonly exhibit several constraint and objective functions. The
constraint and objective functions are often computationally expensive to evaluate,
e.g. because complex systems have to be simulated. Even the definition of objective
functions for real-world problems is not necessarily trivial [Sch95].
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• Rotational invariance: A desired property of optimization algorithms (or its opera-
tors, respectively). In [Pri05] a rotationally invariant search algorithm is defined as
an algorithm whose performance is not dependent on the orientation of the coordi-
nate system.

• (Self-)Adaptation: If a control parameter is not fixed but it is varied according to
the state of the optimization run, it is called adaptive. If control parameters are
subject to the evolutionary process, they are called self-adaptive [Eib99].

• Step size: Distance between parent and offspring, usually measured in parameter
space.

• Stopping criterion (also called stopping rule, stopping condition or termination cri-
terion): Determines when the execution of an optimization algorithm is terminated.
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Chapter 3

Evolutionary Algorithms

Evolutionary computation is a subfield of computational intelligence in which evolution-
ary algorithms are used for solving optimization problems. Computational intelligence
itself is a part of artificial intelligence. Besides evolutionary computation, computational
intelligence comprises two other biologically motivated fields which are neural networks
and fuzzy systems.
The reason for using principles derived from evolution for optimization purposes is the
success of natural evolution. In nature, complex organisms have been created that are
adapted to all sorts of environments. Similarly, evolutionary algorithms use evolutionary
operators to handle different types of complex optimization problems.
The oldest representatives of this class are Genetic Algorithms (from the 1960s), Evolution
Strategies (from the 1970s) and Evolutionary Programming (from the 1960s). A kind of
subfield of Genetic Algorithms is the Genetic Programming. It was developed later than
the before-mentioned algorithms (from the 1980s) but it also belongs to the most famous
evolutionary algorithms. In recent years Differential Evolution which was first published
in 1995 also received growing attention, among others due to its favorable convergence
characteristics.
A commonality of these evolutionary algorithms is the use of the evolutionary opera-
tors recombination, mutation and selection to evolve a population of individuals towards
better values of the objective function. Differences exist in the representation, the im-
plementation of the operators and the importance of the different operators. Most of
the methods were developed independently from each other but in the meantime there
is much exchange between the different fields. The borders between the algorithms be-
come fluid, e.g. the classical Genetic Algorithm uses binary coding but variants with
real-valued parameters have also been developed in the meantime. Furthermore, concepts
like constraint-handling are exchanged.
A rather new class of optimization algorithms can be summarized under the name "swarm
intelligence". SI is an artificial intelligence technique that uses populations of agents which
interact with one another. The two most popular methods of this class are Ant Colony
Optimization (from the early 1990s) and Particle Swarm Optimization (first published
in 1995). While Ant Colony Optimization is only applicable to combinatorial problems
(and is therefore not discussed further here; the interested reader is referred to [Dor02]),
PSO operates on real numbers and is a global optimization technique. Some researchers
regard PSO as an evolutionary algorithm but this classification is controversial and will
be discussed in more detail in Section 3.6.
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In the following first a short introduction to Genetic Algorithms, Evolution Strategies,
Evolutionary Programming and Genetic Programming is given. These algorithms can be
seen as kind of predecessors of Differential Evolution and Particle Swarm Optimization
in whose context DE and PSO have been developed. Because the focus of this work is
on DE and PSO, the subsequent introductions of these algorithms contain more details.
In this chapter only unconstrained single-objective optimization is described. Extensions
for constraints and multiple objectives are covered in Chapters 4 and 5.

3.1 Genetic Algorithm

Genetic algorithms (GAs) are probably the most famous evolutionary algorithms. They
were developed by John H. Holland, firstly introduced in the 1960s, and especially a book
of Holland from 1975 received much attention [Hol75]. Other commonly cited textbooks
that can be used for obtaining further knowledge beyond the basic information that is
given here are [Gol89, Deb01a]. There have been attempts to formulate a convergence
proof for GAs [Deb01a] but generally they can be seen as heuristics like the other evolu-
tionary algorithms presented here.
In natural individuals, the genetic material consists of chromosomes which themselves are
composed of several genes. These genes can have different states which are called the
alleles. In classical GAs the same principle is used. The chromosomes are modelled by
binary strings where each bit corresponds to a gene. The different alleles of a gene are
represented by the two states of a bit (0 or 1).
Optimization problems mostly have real-valued parameters. Thus, the parameters must
be converted into bit strings in order to apply a classical GA. In analogy to natural
systems, the chromosome in GAs is also called the genotype whereas the corresponding
phenotype consists of the objective function parameters. Each parameter is transformed
into a binary number, and the whole chromosome is built by linking these binary numbers
together. For example, if there is a parameter with the value x1 = 9 and another parameter
with the value x2 = 5, the first one might be represented as 01001 and the second one
as 00101, making the whole chromosome to 01001 00101. It follows that the precision
as well as the search space is determined by the coding. As it will be shown in the
following, recombination and mutation operate on the genotype. For the evolutionary
operator selection the performance of a solution must be evaluated. For this purpose
the phenotype is used to compute the value of the so-called fitness function (which is
often equal to the objective function but may also include a dependence on the constraint
functions). In the example, the fitness function may be f(x1, x2) = x2

1 + x2
2, thus the

performance would be represented by f(9, 5) = 106.
In GAs a selection mechanism is employed both for choosing individuals for reproduction
as well as for selecting survivors for the next generation. For these purposes usually a
fitness-based selection operator is used, e.g. tournament selection, proportionate selection
or ranking selection [Deb01a]. Using tournament selection, two solutions are compared
and the better performing one wins, e.g. the one with the smaller fitness for minimization
tasks. With proportionate selection, the individuals are selected proportional to their
fitness. This is also termed "roulette wheel selection". It is depicted in Figure 3.1 where
the probability pi to select individual i is proportional to its fitness fi: pi = fi∑NP

j=1 fj
where

NP is the number of individuals. In ranking selection a similar operator is used but first
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Figure 3.1: Roulette wheel selection

the individuals are sorted based on their fitness value and then they are assigned a rank
that equals their new fitness.
Recombination is the main operator in GAs whereas mutation is a secondary operator
that is applied with less probability. There are several ways to conduct crossover. The
most commonly used variants employ two parents and are given in the following:

• n-point crossover: n points define which part of the chromosome of parent 1 or
parent 2 is given to the offspring. In Figure 3.2 two-point crossover is illustrated.
Offspring 1 is based on parent 1 but it also receives several bits from parent 2 (light
gray). Two points characterize the beginning and the end of the bit sequence that
originates from parent 2. Similarly, offspring 2 is based on parent 2 but the bit
sequence shown in dark gray comes from parent 1.

0 1 11 0 1 1 0 0 1 0

0 1 0 1 1 0 1 1

1 0 0 1 0

0 1 1 1 0 0 1 1

Parent 1

Parent 2

Offspring 1

Offspring 2

Figure 3.2: Two-point crossover

• Uniform crossover: Bits are taken from each parent with a certain probability.

Recombination is not applied to all members of the mating pool. Instead, it is used with
a given probability pc.
In contrast to recombination, the bit-wise mutation operator does not operate on two
parents. Instead, it is applied to a single individual. It is used for bringing diversity into
the population by changing a bit with a certain probability pm.
A drawback of binary-coded GAs is that an unsuitable coding may produce bad results
[Deb01c, Ama97]. Problems are for example the existence of Hamming cliffs (the transi-
tion to a neighboring solution requires the alteration of more than one bit, e.g. from 01111
to 10000 [Deb01a]) and the need to predefine the precision before conducting the opti-
mization run. Therefore, GAs using real-valued parameters have been developed. These
algorithms are able to use the same selection operators as binary-coded GAs because only
the fitness of solutions is considered during selection. However, the crossover and mutation
operators had to be newly designed because they regard the genotype [Deb01a]. In the lit-
erature indications can be found that real-coded GAs perform well [Ama97, Ali04, Wu05],
supporting the decision to concentrate on algorithms using real-valued representation here.
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3.2 Evolution Strategy

The evolution strategy (ES) was developed in 1963 by two German students: Ingo Rechen-
berg and Hans-Paul Schwefel [Sch95]. In contrast to GAs that traditionally employ binary
strings as parameter representation, ESs use real-valued parameters. In the original form
of ESs, only mutation and selection were applied as evolutionary operators, and only one
parent and one offspring was used. Later work employed crossover as well, and multi-
membered ESs were developed.
In ESs the notation (µ/ρ +, λ)-ES is used to indicate the form of the algorithm. Here
µ denotes the number of parents, ρ gives the number of parents that participate in the
recombination process and λ is the number of offspring. Two different selection types
are used: The (µ/ρ + λ)-ES combines all parents and offspring and selects the µ best
individuals while the (µ/ρ, λ)-ES regards only the offspring for selection. Therefore, it is
required for the (µ/ρ, λ)-ES that λ ≥ µ. It should be noted that the (µ/ρ + λ)-ES is an
elitist algorithm whereas the (µ/ρ, λ)-ES is not elitist.
For mutation a Gaussian operator is used. A mutated vector �yi is created from a vector
�xi by

�yi = �xi + �N(0, σ) (3.1)

where σ is the mutation length and the components of vector �N(0, σ) are generated using
a zero-mean normal distribution with standard deviation σ. As it was discovered that it is
beneficial to vary the mutation strength during the optimization run, adaptive strategies
were developed so that not only the parameters are evolved but the mutation strength
as well. Implementations exist that use the same mutation strength for all population
members but also variants have been developed that assign different values of the mutation
strength to each individual [Deb01a].
Two different kinds of recombination operators exist: Intermediate or discrete. Using the
intermediate recombination operator, an average of the ρ selected solutions is computed.
Using the discrete recombination operator, each component of the parameter vector is
chosen randomly from one of the ρ parents (similar to the uniform crossover operator in
GAs).
The general procedure of ESs is typical for an EA: An initial population is randomly
initialized, recombination is performed, the resulting solutions are mutated, survivors
for the next generation are selected, and the iterative procedure is terminated if some
stopping criterion is fulfilled.
Some convergence proofs for ESs can be found in the literature but as discussed in [Jak04]
the practical usefulness is rather low due to the many assumptions made in the process.
This is a general problem for evolutionary algorithms because (especially for more so-
phisticated versions than the basic methods) too many aspects have to be neglected for
a convergence proof due to the complexity of the algorithms.

3.3 Evolutionary Programming

Evolutionary programming (EP) was developed by Lawrence J. Fogel in the early 1960s
[Deb01a]. Like the ESs, it operates on real-valued parameters. It employs the evolution-
ary operators mutation and selection but recombination is not used. There are many
similarities between ESs and EP but they were developed independently.
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Figure 3.3: Tree data structure used in Genetic Programming
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Figure 3.4: Schematic for the tree in Figure 3.3

Like in ESs, offspring are generated by conducting mutation using a normal distribution,
and the mutation strength is evolved over time. A difference lies in the selection proce-
dure: First, all parents and offspring are combined. Every solution �xi of this combined
population is compared with a subset of randomly chosen solutions from the combined
population. It is computed how many solutions of the selected set are inferior to �xi by
evaluating the objective function values. A score is assigned to �xi that is proportional to
the number of inferior solutions. After this procedure has been done for every solution
�xi of the combined population, the solutions are sorted due to their score. The solutions
with the best scores are selected for the next generation, making EP an elitist algorithm.

3.4 Genetic Programming
Genetic programming (GP) [Koz92] is newer than GAs, ESs and EP as it was developed
in the 1980s. It is a variant of GAs where a major difference exists in the data structures:
In GP, data is commonly represented as trees instead of the binary-coded or real-coded
parameters in GAs. An example is given in Figure 3.3 which is a representation of the
circuit shown in Figure 3.4. Otherwise, the process of GP is similar to GAs: In the
beginning of an optimization run the individuals are randomly generated, and a fitness
is assigned to all of them by comparing the outcome of the solutions with the desired
outcome. The crossover operator exchanges subtrees (see Figure 3.3), and the mutation
operator replaces an object with another one from a given set.
Among others, GP is successfully applied in circuit design [Koz04]. Using GP, not only
the parameter values of existing designs can be optimized but as shown in Figure 3.3 the
whole topology itself, i.e. the connection of components, can be created by GP, parallel
to optimizing parameter values [Hou05].
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3.5 Differential Evolution
In comparison to other evolutionary algorithms, Differential Evolution is a relatively new
technique. It was first described by Storn and Price in 1995 [Sto95]. The objective of
the authors was to design a method that is easy to use, robust and fast. The first goal
is achieved by the small number of user-defined parameters as DE only includes three
control parameters. Two of these parameters have rather small ranges of suitable values
which contributes to the robustness of DE. Fastness is obtained by the characteristic use of
vector differences from the current population for the generation of step sizes. Therefore,
an adaptive scaling of step sizes is produced that leads to a high convergence speed (see
Section 3.5.1). Moreover, the algorithm is elitist which is a property that is commonly
associated with fastness. Some authors also stress that DE is inherently parallel and can
be easily executed on parallel computers [Zah03b, Tas04, Pri05]. A convergence proof
for DE is missing so far. However, it can be seen in the literature that DE has been
successfully applied to many different optimization problems [Pri05].
In the following first the procedure of DE is described for the most commonly used variant
DE/rand/1/bin (the notation of the variants is explained in Section 3.5.2). Afterwards,
different variants of DE are introduced and recommendations for setting control param-
eters are given. At the end of this section differences and commonalities of DE with
other EAs are summarized. This chapter concentrates on unconstrained single-objective
optimization. Extensions for the handling of constrained problems will be discussed in
Section 4.2.2, and modifications for multi-objective problems will be addressed in Sec-
tion 5.3.

3.5.1 General Procedure

The process of Differential Evolution is similar to other evolutionary algorithms: After a
random initialization of the population, the individuals are evolved using the evolutionary
operators mutation, recombination and selection until a stopping criterion is satisfied (see
Figure 3.5).
In contrast to classical Genetic Algorithms that use binary coding for the individuals, the
population members in DE consist of real-valued vectors. Their dimension D is equivalent
to the number of parameters of the objective function. The number of individuals in each
generation G is denoted by the user-defined control parameter NP . The population size
NP is usually kept constant during an optimization run (see Section 7.1.1 for exceptions).
Thus, each generation contains the individuals �xi,G with i ∈ {1, . . . , NP}. The components
of an individual are referred to as xi,j,G with j ∈ {1, . . . , D}. Sometimes the index G for
the generation number is omitted where irrelevant for the issue that is currently discussed.
The use of real-valued vectors as individuals contributes to the easiness of DE because
no binary coding is necessary for continuous optimization problems (see also [Pri99] and
[Fog00] for discussions about advantages of encoding as floating-point numbers).
In the beginning of an optimization run, the DE individuals are usually randomly initial-
ized within the search space:

xi,j,G=0 = xmin,j + randj · (xmax,j − xmin,j) (3.2)

where i ∈ {1, . . . , NP}, j ∈ {1, . . . , D}, xmin,j and xmax,j are the lower and upper limit for
parameter j, and randj ∈ [0, 1] is a random variable from a uniform distribution. If there is
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Figure 3.5: Flowchart for Differential Evolution

some a priori knowledge about the location of the global optimum, it is also possible to use
another distribution for initialization to increase the convergence speed, e.g. a Gaussian
distribution [Pri05]. Because normally no knowledge about the location of the optimum
is available, generally the uniform distribution is used. If parameter bounds cannot be
estimated reliably, it is also possible to use the estimated bounds only for initialization
whereas the individuals’ location is not restricted after initialization [Lam04].
Mutation is performed for each population member �xi. In that context, the solution �xi is
also commonly called the target vector in the DE literature because it denotes the solution
that is currently the target of the evolutionary operators. To familiarize the reader with
the general procedure of DE, here only the mutation process of the variant DE/rand/1/bin
is described because it is one of the easiest and most commonly used variants. There are
also other forms of mutation which will be presented in Section 3.5.2. In DE/rand/1/bin
mutation is executed by adding the weighted difference of two randomly chosen population
vectors to another individual. It has to be noted that the target vector �xi that is later
used for comparison with the newly created individual is not involved in the mutation
process using this DE variant:

�vi,G = �xr1,G + F · (�xr2,G − �xr3,G) (3.3)

with i ∈ {1, . . . , NP}. F is one of the control parameters of DE. It is a real number
that is sometimes called the amplification constant or scale factor as it scales the vector
difference of �xr2,G and �xr3,G. F is mostly chosen from the interval [0, 1] but some authors
also use larger numbers up to 2 [Hua06]. The indices r1, r2, r3 denote three mutually
different, randomly chosen members of the current generation which are also different
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Figure 3.6: Mutation for D = 2

from the target vector �xi. In Figure 3.6 the procedure of generating a mutated vector is
shown for D = 2.
This mutation operation might look like crossover at first glance because several popu-
lation members are involved. However, crossover refers to the exchange of vector com-
ponents which does not happen here. Instead, �xr2,G and �xr3,G are only used to compute
a vector difference, i.e. to generate a step size. Thus, indeed only �xr1,G is perturbed by
adding a random variation to it. This operation is similar to the mutation in ESs (see
Equation 3.1), just the origin of the random variation is different.
The use of population members to generate the random variation during the mutation
process is the reason for the automatic adaptation of the step length: An individual is
mutated by adding a vector difference, and the magnitude of vector differences changes
during the optimization run. In the initial stages of the search, the individuals are scat-
tered throughout the search space. As a result, vector differences are large, and the
individuals make large steps to explore the search space. Towards the end of the opti-
mization run, the individuals gather in the vicinity of the optimum. Vector differences are
small, and the individuals move in small steps, so the solution will be fine-tuned. Hence,
the DE individuals automatically vary their search behavior from emphasizing exploration
in the beginning to stressing exploitation towards the end of an optimization run.
In the recombination process a trial vector �ui is built for each population member �xi. In
contrast to mutation, the target vector �xi is part of the recombination process because
the trial vector �ui receives components from �xi and the mutated vector �vi:

ui,j,G =

{
vi,j,G if randj ≤ CR or j = k

xi,j,G otherwise
(3.4)

where i ∈ {1, . . . , NP} and j ∈ {1, . . . , D}. CR is the crossover constant. It is a control
parameter of the DE algorithm that has to be user-defined in the interval CR ∈ [0, 1]. To
ensure that the trial vector is different from the target vector in at least one component
j = k, k is chosen randomly from the interval k ∈ {1, . . . , D}, and k is newly chosen for
each population member in every generation. This recombination operation is slightly
different from the usual definition of an exchange between several population members
because one of the participating solutions is not directly a population member but a
mutated solution derived from a population member. In Figure 3.7 recombination is

24



3.5. DIFFERENTIAL EVOLUTION

shown for D = 2. In this case only three trial vectors are possible for a given mutated
vector (�ui1, �ui2, �ui3). The number of possible trial vectors increases with the dimension
and also with the number of possible mutated vectors which may be achieved by a larger
population size [Lam00, Pri05].

x1

x2

�vi

�xi

�ui1

�ui2

�ui3

Figure 3.7: Recombination for D = 2

The reason for the enforced difference between target vector and trial vector is that they
are compared when applying the operator selection. For minimization problems like in
this work (see Section 2.1), the vector with the smaller objective function value is inserted
into the subsequent generation G + 1:

�xi,G+1 =

{
�ui,G if f(�ui,G) < f(�xi,G)

�xi,G otherwise
(3.5)

with i ∈ {1, . . . , NP}. This selection scheme contains another difference to other EAs
because the trial vector is compared to only one pre-specified member of the population,
meaning that the selection process is deterministic.
Especially for functions with flat regions (see Section 2.3), it might be advantageous to
prefer the trial vector over the target vector if f(�ui) ≤ f(�xi) instead of f(�ui) < f(�xi).
That way, crossing of flat regions is easier for the individuals [Lam02, Hua06].
The selection operator results in two properties of DE: Because the selection scheme does
not allow to replace a population member with an individual that performs worse, so the
objective function value cannot deteriorate, it is called greedy [Sto97]. Moreover, the best
objective function value cannot get lost when moving from one generation to the next.
Thus, DE is an elitist algorithm which is a property that is usually associated with fast
convergence behavior [Pri05].
There are two ways of substituting individuals: One possibility is to generate the whole
child population first and then apply the selection operator to build the next generation
G+1, so there is no influence of the child population in generation G. Another possibility
is to instantly substitute a parent by the respective offspring if the offspring performs
better, meaning that the offspring immediately participates in the evolutionary process
in generation G. In [Rob05b] the latter variant is recommended for a multi-objective DE
algorithm as it emphasizes elitism. In contrast, in [Kuk04a] it is reported that the same
results are obtained with both formulations. Thus, in this work the instant substitution
is omitted.
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3.5.2 Variants of Differential Evolution

Several variants of DE have been developed that differ in the way mutation and recombi-
nation are executed [Onw04b, Mez06a, Pri05]. They are specified using the notation

DE/x/y/z (3.6)

where x denotes the vector to be mutated (also called base vector), y is the number of
difference vectors and z is the crossover scheme [Pri99]. The vector to be mutated might
be a randomly chosen vector (notation: ’rand’), the best vector that was found so far
(notation: ’best’) or a vector that is located on the connecting line between two solutions,
e.g. between the target vector and a random vector (notation: ’current-to-rand’) or
between the target vector and the best vector (notation: ’current-to-best’). The number
of difference vectors is normally set to one or two. Concerning the crossover scheme, a
binomial or exponential process can be used (notation: ’bin’ or ’exp’, respectively). In
the binomial process a random variable is compared to CR for every vector component to
decide if the respective component should be copied from �vi or �xi [Pri99]. This is equivalent
to the uniform crossover in GAs (see Section 3.1). In contrast, in the exponential process
the vector components are taken from �xi until the random variable is smaller or equal
to CR for the first time. After this, the remaining vector components are copied from �vi

[Pri99]. This is equivalent to one-point crossover in GAs. The exponential process may
also be implemented slightly differently which results in a similarity to two-point crossover
[Pri05]. In [Pri99] the use of binomial crossover is recommended but in [Pri08] it is stated
that there are no significant differences between the crossover methods.
With the notation given in Equation 3.6, the variant specified in Section 3.5.1 can be
described as DE/rand/1/bin. It is one of the earliest DE schemes [Sto95, Sto97] and it is
used frequently in the literature [Bab02, Bec05, Lam02, Lam04, Lam00, Onw04a, Rob05b].
In [Bab03b] it is stated that DE/rand/1/bin is the most successful and most widely used
DE scheme. [Pri05] refers to this strategy as "classic DE".
There are also variants of DE which are given without the crossover scheme z from Equa-
tion 3.6 because recombination is not used, i.e. DE/current-to-rand/1. In contrast to
DE/rand/1/bin, this is a rotationally invariant approach [Pri99] (see also Section 2.3).
In Table 3.1 some commonly used DE strategies are given (showing only the mutation
process). K is an additional control parameter and �x∗ denotes the best solution found so
far. The abbreviation given in the second column is only used in this section.

Table 3.1: Strategies of Differential Evolution

Notation Abb. Equation for mutated vector
DE/rand/1 r1 �vi = �xr1 + F · (�xr2 − �xr3)
DE/rand/2 r2 �vi = �xr1 + F · (�xr2 − �xr3) + F · (�xr4 − �xr5)
DE/current-to-rand/1 cr1 �vi = �xi + K · (�xr1 − �xi) + F · (�xr2 − �xr3)
DE/current-to-rand/2 cr2 �vi = �xi + K · (�xr1 − �xi) + F · (�xr2 − �xr3) + F · (�xr4 − �xr5)
DE/best/1 b1 �vi = �x∗ + F · (�xr1 − �xr2)
DE/best/2 b2 �vi = �x∗ + F · (�xr1 − �xr2) + F · (�xr3 − �xr4)
DE/current-to-best/1 cb1 �vi = �xi + K · (�x∗ − �xi) + F · (�xr1 − �xr2)
DE/current-to-best/2 cb2 �vi = �xi + K · (�x∗ − �xi) + F · (�xr1 − �xr2) + F · (�xr3 − �xr4)
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Figure 3.8: Final objective function value for the optimization of a PI cascade control

The strategies from Table 3.1 (using binomial recombination) have been compared within
the scope of this thesis for the optimization of a PI cascade control for a multi-mass
system [Zie08a]. The results are given in Figures 3.8 and 3.9 in the form of boxplots to
permit a clear overview about the data beyond the information that a simple average and
standard deviation is able to provide. The lines of the box represent the lower quartile,
median and upper quartile of the data. The lines extending from the box show the extent
of the rest of the data. By definition, the maximum length of these so-called whiskers is
1.5 times the interquartile range. All data beyond this measure is considered as outliers
which are shown as crosses in the plot.
Concerning the final objective function value at the end of the optimization runs, strategies
employing one vector difference always performed better than strategies using two vector
differences (see Figure 3.8). Besides, methods using the best solution found so far as base
vector showed better performance than methods with a randomly chosen base vector.
The best final objective function value was obtained by DE/best/1/bin and DE/current-
to-best/1/bin. Both strategies also showed a very robust performance, meaning a low
range of solutions. Regarding the number of generations for obtaining a robust controller
(characterized by f(x) < 1), again the strategies employing the best vector found so far
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Figure 3.9: Number of generations for reaching f(x) < 1 for the optimization of a PI
cascade control
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as base vector performed better than their counterparts with a random base vector (see
Figure 3.9).
In [Zie08a] only one (real-world) optimization problem has been used for the examination.
Another study of DE strategies can be found in [Mez06a] where the performance of eight
DE strategies has been checked for 13 test problems with varying features. In contrast
to the study in [Zie08a], also exponential crossover was tested in [Mez06a]. The following
strategies were used in this paper:

• DE/rand/1/bin

• DE/rand/1/exp

• DE/best/1/bin

• DE/best/1/exp

• DE/current-to-rand/1

• DE/current-to-best/1

• DE/current-to-rand/1/bin

• DE/rand/2/dir

where DE/rand/2/dir is a rather new variant that incorporates information about the ob-
jective function values by calculating �vi = �xr1+

F
2
(�xr1−�xr2 +�xr3−�xr4) with f(�xr1) < f(�xr2)

and f(�xr3) < f(�xr4) [Feo04]. A similar mechanism is employed in [Bre08] where one vec-
tor difference is used, and its direction is adjusted with a probability of 0.75 so that the
gradient is directed towards the better performing solution. In [Mez06a] DE/best/1/bin
performed best. An additional interesting result of this examination is that for DE/rand/1
and DE/best/1 the variants with binomial recombination consistently performed better
than the strategies with exponential recombination. However, studies like this are always
complicated by the dependence on control parameters. In [Mez06a] a random F ∈ [0.3, 0.9]
was generated anew for every generation of each strategy. Because it is assumed that the
performance of the algorithm is more sensitive to the choice of CR, CR was tuned for
every strategy and each optimization problem separately. That way, the computational
effort was high but the best possible performance of each strategy was achieved, enabling
a fair comparison.
Apart from the choice of the DE strategy, several other modifications to the basic DE are
discussed in the literature. For example, there are attempts to hybridize DE with other
optimization techniques to further improve the convergence speed like in [Rog00] where
a hybrid of DE and a local search technique is built. To improve the speed but also the
search behavior, parallel versions of DE are presented in [Tas04] and also in [Zah03b].
Several subpopulations are developed on different machines and the subpopulations share
information by exchanging individuals. This way, optimization problems with expensive
objective and constraint functions can be solved faster by employing several machines.
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3.5.3 Control Parameters

The basic DE algorithm contains three control parameters: F influences the mutation
process, CR is used for recombination, and NP is the population size. Depending on the
strategy, also parameter K might have to be set (see Table 3.1). In the literature often
K = F is used, e.g. in [Sto99a]. The choice of the DE strategy can also be interpreted
as the selection of an additional control parameter which has only some discrete settings.
However, in this section the focus is on the setting of F , CR and NP . For these parameters
recommendations for single-objective optimization from the literature will be given in the
following.
For the population size, settings like NP ∈ [5 · D, 10 · D] [Sto97] or NP ∈ [3 · D, 8 · D]
[Gäm02] are recommended. For DE/rand/1/bin there must be at least NP = 4 individuals
while for versions with two vector differences at least five population members are needed.
In a parameter study conducted within the scope of this work (published in [Zie06f]) it was
shown for a power allocation problem with dimension D = 16 (which will be described in
detail in Section 4.2.4) that a population size of NP = 30 ≈ 2 · D is sufficient for reliable
convergence behavior.
The optimal setting of CR is dependent on the decomposability of the objective function.
If there are no dependencies between the parameters, a low value of CR ∈ [0, 0.2] should
be selected. High settings of CR ∈ [0.9, 1] should be chosen if the parameters cannot be
optimized independently [Pri05].
It is stated in [Pri05] that values of F < 0.4 and F > 1 are usually not used. In [Lam04]
it is suggested that experiments with unknown optimization problems should be started
with F = 0.9 (and CR = 0.9). In [Zie06f] F = 0.7 showed better results, and in [Gäm02]
an initial choice of F = 0.6 is recommended.
As described in [Lam00] there are two similar processes that can prevent the DE algo-
rithm from converging to the global optimum: Premature convergence and stagnation.
In contrast to premature convergence (see Section 2.3), stagnation is marked by no con-
vergence to any point, diversity in the population and occasionally new individuals in
the population. According to [Lam00], the reason for stagnation is that only a limited
number of new vectors can be built. To overcome this problem, it is suggested that F
and CR should not be exactly equal to 1 and NP should not be smaller than 20.
To sum up, for DE some recommendations exist for the setting of control parameters
but they are not always in agreement with each other. Thus, some experimentation is
usually necessary to find suitable settings for an unknown optimization problem. This
holds especially for multi-objective optimization. It has been shown in the literature that
good settings for multi-objective optimization may differ considerably from recommended
settings for single-objective optimization [Kuk04a]. For example, F and CR may have to
be chosen considerably lower to obtain good results. As a consequence, several variants of
DE have been developed which use adaptive parameter setting. These will be discussed
in Section 7.1.1.

3.5.4 Comparison with other Evolutionary Algorithms

Like other evolutionary algorithms, Differential Evolution follows the "survival of the
fittest" principle. Nevertheless, there are some differences in contrast to other EAs. These
differences consist of
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• the selection of individuals for procreation,

• the order of applying the evolutionary operators,

• the representation of parameters,

• the implementation of the operators and

• the selection scheme.

In DE, every population member is allowed to procreate in each generation whereas
in other EAs the parents are often selected using fitness-based operators. One child is
generated for every parent in DE, using first mutation and afterwards recombination
whereas in GAs the order of applying these operators is reverse. In some variants of e.g.
ESs the recombination is even omitted. The real-valued representation is also used in ESs
and EP whereas (at least classical) GAs use binary-coded individuals. The difference in
the implementation of the operators becomes obvious when comparing Section 3.5.1 and
Section 3.5.2 with Sections 3.1, 3.2, 3.3 and 3.4. The DE selection operator compares a
parent (target vector) with its child (trial vector) and deterministically determines which
one of them is inserted into the next generation. In other EAs the individuals to be
compared are not necessarily pre-defined. Furthermore, the decision which individuals to
include in the next generation is often done stochastically, even though the fitness of the
individuals is also regarded. In [Xu08] this difference is summarized in the statement that
DE adopts a greedier and less stochastic approach than other EAs.
DE is similar to ESs [Mad02, Xue05] but DE is less complicated because the self-adjusting
capability is derived from differences between population members that are used to gen-
erate new vectors (see also Section 3.5.1). Therefore, it is unnecessary to specify external
mechanisms which may also include new parameters [Deb01a].
In GAs mutation is applied with a low probability, so more emphasis is placed on recom-
bination. In contrast, in DE (as well as in ESs) mutation is also an important operator.
In general, DE can be seen as farther away from natural evolution than other EAs (es-
pecially GAs). This is reflected in the terminology (target vectors and trial vectors in
contrast to chromosomes and genes) but the operators are also more abstract. For exam-
ple, the selection operator that deterministically chooses the better performing solution
is unrealistic in nature: As argued in [Ken01], an individual with better characteristics
has a higher probability to survive but chance also has an influence. For example, a black
animal in a snowy environment might just be lucky that no predator comes along.
A further in-depth discussion of DE properties and DE dynamics can be found in [Pri99].

3.6 Particle Swarm Optimization
Same as Differential Evolution, the Particle Swarm Optimization algorithm was firstly
introduced in 1995 [Ken95], so it is also a rather new optimization algorithm. It simulates
social behavior of groups like bird flocks or fish swarms where individuals adjust their
behavior based on own successes but also on successes of other group members.
Like other evolutionary algorithms, PSO was initially developed for unconstrained single-
objective optimization problems. In this section first the general procedure of the PSO
algorithm is discussed. Extensions of PSO for constrained single-objective as well as
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unconstrained and constrained multi-objective optimization are discussed in Sections 4.2.3
and 5.4. Additionally, some of the most commonly used neighborhood topologies are
presented and the control parameters of PSO are described in this section. Because PSO
is derived from swarm intelligence but it is often regarded as an evolutionary algorithm, a
discussion of similarities and differences with typical evolutionary algorithms is also given.

3.6.1 General Procedure

Due to the origin of PSO, some concepts and terms exist which differ from typical EA ter-
minology. The PSO individuals are also called particles, and they contain some additional
information apart from the current position �xi. Because the individuals are regarded as
particles flying through the search space, they also include a current velocity �vi. To model
the behavior of social groups, each particle receives the information about the neighbor-
hood best position �pg. This is the position that yields the best objective function value
found so far in a certain neighborhood (neighborhood topologies will be discussed in the
subsequent subsection). Because in social groups the members tend to rely not only on
information from the group but also on their own experience, additionally every particle
has the knowledge of the personal best position �pi. This is the position with the best
objective function value found so far by the respective particle. All positions and veloci-
ties are real-valued vectors with D components where D is the dimension that equals the
number of objective function parameters. The population size is denoted by NP , and as
for other evolutionary algorithms it is a user-defined parameter.
In the first generation the positions and velocities have to be initialized. Mostly, the
current position is set to a random value within the given boundaries �xmax and �xmin as
described in Equation 3.2 for DE. The personal best position of a particle is initialized
with the respective current position. There are also other possibilities for initialization
[Val08] but this is the most common form. Furthermore, the neighborhood best position
is initialized by determining the particle with the lowest objective function value in the
respective neighborhood.
Concerning the initialization of velocities, different strategies are possible. Either they
can be set to zero in the beginning or they can be assigned some random value, e.g. in
dependence on the size of the search space. Up to now, there is not much research on
this matter. In this work the setting of the velocity is chosen randomly from the interval
[−vmax,j , vmax,j] where j ∈ {1, . . . , D} and the maximum velocity is one half of the search
space in each dimension:

vmax,j = (xmax,j − xmin,j) /2. (3.7)

In contrast to the usual definition of a velocity as distance divided by time, in PSO
the velocity is defined as difference of positions (see also Equation 3.9). A different
interpretation is that each position difference is implicitly divided by one generation which
corresponds to a discrete time unit here. It is ensured that velocities do not exceed vmax,j

during the optimization run by resetting larger velocities to vmax,j . The reason is that
there are cases reported in the literature where oscillations with increasing magnitude
occurred [Ken01].
After initialization in the first generation, update equations for velocity and position are
applied to each particle in every generation until a stopping criterion is fulfilled (see
Figure 3.10). The update equations compute a new velocity �vi(t+1) based on the current
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Figure 3.10: Flowchart for Particle Swarm Optimization

velocity as well as a cognitive and a social component, and the position is updated by
adding the new velocity to the current position:

�vi(t + 1) = w · �vi(t) + c1r1[�pi(t) − �xi(t)] + c2r2[�pg(t) − �xi(t)] (3.8)
�xi(t + 1) = �xi(t) + �vi(t + 1) (3.9)

with i ∈ {1, . . . , NP}. In Equation 3.8 the first term on the right-hand side represents the
inertia of the particle, i.e. the tendency to fly in the same direction as in the previous time
step. Therefore, the parameter w is called inertia weight. The second term is the cognitive
component that causes movement towards the personal best position. The third term is
the social component that draws the particle towards the neighborhood best position.
The cognitive and social components are weighted with the control parameters c1 and c2.
A stochastic element is provided by the random numbers r1 and r2 which are randomly
chosen from [0, 1]. More detailed information about the control parameters w, c1 and c2

will be provided in Section 3.6.3.
In the original formulation of the update equations given in the first paper written about
PSO [Ken95], it does not become exactly clear how often the random numbers should
be refreshed. Because in that paper the random numbers are simply written as “rand()”,
it might mean that they should be recalculated once for every particle or once for each
component of the velocity. In order to emphasize the second option, the velocity update
equation should be reformulated. This can be done by giving the equation for the j-th
component of the i-th particle (j ∈ {1, . . . , D}, i ∈ {1, . . . , NP}):

vi,j(t + 1) = w · vi,j(t) + c1r1,j[pi,j(t) − xi,j(t)] + c2r2,j[pg,j(t) − xi,j(t)]. (3.10)

The difference can also be seen in Figures 3.11 and 3.12 where the movement of a particle
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Figure 3.11: Update according to Equation 3.8 for a particle in two dimensions
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Figure 3.12: Update according to Equation 3.10 for a particle in two dimensions

from �xi(t) to �xi(t + 1) according to the update equations given in Equation 3.8 and Equa-
tion 3.10 is shown, respectively. In Figure 3.11 the vector c1r1[�pi(t) − �xi(t)] is parallel
to [�pi(t) − �xi(t)], and c2r2[�pg(t) − �xi(t)] is parallel to [�pg(t) − �xi(t)]. In contrast, these
vectors are not parallel in Figure 3.12 because each component is scaled independently.
For several years nothing has been published about this ambiguity but in recent years
emphasis of this difference begins to appear [Ken07, Wil05, Cle06, Zie09]. In [Wil05] it is
concluded that refreshing the random numbers only once for every particle might result
in limitations of the particle trajectories. Consequently, a loss of diversity would occur if
the personal and neighborhood best positions stay the same for a long time. However, it
is stated that using a different random number for each dimension of every particle also
has a disadvantage because this PSO variant is rotationally variant (see Section 2.3). A
third formulation that includes the use of rotation matrices is proposed in [Wil05] but
this approach is computationally expensive, and furthermore an additional parameter is
introduced. As a result, there exist three formulations of PSO which all have specific
disadvantages. The drawback of the first variant (according to Equation 3.8) might be
compensated most easily because the main problem is introducing enough diversity into

33



CHAPTER 3. EVOLUTIONARY ALGORITHMS

the search. If the personal and neighborhood best positions change frequently, enough
diversity might already be present. As stated in [Wil05], there are also several possibilities
to generate additional diversity: Using random velocities at initialization (the effect of
this may fade over time), employing local neighborhoods (see Section 3.6.2), inserting a
craziness operator (an additional operator resembling mutation that introduces a random
element to the search) or increasing the number of particles which contribute to the update
equations (social awareness).
In a parameter study conducted within the scope of this thesis (published in [Zie09]),
both variants for refreshing the random numbers have been tested for a large range of
parameter settings and also using different neighborhood topologies on the basis of the
power allocation problem described in Section 4.2.4. It was shown that the form according
to Equation 3.8 often has a better performance than using Equation 3.10, especially for
local neighborhood topologies. In contrast, the results deteriorate significantly for the
gbest topology which is a global neighborhood topology (see Section 3.6.2). This difference
can be explained by the loss in diversity that is discussed in [Wil05]. It is shown that
indeed the use of local neighborhoods helps to obtain additional diversity.
After the application of the update equations, the new position is compared to the personal
best position. For unconstrained single-objective minimization problems, the personal
best position is overwritten by the new position if the new position yields a lower objective
function value:

�pi,G+1 =

{
�xi,G+1 if f(�xi,G+1) < f(�pi,G)

�pi,G otherwise.
(3.11)

with i ∈ {1, . . . , NP}. As for DE, it is also possible to substitute the personal best position
if the current position and the personal best position have equal performance in order to
facilitate crossing of flat regions. For PSO this might not be as important as for DE.
The reason is that the particles are still able to move in a flat region in contrast to DE
individuals which may be handicapped due to the greedy selection scheme. Nevertheless,
the mobility may be increased.
If the personal best position is changed, it is also compared to the neighborhood best
position. If the new personal best position has a lower objective function value than
the neighborhood best position, the neighborhood best position is also updated. Again,
the new position might also be used when it is equal to the previous neighborhood best
position.
Similar as described for DE in Section 3.5.1, the update of the best positions may be
synchronous (the best positions are updated after all particles have moved in the cur-
rent generation) or asynchronous (the best positions are updated after the move of each
particle) [Car01, Eng06]. In [Car01] it is shown that convergence may be accelerated
using asynchronous updates. In the software tool developed for the thesis at hand, the
asynchronous update is also used.

3.6.2 Neighborhood Topologies

Several neighborhood topologies have been developed that differ in the number of neigh-
bors per neighborhood and also in the structure. The neighborhood that was developed
first is the gbest variant [Ken95]. Here, the neighborhood consists of the whole swarm,
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so the particles have the information of the globally best solution found so far (see Fig-
ure 3.13(a)).
In other topologies the neighborhoods consist of a subset of the population. In the same
year as PSO was firstly presented (1995), the lbest variant was introduced [Ebe95]. Using
this topology, each particle generates a neighborhood consisting of itself and two neigh-
bors. It is also possible to include more than two neighbors but using two neighbors is the
most common form of the lbest neighborhood topology. Although the term "neighbor"
might imply that the particles are close to each other, either regarding parameter space or
objective space, in fact the neighborhood is only defined using the indices of the particles.
Because every particle generates a neighborhood, neighborhoods are overlapping (see also
Figure 3.13(b) where two example neighborhoods are indicated which are generated by
particles 1 and 2). It is commonly assumed that the gbest neighborhood converges faster
but the lbest variant experiences less premature convergence, thus it can be used for more
complex problems [Ken06b].
The gbest and lbest variants have become standard choices for neighborhood topologies.
They are probably still the most commonly used topologies although several other con-
cepts have been developed in the meantime [Men04b]. A promising candidate is the
von-Neumann neighborhood topology. It showed good results concerning the conver-
gence probability as well as the convergence speed in [Ken02] and also in a parameter
study conducted within the scope of this thesis [Zie09]. Using the von-Neumann neigh-
borhood, each particle possesses four neighbors. The topology can be visualized as a
two-dimensional lattice that is wrapped on all four sides (torus). Thus, the von-Neumann
neighborhood of a particle consists of the particles above and below as well as the par-
ticles to the left and right (see Figure 3.13(c) where the neighborhoods of particles 11
and 16 are shown). If no neighbor exists (e.g. there is no particle to the right as well
as below particle 16 in Figure 3.13(c)), it is generated by wrapping the indices. This
procedure makes particles 4 and 13 neighbors of particle 16 in the example. As for lbest,
neighborhoods are overlapping as can be seen in Figure 3.13(c).
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Figure 3.13: Neighborhood topologies (with NP = 16)

An interesting, relatively newly developed neighborhood topology is the so-called "Fully
Informed Particle Swarm" (FIPS) [Men04b]. According to [Ken06b], it provides a more
realistic model of social relationships by affecting each particle by "a statistical summary
of the state of their immediate social network rather than the unique performance of one
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individual". The velocity update equation is changed as follows:

�vi(t + 1) = χ

(
�vi(t) +

Ni∑
j=1

U(0, φ)(�pj − �xi)

Ni

)
(3.12)

where χ is the constriction coefficient that is discussed in more detail in Section 3.6.3,
U(0, φ) is a random number between 0 and φ, and Ni is the number of neighbors for
particle i. The position update equation remains the same as given in Equation 3.9.
Unfortunately, it is stated in [Ken06b] that it is still not clear which version of PSO
performs best.

3.6.3 Control Parameters

In order to apply the update equations described for the basic PSO algorithm in Sec-
tion 3.6.1, the control parameters w, c1 and c2 need to be set. Besides, the neighborhood
topology has to be chosen which can (analogous to the strategy used in DE) also be
regarded as a control parameter that only allows some discrete settings. A maximum
velocity does not necessarily need to be used but often it is set to some fraction of the
search space (see Section 3.6.1).
In the following several examinations from the literature concerning PSO control param-
eters are summarized. Analytical as well as empirical studies are discussed.
Some authors decrease w over time (e.g. [Par00, Løv01, Kri02, Iwa06a]) to emphasize
exploration in the beginning of an optimization run but to fine-tune solutions towards
the end of an optimization run (exploitation). This approach has the disadvantage that
several additional parameters have to be chosen, similar to the annealing scheme that has
to be selected for the Simulated Annealing algorithm [Ber01]. Moreover, it is not clear
how this approach can be used if the number of generations is not preassigned.
In [Cle02] a theoretical analysis of the influence of control parameters on the performance
of PSO is done using a deterministic version of PSO. A PSO variant is derived that does
not use the inertia weight but instead a constriction coefficient χ:

�vi(t + 1) = χ · (�vi(t) + ϕ1r1[�pi(t) − �xi(t)] + ϕ2r2[�pg(t) − �xi(t)]) (3.13)

with
χ =

2∣∣∣2 − ϕ −
√

ϕ2 − 4ϕ
∣∣∣ (3.14)

and ϕ = ϕ1 + ϕ2, ϕ > 4. Based on the results from nine test functions it is concluded
in [Cle02] that it might be unnecessary to specify problem-dependent parameter settings.
Often ϕ = 4.1 is used [Men04b] to fulfill the condition ϕ > 4, leading to χ ≈ 0.7298.
Mostly, ϕ1 = ϕ2 = 2.05 is chosen which means an identical influence of the cognitive and
the social component on the movement of particles.
It should be noted that the control parameters of the cognitive and social components are
denoted as ϕ1 and ϕ2 in Equation 3.13 to distinguish them from the parameters c1 and
c2 used in Equation 3.8. Mostly, this differentiation is not done in the literature. Thus,
comparisons of parameter settings are complicated, especially if an inertia weight version is
compared with a constriction factor version. For certain parameter settings Equations 3.8
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and 3.13 are equivalent [Ebe00]: w = χ, c1 = ϕ1 · χ and c2 = ϕ2 · χ. With the above-
mentioned parameter settings, the inertia weight version is equal to the constriction factor
version for w � 0.73 and c1 = c2 � 1.5. There is no principal difference between these
formulations but in the literature it has been established to connect the constriction
version with the parameter settings just mentioned. Different parameter settings are
more commonly used with the inertia weight version. Furthermore, a linearly decreasing
inertia weight as already described in this section is only possible in the inertia weight
version. Varying χ in the constriction version would have the undesired effect that ϕ1

and ϕ2 are also scaled.
The PSO variant with constriction according to Equations 3.13 and 3.14 is often consid-
ered as a canonical or standard form of PSO [Bra07] although these parameter settings
are not optimal for every optimization problem as empirically shown in [Car01].
In [Tre03] also a theoretical examination is done. The author concludes on the basis
of a deterministic version of PSO that convergence will occur if w < 1, c1 + c2 > 0 and
2w − (c1 + c2) + 2 > 0.
Moreover, three different swarm sizes are studied in [Tre03] (NP = {15, 30, 60}). It is
concluded that 30 is a good setting even though four of the test functions have a rather
high dimension of D = 30. More particles increase the success rate but also increase the
computational cost.
In [Kad06] it is stated that stability conditions that have been derived from deterministic
PSO versions are not generally valid for the stochastic case. Stability conditions are
derived by regarding the PSO equations as a time-invariant linear second-order dynamic
model but no general recommendations concerning parameter settings are given.
On the basis of [Kad06], in [Sam07] another examination of optimal parameter settings
based on a closed loop stability analysis is done. The authors also conduct experiments
with 21 test functions using the gbest neighborhood topology. It is concluded that the
parameter settings w = 0.6, c1 = 0.103 and c2 = 2.897 provide the best results.
Considering the randomness inherent in PSO, a convergence analysis based on stochastic
process theory is presented in [Jia07]. The authors show for a gbest neighborhood topology
that each particle will converge to the global best position found by the swarm for a certain
range of parameter settings. However, there is no proof that the global best position will
actually correspond to the optimum of the optimization problem. If c1 = c2 = c (this is
often the case in the literature to simplify the search for suitable parameter settings), the
range of parameters is characterized by 0 ≤ w < 1, 0 < c < 2(1 + w) and

5c −√
25c2 − 336c + 576

24
< w <

5c +
√

25c2 − 336c + 576

24
. (3.15)

The authors state that many parameter settings recommended in the literature fulfill
these conditions.
One of the earliest parameter examinations for PSO can be found in [Ebe95]. A PSO
variant still without inertia weight or constriction factor is used (corresponding to a
setting of w = 1). The maximum velocity and the acceleration constant are varied for
the examination (c1 = c2 = {0.5, 1.0, 2.0}). Results are given for two neighborhood sizes
(2, 6). The results concerning c1 and c2 in terms of median iterations for meeting an error
criterion are not conclusive: For a neighborhood size of 6 the setting c1 = c2 = 0.5 yields
the best results but for a neighborhood size of 2 the results of c1 = c2 = 2.0 are mostly
better than for c1 = c2 = 0.5.
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In [Par02b] a Differential Evolution algorithm is used for the calculation of control param-
eter settings in each iteration of the PSO algorithm. The gbest neighborhood topology
is used, and the settings of control parameters are allowed in the ranges 0.4 ≤ w ≤ 1.2
and 0.1 ≤ c1, c2 ≤ 4. A problem-dependent population size is used: NP = 20 for 2- and
3-dimensional problems, NP = 40 for 6-dimensional problems and NP = 60 for a 10-
dimensional problem. No examinations regarding the population size are reported. Re-
sults from twelve test functions indicate that the inertia weight should be chosen from
[0.6, 0.8]. The sum of c1 and c2 is around 3.5, and the setting of c1 is always larger than
c2. For c1 mean values in the range [1.9, 2.2] are reported, and for c2 mean values are in
the range [0.9, 1.5].
In [Car01] the dependence of PSO on NP , the neighborhood size, and the ratio of ϕ1

and ϕ2 is studied among others. One parameter is changed at a time while the others
stay fixed. Five test functions are used for the examination, with dimension D = 30
for four functions and D = 2 for the remaining function. Despite the high dimension a
population size of 30 is found to be sufficient (5 ≤ NP ≤ 200 with step size of 5 is tried).
Variation of the neighborhood size yields the result that the gbest variant is better than
lbest. For an examination of the cognitive/social ratio, ϕ1 is varied between 0 and 4.1,
and ϕ2 is set to ϕ2 = 4.1 − ϕ1. The setting of ϕ1 = ϕ2 = 2.05 that is associated with the
constriction variant does not yield the best performance in this study. Instead, ϕ1 = 2.8
and ϕ2 = 1.3 are recommended. The authors assume that increasing the influence of the
social component leads to getting trapped in local minima.
It can be seen that recommended parameter settings from the literature often do not
match. Besides, in the already mentioned parameter study published in [Zie09] it is shown
that there may be complex interactions between w, c1 and c2. Therefore, it is difficult
to derive general conclusions about suitable parameter settings. For simple problems it
might be sufficient to use parameter settings according to the constriction variant (see
e.g. [Zie08b] where a comparably simple optimization problem is described). Otherwise,
adaptive approaches as presented in Chapter 7 might be beneficial.

3.6.4 Comparison with other Evolutionary Algorithms

The structure of Particle Swarm Optimization is very similar to other EAs since it uses
a randomly initialized population that is evolved iteratively until a stopping criterion is
fulfilled. It is not a typical evolutionary algorithm because it does not use the evolutionary
operator selection. PSO is a cooperative approach where the individuals learn from one
another instead of a competitive "survival of the fittest" approach like in EAs.
Nevertheless, PSO is usually classified as an EA because the update equations used in PSO
resemble the evolutionary operators recombination and mutation which are employed in
other EAs. In [Ken01] it is stated that in Equation 3.8 the term dependent on the personal
best position can be seen as mutation and the term with the neighborhood best position
may be regarded as recombination. Furthermore, it is argued that self-organization is also
a property of evolution [Ken01]. There are authors which oppose this classification, e.g. in
[Eng06] it is stated that PSO has similarities with EAs but that the differences outweigh
the similarities. Consequently, PSO should be seen as part of the swarm intelligence field
but not the EC field although there are also roots in EC.
If the PSO terminology is dropped that each particle moves from one iteration to the
next, particles can also be regarded as being replaced by an offspring in the subsequent
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generation. This leads to a closer similarity with EAs.
Concepts which distinguish PSO from EAs are e.g. the use of a velocity as well as a
memory. Besides, an important topic in the PSO literature is the choice of a suitable
neighborhood topology. This is a characteristic that is not part of other EAs. However,
the neighborhood topology has a similar meaning for PSO as the choice of the strategy
for DE: It determines which vector differences are involved in creating a new solution,
thus influencing the step size and direction. A difference is that in PSO the personal
best position and the velocity also participate in generating a new solution, hence the
neighborhood topology only influences one of three parts of the update equation.
Although both DE and PSO incorporate vector differences in the creation of new solutions,
the processes are different because in DE the target vector is often not included in vector
differences. In contrast, the current position is generally part of the vector differences in
PSO (there are some exceptions, see [Ken06a]). Consequently, a different search behavior
is obtained.
For the update of the personal and neighborhood best positions similar rules are applied
as for the comparison of trial and target vectors in DE. However, a greedy selection scheme
is employed for DE. As a result, the DE individuals cannot be replaced by offspring which
perform worse. In contrast, there is no such restriction for the PSO particles because
only the best positions are subject to these rules. The result is again a different search
behavior which has important consequences in constrained optimization. These will be
discussed in Section 4.2.3.
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Chapter 4

Constrained Optimization

Most evolutionary algorithms are initially developed for unconstrained optimization. Be-
cause real-world problems mostly include constraints, the algorithms are augmented later
with techniques for constraint-handling which are the topic of this chapter.
As already mentioned in Section 2.1, there are different types of constraints. In the follow-
ing first the motivation for using boundary constraints is discussed. Afterwards, methods
for keeping individuals inside boundaries during the optimization process are described.
In Section 4.2 a classification of techniques for handling constraint functions is shown,
together with a description of some of the most popular constraint-handling methods. A
short overview about constraint-handling methods used for DE and PSO in the literature
is given. Furthermore, the application of DE and PSO to a constrained single-objective
real-world problem is shown that consists of optimizing the power allocation scheme for
a problem from communications. Based on this problem, two constraint-handling tech-
niques are compared which are characterized by their ease of use: The death penalty and
the modified replacement method. Optimization problems including equality constraints
are often even more complicated to optimize than problems containing only inequality
constraints. Therefore, some specialized methods for handling equality constraints are
described in Section 4.3, and their usefulness is demonstrated for a problem from yield
analysis. To show the superiority of evolutionary algorithms over random search methods,
a comparison between DE, PSO, blind random search and brute force search is shown
in Section 4.4 based on a commonly used set of constrained benchmark functions. This
chapter ends with a short summary and directions for future work in Section 4.5.

4.1 Boundary Constraints
As mentioned in Section 2.1 during the definition of the general optimization problem,
usually boundary constraints xmin,j and xmax,j according to Equation 2.4 are present in
optimization problems to define the search space (see also Figure 4.1). In the follow-
ing, reasons for using boundary constraints are given. Afterwards, it is described how
individuals can be forced to stay inside the given limits.
The use of boundary constraints usually has two reasons. The first one is that it may
be necessary to keep the parameter values in a particular range, e.g. if models are only
valid for certain input variables or if physical limitations exist. For example, there are
no negative values for electronic components like resistors or capacitors. In this case it
is especially important that individuals do not cross boundaries (or that the respective
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objective or constraint function is not evaluated for individuals outside the search space).
Hence, it is reasonable to handle boundary constraints differently than other constraint
functions because there are constraint-handling methods which permit (or even explicitly
encourage) the existence of infeasible individuals as it will be shown in the following
section. Techniques should be used that prevent the algorithm from exploring the regions
outside the boundaries, especially if it is ensured that the optimum cannot be situated
outside the boundaries (see also [Pri99]).
The second reason for using boundary constraints is that the search space should be
restricted. Thereby, the optimization problem is simplified and the computational cost
is reduced. In that case it should again be ensured that the global optimum is situated
inside the boundaries. If that is not possible because no information about the global
optimum is available, it is possible to use the boundaries only for initialization and allow
the boundaries to be crossed later, or no boundaries may be set at all. When using
computers for the optimization process (which is generally the case), in fact there are
always some boundaries which are defined by the largest and smallest numbers that
are possible for the used data structure. However, in general this restriction has no
consequences.
When comparing the performance of optimization algorithms, it is important to ensure
that the same boundaries are used. Otherwise, the computational effort is not comparable
because the computational cost for exploring the search space increases with its size.

4.1.1 Methods for the Handling of Boundary Constraints

Different methods can be used to keep the individuals inside the given search space. The
techniques which will be presented in the following are generally applicable methods which
can be used for any EA. They are applied when a new solution is generated, meaning that
for DE they are used for the trial vectors before they are compared to the target vectors.
For PSO they may modify a newly calculated current position before it is compared to
the personal and neighborhood best position.
If an individual is generated that violates boundary constraints, it can be forced back to
the search space as follows:

• The violating parameter may be set to the boundary value (this is done e.g. in
[Bre06a]). It is a simple method but it tends to decrease the diversity of the popu-
lation [Pri99].

• The parameter may be re-initialized. No diversity problems are generated by this
method [Pri99] but if convergence has been nearly reached, it may be delayed be-
cause the individual will most likely "jump" to another part of the search space due
to the random initialization.

• The parameter value may be newly calculated using mutation and recombination
(or the update equations, respectively) until a position is found that does not violate
any boundary constraint. It is regarded as a less efficient method than re-initializing
for DE [Lam04].

• The parameter may be reflected back from the boundary by the amount of violation
[Rön05]. For an individual �xi that violates parameter j in generation G, this can
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be done as follows:

xi,j,G =

⎧⎪⎨
⎪⎩

2 · xmin,j − xi,j,G if xi,j,G < xmin,j

2 · xmax,j − xi,j,G if xi,j,G > xmax,j

xi,j,G otherwise.
(4.1)

This approach is also used in [Bre06c] where an equal probability is given for using
this method as well as setting the parameter to the boundary value.

• The limit-exceeding parameter j of an individual �xi in generation G may be reset to
a point in the middle between the old position in generation G− 1 and the violated
limit:

xi,j,G =

⎧⎪⎨
⎪⎩

1
2
(xi,j,G−1 + xmin,j) if xi,j,G < xmin,j

1
2
(xi,j,G−1 + xmax,j) if xi,j,G > xmax,j

xi,j,G otherwise
(4.2)

Thereby, the boundary is approached asymptotically [Pri99]. This approach allows
to continue the search in the same region as before without diversity problems.
Furthermore, there is no risk of possibly applying the evolutionary operators or
update equations many times until an individual inside the boundaries is found.
Due to these advantages, this approach is used in this work.
An example is shown in Figure 4.1 where for generation G initially an individual �x′

i,G

is generated that violates the boundary xmin,2. Consequently, the second parameter
of this individual is modified according to Equation 4.2, resulting in the position
�xi,G.

search space

x1

x2

�xi,G−1

�x′
i,G

�xi,G

xmin,1 xmax,1

xmin,2

xmax,2

Figure 4.1: Handling of boundary constraints

If this method is applied for PSO, it may be beneficial to also adjust the velocity
because otherwise the individual may repeatedly cross the boundaries. Several pos-
sibilities exist for the actual implementation but in this work they have not been
examined, so this is a possible topic for future work.

It might be assumed that this method leads to slow convergence if the optimum
is located near a boundary. However, it must be kept in mind that this method
is not the only means of moving the individuals. Instead, it will generally only be
applied to a small number of individuals. Due to the self-adjusting capability of DE
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and PSO, the step sizes will already be quite small when approaching convergence.
Thus, crossing of boundaries will only happen occasionally, so the convergence speed
is not influenced noticeably.

Additional methods for the handling of boundary constraints are given in [Alv05] for
a multi-objective PSO algorithm. Because methods for the handling of boundary con-
straints do not depend on the objective function(s) but only on the parameters, the
techniques described in [Alv05] as well as the methods presented in this section can be
used for both single-objective and multi-objective optimization.
It should be noted that preventing individuals to cross boundaries is debated in the
PSO community as several researchers feel it is better not to disturb the motion of the
particles [Ken07]. It is argued that if the objective function cannot be evaluated outside
the boundaries due to physical limitations, the particles could nevertheless be allowed to
go outside of boundaries but without evaluating the objective function. Because positions
outside bounds would never become personal or neighborhood best position, the particles
would sooner or later be drawn back to the search space inside the boundaries, and they
would have no influence on other particles. The question remains what is the benefit
of letting individuals go outside the boundaries. If it is known that searching outside
the boundaries will provide no useful knowledge, there is no reason to do it (unless to
simplify a study of the motion of particles). In contrast, if it is not sure that the lower
and upper bounds are set correctly for the respective optimization problem, i.e. if there
is doubt whether or not the optimum is situated inside the boundaries, then methods for
preventing individuals to cross boundaries should not be applied. This case might arise
for problems with computationally expensive objective and constraint functions because
limiting the search space drastically reduces the computational effort for optimization.
However, if intermediate results give reason to assume that improvement can be found
outside the boundaries, the population should be allowed to cross them.

4.2 Constraint Functions

In this section, methods for handling constraints in optimization problems will be pre-
sented and compared. These methods are basically capable of handling inequality as
well as equality constraints. However, they may not always be effective for equality con-
straints due to the small feasible space that complicates thorough sampling of the search
space. Specialized methods which have been explicitly developed for equality constraints
will be discussed in Section 4.3. In the following, first some general comments concerning
constraint-handling are given, a classification of methods for handling constraints is shown
and some techniques are introduced where the focus is on easy applicability. Afterwards,
it is described how exactly these methods may be used in DE and PSO, and a short litera-
ture survey of constraint-handling in DE and PSO is given. Furthermore, the application
of constraint-handling methods for DE and PSO is illustrated by an exemplary real-world
problem from communications. For more information regarding constraint-handling tech-
niques the reader should refer to [Coe02a, Koz99, Mic96, Mez04].
The term "constraint functions" refers to functions which describe dependencies of the
objective function parameters that exist additionally to the boundary constraints [Lam04].
In contrast to the boundary constraints which are usually given in a very simple form that
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is easy to observe (see Equation 2.4), constraint functions may have a very complicated
form.
As mentioned in Section 2.1, constraint functions are commonly divided into inequality
constraints (Equation 2.5) and equality constraints (Equation 2.6). An example for an
inequality constraint is the demand of stability when optimizing e.g. operational ampli-
fiers, filters or oscillators, thus the phase margin is required to be in a certain range. In
engineering design problems mostly inequality constraints are encountered but in Sec-
tion 4.3.2 also an example for an engineering problem that arises in yield analysis will be
shown that includes an equality constraint.
Because of numerical difficulties, equality constraints are usually transformed into inequal-
ity constraints using Equation 2.7. Values like εe = 10−4 or εe = 10−3 are frequently used
for the transformation in the literature [Mez04, Lia06a]. Especially for real-world prob-
lems often a considerably better accuracy is needed (see Section 4.3). Because a definite
standard setting for εe does not exist, comparisons with literature may be complicated
because generally results of examinations using different tolerances cannot be compared.
A feasible solution must fulfill Equations 2.5 and 2.7. For the comparison of infeasible
solutions, in several constraint-handling methods a measure must be used that gives
information about the amount of infeasibility. In that case the sum of constraint violation
can be calculated:

v(�x) =
J∑

j=1

Gj(�x) +
K∑

k=1

Hk(�x) (4.3)

where

Gj(�x) =

{
gj(�x) if gj(�x) > 0

0 if gj(�x) ≤ 0
(4.4)

and

Hk(�x) =

{
|hk(�x)| if |hk(�x)| − εe > 0

0 if |hk(�x)| − εe ≤ 0.
(4.5)

This means that terms are only added to Gj(�x) and Hk(�x) if the respective constraint is
not fulfilled. If all constraints are fulfilled, the solution is feasible and its sum of constraint
violation is zero.

4.2.1 Constraint-handling methods

Many ways exist for considering constraint functions in optimization problems. According
to [Coe02a] they can be classified in the following categories:

• Penalty functions,

• special representation and operators,

• repair algorithms,

• separation of constraints and objectives,

• hybrid methods.
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Many constraint-handling methods are general techniques that can be inserted into any
EA. Furthermore, they can not only be used for single-objective optimization but they
can be easily adapted for multi-objective optimization. There also exist some specialized
procedures that have been developed for specific algorithms. In this work the focus is
on easily applicable methods, hence the categories special representation and operators
as well as hybrid methods are not discussed further. Repair algorithms refer mostly to
combinatorial optimization problems (see Section 2.2) and are also omitted.
A common approach for constraint-handling is the use of penalty functions which is
also a rather old approach that was introduced in the 1940s [Coe02a]. A constrained
optimization problem is transformed into an unconstrained problem by adding terms in
dependence on the constraint violation to the objective function:

f̃(�x) = f(�x) +

J∑
j=1

rineq,j · Gj(�x) +

K∑
k=1

req,k · Hk(�x) (4.6)

where rineq,j and req,k are penalty factors which usually have to be set by the user. Different
methods have been suggested, e.g. static, dynamic or adaptive penalties. Mostly these
methods insert additional parameters that have to be adjusted. This is a drawback of
penalty methods, especially because appropriate settings are highly dependent on the
optimization problem.
An exception is the so-called death penalty. Using this method, all infeasible points
are rejected. It is the easiest way to handle constraints but it is unfavorable in certain
situations, e.g. if the search space consists of several feasible regions that are separated
from each other because the gaps between the feasible regions may not be traversed by the
individuals. Another unfavorable situation may arise in the presence of highly constrained
search spaces, meaning that the feasible region is small in comparison with the whole
search space. The algorithm has to randomly generate solutions until feasible positions
are found for the entire initial population. This may take considerable computational
time.
A different approach for constraint-handling is described in [Deb00] for single-objective op-
timization and in [Deb02] for multi-objective optimization. In the following this approach
will be referred to as modified replacement method. According to the classification
from [Coe02a] that is given above, it belongs to the category separation of constraints
and objectives. The method is based on preferring feasible over infeasible solutions but
in contrast to the death penalty the existence of infeasible solutions is permitted. More
exactly, if comparing two vectors �x and �y, �x is considered better than �y if:

• Both solutions are feasible but �x has a better performance concerning objective func-
tion value(s), meaning f(�x) < f(�y) or �x ≺ �y for single-objective or multi-objective
optimization, respectively.

• �x is feasible and �y is not.

• Both solutions are infeasible but �x has a lower sum of constraint violation than �y
(v(�x) < v(�y)).

Using this approach, the original selection method is used if two feasible individuals
are compared. A feasible solution is always preferred over an infeasible solution. In
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the comparison of two infeasible solutions, the one that is closer to the feasible space
should win to direct the search towards the feasible region. Consequently, the sum of
constraint violation is used as basis for the comparison. The objective function is not
considered for infeasible solutions. This is an advantage especially for real-world problems
because often the objective function cannot be evaluated for infeasible individuals, and
furthermore computational time is saved. If several constraint functions are present in
an optimization problem, and especially if there are large differences in their magnitudes,
the constraints should be scaled before summing up to ensure equal treatment of all
constraints. This recommendation does not apply if there is some information available
about the importance of the individual constraints but that is usually not the case.
In the modified replacement method it is assumed that feasible solutions should always be
preferred over infeasible solutions, and furthermore that an infeasible solution with lower
constraint violation is always better than an infeasible solution with higher constraint vi-
olation. Other constraint-handling techniques may make different assumptions, e.g. that
the infeasible solution with the best objective function value should be included in the
next generation or that not the amount of constraint violation according to Equation 4.3
should be used for a comparison of infeasible solutions but the number of violated con-
straints [Eng06]. For example, the popular stochastic ranking method [Run00] introduces
a probability that only the objective function is used for the comparison of two infeasible
solutions. Moreover, there are approaches in the literature which explicitly try to estab-
lish a balance between feasible and infeasible solutions instead of decreasing the number
of infeasible solutions as fast as possible [Yuc04, Wan08a].
Another rather popular constraint-handling method from the category "separation of con-
straints and objectives" reformulates a constrained single-objective optimization problem
with J+K constraints as a multi-objective optimization problem with J+K+1 objectives
[Coe02a]. As a result, the search does not necessarily aim for a solution that fulfills all
constraints but trade-off solutions with minimal constraint violations are found. Because
of the many problems associated with multi-objective optimization that will be discussed
in the following chapter and that arise especially if the number of objectives is high, this
approach is not examined here further.
As can be seen, constraint-handling methods can be distinguished based on the number
of additional parameters and also based on the fact if they allow the existence of infea-
sible solutions (or even encourage it as in stochastic ranking). Both the death penalty
and the modified replacement procedure do not introduce new parameters, making them
easy-to-use methods. Furthermore, both methods can be used for single-objective as well
as multi-objective optimization. A difference is that the death penalty explicitly prohibits
infeasible individuals while infeasible solutions are permitted using the modified replace-
ment procedure. It will be examined in this section if this leads to performance differences
for DE and PSO.

4.2.2 Differential Evolution for Constrained Optimization

Like most optimization algorithms, Differential Evolution was initially developed for un-
constrained single-objective optimization. Because of the significance of constraints for
real-world problems, it was later enhanced for the optimization of constrained single-
objective problems. In the literature different approaches can be found which normally
vary the comparison of the trial vectors �ui and the respective target vectors �xi dur-
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ing selection. In the following it will be described in detail how the death penalty and
the modified replacement procedure can be applied for DE, and implications of these
constraint-handling methods for DE are discussed. Furthermore, some references to re-
lated literature are given.
If the death penalty is applied for DE, all individuals must be initialized with feasible
solutions in the beginning. If only a limited number of function evaluations is allowed
for comparability reasons, many of them might be needed for finding feasible initial solu-
tions, based on the size of the feasible space. If an initial population has been found, the
operators mutation and recombination can be applied as described in Section 3.5. During
selection trial vectors are only accepted if they are feasible and if they additionally have a
smaller objective function value than the corresponding target vectors. Consequently, the
implementation of the death penalty for DE is easy because it mainly consists of repeating
the initialization procedure until enough feasible solutions have been found and adapting
the selection scheme slightly to check for feasibility. In case of an unconstrained optimiza-
tion problem, the algorithm is the same as the original DE described in Section 3.5.
The implementation of the modified replacement method is similarly easy for DE:
The selection procedure must be modified to consider not only the objective function
value but also feasibility and constraint violation. As for the death penalty, the algorithm
equals the original DE for unconstrained optimization problems. When applying the
modified replacement procedure, infeasible individuals are driven to feasible space. It
also means that individuals which become feasible may never be replaced by an offspring
that is located in infeasible space again. This might make crossing of infeasible space
or moving in a highly constrained search space difficult because many trial vectors will
not be accepted. To cross infeasible regions, the DE individuals must generate suitable
vector differences for finding a feasible position that furthermore yields a better objective
function value than the old position.
The modified replacement method is often used in the DE literature but slightly differing
formulations can be found. In [Bre06c] the constraint-handling method is almost the same
as the modified replacement method described in the previous section but the mean con-
straint violation is regarded instead of the sum of constraint violation in the comparison
of two infeasible individuals. However, as this is only a scaling with a constant (J + K),
the effect will be the same.
A computationally more expensive variant of the modified replacement procedure can be
found in [Hua06] where each single constraint-violation Gj(�x) and Hk(�x) is scaled with
the largest violation Gmax,j and Hmax,k that was found so far for the respective constraint:

v(�x) =

∑J
j=1 w1,j · Gj(�x) +

∑K
k=1 w2,k · Hk(�x)∑J

j=1 w1,j +
∑K

k=1 w2,k

(4.7)

where w1,j = 1
Gmax,j

and w2,k = 1
Hmax,k

. The scaling of constraints should eliminate
unwanted effects due to differing magnitude of the constraints, so each constraint is treated
equally.
In [Lam04] the modified replacement method is used with the following modification:
The comparison of two infeasible solutions is not based on the sum of constraint violation
but on Pareto-optimality. Thus, a solution is considered better if it does not violate any
constraint more than another solution, and it violates at least one of the constraints less,
meaning that dominance in constraint violation space is checked.
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4.2.3 Particle Swarm Optimization for Constrained Optimization

The basic PSO algorithm was also developed for unconstrained single-objective optimiza-
tion problems but several constraint-handling methods have been used for PSO in the
meantime. As there is no selection operator in PSO, modifications have to be done in
another place. This is usually either the movement of a particle to a new position or the
update of the personal and neighborhood best positions. In the following the application
of the death penalty and the modified replacement method is described for PSO, and
some references to the literature of PSO for constrained optimization are given.
When the death penalty is applied to PSO, the same consideration for the generation
of the initial population holds as for DE: Enough feasible solutions must be found to
initialize the population. Depending on the size of the feasible space, this may require
many function evaluations. When the initial population has been generated, the update
equations are used as described in Section 3.6 to generate new positions for the individuals.
If an individual moves to an infeasible position, it is reset to its previous position. Thus,
the implementation of the death penalty is also easy for PSO. Same as for DE, the death
penalty does not create a modification in the basic algorithm but it is only an extension,
meaning that for unconstrained optimization the behavior of PSO will be unchanged.
Similar as discussed for boundary constraints in Section 4.1, problems might arise if
the velocity is kept unchanged because the individuals might try to move into the same
direction repeatedly. However, a change of direction might also be caused when the
neighborhood best position changes because a particle in the neighborhood has found a
better position.
The modified replacement method is applied for PSO when a newly generated position
�xi is compared to the personal best position �pi to determine if �pi should be replaced by �xi

because the new position yields a better solution than the present personal best position.
The rule is also used when a solution is compared to the neighborhood best position �pg

to determine if the neighborhood best position can be updated with a better performing
solution. Again, the implementation is simple and the original PSO algorithm remains
unaltered in case of an unconstrained problem.
Although the modified replacement procedure can be applied to both DE and PSO, differ-
ent behavior of the algorithms will be the result. The individuals of both algorithms will
be driven to feasible space by this constraint-handling method but as already mentioned
in Section 4.2.2, the DE individuals cannot become infeasible if they have been feasible
once. In contrast, the PSO particles are able to move to infeasible space at any time, so
they are less restricted in their movement. The PSO particles are less directly influenced
by the constraint-handling method as only the personal and neighborhood best positions
are subject to the feasibility rules. As a result, especially in heavily constrained search
spaces PSO has an advantage in contrast to DE because the particles are able to move
more freely and may therefore explore the search space more thoroughly than the DE
individuals. This behavior is illustrated in Figure 4.2 where the feasible space is discon-
nected, so it consists of two separate areas: In Figure 4.2(a) a feasible DE individual can
cross the infeasible space only if a step size can be generated that is large enough and if
the objective function value is lower at the new position. In contrast, in Figure 4.2(b) it
is shown that the PSO particles are allowed to move into the infeasible space, thus they
are also able to reach the disconnected feasible region with several smaller steps. As a
result, the probability is larger that a disconnected feasible region will be found.
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Figure 4.2: Differences between DE and PSO when applying the modified replacement
procedure (shaded area: feasible space)

In the following some references to literature are given where PSO is used for constrained
single-objective optimization, using the approaches discussed here and also others.
Among others, the death penalty is used for PSO in [Hu02]. It is reported that the method
is successful for inequality constraints but exhibits problems with equality constraints
because feasible individuals have to be found for the entire initial population.
The first use of the modified replacement procedure in PSO is reported in [Pul04a], with
the difference that the constraint violations are scaled in [Pul04a]. It is shown that the
approach has a competitive performance when compared to three other methods.
In [Muñ06] the modified replacement procedure is also used but additionally a strategy is
incorporated that is specifically designed for handling equality constraints. For this pur-
pose an external file is maintained that preserves individuals that are feasible at different
tolerance levels εe which are changed during an optimization run. In every generation
the personal best position that performs best of the entire population is inserted into the
archive, and the best solution from the archive replaces this personal best position.
A static penalty approach is used in [Li04], and it shows good results for three real-world
problems. In [Par02a] a dynamic penalty function approach is used for the handling
of constraints. Several test functions are successfully optimized but the use of penalty
functions has the disadvantage that penalty values have to be chosen, thus the effort for
parameter tuning is increased.
In [Coa03] the constraint-handling techniques of [Hu02] (death penalty) and [Par02a]
(dynamic penalty) are compared. Because generally the dynamic penalty approach leads
to faster convergence but the death penalty mostly has a better average accuracy εg, it is
concluded that the choice of constraint-handling methods is problem-dependent. Again,
it is shown that penalty factors require some fine-tuning effort.
An approach that is specifically developed for PSO is proposed in [Lia06b] where several
subswarms are built, and the constraints (and the objective function) are dynamically
assigned to subswarms. The method is evaluated in [Lia06b] based on the demands given
for the Special Session on Constrained Real Parameter Optimization at the Congress on
Evolutionary Computation 2006 in [Lia06a] (these demands will be discussed in more
detail in Section 4.4). In comparison to the other approaches that were tested in this
special session, the method from [Lia06b] reached very good results (rank 2 out of 12
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papers), making the use of several subswarms to a rather complicated but promising
means for constraint-handling.
Several subpopulations are also used in [Chu04] to model the symbiosis phenomenon from
nature that is used for constraint-handling of a distributed multi-objective PSO algorithm.
However, more comparisons are necessary to draw conclusions about the performance of
the algorithm.

4.2.4 Application: Power Allocation Problem

In this section the application of DE and PSO to two similar problems from communi-
cations is described. The problems consist of optimizing a power allocation scheme for
iterative parallel interference cancellation (PIC) as well as iterative successive interference
cancellation (SIC). In the literature problems like the PIC have also been optimized, e.g.
in [Cai04]. However, Linear Programming techniques have been employed which have the
disadvantage that only local optima can be found, so the algorithm becomes dependent
on starting positions (see Section 2.2). Furthermore, the formulation of the constraints is
restricted. The latter disadvantage prevents the optimization of SIC with these techniques
whereas DE and PSO do not have this restriction.
In the following first some information about the background of the optimization problem
is given. Afterwards, solutions for PIC und SIC are shown which have been generated
using DE as well as PSO. The PIC optimization problem is then taken as basis for a
comparison of two constraint-handling methods which are the death penalty and the
modified replacement method.

4.2.4.1 Background

In communications the problem exists how to allow multiple users to transmit data in a
system simultaneously. Classical methods include TDMA (Time Division Multiple Access)
and FDMA (Frequency Division Multiple Access). Using these techniques, time slots or
certain frequency bands are assigned to the individual users, thus ensuring orthogonality,
i.e. no mutual disturbance between the users. An alternative is random spread CDMA
(Code Division Multiple Access) that uses codes to differentiate between users. CDMA
has some promising properties which are exploited e.g. in UMTS (Universal Mobile
Telecommunications System). For example, there is no hard limit of supportable users
in a cell as in TDMA or FDMA at the cost that orthogonality is not given anymore,
so interference occurs. Each additional user attending the system slightly degrades the
bit error rate. Therefore, this effect is called soft degradation. Another advantage is the
robustness against narrowband interferers.
Several techniques can be applied to improve the performance of a CDMA system (see
e.g. [Lin04]). Here the focus is on the uplink of the system. The base station receives
messages from several users simultaneously. Thus, there will be multi-user interference
that may significantly degrade the detection performance.
The effect of multi-user interference can be avoided by using interference cancellation
methods which iteratively estimate the interference. If the multi-user interference can be
estimated reliably, it can be subtracted from the received signal before detection. The
initial estimation may not be reliable but if it is subtracted from the received signal, a new
estimation can be made that is less disturbed by interference. Therefore, the interference
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cancellation is applied iteratively, assuming that each iteration leads to improvement
up to perfect estimation of interference. In other words, convergence of the applied
interference cancellation technique is reached. In this case only the channel noise disturbs
the detection. The so-called single-user bound (SUB) is obtained that describes the case in
which only one user is present, meaning that no multi-user interference occurs. To ensure
that the best possible performance is always reached, the convergence of the interference
cancellation technique will always be demanded in the following.
Parallel interference cancellation as well as successive interference cancellation can be used
to estimate the multi-user interference. Using PIC, the users are processed in parallel.
In contrast, using SIC an initial estimation and subtraction of the interference is done
for the first user before considering the second user and so on. After all users have been
processed successively, the second iteration starts, again beginning with the first user and
continuing with the following users. An advantage of SIC is that due to the improved
estimation of interference introduced by the first user the estimation of the second user
will already be better than in the case of PIC. Generally, SIC should be preferred because
of its faster convergence behavior but due to the easier analysis of PIC, it is considered
here also.
The effective influence of the remaining interference for each iteration can be described
using the multi-user efficiency η [Wei05]. For PIC it is given by

η =
SINR

SNR
=

2σ2
s/(σ2

n + σ2
MUI)

2σ2
s/σ

2
n

=
1

1 + βµP/σ2
n

(4.8)

where SINR is the signal-to-interference-plus-noise-ratio and SNR is the signal-to-noise-
ratio. The variables σ2

s , σ2
n and σ2

MUI are the variance of the desired signal, the variance
of the noise and the variance of the remaining multi-user interference after cancellation,
respectively. While σ2

s and σ2
n are constant, σ2

MUI changes in each iteration. The system
load is denoted by β where β = D/N , D is the number of users and N is the so-
called spreading length that gives the length of the codes [Ver98]. µ is the remaining
mean squared error of the estimated symbols after channel decoding (channel coding is a
standard technique that is used for improving the bit error rate and that is used in nearly
every communication system). P is the power that the base station receives from each
user. For more detailed information about CDMA see [Ver98].
The multi-user efficiency η(m) in the m-th iteration is dependent on the remaining inter-
ference which itself is dependent on the quality of the interference estimation in the last
iteration. These dependencies can be integrated into one formula:

η(m) = ψ(η(m−1)). (4.9)

The function ψ specifies the behavior of the interference cancellation and channel decoding
for all iterations. The multi-user efficiency in a particular iteration can be described only
by the efficiency in the previous iteration and some system-dependent constants (β, P ,
σ2

n). Therefore, ψ can be determined for all iterations if these constants are known.
Because the effect of the considered channel coding cannot be described analytically, the
function ψ has to be calculated once in advance (for this work it was saved in a file that
is read by the optimization tool, and intermediate values are interpolated).
Perfect interference cancellation is obtained for η = 1, corresponding to the single-user
bound. To reach this point, the condition η(m) > η(m−1) must hold for all possible values
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of η. This demand can also be written as

ψ(η) > η ∀ η ∈ [0, 1). (4.10)

If Equation 4.10 is not fulfilled, the detection gets stuck and convergence cannot be
reached. This may result in a very high bit error rate, possibly making communication
impossible for all users.
Convergence of PIC can be illustrated graphically if η(m) = ψ(η(m−1)) is plotted, and
it is checked whether this function crosses the bisecting line. An example is shown in
Figure 4.3. The transfer function was determined for an exemplary system. It can be
seen that the interference cancellation will be successful because the transfer function is
always above the bisecting line. Additionally, in Figure 4.3 the trajectory is given that
shows the behavior for the individual iterations. Each step corresponds to one iteration:
When going from one iteration (m) to the next (m + 1), the value of the y-axis (η(m)) is
projected to the x-axis (η(m−1)) which is shown by the horizontal line. The new value for
the y-axis is determined by moving vertically up until the transfer function is reached.
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Figure 4.3: Transfer function and trajectory

The analysis of the SIC is more complicated. The error variance µ is not the same for all
users as it was the case for PIC. Instead, all D users have different variances µ

(m)
d at each

iteration m. Because the remaining errors of the users are independent, the variances can
be added for the interference calculation. Therefore, the multi-user efficiency for user d
in iteration m is given by

η
(m)
d =

1

1 +
1

N

(
d−1∑
i=1

µ
(m)
i +

D∑
i=d+1

µ
(m−1)
i

)
P

σ2
n

. (4.11)

As can be seen in Equation 4.11, the function for the multi-user efficiency is no longer
dependent on only one parameter µ as in Equation 4.8. Instead, there is an individual
influence from each user.
Due to this multidimensional dependencies, a simple two-dimensional plot of the transfer
function as for the PIC is no longer possible because the transfer function would change
after every iteration and for every user. Therefore, the trajectory has to be considered for
an analysis of the convergence behavior of SIC. The trajectory describes the behavior of
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the system at discrete points of interest which correspond to the iterations. For PIC the
trajectory can be abstracted to the transfer function because of the parallel processing (see
Figure 4.3). Because for SIC the trajectory must be considered for checking convergence
of the interference cancellation method instead of the transfer function, the corresponding
constraint of the optimization problem must be formulated differently. A more general
condition for convergence of an iterative detection scheme is used: The single-user per-
formance, corresponding to a multi-user efficiency of η = 1, must be reached by the
trajectory within a limited number of iterations. In this work the condition above is re-
laxed to avoid numerical instabilities by allowing a small deviation ε from η = 1 because
the lost concerning the bit error rate is negligible in practical applications.

Optimization of power allocation Equal power levels for all users have been assumed
so far. To improve the performance, different power levels P (d) can be assigned to the
users d (1 ≤ d ≤ D). As a consequence, µd also becomes different for the users. In that
case, Equation 4.8 for PIC and Equation 4.11 for SIC can be rewritten as follows:

η =
1

1 +
1

N

d=D∑
d=1

µd · P (d)

σ2
n

(4.12)

η
(m)
d =

1

1 +
1

N

(
d−1∑
i=1

µ
(m)
i P (i) +

D∑
i=d+1

µ
(m−1)
i P (i)

)
1

σ2
n

. (4.13)

It can be seen that η depends on the distribution of the power levels. Consequently,
the convergence of the interference cancellation can be influenced by changing the power
distribution. If unequal powers are used, the stronger users improve more than the weaker
users degrade because of their higher or lower power, respectively. This behavior is caused
by the nonlinear characteristics of the system. The stronger users can be estimated more
reliably due to their increased power and furthermore due to the decreased interference of
the other users. As a consequence, the interference of the stronger users can be cancelled
more reliably, thus the weaker users will improve also.
As in all wireless communication systems, it is desirable to use as little transmit power
as possible to maximize battery life and minimize radiation exposure. The result is an
optimization problem where the objective function is the sum of powers of all users, and
the parameters are the powers of the individual users. Because convergence to the SUB
is demanded, it has to be incorporated into the optimization as a constraint. Details of
the systems are described in [Wei05].
The interference cancellation occurs in the base station. The base station must also know
the results of the optimization of the power allocation scheme, but the actual optimization
process may theoretically happen somewhere else and it can also be done offline. The
reason is that not the transmit power but the received power is optimized. This may be
done independent from the actual distribution of the users but only dependent on system
parameters like the number of users and the variance of the noise. The optimization
may be executed for different scenarios and the results are saved. Based on the actual
situation, the base station can afterwards calculate the necessary transmit powers and
communicate this information to the individual users.
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Apart from the constraints that result from the interference cancellation methods, bound-
ary constraints have to be regarded during the optimization process. Because no negative
power exists, the design variables have to be non-negative. In preliminary tests some-
times a trivial solution has been found using PIC for which all powers are zero except
for one user. Multi-user interference is not present in this case but the solution has no
practical meaning. It is prevented in the following by setting a lower limit xmin,d > 0
for the parameters (with xmin,d ≤ P (d) ≤ xmax,d as well as xmin,j = xmin,k = xmin and
xmax,j = xmax,k = xmax for all j, k ∈ {1, . . . , D}). There is no rule for choosing the exact
value but it must be ensured that the lower bound is not present in the final solution
because this would mean that a better solution may exist. In this case the lower limit
was set to xmin,PIC = 0.5 for PIC1. For SIC also problems appeared in preliminary tests
using xmin = 0 as some solutions have been found in which one user got almost no power.
This is avoided in the same way as for PIC in the following by setting a lower limit
xmin,SIC = 0.5.
To limit the search space, i.e. to decrease the computational cost, it is also reasonable to
set an upper boundary. In principle the upper limit can be chosen arbitrarily but with
the same restriction as for the lower bound: The upper bound should not appear in the
final solution. If it does appear in the final solution, then the upper bound should be
increased. In the following xmax = 4 is used for both PIC and SIC. In Section 4.2.4.3 it
will be discussed that the ratio of feasible space to the whole search space can be altered
for PIC by varying the upper bound. Thus, for the evaluation of two constraint-handling
techniques the upper bound will be varied in 2 ≤ xmax ≤ 4.
In preliminary tests it could be seen that permutations of solutions appeared for PIC.
Because of the parallel processing the permutations have no influence on the results.
Hence, computational cost can be saved by rearranging the users in ascending order. For
SIC this method cannot be applied because the users are processed in a predetermined
order, so the convergence behavior of the SIC is dependent on the order of the users.
In summary, the optimization problem can be formulated as follows: The sum of pow-
ers should be minimized using the powers of the individual users as parameters where
the powers P (d) are arranged in a vector �x = (P (1), ..., P (D)). This problem is solved
here for D = 16 users. A feasible solution must fulfill the condition for convergence of
the interference cancellation methods, and furthermore no negative powers are allowed.
Mathematically, the optimization problem using PIC is the following:

min
�x

f(�x) = min
P (1),..,P (D)

d=D∑
d=1

P (d)

s. t.

{
ψ(η) > η ∀ η ∈ [0, 1)

P (d) ≥ xmin,d > 0 ∀ d.
(4.14)

For SIC the objective function is the same as for PIC but the constraints differ. The

1Due to normalization, the powers are given without unit here. Not the absolute value is important
but only the ratio of power over σ2

n which is fixed here to σ2
n = 1 for simplicity.
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optimization problem can be described as follows:

min
�x

f(�x) = min
P (1),..,P (D)

d=D∑
d=1

P (d)

s. t.

{
η

(mmax)
d = 1 − ε, mmax < ∞ ∀ d

P (d) ≥ xmin,d > 0 ∀ d
(4.15)

where the allowed deviation from η = 1 is set to ε = 0.001. mmax is the maximum
number of iterations that must be below infinity to ensure convergence of the interference
cancellation method in finite time. In this work mmax = 20 is used because in preliminary
examinations it has been shown that more iterations lead to slightly reduced power but
considerably higher computational effort (see also [Wei06]).

4.2.4.2 Solutions for Parallel Interference Cancellation and Successive Inter-
ference Cancellation

Results for the power allocation problem using parallel interference cancellation and suc-
cessive interference cancellation will be shown in the following. In this section the results
from the communications point of view are shown and also some results from the optimiza-
tion point of view will be discussed. A detailed examination of two constraint-handling
techniques will be shown in Section 4.2.4.3.
To obtain the best possible results (and also to examine the influence of control parame-
ters on DE and PSO), parameter studies have been conducted for the PIC optimization
problem within the scope of this thesis that have been published in [Zie06f] for DE and
in [Zie09] for PSO. It was found out that the parameter settings F = 0.7, CR = 0.9 and
NP = 30 worked best for DE whereas w = 0.6, c1 = 0.2, c2 = 1.6, the von-Neumann
neighborhood topology and 40 ≤ NP ≤ 100 gave the best results for PSO (for refreshing
the random numbers according to Equation 3.8 as well as according to Equation 3.10).
The best objective function value that was found during the extensive parameter study
for PSO was f(�x) = 18.39. The resulting power profile is shown in Figure 4.4(a) where the
power is normalized due to comparability reasons. The absolute value can be calculated
by multiplication with P̄ which is the mean power over all users. The corresponding
transfer function is given in Figure 4.5(a). It can be seen that the transfer function of the
optimized distribution is always above the bisecting line, thus the interference cancellation
technique converged for the optimized results. If an equal power distribution with the
same overall power and the same number of users is used, it can be seen in Figure 4.5
that the bisecting line is crossed, meaning that the detection gets stuck.
Because in [Zie06f] a lower number of function evaluations was allowed for DE than in
[Zie09] for PSO (40, 000 instead of 80, 000 function evaluations), not the results from
[Zie06f] are shown here for DE but new simulations have been done. These simulations
were conducted with the mentioned best settings and the same number of function evalu-
ations as for PSO in [Zie09] to ensure easy comparability. The best result out of 100 runs
was f(�x) = 18.43. The corresponding power profile and the transfer function are shown in
Figure 4.4(b) and 4.5(b), respectively. Apart from small deviations, the resulting power
profile is very similar to the results of PSO. The same holds for the transfer function.
Again, the detection would get stuck for an equal power distribution.
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Figure 4.4: Optimized power profile for PIC with D = 16 (β = 4)
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Figure 4.5: Transfer characteristic of PIC for equal and optimized power profile, D = 16

For the PIC optimization problem, the objective function value reached by PSO is slightly
better than the result of DE (f(�x) = 18.39 vs. f(�x) = 18.43) although from the communi-
cations point of view the difference in negligible. A reason might be the different behavior
in constrained search spaces that has already been described in Section 4.2.3: The PSO
particles are able to become infeasible at any time whereas the DE individuals must stay
feasible if they have been feasible once, making the crossing of infeasible regions more
difficult.
Results for SIC using xmin = 0 have already been shown for DE in [Zie06f]. The ap-
plicability of PSO for SIC has been tested later, and it was discovered that using PSO
some solutions contain a user that is not given any power, so a lower limit xmin > 0
had to be introduced (see also Section 4.2.4.1). Because here results for DE and PSO
should be shown that were generated using the same conditions, the optimization runs
using DE have been repeated with xmin = 0.5. The best objective function value was
f(�x) = 19.58 for which the power profile is shown in Figure 4.6(b) and the trajectory is
given in Figure 4.7(b). For PSO a corresponding examination resulted in the best value
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Figure 4.6: Optimized power profile for SIC with D = 16 (β = 4)
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Figure 4.7: Trajectory of SIC for equal and optimized power profile, D = 16

of f(�x) = 20.16 for which the power profile and the trajectory are shown in Figure 4.6(a)
and Figure 4.7(a), respectively. The resulting power profiles differ in some details, e.g.
in the power profile optimized with DE five users have powers which are above average
whereas this holds for six users using the power profile optimized with PSO. This finding
suggests that the SIC optimization problem has a complex landscape that makes opti-
mization difficult. As it could be expected from the different power profiles, the behavior
of the trajectories for the optimized results from DE and PSO is also different. However,
both trajectories reach η ≈ 1 in a limited number of iterations, thus the interference
cancellation is successful in both cases. Similarly to PIC, the detection gets stuck if an
equal power distribution with the same overall power and the same number of users is
used (marked by the circles in Figure 4.7).
For both DE and PSO the best parameter settings from [Zie06f] and [Zie09] have been
used for this examination, the population size has been set to NP = 60 for PSO, and 100
runs with a maximum number of function evaluations FEmax = 106 have been conducted,
respectively. This procedure is implicitly based on the assumption that the structures of
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the PIC and the SIC optimization problem are similar, so that good results can be reached
using the same parameter settings. This assumption is not necessarily valid. Although
the background of the problems is similar and the objective function is calculated in the
same way, the constraints are different and may lead to different landscapes. Thus, results
from parameter studies are not necessarily transferable. Actually, the results for PSO are
worse than for DE whereas for PIC the opposite relation was found. It is assumed that
this result is caused by different problem structures, hence even better results for SIC
may be obtained with different parameter settings. Because conducting an exhaustive
parameter study means high computational cost and the focus of this work was mainly
on showing the applicability of DE and PSO for these optimization problems (and on the
examination of constraint-handling techniques as discussed in Section 4.2.4.3), this is not
examined further here.
For both optimization algorithms it is shown that the power profiles optimized by DE and
PSO have a considerably better performance than an equal power distribution. Due to
the application of interference cancellation methods the load for current UMTS systems
could be increased from β ≈ 1 to β ≈ 3 while still reaching the SUB, corresponding to
an increase from 4 to 12 users for the considered example. If the optimized power profile
is employed, it was shown that convergence of the interference cancellation techniques
can be achieved for a load of β = 4 which would not be possible for an equal power
distribution. Therefore, in this case the number of users was increased from 12 to 16 due
to the optimized power profile.

4.2.4.3 Comparison of the Death Penalty and the Modified Replacement
Method

There are several characteristics that may make a constrained optimization problem dif-
ficult to optimize [Mic96, Mez05], e.g.

• a high dimensionality,

• a high number of inequality constraints,

• a high number of equality constraints,

• a high number of active constraints at the optimum,

• the type of objective function (linear, quadratic, cubic, polynomial, nonlinear),

• a disconnected feasible region and

• the size of the feasible space with respect to the whole search space.

In [Mez04] it is stated that the death penalty is only recommended for problems with a
convex search space and furthermore feasible regions with considerable size with respect
to the whole search space. Moreover, in [Mic96] it is noted that the performance of the
death penalty is not as robust as other constraint-handling techniques, i.e. the standard
deviation of solutions is high. This result has been achieved using different implementa-
tions of EAs in [Mic96] but neither DE nor PSO has been among them. Consequently,
it is not clear if this result is transferable to these algorithms. DE is similar to ESs
[Mad02, Xue05] and the death penalty is a constraint-handling technique that is easy to
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implement and that is very popular in the ES community [Coe02a]. Therefore, the latter
two aspects (applicability for problems with different ratio of the feasible region to the
whole search space as well as the standard deviation of solutions) will be examined and
compared with the modified replacement method here. Results will also be compared
with PSO.
The PIC optimization problem can be used as basis for this examination because in [Zie09]
it is shown that the ratio of feasible space to the whole search space varies considerably
for different settings of the upper bound of the search space xmax. For this purpose the
ratio was estimated by using the metric ρ which is defined in [Mic96] and [Koz99] as

ρ =
|F|
|S| (4.16)

where |F| is the size of the feasible space and |S| is the size of the search space. To
estimate |F| and |S|, 1,000,000 points are randomly generated in the search space, and
it is determined whether they are feasible or not. In Table 4.1 the results for the PIC
optimization problem are shown. It can be seen that the ratio of feasible space to search
space is below 0.1% for xmax = 2 and increases to above 90% for xmax = 4. Hence, the
constraint-handling techniques can be tested for various ratios of feasible space to the
whole search space if xmax is varied. Naturally, the size of the search space also changes
when xmax is varied but the effect is assumed to be secondary. This is also confirmed by
the results which will be presented in this section: The largest deterioration can be seen
for small xmax whereas the effect of the increasing search space is visible sometimes but
less pronounced. In the following results are examined for xmax ∈ {2, 2.5, 3, 3.5, 4} while
also varying the population size from 20 to 100 in steps of 10. The same control parameter
settings are used as given in Section 4.2.4.2.

Table 4.1: Ratio of feasible space to search space ρ

xmax ρ

2 0.000175
2.5 0.18155
3 0.588716

3.5 0.816328
4 0.91698

For the comparison of the constraint-handling methods the following approach is followed:
In preliminary tests the objective function value after a certain number of generations
was recorded. Based on these results, convergence for the PIC optimization problem was
defined as reaching an objective function value of f(�x) ≤ 18.5 in [Zie06f] and [Zie09].
Additionally, in preliminary tests a suitable setting for the maximum number of function
evaluations FEmax has been established. In this case the term “number of function eval-
uations” refers to evaluations of the constraint function because it is calculated once for
every individual in each generation while the objective function is only evaluated for fea-
sible individuals. In the following FEmax = 80, 000 is used, and it is documented in how
many runs the global optimum is found and how many function evaluations are necessary
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to reach the optimum for the first time. Therefore, statements about the convergence
probability and convergence speed can be derived.
The average number of function evaluations for convergence FEconv,av may be misleading
as performance measure for the convergence speed because it does not consider the number
of runs in which the algorithms do not successfully converge to the optimum. Instead,
the average number of function evaluations for convergence FEconv,av is weighted with the
total number of runs t divided by the number of successful (converged) runs s:

success cost =
FEconv,av · t

s
(4.17)

where the total number of runs is t = 100 for every parameter combination here, and a
run is successful if one individual reaches an objective function value of f(�x) ≤ 18.5. A
smaller value of the success cost indicates better performance. The success cost is also
named success performance, e.g. in [Lia06a, Pri06]. Because the term “performance”
might indicate that a higher value is better, the performance measure was renamed to
“success cost” here. In the following all figures showing the success cost will be scaled to
20, 000 for comparability reasons.
Furthermore, it is examined if the statement from [Mic96] that the standard deviation of
solutions is high for the death penalty also holds for DE and PSO. For this purpose, the
average objective function value as well as the standard deviation of objective function
values after FEmax = 80, 000 function evaluations will also be shown in the following.
In Figure 4.8(a) the convergence rate of the death penalty (light gray) and the modified
replacement method (dark gray) is given in dependence on the population size NP and the
upper bound xmax for DE. It can be seen that the performance of the death penalty and
the modified replacement method is mostly similar. Only for the smallest ratio of feasible
space to the whole search space (xmax = 2) the performance of the death penalty deterio-
rates significantly. In contrast, the performance of the modified replacement method stays
constant, except for a slightly worse convergence rate for a small number of individuals.
For small population sizes the optimum is still found in some optimization runs using the
death penalty but for larger population sizes not enough feasible positions are found to
initialize the population.
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Figure 4.8: Results for DE (light gray: death penalty; dark gray: modified replacement)
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Except for xmax = 2, the success cost is similar for the death penalty and the modified
replacement procedure (see Figure 4.8(b)). The success cost increases with growing pop-
ulation size NP which is a common result for EAs (usually, convergence becomes faster
with decreasing population size but also premature convergence happens more often due
to decreased diversity). The success cost also increases slightly with growing xmax which
might be caused by the increasing search space.
In [Zie09] the same examination has been done for Particle Swarm Optimization. The
results were very different concerning the constraint-handling techniques: If the random
numbers were refreshed only once for each particle, not a single optimization run converged
to the optimum using the death penalty. If the random numbers were recalculated once
for every component of the velocity, not more than 2 converged runs could be found
for any parameter combination (see Table 4.2). In contrast, the modified replacement
method yielded the results given in Figure 4.9(a). No large variations in performance
can be noticed with varying xmax. Only for xmax = 2 (smallest ratio of feasible space to
search space) the performance is slightly worse. For large population sizes the convergence
rate reaches approximately 100% but the performance decreases for NP = 50 until for
NP = 20 the convergence rate is about 30 − 50%.

Table 4.2: Convergence rate (in %) for PSO using the death penalty with random numbers
refreshed for every component of the velocity

xmax

NP 2 2.5 3 3.5 4
20 0 1 1 1 0
30 0 0 0 0 0
40 0 1 0 0 0
50 0 0 0 0 0
60 0 0 1 0 0
70 0 1 0 0 0
80 0 2 0 0 0
90 0 1 1 0 1
100 0 2 0 0 1

The success cost is only given for the modified replacement method in Figure 4.9(b)
because the death penalty always resulted in a success cost above 20, 000 due to its small
convergence rate. Again, the performance is very similar for both ways of refreshing the
random numbers, and furthermore it is independent from xmax. For NP ≥ 50 the success
cost is approximately constant while for smaller NP the success cost rises due to the
decreasing convergence rate.
In the following the robustness of the methods is examined by evaluating the results
after a fixed number of function evaluations FEmax = 80, 000. Apart from the standard
deviation of objective function values, also the average objective function value after
FEmax is given. Figure 4.10 shows that there are no large differences concerning the
average and standard deviation of returned solutions between the death penalty and the
modified replacement method for DE (of course with the difference that the death penalty
does not work satisfactorily for xmax = 2 as described previously).
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Figure 4.9: Results for PSO (light gray: random numbers refreshed for every component
of the velocity; dark gray: random numbers recalculated only once for every particle)

The situation for PSO is very different as can be seen in Figure 4.11 where the following is
shown (from dark gray to light gray): 1. random numbers refreshed for every component
of the velocity with modified replacement method; 2. random numbers recalculated only
once for every particle with modified replacement method; 3. random numbers refreshed
for every component of the velocity with death penalty; 4. random numbers recalculated
only once for every particle with death penalty. The average objective function value
for the death penalty is considerably higher than for the modified replacement method
for both ways of refreshing the random numbers. The standard deviation of objective
function values is also increased for the death penalty, again for both ways of refreshing
the random numbers. It should be noted that the figures for DE and PSO are scaled
differently.
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Figure 4.10: Solutions at the end of optimization runs for DE (light gray: death penalty;
dark gray: modified replacement)
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Figure 4.11: Solutions at the end of optimization runs for PSO (the different colors are
explained in the text)

A detailed examination of the data shows that the initialization of the whole population
for the death penalty only fails for xmax = 2, especially for large NP (of course for both
DE and PSO). Apart from that, the average as well as the standard deviation of objective
function values are constant for different values of xmax for DE. The results only become
worse for small population sizes (NP ≤ 20), especially for increasing xmax. For PSO this
behavior is much more pronounced: The performance with the death penalty generally
deteriorates for increasing xmax and also for decreasing NP . The reasons are that a
smaller population size makes it harder to sample the search space. The increased size
of the search space also has the effect that scanning of the search space becomes more
difficult. This also explains the random distribution of optimization runs which converged
to the optimum for PSO using the death penalty in Table 4.2: PSO has trouble sampling
the search space but purely by chance an individual might reach the vicinity of the global
optimum, so the optimum is found. Apparently the increased diversity of the approach
with random numbers refreshed for every component of the velocity helps reaching the
optimum in that case because at least some optimization runs converged. On contrast,
the approach with recalculating the random numbers only once for each particle did not
converge in a single run.
The standard deviation of both DE and PSO with the modified replacement method
increases clearly visible when the population size becomes small. This indicates that it
becomes harder to sample the search space, so the performance of the algorithms becomes
more dependent on initial positions. However, the results are independent from xmax.

Summary The results for the PIC optimization problem using DE and PSO confirm
the statement from [Mez04] that the death penalty does not work well if the ratio ρ of
feasible space to the whole search space becomes very small. However, for moderate and
larger values of ρ the death penalty yields good results when applied to DE. For PSO the
performance using the death penalty is always bad. These results show that constraint-
handling methods may result in different behavior when applied to different optimization
algorithms. The behavior when using the modified replacement method is also different
for DE and PSO: The convergence rate is approximately constant for population sizes
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of NP ∈ {20, 30, . . . 100} for DE whereas for PSO a considerable dependence on the
population size can be seen.
The statement from [Mic96] that the performance of the death penalty is not robust
could not be confirmed for DE. The standard deviation of solutions only increased for
small population sizes, and this also happened using the modified replacement method.
In contrast, for PSO the death penalty yielded considerably worse results concerning the
average as well as the standard deviation of objective function values.
Especially for PSO the modified replacement method clearly yielded superior results when
compared to the death penalty. As a consequence, the modified replacement method
should be preferred. The implementation of the modified replacement method takes more
effort than the death penalty because the constraint violation has to be calculated for
infeasible individuals but it is still rather easy to implement. Furthermore, it contains no
additional parameters and the information about the amount of constraint violation can
be successfully used to guide individuals towards feasible regions.

4.3 Equality Constraints

Despite its simplicity, the modified replacement method based on the feasibility rules from
[Deb00] described in the previous section is successful for a large range of optimization
problems using DE or PSO, especially if only inequality constraints are present [Zie06a,
Zie06b]. Optimization problems containing equality constraints are harder to optimize
because the feasible space becomes very small, particularly when the remaining constraint
violation must be very small [Xie04a]. Often the population concentrates too quickly on
one part of the search space that leads to decreased constraint violation and cannot
generate enough diversity to search for a better objective function value once the feasible
region has been reached [Zie07e, Sto99b]. In the literature several methods are described
to handle equality constraints by varying the allowed constraint violation during the
optimization run [Tak06, Ham02]. Thus, an optimization run is started with a relatively
large εe that is gradually refined until the desired constraint violation is reached. That
way, there will be feasible individuals from the beginning of the optimization run, so the
objective function value can be considered earlier. Of course this approach is only possible
if the objective function can be evaluated for infeasible individuals. This may not always
be the case, especially in real-world problems.
Different approaches exist in the literature that differ in the way εe is adjusted. Some
of them will be summarized in the following. However, in the literature usually no com-
parisons are done which show how much improvement can be obtained by using these
methods. Therefore, it will be shown here for an optimization problem from yield analy-
sis that varying εe during the optimization run can help to improve results significantly.

4.3.1 Related Literature

In [Tak06] the individuals are sorted according to their constraint violation after initializa-
tion of the population, and εe(0) is set to the largest constraint violation εe,0 that occurs
in the best 20% of the individuals. In Gc generations the allowed constraint violation is
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decreased to the desired value εe,final:

εe(G) =

⎧⎨
⎩εe,final + (εe,0 − εe,final) ·

(
1 − G

Gc

)cp

0 < G < Gc

εe,final G ≥ Gc.
(4.18)

Parameter Gc determines the time for reaching the final value of εe. Parameter cp influ-
ences the development between G = 0 and G = Gc (see Figure 4.12 where the allowed
constraint violation is decreased from εe,0 = 10−2 to εe,final = 10−3 in Gc = 1000 genera-
tions): εe decreases linearly for cp = 1 whereas for larger cp the allowed constraint violation
εe changes more rapidly in early generations while in later generations εe decreases less
pronounced. In [Tak06] εe,final is given as 0 but because of numerical problems it might be
better to allow a small deviation εe,final > 0. The other parameters are set to cp = 5 and
Gc = 0.2 · Gmax = 2500 in [Tak06] (where Gmax = 12500 is the maximum number of gen-
erations, corresponding to a maximum number of FEmax = 500, 000 function evaluations
with NP = 40), and a DE algorithm is employed with F = 0.7 and CR = 0.9.
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Figure 4.12: Development of εe(G) for different cp

In [Ham02] a method called ASCHEA (Adaptive Segregational Constraint Handling Evo-
lutionary Algorithm) is described. ASCHEA contains several interesting features but as
the focus is on equality constraints here, only the handling of equality constraints is re-
garded in the following. Two methods are proposed and compared in [Ham02]: Dynamic
adjustment and adaptive adjustment of εe. In contrast to [Tak06], different values of
εe are used for each equality constraint. In the dynamic adjustment, the εe value is re-
duced by dividing it by a user-defined parameter fεe every time the feasible percentage
of the population is larger than another user-defined parameter τr. Therefore, two new
parameters are introduced. In contrast to [Tak06], the desired accuracy is not pre-defined
but the εe value changes according to the state of the population regarding feasibility.
Because the degree of feasibility after modifying εe is not considered, there might be no
single feasible individual after modification of εe. In contrast, in the adaptive adjustment
it is ensured that a certain percentage of the population τe still fulfills constraint k after
adjusting εe,k. Again, εe is adjusted if the percentage of feasible individuals τr excesses a
certain value that is user-defined. Besides, Equation 2.7 is modified, so that there are two
individual parameters for the violation of the equality constraint in positive and negative
direction where ε−e,k(G) ≤ hk(G) ≤ ε+

e,k(G). In [Ham02] parameters are set as follows: For
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the dynamic adjustment fεe = 1.01 and τr = 0.6; for the adaptive adjustment τr = 0.7
and τe = 0.3. It could not be determined which approach is superior. A problem arises
in the presence of several equality constraints (and also if inequality constraints exist ad-
ditionally). In that case the desired goal of having feasible individuals in the population
might not be reached because solutions fulfilling a constraint might not fulfill another
constraint.
In [Mez04] a dynamic adjustment similar to the one used in ASCHEA is employed in an
ES. In one set of experiments εe is divided by 1.000001 (which is an empirically determined
parameter setting) for each new generation and the initial value is εe(0) = 0.001 whereas
in another set of experiments εe(G + 1) = εe(G)/1.00195 and the initial value is again
εe(0) = 0.001. For one optimization problem εe(0) = 3.0 was used due to problems with
generating feasible solutions during early stages of the optimization runs. The factor
for decreasing εe was also changed to 1.0145, so that in the end a constraint violation of
0.00003 was reached. This already shows that it is important to employ suitable parameter
settings if this approach is used. As in [Ham02], the constraint-handling mechanism
presented in [Mez04] comprises much more than just the handling of equality constraints
but other details should not be discussed further here.

4.3.2 Application: Worst Case Methods for Yield Analysis

In the following the motivation for applying worst-case methods for yield analysis in
microsystems is given. The principle work flow of worst-case analysis is shortly described,
with emphasis on the optimization problem that arises during the application of worst-case
methods. This optimization problem is solved for an exemplary test case that considers an
electrothermal actuator. Furthermore, the difference in performance between the modified
replacement method based on the feasibility rules from [Deb00] and the (slightly adapted)
method from [Tak06] that was specifically designed for handling equality constraints is
shown.

4.3.2.1 Background

The parameter values of fabricated microsystems are often not equal to the ideal values
which are defined in the design (also called nominal design parameters �xnom). The reasons
are process variations like inaccurate etching rate, lithographic aberrations and imaging
imperfections [Vud07]. Because of the trend of decreasing feature sizes, this effect tends to
become even more pronounced in the future due to the process complexities involved in the
production. As a result, it is not necessarily sufficient to search for parameters that lead
to optimal performance in the design phase. Additionally, robust performance is needed,
so that the effect of variations of the design parameters occurring in production will be as
small as possible. This can be achieved by applying yield analysis in the design phase by
considering process statistics. The idea is to maximize the distance of the nominal design
to the specification boundary to obtain the largest possible robustness.
The traditional approach for yield analysis is the use of Monte-Carlo methods. Many
simulations of the considered design are carried out using not the nominal design pa-
rameters but choosing random values. These random values are based on an assumed
probability distribution depending on the parameter variations which would occur due
to process variations. The performance of the simulated systems is compared with the
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specification value Pspec. The yield can be estimated by calculating the ratio of systems
which would meet the desired performance to all simulated systems. In order to obtain a
reliable estimation, a large number of designs have to be simulated.
Worst-case methods have considerable advantages over Monte Carlo methods because of
the reduced number of required simulations and the availability of a yield metric [Vud07].
The accuracy of worst-case methods is slightly inferior when compared to Monte Carlo
methods but the decreased simulation effort balances this disadvantage. This holds espe-
cially for designs with a large number of variables. For these designs the computational
cost increases drastically for Monte Carlo methods whereas the increase in simulation
effort is considerably less for worst-case methods.
For the application of worst-case analysis a model of the system performance in depen-
dence on its parameters is needed. For yield analysis in microelectronics usually linear
approximations are sufficient for building the model. The generally more complex nature
of microsystems has to be reflected by also including higher-order terms. Methods from
Design of Experiments offer a computationally economic way for building these models.
Thereby, not only the main effects (linear approximations) may be considered but also
e.g. interaction effects and quadratic terms [Vud07]. The specification boundary is de-
fined by setting the function fperf that is obtained via the Design of Experiments equal to
the specification value. The worst-case parameter set has to be found which is the point
on the specification boundary that is closest to the nominal point. The distance between
the worst-case parameter set and the nominal point is the worst-case distance β that is
used as a measure for representing yield. Assuming Gaussian parameter distributions,
the yield is given in [Vud07] as:

yield =
1

2

(
1 + erf

(
β√
2

))
· 100. (4.19)

Finding the worst-case parameter set is an optimization problem. It can be formulated
as minimizing the Euclidean norm between the nominal point �xnom and any point �x in
the design space, with the non-linear equality constraint that the performance value of �x
has to equal the specification value, i.e. the parameter set has to lie on the specification
boundary. Furthermore, boundary constraints �xmin and �xmax are defined in dependence
on the assumed maximum parametric variations. Therefore, the optimization problem
can be stated as follows:

min
�x

f(�x) = min
x1,..,xD

√√√√ D∑
d=1

(xd − xnom,d)2

s. t.

{
fperf(�x) − Pspec = 0

xmin,d ≤ xd ≤ xmax,d d ∈ {1, . . . , D}. (4.20)

This optimization problem becomes complicated because the equality constraint must
be satisfied very precisely for successful application of the worst-case methods. In other
words, the remaining constraint violation must be considerably lower than the accuracies
of 10−3 or 10−4 which are commonly demanded in the literature [Ham02, Mez04],
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4.3.2.2 Test Case

In the following an exemplary case from yield analysis is shown. A U-shaped electrother-
mal actuator is considered according to the schematic in Figure 4.13(a). In [Vud07] it
has already been shown that optimization algorithms like GAs and pattern search strate-
gies can be successfully employed for solving this problem. This test case is used here to
demonstrate the performance of different constraint-handling methods using DE and PSO
for the case that an equality constraint has to be fulfilled very accurately. The results of
this study have also been published in [Zie07e].
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Figure 4.13: Exemplary optimization problem from yield analysis

The actuator works as follows: Because the cross-sections of the arms are not equal, the
upper arm (hot arm) will become warmer than the lower arm (cold arm) due to the higher
current density in the hot arm. The hot arm will experience more thermal expansion than
the cold arm, leading to a downward motion of the actuator.
To enable an easy analysis, only two parameters are considered: The length of the hot
arm lh and the length of the cold arm lc. The boundaries of the design space for the
optimization problem are determined by the statistical parametric room defined by the
process. In this case, the maximum parametric variations are assumed to be 10% of their
nominal values lh,nom = 300µm and lc,nom = 240µm. The considered performance of the
system is the displacement of the actuator while applying a specific current at the anchor
pads of the actuator. The performance specification has been considered to be a moderate
displacement of 0.81µm at a particular load current of 1.5mA. Figure 4.13(b) shows a
graphical representation of the optimization problem.
An easy approach for solving the described optimization problem is to apply the mod-
ified replacement method which has been explained in Section 4.2. However, it can be
shown that the accuracies which can be reached with this method using either DE or
PSO do not satisfy the demands introduced by the worst-case methods. If constraint
violations of εe,final ≥ 10−6 are allowed, the optimum is reliably found by both DE and
PSO. For smaller constraint violations the performance deteriorates significantly until for
εe,final ≤ 10−11 the optimum is hardly ever found (see Figure 4.14). Three different pop-
ulation sizes (NP = {20, 50, 100}) have been examined to assure that the reason for the
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Figure 4.14: Convergence rate with fixed εe,final

bad performance is not insufficient diversity. Because the optimization problem contains
only two parameters, it would normally be assumed that a population size of NP = 20
is sufficient. Larger population sizes would be avoided because although the convergence
rate tends to increase with the population size, the computational cost also increases.
Interestingly, the convergence rate is very similar for all population sizes which were ex-
amined. For the other control parameters standard settings have been used: F = 0.7
and CR = 0.9 for DE (which are the same settings that are used in [Tak06] and which
also belong to common DE standard settings [Zie06f]), and w = 0.73, c1 = c2 = 1.5 for
PSO (corresponding to the well-known constriction variant that is commonly regarded
as a standard for PSO [Bra07]), together with the von-Neumann neighborhood topology.
Of course a possibility exists that the results might vary for different settings but an
exhaustive analysis of control parameter settings would take considerable computational
time. Because this possibility is assumed to be rather small, this examination is limited
to standard settings.
If εe is varied during the optimization run according to the schedule from [Tak06] given
in Equation 4.18 (with the difference that a small value εe,final > 0 is allowed here in
contrast to [Tak06]), both DE and PSO perform significantly better (see Figure 4.15).
Results are only shown for NP = 50 but similar results have been obtained for NP = 20
and NP = 100. Surprisingly, DE and PSO again show very similar performance, as
also done for fixed εe during an optimization run. For settings of cp = {5, 7} and
Tc = {0.1Tmax, 0.2Tmax} (where Tmax = 12500 is the maximum number of generations,
corresponding to FEmax = 500, 000 with NP = 50), a convergence rate of 100% is reached
for εe,final ∈ {10−1, 10−2, . . . , 10−15}. Thus, the demands of worst-case methods are ful-
filled. These parameter settings are in accordance with the settings from [Tak06] which
are given as cp = 5 and Tc = 0.2Tmax. For εe,final ≥ 10−10 the performance is robust for all
settings of cp and Tc which were tested. For smaller εe,final the convergence rate decreases
for small values of cp and Tc (the convergence speed also deteriorates, see [Zie07e]). This
result is not completely in accordance with [Tak06] because in [Tak06] it is stated that
larger Tc but smaller cp lead to a more robust (and also slower) search process.
To sum up, it was shown that a considerably better performance may be obtained using a
specialized method for handling equality constraints instead of the modified replacement
method described in Section 4.2. It might be argued that the method with varying εe has a
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(a) PSO with Tc = 0.02Tmax
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(b) DE with Tc = 0.02Tmax
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(c) PSO with Tc = 0.1Tmax
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(d) DE with Tc = 0.1Tmax
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(e) PSO with Tc = 0.2Tmax
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(f) DE with Tc = 0.2Tmax

Figure 4.15: Convergence rate with varying allowed constraint violation εe and NP = 50
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disadvantage because two new parameters are introduced. However, the same parameters
that were used in [Tak06] also showed good and robust performance in [Zie07e], indicating
that not much effort must be spent to find suitable parameter settings.
Here a relatively simple case has been regarded as the optimization problem contains
only one equality constraint. Additional complexity might arise by considering several
equality constraints which may also have different magnitudes. In that case it would be
beneficial to allow different settings of εe for the constraints during the optimization run,
as described for ASCHEA in [Ham02]. When using an adaptive adjustment of εe as in
[Ham02], the presence of inequality constraints would also mean additional difficulty of the
problem. The reason is that the feasibility of population members cannot be guaranteed
anymore by setting the allowed constraint violation accordingly. The development of
methods capable of handling these types of problems is left for future work.

4.4 Comparison of Differential Evolution and Particle
Swarm Optimization with Blind Random Search
and Brute Force Search

Because evolutionary algorithms are complex methods including random elements, theo-
retical examinations of their behavior are generally more difficult than for deterministic
optimization algorithms. Convergence proofs are usually either not available at all or
they are derived based on simplified models (see e.g. [Cle02, Tre03, Kad06, Sam07, Jia07]
for theoretical examinations of PSO; for DE less theoretical studies are available, see e.g.
[Lam04, Pri05]). Nevertheless, evolutionary algorithms are often applied because of their
flexibility and global search capabilities. In this section it is shown that they are indeed
superior to simple random methods like blind random search and brute force search. In
the following a short definition for blind random search and brute force search is given, and
a comparison of these methods with DE and PSO is shown based on a set of constrained
single-objective test problems.
Blind random search (BRS) means that a given number of solutions from the search space
is selected randomly (using a uniform distribution) and independently from each other,
and the solution with the best objective function value represents the result [Gen04].
In [Ama97] a blind random search is compared to a GA. It is shown that for complex
problems an appropriate representation and suitable evolutionary operators have to be
selected, and only in that case the GA is better than random search.
Another easy search method is to examine all points of a grid that divides each axis of the
search space into evenly spaced sections. This method is called brute force search (BFS)
or enumeration in [Pri05] or “Rastermethode” in [Jak04]. A problem of brute force search
is that the computational effort strongly increases with the dimension. If an equal number
of N points should be examined on each axis, then the number of function evaluations
is FE = ND. In the following examination a maximum number of function evaluations
of FEmax = 500, 000 will be used. Therefore, the number of points per axis will be
N = �exp

1
D
·lnFEmax� = �exp

1
D
·ln 500,000� = �exp

1
D
·13.12�. In Table 4.3 the number of points

per axis in dependence on the dimension is shown. While for D = 2 a comparably good
coverage can be obtained with N = 707, for D = 3 this number has already decreased to
N = 79. For D > 5 less than 10 points will be used per axis, and for D = 20 there is only

72



4.4. COMPARISON OF DIFFERENTIAL EVOLUTION AND PARTICLE SWARM
OPTIMIZATION WITH BLIND RANDOM SEARCH AND BRUTE FORCE SEARCH

Table 4.3: Number of points per axis with FEmax = 500, 000

D 2 3 4 5 6 7 8 9 10 13 15 20
N 707 79 26 13 8 6 5 4 3 2 2 1

one point per axis.
In this work blind random search as well as brute force search will be compared to DE
and PSO. A problem in the optimization literature is that comparisons are often difficult
to make because

• authors use different test functions for the evaluation of algorithms,

• if the same functions are used, different accuracies are demanded (for equality con-
straints as well as for the distance to the known best solution),

• different numbers of function evaluations are allowed,

• the bounds are set differently.

Therefore, in this work a standardized test set is used that was defined for the Special
Session on Constrained Real Parameter Optimization at the Congress on Evolutionary
Computation 2006 (CEC06) in [Lia06a]. The test set comprises 24 constrained single-
objective test functions, and performance measures are also specified. Similar special
sessions have been organized for unconstrained single-objective optimization at CEC05,
multi-objective optimization at CEC07, and large scale, i.e. high-dimensional optimiza-
tion at CEC08.
Table 4.4 shows a summary of the features of the test functions. ρ = |F|

|S| specifies the
estimated ratio of feasible space to the whole search space (as already mentioned in
Section 4.2.4.3). The following four columns of Table 4.4 give information about the
number and type of constraints: LI is the number of linear inequality constraints, NI
is the number of nonlinear inequality constraints, LE is the number of linear equality
constraints and NE is the number of nonlinear equality constraints. Moreover, the number
of active constraints at the optimum (see also Section 2.1) is given by a. The last column
shows the best solutions that were known after the first submission to the mentioned
conference to ensure comparability with [Zie06a, Zie06b] (in these papers DE and PSO are
tested adhering to the mentioned instructions). Some of the results were improved later,
therefore some solutions shown in the following are actually better than the ones given
in Table 4.4. As for most of the functions it is not clear if the given solution corresponds
to the global optimum, better solutions might still be found. It should be noted that
for g20 no feasible solution has been found so far [Lia06a]. For g22 some participants of
CEC06 did obtain feasible solutions [Tak06, Lia06b, Hua06] but the given optimum has
not been found. The rest of the participants did not even find feasible solutions for g22
once [Tas06, Mez06b, Kuk06c, Muñ06, Sin06, Bre06c, Run06, Zie06a, Zie06b].
This test set allows extensive testing because a large variety of problem features is rep-
resented. Therefore, it is used here for the comparison. Results for blind random search
and brute force search will be shown using the given conditions and they will be compared
with solutions using DE and PSO from [Zie06a, Zie06b]. As demanded in [Lia06a], 25
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Table 4.4: Details of the test functions from [Lia06a]

Problem D Type of function ρ LI NI LE NE a f(�x∗)

g01 13 quadratic 0.0111% 9 0 0 0 6 -15
g02 20 nonlinear 99.9971% 0 2 0 0 1 -0.80361910412559
g03 10 polynomial 0.0000% 0 0 0 1 1 -1.00050010001000
g04 5 quadratic 52.1230% 0 6 0 0 2 -30665.53867178332
g05 4 cubic 0.0000% 2 0 0 3 3 5126.4967140071
g06 2 cubic 0.0066% 0 2 0 0 2 -6961.81387558015
g07 10 quadratic 0.0003% 3 5 0 0 6 24.30620906818
g08 2 nonlinear 0.8560% 0 2 0 0 0 -0.0958250414180359
g09 7 polynomial 0.5121% 0 4 0 0 2 680.630057374402
g10 8 linear 0.0010% 3 3 0 0 6 7049.24802052867
g11 2 quadratic 0.0000% 0 0 0 1 1 0.7499
g12 3 quadratic 4.7713% 0 1 0 0 0 -1
g13 5 nonlinear 0.0000% 0 0 0 3 3 0.053941514041898
g14 10 nonlinear 0.0000% 0 0 3 0 3 -47.7648884594915
g15 3 quadratic 0.0000% 0 0 1 1 2 961.715022289961
g16 5 nonlinear 0.0204% 4 34 0 0 4 -1.90515525853479
g17 6 nonlinear 0.0000% 0 0 0 4 4 8853.53967480648
g18 9 quadratic 0.0000% 0 13 0 0 6 -0.866025403784439
g19 15 nonlinear 33.4761% 0 5 0 0 0 32.6555929502463
g20 24 linear 0.0000% 0 6 2 12 16 ?
g21 7 linear 0.0000% 0 1 0 5 6 193.724510070035
g22 22 linear 0.0000% 0 1 8 11 19 236.430975504001
g23 9 linear 0.0000% 0 2 3 1 6 -400.055099999999584
g24 2 linear 79.6556% 0 2 0 0 2 -5.50801327159536

optimization runs are executed for each test function, every optimization run includes
500, 000 evaluations of the objective function, a run is considered to be successful if the
given global optimum is found with an accuracy of εg = 0.0001, and equality constraints
are transformed into inequality constraints with the accuracy εe = 0.0001. Not all perfor-
mance measures are shown here that are suggested in [Lia06a] because their presentation
needs a considerable amount of space. Only the most informative performance measures
are summarized here to allow a clear overview:

• The feasible rate shows the proportion out of 25 runs in which at least one feasible
individual was found.

• The success rate represents the proportion of runs in which the global optimum was
reached (with an accuracy of εg = 0.0001).

• The success cost is the mean number of function evaluations that is needed for
convergence divided by the success rate, as already introduced in Section 4.2.4.3.

• To allow an evaluation of the best possible performance of the respective algorithm,
the distance of the best objective function value that was found in 25 runs after
500, 000 function evaluations to the best known solution is shown.

74



4.4. COMPARISON OF DIFFERENTIAL EVOLUTION AND PARTICLE SWARM
OPTIMIZATION WITH BLIND RANDOM SEARCH AND BRUTE FORCE SEARCH

Table 4.5: Feasible rate and success rate for blind random search, brute force search,
Differential Evolution and Particle Swarm Optimization

Problem Feasible Rate in % Success Rate in %
BRS BFS DE PSO BRS BFS DE PSO

g01 64 100 100 100 0 0 100 52
g02 100 0 100 100 0 0 84 0
g03 0 100 100 100 0 0 0 0
g04 100 100 100 100 0 0 100 100
g05 0 0 100 100 0 0 100 16
g06 100 100 100 100 0 0 100 100
g07 28 0 100 100 0 0 100 8
g08 100 100 100 100 44 0 100 100
g09 100 100 100 100 0 0 100 100
g10 96 0 100 100 0 0 100 32
g11 0 0 100 100 0 0 100 100
g12 100 100 100 100 84 100 100 100
g13 0 0 100 100 0 0 32 0
g14 0 0 100 100 0 0 100 0
g15 0 0 100 100 0 0 100 80
g16 100 100 100 100 0 0 100 100
g17 0 0 100 100 0 0 20 0
g18 0 0 100 100 0 0 100 80
g19 100 100 100 100 0 0 100 8
g20 0 0 0 0 0 0 0 0
g21 0 0 100 8 0 0 60 0
g22 0 0 0 0 0 0 0 0
g23 0 100 100 100 0 0 0 0
g24 100 100 100 100 0 0 100 100

In Table 4.5 the feasible rate and the success rate are given, and in Table 4.6 the success
cost and the distance to the best solution are shown. For brute force search the success
cost does not have any meaning because it depends on the way the grid is processed.
Therefore, it is not given here. Besides, all optimization runs have the same performance
for BFS because a deterministic search method is used. Thus, the feasible rate and the
success rate are either 0% or 100%.
It is apparent that the results of blind random search and brute force search are worse than
the results of DE and PSO. There are many functions for which not even feasible solutions
were found with BRS or BFS. The global optimum was only found for two functions
(g08, g12) using BRS whereas BFS was successful for only one function (g12). When
observing the results for these functions more closely, it can be seen that the condition
(f(�x) − f(�x∗)) ≤ 0.0001 is fulfilled for a comparably large range of parameter values,
making it easier for BRS and BFS to find the solution. Besides, both functions have a
low dimension of D = 2. This also confirms the statement from [Jak04, Gen04, Pri05]
that random search quickly becomes worse with increasing dimension.
It is concluded that blind random search and brute force search are not able to compete
with sophisticated algorithms like Differential Evolution or Particle Swarm Optimiza-
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Table 4.6: Success cost and distance to f(�x∗) for blind random search, brute force search,
Differential Evolution and Particle Swarm Optimization

Problem Success Cost Distance of best solution to f(�x∗)
BRS BFS DE PSO BRS BFS DE PSO

g01 - n.a. 33414 146530 7.61 9.00 0 0
g02 - n.a. 134879 - 4.79E-01 - 6.54E-09 1.03E-01
g03 - n.a. - - - 1.00E+01 2.20E-01 5.91E-01
g04 - n.a. 15986 20546 1.23E+02 1.86E+02 7.64E-11 7.64E-11
g05 - n.a. 107076 2276363 - - -1.82E-12 -9.09E-13
g06 - n.a. 7143 20043 2.80E+02 3.22E+02 4.55E-11 4.55E-11
g07 - n.a. 93793 4091031 4.06E+02 - 7.98E-11 2.76E-05
g08 516842 n.a. 1086 2360 1.06E-05 1.35E-04 8.20E-11 8.20E-11
g09 - n.a. 25805 58129 6.58E+01 8.46E+02 -9.81E-11 -9.81E-11
g10 - n.a. 119217 1332999 3.82E+03 - 6.28E-11 9.86E-09
g11 - n.a. 13380 16386 - - 0 0
g12 207221 n.a. 5104 4893 6.34E-06 0 0 0
g13 - n.a. 830322 - - - 4.19E-11 4.52E-02
g14 - n.a. 68226 - - - 8.51E-12 2.09E-01
g15 - n.a. 57968 221033 - - 6.08E-11 6.08E-11
g16 - n.a. 11592 33335 6.99E-02 1.01 6.52E-11 6.52E-11
g17 - n.a. 1328459 - - - 8.19E-11 3.38E+01
g18 - n.a. 79557 239026 - - 1.56E-11 1.56E-11
g19 - n.a. 177229 4566044 3.07E+02 5.98E+01 4.63E-11 4.74E-11
g20 - n.a. - - - - - -
g21 - n.a. 162691 - - - -3.32E-10 2.98E+02
g22 - n.a. - - - - - -
g23 - n.a. - - - 4.00E+02 3.00E+02 3.00E+02
g24 - n.a. 3024 7262 8.26E-04 1.23E-02 4.67E-12 4.67E-12

tion for the problems examined here. Because the test set is large and the optimization
problems exhibit many different features (see Table 4.4), it can be expected that this
conclusion will be valid for a large range of optimization problems. The advantage of
DE and PSO lies in the assumption that in the vicinity of good solutions even better
solutions might exist, together with a randomness that helps to escape from local optima.
This assumption is usually valid for real-world problems (and most test problems). In
contrast, evolutionary algorithms do not have an advantage over pure random methods
for functions without any coherence. This confirms the no free lunch theorem (see also
Sections 2.2 and 2.3).
Comparing DE and PSO, DE always has an equal or better performance than PSO,
with the exception that the success cost of PSO is slightly better for g12. Naturally, the
performance is heavily dependent on the parameter settings. They have been selected
based on recommendations from literature as well as preliminary tests, thus F = 0.7,
CR = 0.9 and NP = 50 have been employed for DE whereas w = 0.8, c1 = 0.5, c2 = 2.0,
the lbest neighborhood topology and NP = 50 have been used for PSO. It can be expected
that the results of PSO can be improved using more suitable parameter settings or an
adaptive approach. Besides, for both algorithms the modified replacement method was
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used for constraint-handling, meaning that especially results for optimization problems
containing equality constraints (which were identified in [Zie06a, Zie06b] as the most
challenging problems) might be improved using a better method for handling equality
constraints as described in Section 4.3. Besides, it might be advantageous to scale the
constraints before the calculation of the sum of constraint violation to avoid undesired
effects from different magnitudes of the constraints.

4.5 Summary and Future Work

Constraint-handling is an important topic because most real-world problems contain con-
straints. In the optimization literature dissertations can be found which are exclusively
dedicated to this topic [Mez04] whereas here mainly a short overview is given, with par-
ticular focus on easily applicable methods.
It is usually reasonable to use a method for keeping individuals inside boundaries to avoid
problems with positions which cannot be evaluated due to physical limitations or simply
to lower the computational cost for optimization. Several methods for handling boundary
constraints are described in the literature. Generally, methods should be preferred which
do not decrease the diversity of the population and which do not delay convergence.
For constraint functions even more constraint-handling techniques exist in the literature.
For easy applicability they should contain as few parameters as possible. Especially for
inequality constraints there are techniques without any parameters which nevertheless
work for a large range of optimization problems. An examination based on a power
allocation problem showed that the death penalty might fail if the size of the feasible
space to the whole search space becomes small. In contrast, the modified replacement
method based on the feasibility rules from [Deb00] is generally also able to solve problems
with a small feasible space. This indicates the advantage of using knowledge about the
constraint violation for directing the individuals to feasible regions.
Furthermore, it was shown in this section that the same constraint-handling method might
result in different behavior when applied to different optimization algorithms: The death
penalty worked considerably worse for PSO in contrast to DE. As a result, recommenda-
tions have to be carefully examined when applying a constraint-handling technique to a
different algorithm.
For the handling of equality constraints often specialized methods are needed, particularly
if it is important that the equality constraints are fulfilled very accurately. It was shown
for an exemplary problem from yield analysis that the modified replacement method
yields good results for both DE and PSO if the allowed constraint violation is larger or
equal to 10−6. If lower constraint violations are desired the convergence rate deteriorates
significantly. In contrast, a method that varies the allowed constraint violation during
the optimization run was able to achieve convergence rates of 100% even for allowed
constraint violations of 10−15 using appropriate parameter settings. The focus for future
work should be on developing methods for problems with a mixture of several inequality
constraints and equality constraints. Furthermore, the methods should be able to handle
equality constraints with differing magnitude to be able to efficiently solve problems like
stated in [Dee07].
Because of the randomness included in evolutionary algorithms and the lack of conver-
gence proofs, it might be doubted if they really have an advantage over simple random
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techniques. It was shown here based on a test set of 24 constrained single-objective opti-
mization problems containing different features that DE and PSO are indeed superior to
blind random search and brute force search.
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Chapter 5

Multi-Objective Optimization

The basic form of most optimization algorithms was designed to minimize one objective
function without constraints. However, in real-world problems usually not only constraints
as discussed in the previous chapter but also several objective functions �f(�x) exist. These
objectives functions are often conflicting like minimizing the cost but maximizing the
performance of a product. Therefore, in a comparison of two solutions �a and �b it is
not obvious anymore which one performs better if e.g. f1(�a) < f1(�b) but f2(�a) > f2(�b)
(assuming minimization of all objective functions) and either the relative importance of
the goals is identical or it cannot be defined clearly. Although the dominance relation
according to Equations 2.11 and 2.12 is introduced to be able to compare solutions with
each other, there are still solutions which are incomparable. As a result, usually not one
global best solution but several trade-off solutions exist which are the Pareto-optimal set
(see Section 2.1).
To solve a multi-objective optimization problem, either the optimization problem has to
be transformed into a single-objective problem or the optimization algorithms have to
be adapted. Classical approaches usually use transformations to single-objective opti-
mization problems. A common method is optimizing the weighted sum of the objective
functions [Deb01a]:

min f̃(�x) = min

M∑
m=1

wm · fm(�x). (5.1)

A difficulty of this approach is the specification of the weights wm because different so-
lutions are obtained depending on the weights [Bol01]. Because the sensitivity to the
weights is often very high [Kno08], adjusting the weights might be a difficult optimiza-
tion problem itself. Additionally, non-convex problems pose problems for weighted sum
approaches [Zit00, Fle05]. Another problem with using single-objective optimization tech-
niques for multi-objective optimization problems is that each optimization run results in
only one solution. The implications of this fact will be discussed further in the following
because the goals for multi-objective optimization have to be defined first.
Newer approaches are mostly based on Pareto-optimality. With these methods not a
single solution is generated in one optimization run but a whole set of non-dominated
solutions which ideally correspond to the Pareto-optimal set (see Section 2.1). From this
set a particular solution can be chosen for application, e.g. production. That means
that the decision making process is shifted in comparison to weighted sum approaches.
Instead of having to specify the preferences in form of weights before the optimization
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run, a solution is selected after the non-dominated solutions have been generated. As
a result, more information about practicability of solutions is available for the (human)
decision maker.
On the basis of the possibilities that population-based methods using Pareto-optimality
offer, the following goals are defined for multi-objective optimization: First, the obtained
non-dominated solutions should be as close as possible to the Pareto-optimal front of the
optimization problem. This goal is analog to the demand of convergence to the global
optimum in single-objective optimization. Often an infinite number of Pareto-optimal
solutions exist. Naturally, only a finite number of solutions can be generated during an
optimization process. Furthermore, the number of generated solutions must be limited
because otherwise the computational cost would become too large. Nevertheless, the
largest possible freedom of choice should be offered to the decision maker. Therefore, a
well-distributed approximation set is demanded which is a goal that consists itself of two
requirements: An extent that is as large as possible and furthermore a distribution that
is as evenly spaced as possible. Pareto-optimal fronts may be disconnected, so in that
case an exactly uniform distribution of solutions is not possible. Nevertheless, the non-
dominated solutions should cover all regions of the Pareto-optimal front and reproduce the
curvature of the underlying Pareto-optimal front as correctly as possible. These demands
do not have a counterpart in single-objective optimization because in that case only one
solution is generated.
In Figure 5.1 the goals of multi-objective optimization are illustrated. Figure 5.1(a) shows
a set of well-distributed non-dominated solutions which have a large extent and which have
converged to the Pareto-optimal front. In Figure 5.1(b) the non-dominated solutions have
not reached the Pareto-optimal front whereas the demands concerning the distribution
are fulfilled. In Figure 5.1(c) the non-dominated solutions are on the Pareto-optimal front
and an evenly spaced distribution has been obtained but the extent of the solutions is
worse than in Figure 5.1(a). Figure 5.1(d) shows a set of solutions with good convergence
and large extent but with less uniform distribution than in Figure 5.1(a).
Usually, not all Pareto-optimal solutions are found even using algorithms with concepts
from Pareto-optimality because especially for floating-point representation the number of
Pareto-optimal solutions can approach infinity. Nevertheless, normally a good approxi-
mation of the Pareto-optimal front can be achieved because methods are included in the
algorithms that target the desired characteristics of the distribution (large extent and
uniform distribution). Of course with single-objective optimization methods also several
Pareto-optimal solutions can be generated by restarting the algorithm several times (with
varying weights) but it is more difficult to control the distribution of solutions. In al-
gorithms using concepts from Pareto-optimality, special operators are employed for this
goal which is not possible in single-objective optimization. It might be argued that if the
relative importance of the objectives is known before optimization, it might be sufficient
to use a weighted sum method (see also [Deb01a]). However, an exact quantification
in the form of weights is seldom possible or many computational resources have to be
spent for fine-tuning of weights [Sch02]. Bearing in mind that the results of optimiza-
tion runs are usually highly sensible to the values of the weights, an approach based on
Pareto-optimality should be preferred.
Because the result of a multi-objective optimization algorithm using concepts from Pareto-
optimality consists of a whole set of solutions, it becomes difficult to compare results.
Therefore, performance measures for multi-objective optimization are shown in the fol-
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(c) Extent of solutions worse than in Figure 5.1(a)

Exemplary solutions
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(d) Solutions less uniformly distributed than in
Figure 5.1(a)

Figure 5.1: Goals in multi-objective optimization

lowing which will also be used in Chapter 6 for the definition of stopping criteria. One
of the most successful multi-objective evolutionary algorithms (MOEAs) is the NSGA-II
[Deb02]. It is based on a Genetic Algorithm but it contains several useful features for
multi-objective optimization that can be transferred to other algorithms. This is often
done in the literature. Furthermore, when new algorithms or a new extension for an ex-
isting algorithm is presented, its performance is mostly evaluated in contrast to NSGA-II.
Because of this large impact on multi-objective optimization, the NSGA-II is introduced
shortly in the following. Later, it will be shown how concepts from NSGA-II can be used
in multi-objective DE and PSO algorithms. A short literature review also shows multi-
objective DE and PSO algorithms based on different mechanisms. Because the focus of
this work is on DE and PSO, multi-objective algorithms based on other EAs like SPEA2
(Strength Pareto Evolutionary Algorithm 2 [Zit02]) or PAES (Pareto Archive Evolution
Strategy [Kno00]) will not be discussed further. For information about these algorithms
the interested reader should refer to the literature, e.g. to [Coe03, Deb01a]. Furthermore,
for DE several variants based on NSGA-II are introduced that result in different amounts
of elitism and diversity, and a detailed comparison is done. At the end of this chapter
the application of multi-objective DE and PSO algorithms to an application example is
shown that consists of optimizing the gain, bandwidth and current consumption of an
operational amplifier.
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5.1 Performance Measures

In single-objective optimization it is easy to compare results of different optimization runs:
The objective function values are evaluated that have been reached with a given number
of objective function evaluations, and the solution with smaller objective function value
is regarded as better (for minimization problems). For multi-objective optimization the
situation is more complicated because several objective functions exist. Thus, an easy
comparison of objective function values is not possible as already discussed in the begin-
ning of this chapter. Besides, a whole set of solutions has to be regarded. Consequently,
other performance measures have to be found to compare results.
In contrast to single-objective optimization where the goal is convergence to the global
optimum, in multi-objective optimization usually two goals are formulated: Convergence
to the Pareto-optimal front and a well-distributed approximation set, meaning a large
extent and a uniform distribution of solutions. Different performance measures have been
developed which measure either one of the goals or both together. Up to now no single
performance measure has been found that is able to satisfactorily evaluate all aspects.
Generally, too much information gets lost while transforming the multi-dimensional data
to a scalar value. Thus, in comparisons often several performance measures are given.
Many performance measures only make sense when used in comparisons while others can
also be used to illustrate the performance of one particular algorithm. In the literature
often also the obtained non-dominated solutions are shown for M = 2 or M = 3 objective
functions. The reason is that they are generally easier to interpret than the often abstract
performance measures because they allow an overview about the performance, e.g. single
outliers can be identified which may distort the result of performance measures.
In the following, performance measures are given following the classification in [Deb01a]:
It is distinguished between performance measures evaluating the closeness to the Pareto-
optimal front, metrics that regard the diversity of non-dominated solutions, and measures
that consider both the previously mentioned goals. The variety of performance measures
in the literature is large, e.g. in [Eng06, Zit03, Kno06] also performance measures for
multi-objective optimization are given.

5.1.1 Metrics Evaluating Closeness to the Pareto-Optimal Front

For the performance measures in this section it is usually required to know the Pareto-
optimal front. Thus, they are mostly only applicable for test functions. The Pareto-
optimal front can be given in two different forms: Either it can be calculated analytically
or a list of solutions is available.
The error ratio ER counts the number n of solutions of a non-dominated set which are
not members of the Pareto-optimal front and divides it by the number m of all solutions
of the respective set: ER = n

m
. Thus, the error ratio can only take values ER ∈ [0, 1], and

a smaller ER means better convergence to the Pareto-optimal front. Disadvantages of
this metric are that the Pareto-optimal front must be known with a high resolution and
the distance to the Pareto-optimal front is not evaluated. Furthermore, for real-valued
representation problems may arise because a solution will not be considered as part of
the Pareto-optimal front if it differs even insignificantly from it. To avoid the latter
disadvantage a threshold can be defined, so that solutions in a certain distance εER of the
Pareto-optimal front will be considered as converged (see also Section 6.2).
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The set coverage metric C (A, B) can be used to compare the results of two sets of
solutions with each other. The two sets may be the results of two different algorithms or
the outcome of an algorithm can be compared with the Pareto-optimal front. This metric
determines the percentage of members of a set B that are dominated by members of set
A:

C (A, B) =
|�b ∈ B|∃�a ∈ A : �a � �b|

|B| . (5.2)

The set coverage metric results in values C (A, B) ∈ [0, 1]. C (A, B) = 1 means that all
solutions of B are dominated by solutions of A or they are equal to each other. C (A, B) = 0
means that no solutions of B are dominated by or equal to solutions of A. It must be noted
that generally C (A, B) �= 1 − C (B, A).
The generational distance GD calculates an average distance of the solutions of a
non-dominated set Q from the Pareto-optimal set P ∗:

GD =

(∑|Q|
i=1 dp

i

) 1
p

|Q| (5.3)

where p = 1 is used in this work as it is also often done in the literature [Deb01a], and
di is the shortest distance from member i of Q to a member of P ∗. For GD = 0 the
solutions in Q and the Pareto-optimal front are identical. For increasing GD the average
distance to the Pareto-optimal front becomes larger. To use this performance measure it
is necessary to know the Pareto-optimal front.
The maximum Pareto-optimal front error MFE calculates the worst distance be-
tween the members of a non-dominated set and the Pareto-optimal front. A small value
indicates better performance. A disadvantage is that it does not take the distribution of
all solutions into consideration, so it can give misleading results concerning the state of
convergence. Again, the Pareto-optimal front has to be known to use this metric.

5.1.2 Metrics Evaluating Diversity among Non-Dominated Solu-
tions

The spacing metric S calculates the deviation of the distances between the solutions of
the non-dominated set Q:

S =

√√√√ 1

|Q|
|Q|∑
i=1

(di − d̄)2 (5.4)

where

di = min
�xk∈Q∧k �=i

M∑
m=1

|fm(�xi) − fm(�xk)| (5.5)

is a distance measure to the nearest neighbor (not Euclidean distance is measured but the
sum of differences in objective function values) and d̄ = 1

|Q|
∑|Q|

i=1 di is the average distance.
A small value for S means that the distribution of the solutions is nearly uniform. A
disadvantage is that the extent of the solutions is not considered in this metric.
In contrast to spacing, the spread metric also takes the extent of solutions into account:

∆ =

∑M
m=1 de

m +
∑|Q|

i=1

∣∣di − d̄
∣∣∑M

m=1 de
m + |Q| d̄ . (5.6)
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To calculate di it is possible to use any distance measure between neighboring solutions
like the Euclidean distance, the sum of the absolute differences in objective values or the
crowding distance (the calculation of crowding distance will be explained in Section 5.2).
d̄ is the mean value of these distance measures. de

m is the distance between the extreme
solutions of the non-dominated set and the Pareto-optimal front for the m-th objective
function. For this reason the knowledge of the extreme solutions of the Pareto-optimal
front is required. For an ideal distribution which covers the whole range of the Pareto-
optimal front uniformly, the spread metric will be zero. Unfortunately, for ∆ > 0 it
is not possible to distinguish between effects from a non-uniform distribution or from a
Pareto-optimal front that is only partly discovered.
The maximum spread is defined as the length of the diagonal of a hyperbox formed
by the extreme function values from the non-dominated set (given as normalized version
here):

D̄ =

√√√√ 1

M

M∑
m=1

(
max

|Q|
i=1 fm(�xi) − min

|Q|
i=1 fm(�xi)

fm,max − fm,min

)2

(5.7)

where fm,max and fm,min are the maximum and minimum values of the Pareto-optimal
solutions for the m-th objective function (if the Pareto-optimal front is not known, the
normalization can be omitted). For two-objective problems this metric refers to the
Euclidean distance between the two extreme solutions in objective space.
The chi-square-like deviation measure has originally been suggested for multimodal
optimization but it can also be employed for multi-objective optimization. It uses a neigh-
borhood parameter, so that for every Pareto-optimal solution the number of solutions of
the non-dominated set in its neighborhood is counted. It is assumed that every neigh-
borhood should ideally contain the same number of solutions. This metric also requires a
known Pareto-optimal front.

5.1.3 Metrics Evaluating Closeness and Diversity

Hypervolume HV is a commonly used performance measure that evaluates both the
closeness to the Pareto-optimal front as well as diversity. The volume of a hypercube
limited by the obtained non-dominated solutions and a reference point �r is calculated in
objective space (see Figure 5.2). For the reference point a vector is used whose components
are equal or worse than the worst objective function values that were found. A better
performance is indicated by a larger hypervolume. Because objective functions can have
a different range of values, it is ensured that no objective is favored by normalizing all
values using the minimum and maximum objective function values that were found. If
the Pareto-optimal front is known, it is also possible to evaluate the hypervolume ratio
or the hypervolume difference of a non-dominated set with respect to the Pareto-optimal
front.
Because EAs are stochastic methods, the approximation sets generated in different op-
timization runs are not necessarily equal. Another possibility for evaluating the perfor-
mance of multiple optimization runs besides the calculation of e.g. average performance
measures is to use attainment surfaces [Fon96, Kno06]. Attainment surfaces show
graphically which part of the search space is dominated by solutions generated in a certain
percentage of optimization runs. Examples will be shown in Appendix B (Figures B.11-
B.14).
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Figure 5.2: Calculation of hypervolume

Another method for measuring closeness to the Pareto-optimal front and diversity to-
gether is to combine metrics for the individual goals. In the weighted metric several
metrics are added together, scaled with different weights. Similar as for the spread met-
ric, a disadvantage is that the effects of the individual goals is obliterated. A different
approach is the non-dominated evaluation metric that interprets two metrics as a
two-objective optimization problem, therefore the performance of algorithms can be eval-
uated by regarding dominance of the metrics.

5.2 Non-dominated Sorting Genetic Algorithm II

NSGA-II is one of the most famous evolutionary algorithms for multi-objective optimiza-
tion. The most prominent features of NSGA-II are its low computational complexity,
elitist approach and a method for diversity that does not need additional parameters.
The underlying Genetic Algorithm will not be discussed here. Instead, the focus is on
the concepts used for handling multi-objective optimization problems which can also be
transferred to other algorithms.
In the beginning of an optimization run an initial population of size NP is randomly gener-
ated. In principle, the following procedure is the same as for single-objective optimization:
Parents are selected, an offspring population of size NP is generated by employing recom-
bination and mutation operators, and then the survivors are selected which are part of
the next generation. Only the parent selection as well as survivor selection are done
differently.
After an offspring population has been built, the parent and the offspring populations are
joined, forming a set of 2 · NP members. This set is sorted into non-dominated fronts,
so that members of one front are non-dominated, and the best solutions are stored in
front F1 (see Figure 5.3). In [Deb02] it is discussed that a naive implementation of a
method for sorting the population based on domination would require O(M ·NP 3) calcu-
lations whereas NSGA-II needs only O(M ·NP 2) computations. The storage requirement
increases from O(NP ) to O(NP 2) but for multi-objective optimization problems usually
computation time is much more important than storage space. The lower computation
time is realized by a sophisticated procedure for comparing solutions: First, for each so-
lution �xi the domination count ni (number of dominating solutions) and the set Si of
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Figure 5.3: Non-dominated fronts

solutions that are dominated by �xi are calculated. Solutions with ni = 0 build the first
non-dominated front F1. For every member of F1, the domination count of all solutions
of their corresponding sets Si is decreased by 1. The solutions which reach a domination
count of 0 build the second non-dominated front F2. This procedure is repeated until
all solutions are sorted into non-dominated fronts F1 . . .Fl where l is the index of the
last front. The index of the fronts is also called the Pareto rank of the solutions of the
respective front.
The next generation is built by subsequently adding fronts beginning at F1. Generally,
there will be a front Fa with a ∈ {1, . . . , l} that cannot be added completely to the
next generation without exceeding the desired population size NP . Therefore, individuals
from Fa which contribute most to diversity are chosen for the next generation. For
this purpose, the crowding distance is used which is a measure for the closeness of
individuals surrounding a solution.
The crowding distance can be evaluated either in objective space or in parameter space,
meaning that the distribution of solutions is influenced either in parameter or in objective
space. Generally, it is used in objective space. To compute the crowding distance for a
set of population members, the solutions are sorted according to their objective function
value. This is done once for every objective function, and the corresponding distances are
added. The individuals with the smallest or largest objective function value are assigned
an infinite crowding distance (or an arbitrary large number for practical purposes) because
the extent of solutions should be as large as possible. For all other solutions the crowding
distance is calculated according to

d�xi
=

M∑
m=1

fm(�xi+1) − fm(�xi−1)

fm,max − fm,min
(5.8)

where fm corresponds to the m-th objective function. A large crowding distance is prefer-
able because it indicates that there are no other population members in the near vicinity
of the solution. In Figure 5.4 the calculation of crowding distance is illustrated. Solutions
�a1 and �a4 would receive a crowding distance of infinity because they are the extreme
solutions. For solutions �a2 and �a3, d̃�a2,1 and d̃�a2,2 (or d̃�a3,1 and d̃�a3,2, respectively) would
be scaled with the corresponding maximum and minimum objective function values, and
the resulting terms would be added.
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Figure 5.4: Calculation of crowding distance

The parent selection procedure is also based on non-domination rank and diversity preser-
vation. If two individuals with different rank are compared, the one with the lower non-
domination rank wins. In the comparison of two individuals which have the same rank,
the one with the larger crowding distance is preferred.
NSGA-II was also extended for constrained multi-objective optimization problems in
[Deb02] by adopting feasibility rules similar to the ones described in Section 4.2. Again,
a solution �x is considered better than another solution �y if �x is feasible and �y is infeasible
or if both are infeasible and �x has the lower amount of constraint violation. Only the
comparison of two feasible solutions has to be changed, so that a solutions wins that
dominates its competitor.

5.3 Multi-Objective Differential Evolution

Like other EAs, Differential Evolution was developed for unconstrained single-objective
optimization in the beginning. When adapting the algorithm for multi-objective opti-
mization, the operators mutation and recombination may remain unchanged because the
objective function is not regarded in these operators. In contrast, selection in single-
objective DE is based on objective function values, so this operator must be adapted
for multi-objective DE. Because the goals in multi-objective optimization are different
from single-objective optimization (see the beginning of this chapter), the other operators
might be changed as well to reflect the resulting demands of a high diversity. However,
this is seldom done in the literature (see Section 5.3.2 where in [Xue03] an exception is
described that adapts the mutation operator for multi-objective optimization).
In the following, it is explained how concepts from NSGA-II can be used for building
a multi-objective DE algorithm. Because these concepts can be transferred in different
ways, four algorithm variants are generated by combining two different implementations
of the selection scheme with two variants of calculating the crowding distance. The
former variation has already been discussed in the literature whereas the latter has been
developed within the scope of this thesis. Afterwards, a short overview about literature
for multi-objective DE is given. It is indicated where algorithms similar to the already
mentioned four variants are shown but also different approaches are described. At the
end of this section a comparison of the four multi-objective DE variants is shown.
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5.3.1 Adaptation of Concepts from NSGA-II for Multi-Objective
Differential Evolution

When adapting Differential Evolution for multi-objective optimization, the comparison
of objective function values during selection in single-objective optimization can be sub-
stituted by the dominance relation. As a result, the question arises what to do if the
compared solutions are non-dominated regarding each other, so it cannot be decided
which one is better. The problem which one to choose for the next generation can be
solved by using techniques from NSGA-II: Adding the respective trial vector to the pop-
ulation and deciding later (after generating trial vectors for each vector of the current
generation) which solutions to keep based on dominance and a diversity measure. How-
ever, in NSGA-II not only non-dominated child solutions are added to the population
but all solutions which have been generated. Consequently, the question appears how to
proceed for multi-objective DE. One possibility is to keep the direct comparison between
target vector �xi and trial vector �ui. Thus, �ui replaces �xi in the next generation if the trial
vector dominates the target vector, �ui is discarded if it is dominated by �xi, and the trial
vector is only added to the population if it is non-dominated regarding the corresponding
target vector. This variant will be called variant 1 in the following. The other possibility
is closer to NSGA-II than to the original DE selection scheme by skipping the direct com-
parison and instead adding all trial vectors to the population for later evaluation. This
variant will be called variant 2 in the following.
DE is an elitist algorithm because in a comparison of two solutions always the one with the
better properties wins. Elitism is even more pronounced in the second variant compared
to the first variant: The direct comparison between target vectors and trial vectors allows
discarding of individuals which are relatively good in comparison to the whole population
but worse than the competitor. In contrast, only the best NP individuals are kept using
variant 2. Therefore, it is assumed that the second variant will converge faster but the
first variant will be more successful for complex problems due to its higher diversity. It has
to be noted that the differences between variants 1 and 2 will only persist as long as trial
vectors are found which dominate the corresponding target vectors. Especially in later
stages of an optimization run, there may be only a small percentage of the population
members for which this assumption holds. In that case differences between variants 1 and
2 will be small.
Using variant 2, the population size equals 2·NP after applying the evolutionary operators.
Depending on the number of non-dominated target and trial vectors, the population size
will be in {NP, . . . , 2 ·NP} for variant 1. For both variants the population is ordered into
non-dominated fronts as described in Section 5.2 for NSGA-II.
There are different possibilities how to proceed for the calculation of crowding distances.
In NSGA-II the crowding distance is calculated for each front separately. Thus, when
the next generation is built and there is a front Fa which can not completely be added
without exceeding the desired population size, only members of front Fa are regarded for
the calculation of crowding distances. This approach may be unfavorable if an individual
is far away from members of its own front but very close to an individual of another
front Fi with 1 ≤ i < a. As a result this individual is considered to contribute much to
diversity when in fact it does not. Furthermore, the outermost individuals of front Fa

have a crowding distance of infinity to facilitate a large extent of the distribution. Thus,
they are always kept regardless of the closeness of other solutions. However, there may
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Figure 5.5: Fronts F1 and Fa

be solutions in other fronts that already provide an extent of equal or even larger size.
Thus, it may not be necessary to keep the outermost solutions of front Fa.
Therefore, two algorithm variants will be examined: In variant A the calculation of crowd-
ing distances is conducted in the same way as in NSGA-II whereas in variant B individuals
from fronts Fi with 1 ≤ i ≤ a are included during the calculation of crowding distances
for individuals from front Fa. Hence, in variant B solutions receive a crowding distance
of infinity only if there are no other solutions in fronts with lower index that provide an
equally large or even larger extent.
If only one front exists, variants A and B are equal. In other cases, variant B is expected
to result in higher diversity. As shown in [Zie05a] (which was generated within the scope
of this thesis), variant B is able to avoid gaps in the distribution of individuals that would
have been caused by using variant A: Figure 5.5 shows ten individuals that are sorted
into two fronts, and a population size of NP = 8 is desired. First, all solutions from
front F1 are added to the next generation. Furthermore, three individuals from front Fa

have to be selected for the next generation by evaluating their crowding distances. The
crowding distances calculated for variant A and B, respectively, are displayed in Table 5.1.
Using variant A, individuals 6, 7 and 10 would be chosen for the next generation because
these solutions feature the largest crowding distances. In contrast, variant B produces
the largest crowding distances for individuals 8, 9 and 10. In Figure 5.5 it can be seen
that variant B results in larger diversity because the gap between individuals 4 and 5 is

Crowding distance
Solution number Variant A Variant B

6 ∞ 0.33
7 1.17 0.48
8 1.14 0.78
9 0.83 0.63
10 ∞ 0.68

Table 5.1: Crowding distance using variant A and variant B
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filled whereas individuals 6 and 7 which reside in an already covered part of the space are
omitted. The disadvantage is avoided that using variant A the outermost solutions from
front Fa are always selected for the next generation regardless of how many individuals
from the previous fronts are in their vicinity.
The effect of using variant B instead of variant A is assumed to be especially pronounced
in the beginning of an optimization run because there will be many fronts. In later stages
often only one front exists because all population members are non-dominated regarding
each other. In [Deb01c] it is stated that it may be disadvantageous if algorithms first try to
reach the Pareto-optimal front and only afterwards work on finding a good distribution
of solutions. Using algorithm variant B, this unfavorable behavior is expected to be
prevented or at least reduced.
Variants 1 and 2 as well as variants A and B can be combined to form a total of four
different variants:

• 1A: Trial vectors and corresponding target vectors are compared directly (original
DE selection scheme), calculation of crowding distance like in NSGA-II.

• 1B: Trial vectors and corresponding target vectors are compared directly (original
DE selection scheme), adapted calculation of crowding distance.

• 2A: All trial vectors are added to the population, calculation of crowding distance
like in NSGA-II.

• 2B: All trial vectors are added to the population, adapted calculation of crowding
distance.

It should be noted that the desired number of non-dominated solutions might be different
from the population size. For example, in the Special Session on Performance Assessment
of Multi-Objective Optimization Algorithms at CEC07 (see also Section 4.4) 800 solutions
were demanded in some cases (see [Hua07a] where initially 3000 solutions were required
but due to problems with the computational cost this number was reduced later to 800).
Because population sizes are not usually chosen that large, in that case it is possible to
use an archive in which non-dominated solutions are stored. The archive is updated after
every new generation based on domination and crowding distance (see also [Zie07b]).

5.3.2 Related Literature

One of the first multi-objective DE algorithms is described in [Abb01] and extended
with self-adapted control parameters in [Abb02]. Using that approach, individuals are
accepted only when they dominate their parents, and a distance metric is only used when
the number of non-dominated solutions exceeds a given threshold.
A similar method that was inspired by NSGA-II is reported in [Mad02]. Different im-
plementations are checked where one is similar to variant 1A (the direct comparison of
parent and offspring is kept but only after assigning non-dominated ranks and calculating
crowding distances for the whole population) and the other is equivalent to variant 2A
by keeping only the best NP from 2 · NP solutions. The author reports that the sec-
ond implementation yields better results because of its faster convergence while the first
implementation has good diversity but slow convergence.
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[Ior04] follows a different approach by incorporating the DE mutation and recombination
scheme into NSGA-II for solving rotated problems. Therefore, a similar method as variant
2A is used that shows good results in comparison to NSGA-II. A newer paper by the
same authors [Ior06] investigates the incorporation of directional information by using
two difference vectors: One should point in the direction of the Pareto-optimal front (by
calculating the difference between the current individual and a solution that dominates
it) and the other should help to maintain diversity (by computing the difference of two
vectors with the same rank as the currently regarded individual).
In [Xue03] not only selection but also mutation is modified for multi-objective optimiza-
tion. This is done because a DE scheme is used that includes the current best individual
for mutation (see Section 3.5.2). If the target vector is dominated by other solutions,
one of them is randomly chosen as best individual. The target vector is selected itself as
best solution if it is non-dominated. The authors state that the original selection pro-
cedure of NSGA-II is too elitist to produce good results because individuals of better
non-dominated rank will always be kept regardless of the density of solutions around it.
Instead, they use a rank assignment technique [Gol89] but penalize the fitness based on
the density of solutions. The original approach is adapted in [Xue05] where a fuzzy logic
controller is used to tune control parameters.
A method based on the Vector Evaluated Genetic Algorithm (VEGA [Sch84]) is described
in [Par04]. It is a multi-population variant where originally each population optimizes one
of the objective functions, and the populations share information by migration of the best
individuals. It is modified by using the dominance operator for selection but no diversity
measure is used. An interesting characteristic in comparison to other approaches is that
it can be easily parallelized by evolving populations on different machines.
In [Rob05b] three variants of multi-objective DE are tested which basically correspond to
variant 1A and differ in the vectors which are compared for selection. Apart from a vari-
ant where trial vectors are compared to the corresponding target vector, also variants are
checked where the trial vectors are compared to the most similar individual in the popula-
tion. The similarity is either determined in parameter space or in objective space. As the
latter two variants do not show better performance than the first but are computationally
more expensive, the first variant is recommended for use. This algorithm is also tested
against other multi-objective evolutionary algorithms in [Rob05a]. It is emphasized that
individuals which enter the population should immediately be able to participate in the
procreation process of other vectors to accelerate convergence. Besides the discussed vari-
ant, in [Tuš07] also multi-objective DE variants based on other algorithms than NSGA-II
are shown. An interesting observation in [Tuš07] is that although quality indicators often
show statistically significant differences between algorithm variants, the differences are
not necessarily visible in plots of the approximation sets or attainment surfaces.
Another multi-objective DE algorithm is GDE3 (Generalized Differential Evolution 3)
[Kuk05]. It also modifies the selection rule of the basic DE algorithm in a similar way as
described here in variant 1. A difference is that the comparison of two infeasible solutions is
based on dominance in constraint violation space. GDE3 also incorporates non-dominated
sorting and a method for maintaining diversity that was improved in [Kuk06a]. In that
paper a method for pruning (reduction of population size if NP is exceeded) is shown that
is not based on crowding distance. Fast calculation as well as applicability for more than
two objectives is emphasized, and the results for two and three objectives are very good.
Methods for maintaining diversity apart from crowding distance are also developed for
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other multi-objectives EAs besides DE, e.g. a MaxiMin technique is described in [Sol05]
or a process called δ-similar elimination is proposed in [Sat06] for NSGA-II.

5.3.3 Analysis of Convergence Behavior and Diversity for Differ-
ent Variants of Multi-Objective Differential Evolution

In Section 5.3.1, four variants of multi-objective Differential Evolution based on con-
cepts from NSGA-II have been introduced. It has been discussed that these variants will
most likely result in different convergence speed and different amounts of diversity. The
mentioned variants were firstly compared in [Zie05a] (which is a work produced within
the scope of this thesis) based on three constrained multi-objective optimization prob-
lems (CONSTR, SRN and TNK from [Deb02]). Convergence to the Pareto-optimal front
was only visually evaluated whereas the diversity was measured using the spacing metric
described in Section 5.1.2. Similar results have been found for the four variants. It was
assumed that the test functions were too easy to demonstrate the strengths of the different
implementations.
Therefore, in [Zie07d, Zie08d] an extensive test of the variants is shown ([Zie07d] is also a
work produced within the scope of this work, and [Zie08d] is an extended version published
in a journal): The performance is not only checked at some discrete numbers of generations
as done in [Zie05a] (where results have been checked after 200 and 500 generations) but
the performance is continuously monitored and displayed, so different behavior over time
can be detected. Furthermore, more informative performance measures are applied. In
the following, the results of this examination will be summarized.
As basis for the examination, some of the most widely used multi-objective test problems
have been used which are referred to as ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 [Zit00]
(sometimes also denoted as T1, T2, T3, T4 and T6). The names of these test problems are
based on the names of three researchers which are Zitzler, Deb and Thiele [Deb01a]. The
problem formulation as well as a graphical representation of the Pareto-optimal fronts
is shown in Appendix A. A problem ZDT5 also exists but because its variables are
represented as binary strings, it has been omitted. All optimization problems are bi-
objective, thus an extension of this examination for more objectives is left for future
work.
For every test problem and each variant, 100 independent optimization runs have been
conducted where the initial population has been equal for every variant. The control
parameters have been set to F = 0.7, CR = 0.9 and NP = 100, and the maximum
number of generations is 1000.
Several performance measures have been used. Because using spacing (see Section 5.1.2),
maximum spread (see Section 5.1.2) and hypervolume (see Section 5.1.3) almost no dif-
ferences could be seen between the variants, they are omitted here.
For problems ZDT1, ZDT2, ZDT3 and ZDT6 the Pareto-optimal fronts as shown in [Zit00]
have been successfully generated. In Figures B.1-B.4 the combined non-dominated solu-
tions of all independent runs are shown for four different generations. There are noticeable
differences between the algorithm variants regarding the non-dominated solutions after
50 and 100 generations, and especially for ZDT6 still after 200 generations. After 1000
generations all algorithm variants have converged to the Pareto-optimal front, and no
differences can be seen anymore.
For function ZDT4 none of the algorithm variants has been able to generate enough
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diversity (the populations converged to a single point), so the results for ZDT4 are not
shown. In [Mad02] also convergence problems are reported for the optimization of ZDT4
using a multi-objective DE algorithm. It is assumed that this behavior is caused by
unsuitable control parameter settings [Kuk04a]. It should be noted that all results shown
here may vary for different control parameter settings. This is an issue that always
complicates comparisons of optimization algorithms.
In Figures B.5-B.7 the average set coverage metric (see Section 5.1.1) is shown for all
combinations of algorithm variants. Often the differences are rather small, so it is difficult
to draw conclusions from these results. For ZDT1 1A is better than 1B in a certain range of
generations, furthermore 2B is better than 2A, 1A is better than 2A, and 1B is better than
2A (for the latter two combinations the reverse relations hold in earlier generations) but
for most of the other problems the algorithm variants show different behavior. The most
pronounced differences can be seen for ZDT6 where 2A and 2B are inferior to 1A and 1B,
indicating that the original DE selection scheme is favorable. Again the first generations
show different relations than later stages. This can be explained by the increased elitism
of the NSGA-II selection scheme that leads to faster convergence in early generations.
An alternative for evaluating the performance of multiple runs apart from calculating
averages of performance measures is to join the obtained solutions of all runs at a spe-
cific generation and compute performance measures for the combined approximation set
[Sat06]. As a result, instead of the average performance the focus is on the best possible
performance that can be reached. In this case diversity measures like spacing do not make
sense but the set coverage metric can be evaluated. The development of the set cover-
age metric for the combined solutions of all independent runs (Figures B.8-B.10) is less
smooth than the average set coverage metric, and more differences between the algorithm
variants can be seen. The reason is that regarding the combined non-dominated solutions
means that only the best solutions of 100 independent runs are shown. Runs with bad
performance are not included here but they affect the average set coverage metric. Based
on the set coverage metric of combined solutions, variant 2B is mostly better than 2A,
especially in early stages (Figure B.8). This was already expected in Section 5.3.1. For
the comparison of 1A and 1B the results differ for different optimization problems as well
as the considered generation (Figure B.8), thus it cannot be decided which is better. Fur-
thermore, variant 1B is generally preferable to 2A, and variant 1A is mostly better than
2A (Figure B.9), suggesting again the superiority of the original DE selection scheme. For
most problems variant 1A is better than 2B, only for ZDT3 opposed behavior is shown
(Figure B.10). The comparison of variants 1B and 2B is mostly inconclusive with the
exception of ZDT6 for which 1B is better than 2B (Figure B.10).
The illustration of results using attainment surfaces (see Section 5.1.3) needs much space
if it should be avoided to have confusingly many lines in one figure. Therefore, only some
examples are given here: In Figures B.11-B.14 the solutions are shown that were reached
in 0%, 50% and 100% of the optimization runs in 100 generations for ZDT1, ZDT2, ZDT3
and ZDT6, respectively.
In summary, the results of variants 1A and 1B are generally better than the results of 2A
and 2B, indicating that it is preferable to use the original DE selection scheme instead of
adding all trial vectors to the population. As a result, elitism is less pronounced and the
diversity is increased. Considering the calculation of crowding distance, 2B is generally
better than 2A but no conclusive statements can be made regarding variants 1B and 1A.
This can be explained by the fact that the diversity of variant 2 is lower than in variant
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1, thus the effect of the increased diversity due to the adapted calculation of crowding
distances is more visible in the comparison of 2A and 2B. In Sections 5.5 and 6.2.4 where
a multi-objective DE algorithm is used, the original DE selection scheme combined with
the adapted crowding distance calculation is employed. In future work it should be tested
how the diversity measure can be further improved, see also Section 5.3.2.

5.4 Multi-Objective Particle Swarm Optimization

In [Eng06] three classes of multi-objective PSO algorithms are distinguished:

• Aggregation-based methods (weighted sum approaches),

• criterion-based methods (not all objectives are regarded simultaneously),

• dominance-based methods (the concept of Pareto-optimality is employed).

Several disadvantages are mentioned for aggregation-based and criterion-based methods:
Using an aggregation-based method, the weights have to be adjusted which might be
difficult as already discussed in the beginning of this chapter. Besides, even if several
optimization runs are conducted to generate multiple solutions, it is hard to obtain a
good diversity of the solutions. Criterion-based approaches are often only applicable for
problems with two objectives. Consequently, this section concentrates only on dominance-
based methods. These methods also comprise the majority of approaches discussed in
[Eng06].
The update equations of PSO can be applied for both single-objective as well as multi-
objective optimization (although it is possible to change them or to include additional
operators like done in [Coe04] to introduce more diversity). In contrast, the management
of personal and neighborhood best solutions has to be varied for multi-objective opti-
mization. Above all, the comparison cannot be based on objective function values as for
single-objective optimization. Instead, the dominance relation is used. Furthermore, the
goal is not to generate a single solution but an approximation of the Pareto-optimal front,
meaning that multiple solutions have to be produced.
For this purpose multi-objective PSO algorithms usually maintain an archive of non-
dominated solutions. Mostly, the gbest neighborhood is used for multi-objective PSO
algorithms, thus the archive is a substitute for the global best position in single-objective
optimization: During the application of the update equations, a solution from the archive
is selected that serves as the global best solution (also called global guide). There are
several issues connected with the use of an archive [Bar03, Pul04b, Alv05, Coe04, Li03]:

• Restricted or unlimited archive,

• size of the archive in case of a restricted archive,

• insertion of solutions into the archive,

• deletion of solutions from the archive in case of a restricted archive,

• selection of guides from the archive.
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An unlimited archive may store all non-dominated solutions that have been found during
the search, having the advantage of a good diversity. A disadvantage is that the computa-
tional complexity associated with checking non-dominance and selecting guides increases
considerably with growing archive size. Also the required storage space becomes larger.
Hence, most multi-objective PSO algorithms use restricted archives.
In case of a restricted archive, the decision which solutions to add to the archive and which
ones to delete has to be carefully considered to ensure a good diversity of solutions. Gen-
erally, solutions are accepted to the archive if they dominate solutions currently present
in the archive or if they are non-dominated with respect to the solutions in the archive. If
the archive is already full, new non-dominated solutions will be inserted if they contribute
to a better distribution of solutions. Different mechanisms can be used to check the influ-
ence of solutions on diversity, e.g. the crowding distance from NSGA-II (see Section 5.2).
Similarly, if solutions have to be deleted from the archive because the allowed number
of solutions is exceeded, different measures can be applied to decide which solutions to
delete from the archive, e.g. an adaptive grid, a distance metric or a randomized distance
metric [Bar03].
The easiest way to select a guide from the archive is to use a uniform probability for all
solutions. This approach might not be best concerning diversity because the probability is
high to select a solution which is located in a region where already many non-dominated
solutions have been found. In [Bar03] two other methods are given: The first variant
selects guides using an anti-clustering selection that prevents particles from densely pop-
ulated areas to be selected. The second approach increases the probability of a solution to
be selected based on the number of new non-dominated solutions that have been generated
using this solution as a guide.
There are algorithms in the literature in which the personal best position is also chosen
from the archive [Bar03] but mostly the personal best position is handled differently
[Coe02b]. Often only one personal best position is stored that is determined by using
the dominance relation: If the current position �xi dominates the personal best position
�pi, the personal best position is replaced. If �xi is dominated by �pi, the personal best
position does not change. If both are non-dominated, it is randomly decided which to
keep [Zie07a, Coe02b]. It is also possible to store several non-dominated personal best
positions for each particle but this is seldom done in the literature. One example can be
found in [Moo99] (see Section 5.4.1).
After having specified the most important concepts used in multi-objective optimization
with PSO, in the following a short overview about multi-objective PSO algorithms used
in the literature is given.

5.4.1 Related Literature

Although multi-objective optimization with PSO is still a rather young field, there are
already many different implementations. Some examples of them will be given in the
following but for a more complete overview the interested reader should refer e.g. to
[Pul04b, Coe04, Eng06].
Presumably the first multi-objective PSO algorithm reported in the literature is the one
described in [Moo99]. For each particle all non-dominated solutions found by itself are
stored as its personal best positions, and guides are chosen randomly from the non-
dominated solutions. The lbest neighborhood topology is used where the neighborhood
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best position is randomly chosen from all non-dominated solutions existing in the neigh-
borhood.
Another one of the first approaches for multi-objective optimization using PSO is de-
scribed in [Coe02b]. Each solution has one personal best solution that is updated either
if the current position dominates the old personal best position or it is randomly decided
which to keep if the old personal best position and the current position are non-dominated.
The global archive is inspired by the adaptive grid used in PAES: The objective space is
divided into hypercubes, and the probabilities of solutions to be deleted from the archive
as well as the probabilities of solutions to be chosen as guides depend on the number of
solutions in the same cell of the grid, thus ensuring diversity. An improved version of the
algorithm has been published in [Coe04] where a method for constraint-handling analog
to NSGA-II and a mutation operator is added. The mutation operator was inserted to
improve the exploration of the search space. Therefore, it is used more extensively in the
beginning of an optimization run whereas its influence is decreased towards the end of an
optimization run. In [Coe04] it is stated that the main advantage of the adaptive grid is
the lower computational complexity when compared to other methods.
In [Bar03] several ways of deleting members from the archive and selecting guides are ex-
amined using methods from Design of Experiments. Restricted archives are recommended
for difficult optimization problems. Based on three bi-objective test functions, the authors
conclude among others that distance-based metrics are better suited for the deletion of
solutions from the archive than an adaptive grid. Furthermore, random selection of guides
is recommended.
Random selection of a guide is also done in [Pul04b] (where the guide is called leader).
Several subswarms are used because it is argued that convergence may be delayed if guides
are selected which are far away from the respective particle. A clustering algorithm is
used for grouping the particles into the different subswarms.
The algorithm shown in [Li03] uses concepts of NSGA-II: Instead of only comparing the
current position of a particle with the respective personal best position, all personal best
positions and current positions are combined, and a non-dominated sorting as in NSGA-
II is done. A new swarm is built by subsequently adding particles, beginning with the
lowest, i.e. the best, Pareto rank (see Section 5.2). The selection of guides is based on
diversity. For this purpose niching methods based on niche count and crowding distance
are compared in [Li03] (the term "niching" summarizes techniques that are used for finding
multiple solutions in a single run of an optimization algorithm, e.g. they are also employed
for multimodal problems to locate different optima [Pre06, Eng06]). As motivation for
this algorithm, it is stated that for most multi-objective PSO algorithms the basic form
of PSO is used but that the sharing of information in this basic form does not provide
enough selection pressure to fulfill the demands of multi-objective optimization.
In [Alv05] the archive is not restricted because it is argued that a restricted archive may
lead to oscillation or shrinking of the approximation set. Each particle has one personal
best position that is updated if the current position dominates it or if both solutions are
non-dominated. The authors state that previous work has shown that distance metrics
in objective space may be susceptible to different scalings of the objective functions.
Therefore, three different methods for selecting global guides are examined which are
only based on Pareto dominance. Moreover, a so-called turbulence factor is added that
consists of a small stochastic perturbation that should improve the exploratory capabilities
of the particles.
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In [Zie07a] (which was generated within the scope of this thesis) a multi-objective PSO
algorithm using concepts from NSGA-II for multi-objective optimization is shown. An
archive is used that is filled as well as truncated using methods from NSGA-II. Further-
more, this algorithm uses adaptive setting of the PSO parameters w, c1 and c2 based on
methods from Design of Experiments. This aspect of the algorithm will be discussed in
Section 7.2.
It is apparent that the extension of basic single-objective PSO for multi-objective opti-
mization is not a trivial task. Several decisions must be done e.g. regarding strategies for
filling and truncating the archive as well as choosing solutions from the archive as guides
with respect to the goal of a good diversity. Many PSO variants for multi-objective opti-
mization also incorporate additional mechanisms for improving exploration like a mutation
operator in [Coe04] or the turbulence factor in [Alv05]. It can be concluded that a sim-
ple, straight-forward implementation of multi-objective PSO may have difficulties when
optimizing the complex problems used for testing algorithms [Zie07a] and that additional
diversity may be needed [Li03].
In Sections 5.5 and 6.2.4 where a multi-objective PSO algorithm is used, a rather basic
form without additional operators for generating diversity is used. A gbest version is used
with a restricted archive where solutions enter or leave the archive based on methods from
NSGA-II, and particles choose their global guides randomly from this archive. Only one
personal best position is allowed for each particle as described before.

5.5 Application: Operational Amplifier

In modern semiconductor fabrication processes the need to design and manufacture inte-
grated circuits with a small budget and hard time limits but still with a high performance
increases more and more. Usually, there are many specifications that have to be fulfilled
simultaneously. Furthermore, the influence of single parameters as well as the relation
between parameters becomes more complicated, especially when approaching the bound-
aries of technical possibilities. Thus, circuit design is a complex and time-consuming
task.
During a typical design process the designer first creates a basic design by assigning
tasks to various stages. Afterwards, the values of the different components have to be
established in a way that the performance matches the specifications for the circuit to
be developed. Despite the knowledge and experience of the designer, this is an iterative
time-consuming process because of the complexities involved. If optimization algorithms
can be applied for assigning values to the parameters, time can be saved and even better
results can be found compared to the intuitive approach. In the literature there are works
using specialized algorithms based on Genetic Programming where the topology of the
circuit is evolved also [Koz04] but here it is assumed that the topology is known. Thus,
optimization of parameter values is sufficient, and optimization of the topology is not
regarded further.
Because usually several specifications exist, the application of single-objective optimiza-
tion algorithms to circuit design is complicated. A weighted sum approach can be used
but then the disadvantages discussed in the beginning of this chapter apply: It is diffi-
cult to choose appropriate weights for the objectives. In [Bol03] the weights are adjusted
during the optimization run but more freedom of choice for the decision maker can be
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Figure 5.6: Operational amplifier

reached by applying multi-objective optimization algorithms. The generated approxima-
tion set offers multiple alternatives from which the decision maker may select a solution
for manufacturing.
In the following the optimization of an operational amplifier according to Figure 5.6 will
be shown that was also published in [Pal08]. In this example a fixed topology of the
operational amplifier is assumed that has been generated by an analog designer. The
parameters of the optimization problem are the widths and the lengths of the transistors,
the resistance values of the resistors and the capacitance value of the capacitor. A priori
knowledge about current mirrors is utilized by combining the widths and lengths of the
correspondent transistors into one parameter, respectively. This applies to M0 and M2,
furthermore M1 and M3, and also M4, M5, M8 and M9. Thereby, the number of param-
eters is reduced as it is also done in other circuit design applications [Koz04]. As a result,
the optimization problem has a dimension of D = 13.
The model of the operational amplifier can be simulated using the tool Spectre which is
a part of the Design Framework II distributed by Cadence. In this work the interface is
realized via script files. The optimization tool based on DE and PSO writes parameters to
a script file which is afterwards called to start a simulation. The output of the simulations
(i.e. the values of the objective and constraint functions) is written to a file that is read
by the optimization tool. The information is processed and new parameter values are
generated depending on the optimization algorithm that is used.
Many objectives can be selected for being optimized [Pal08]. For the present exemplary
test case only some of the most important characteristics of the operational amplifier have
been chosen which are the overall amplifier gain, bandwidth and current consumption.
The gain and the bandwidth should be maximized and the current consumption should
be minimized. The gain (in dB) is evaluated by measuring the output voltage at the
frequency 1Hz (the operational amplifier has low-pass characteristics). For an assessment
of the bandwidth the 3dB cut-off frequency is considered. The current consumption is
computed as the difference of the current at the output node and at the supply node while
a load is connected to the output node (the load will be specified in the following).
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An essential demand for the operational amplifier is stability. It can be checked by
observing the phase margin that must be larger or equal to 20◦. Thus, the phase margin
is included in the optimization problem as a constraint.
The output signal of the operational amplifier should have the same form (e.g. sinusoidal)
as the input signal in unity-gain configuration (see also next paragraph and Figure 5.7(b)).
In preliminary tests solutions generated during an optimization run often exhibited dis-
torted signals. As a result, the form of the signal must also be taken into account in
the optimization problem. No single parameter was found that is able to correctly reflect
the form of the signal, therefore a combination of several parameters is used. Fourier
transform of the output signal is performed by the simulator, and the magnitude of the
result at the frequencies 0 and 10kHz should be maximized. This equals the constant
component as well as the frequency of the desired sinusoidal signal. All other frequencies
should be suppressed, i.e. their magnitude should be minimized. In addition, the inte-
grated difference between the output and the input signal is minimized (this is possible
due to the unity-gain configuration that causes the gain to be equal to 1). To keep the
example simple, these variables are not included as objective functions but as constraints
into the optimization problem.
To check all these characteristics, two simulations have to be executed. An AC simulation
is needed to determine the gain, the bandwidth and the stability. For this purpose the
configuration shown in Figure 5.7(a) is used. V2 only has a DC component of 2.5V to
simulate the operational amplifier in the center of its operating range. V1 has a DC
component of 2.5V and an AC component with an amplitude of 1V. The frequency is
changed during the simulation from 1Hz to 30MHz. After the AC simulation has been
done, the phase margin is evaluated. To save computational cost, a transient simulation is
only done afterwards if the phase margin indicates stability of the circuit. The transient
simulation is used to determine the current consumption as well as the characteristics
that are responsible for the form of the signal. For the transient simulation the unity-gain
configuration shown in Figure 5.7(b) is used. In that case a feedback loop is created, so
that the gain corresponds to 1. V3 has an offset of 2.5V and a sinusoidal signal with an
amplitude of 2.5V, so that the signal covers the whole range of the supply voltage. The
frequency of 10kHz has been chosen because in that case the phase difference between
input and output is small, enabling an easier analysis. For both the AC and the transient
simulation the load consists of a resistor R0 = 700kΩ in parallel to a capacitor C0 = 1pF.
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Figure 5.7: Circuit configuration

99



CHAPTER 5. MULTI-OBJECTIVE OPTIMIZATION

As the indicator of optimization quality, an original design specification is regarded as
reference for which the parameters have been tuned by an experienced designer based on
his knowledge. The main task is to show how the optimization algorithms can be used
for the same task and to check whether they are able to provide similar or even better
results. Consequently, the constraints which should ensure the sinusoidal form of the
output signal are formulated in a way that the results must be at least as good as the
ones from the original design. For the objectives the reference values are as follows: A
gain of 52.66dB, a bandwidth of 3.031kHz and a current consumption of 14.9µA (in the
original design, the current consumption was only 4.9µA but later it was decided to allow
larger currents).
Because the objective functions are computationally very expensive, only few optimiza-
tion runs were carried out. It should be noted that these runs are examples, and the
performance might vary for different runs because of the randomness involved in the
evolutionary process. For the same reason, none of the performance measures given in
Section 5.1 are applied, and no statistical analysis of the results has been carried out. In-
stead, figures of non-dominated solutions are displayed that show the principle suitability
of DE and PSO for the given optimization problem.
Because the application of single-objective optimization methods is easier, it is worth a
thought if problems with several objectives can be converted into single-objective opti-
mization problems. The possibility of building a weighted sum of the objective functions
has already been discarded because the selection of the weights is difficult and minimal
variations may lead to very different results [Deb01a]. For circuit design frequently bound-
ary values for certain properties are given, e.g. the bandwidth of the circuit must not be
below a specific value. Therefore, instead of optimizing all properties of a circuit, it is
also possible to take these boundary values as constraints into the optimization problem
and select only one property that is of particular importance for being optimized, thus
generating a single-objective optimization problem. In the literature also approaches can
be found where the optimization run is started with many objectives and the goals are
changed during the search depending on intermediate results and user preferences [Fle05],
e.g. goals can be excluded from the search or transformed into constraints. This approach
requires considerable interaction with the user, so it is not regarded further here.
Because the objective and constraint functions of this optimization problems are compu-
tationally expensive, it was unacceptable to find suitable control parameter settings by
testing several parameter combinations. Instead, adaptive DE and PSO variants have
been used for both single-objective and multi-objective optimization. These variants are
described in Section 7.2 and in [Pal08]. For DE the control parameters F and CR have
been adaptively controlled. The population size has been set to NP = 20 for single-
objective optimization whereas NP = 100 has been used for multi-objective optimization.
For PSO the control parameters w, c1 and c2 have been adaptively controlled. For single-
objective optimization a population size of NP = 40 and the von-Neumann neighborhood
topology was used whereas for multi-objective optimization NP = 80 and the gbest neigh-
borhood topology was employed. For both multi-objective DE and PSO the archive size
was set to 100.
When optimizing the operational amplifier design with single-objective DE, a gain of
71.17dB was achieved. This is almost 20dB more than in the original design. With
single-objective PSO an even higher value of 73.68dB was reached. Interestingly, even
after 200 generations when the neighborhood best positions have already converged to one
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part of the search space, there are many infeasible particles in the population, indicating
that the optimum is located at or near the border between feasible and infeasible space.
Unfortunately, nothing is known about the shape of this border. There might even be
several disjoint feasible regions. It might be the ability of the particles to get into feasible
space that resulted in the better gain value found by PSO in contrast to DE (see also
Sections 4.2.2 and 4.2.3): Both DE and PSO are basically able to cross infeasible space
but DE individuals can do it only if vector differences of the current population allow
reaching a feasible point because a feasible individual is not allowed to become infeasible.
In contrast, PSO individuals can become infeasible at any time, so they are able to cross
an infeasible region in a different way than DE individuals.
The non-dominated solutions reached by the multi-objective DE and PSO algorithms
are shown in Figure 5.8. The circle indicates the original design. The solutions shown in
color are the best solutions regarding one objective, respectively: Green means the largest
gain, blue means the largest bandwidth, and red means the lowest current consumption.
It can be seen that DE as well as PSO were able to find solutions of similar quality as
the original design. Additionally, the non-dominated solutions include a large variety of
other trade-off solutions from which a decision maker can choose an appropriate design,
thus giving more freedom of choice to the user.
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(b) Results for PSO

Figure 5.8: Non-dominated solutions for the operational amplifier in Figure 5.6

DE yielded even better results than PSO (note also the different scaling in Figures 5.8(a)
and 5.8(b)). The best solutions regarding each objective are given in Table 5.2. From
Figure 5.8 and Table 5.2 it becomes apparent that e.g. a high gain usually means that
the bandwidth will be relatively low and vice versa. This relation can be seen even better

Table 5.2: Extreme solutions for Differential Evolution

Color in Figure 5.8(a) Gain Bandwidth Current consumption
Green 105.6dB 27.8Hz 175µA
Blue 13.8dB 1.012Mhz 107µA
Red 53.4dB 1.82kHz 1.7µA
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(b) Gain and current consumption
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(c) Bandwidth and current consumption
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(d) Bandwidth and current consumption
(zoomed)

Figure 5.9: Two-dimensional plots of the solutions using Differential Evolution

in Figure 5.9(a) where only gain and bandwidth are shown for this design. It is clearly
visible that there is a strong dependence between gain and bandwidth. The reason is that
a high gain can be achieved if the transistors of the output stage are large. This also
means that there will be a large capacitance, leading to a small bandwidth.
The connection between gain and current consumption does not seem to be that distinct
(see Figure 5.9(b)). For example, an average gain of 60dB can be realized with a relatively
high and also with a relatively low current consumption. The reason is that the gain can be
influenced by both the input and the output stage of the operational amplifier. Depending
on the stage that is mainly responsible for the gain with a certain parameter set, the
current consumption will be different. If only the lower right corner of Figure 5.9(b) is
regarded, it can be seen that there is still a distinct difference between the best gain of
105.6dB that has a current consumption of 175µA and another solution that still has a
gain of 99.5dB but that has a current consumption of only 14µA.
If all solutions are regarded, a definite connection between the bandwidth and the current
consumption cannot be seen (see Figure 5.9(c)). However, if only solutions with a current
consumption of lower than 120µA are displayed (see Figure 5.9(d)), a trade-off between
bandwidth and current consumption is clearly visible. A similar constraint may also
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already be inserted into the optimization process because usually only solutions in a
certain range are acceptable for a specific application. Thus, characteristics like the gain
are still treated as objectives but with an additional constraint.
It can be seen that the optimization of the operational amplifier is a complicated task
because there are complex interactions, and the properties of the operational amplifier
can be influenced by different stages. Therefore, it is important to support the designer
with optimization algorithms which are able to provide trade-off solutions from which
the designer can choose the final solution to be manufactured. It has been shown that
Differential Evolution and Particle Swarm Optimization are well suited for the application
in circuit design. Here only an exemplary test case has been shown for which a rather
small number of objectives has been regarded. In future work more objectives should be
included in the optimization process. For that case also better visualization techniques
are needed as presented in [Adr07] to allow a concise overview about optimization results.
As can be seen in Figure 5.8, even for three objectives the display of results may be
enhanced. Furthermore, the coupling between the optimization tool and the simulation
tool may be further improved to speed up the optimization process.

5.6 Summary and Future Work

It was shown in this chapter that many questions arise when extending single-objective
optimization algorithms for multi-objective optimization. Due to the presence of several
objectives, a simple comparison of objective function values is no longer possible to eval-
uate the performance of solutions. Instead, more complicated performance measures are
needed which transform the multi-dimensional solutions into an easier assessable form.
From all multi-objective optimization algorithms which have been developed so far, NSGA-
II is probably the one which has the largest impact. Many algorithms incorporate con-
cepts from NSGA-II, and algorithm comparisons generally include results from NSGA-II.
In this chapter four variants of multi-objective Differential Evolution based on NSGA-II
have been compared that differ in the selection scheme and in the assignment of crowding
distance. It was indicated that it is preferable to use the original DE selection scheme
instead of adding all trial vectors to the population, so elitism is less pronounced and di-
versity is increased. Because of the already increased diversity, no conclusive statements
about the effects from the adapted crowding distance calculation could be made for the
DE selection scheme. It is assumed that effects will only be visible for more compli-
cated optimization problems. In contrast, improved results could be seen when using the
adapted crowding distance calculation for the NSGA-II selection scheme, showing that
this method is indeed able to increase the diversity.
For Particle Swarm Optimization even more issues appear when extending it for multi-
objective optimization because it has to be defined what the personal best position and
neighborhood best position mean in a multi-objective context. Usually archives are used
to store non-dominated solutions but still it has to be decided which solutions to include
in the archive, which ones to delete if a restricted archive is full, and which ones to use as
global best positions in the update equations. Besides, it seems to be beneficial to include
additional operators to improve diversity for optimizing complex problems.
Nevertheless, it has been shown that even without additional operators a multi-objective
PSO and also a multi-objective DE algorithm can be successfully used for the optimization
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of an operational amplifier. The quality of a reference design that was tuned by an expe-
rienced analog designer has been reached by both algorithms. Additionally, a large range
of other non-dominated solutions has been generated, meaning that these optimization
algorithms are able to offer considerable freedom of choice to a decision maker.
Multi-objective optimization is a very active research topic. Similar to constrained op-
timization, there are also dissertations in the literature which exclusively treat multi-
objective optimization [Zit99, Vel99, Kno02, Fie03], thus only some issues could be shown
here. Multi-objective optimization techniques still need to be improved to be able to cope
with the complex problems that arise e.g. in engineering. Besides diversity issues (which
may be regarded in objective space but depending on the application also in parameter
space [Kuk06b, Deb01b]), the focus should be on methods for dealing with computa-
tionally expensive objective functions [Hug06]. Furthermore, optimization problems with
more than two objectives (also called many-objective optimization) provide even more
challenges than the bi-objective problems which are often regarded in the literature due
to easier visualization [Adr07]. However, there are visualization techniques like parallel
coordinates that allow graphical illustrations of results even for many more than two
objectives [Adr07]. In the context of many-objective problems, it is also important to
examine how objectives can be excluded or transformed into constraints depending on in-
termediate results of the optimization process to decrease the problem complexity [Fle05].
Also the further examination of appropriate performance measures is important. Much
work has been done already [Zit03] but often the performance measures are still difficult
to evaluate, e.g. different (and also contradicting) results can be obtained [Kuk05, Tuš07].
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Chapter 6

Stopping Criteria

After initialization, evolutionary algorithms work iteratively by successively generating
new generations of solutions (see Figures 3.5 and 3.10). Usually, they do not have a built-
in mechanism for terminating an optimization run (in contrast to some other optimization
algorithms [Pet01]). Thus, "external" stopping conditions are needed which cause the
execution of an algorithm to end.
Even the performance of a very good optimization algorithm may be bad for practical
purposes when it is not stopped at a proper time. Usually the primary goal for the appli-
cation of optimization algorithms is convergence to the global optimum and the secondary
goal is to use the least computational effort. However, the detection of convergence to the
optimum is not necessarily a trivial task, especially if real-world problems are optimized
for which no knowledge about the global optimum is available. As a consequence, it is not
easy to decide when the execution of an optimization algorithm should be terminated.
If the execution of the algorithm is stopped too early, convergence may not yet been
reached. In contrast, if the algorithm is terminated too late, computational resources are
wasted. Because real-world problems usually contain computationally expensive objective
and constraint functions that may result in optimization runs which take several days,
it is imperative that unnecessary function evaluations are avoided. In that case, it is
reasonable to terminate an optimization run if it is expected that hardly any additional
improvement may be achieved. In other words, the ratio of solution quality to calculation
time should be maximized [Rud04].
This is especially important if many scenarios which vary in their parameter settings
should be optimized. An example is the power allocation problem presented in Sec-
tion 4.2.4. It is interesting to have several results in dependence on the target bit error
rate to meet the different quality requirements that result from diverse applications like
voice or multimedia services. Furthermore, if different distributions of user locations
should be regarded in a Monte Carlo simulation, many optimization runs are needed, so
wasting of computational resources has to be prevented.
If an optimization run is monitored by an experienced user of optimization algorithms
and the available information is detailed enough, an appropriate time for stopping the
run may be derived by observing the development of several characteristics which will
be discussed in the following. However, for the integration of optimization algorithms
into automatic design processes a proper time for terminating a run must be detected
automatically.
For theoretical work about convergence properties or for a comparison of different algo-
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rithm implementations the definition of stopping criteria is generally not difficult because
for this purpose usually test functions with known optima are employed. In that case,
the execution of the algorithm can be terminated if the optimum is found with a given
accuracy, and the involved computational effort can be used to analyze the performance
of different algorithms. An alternative is to terminate after a defined number of function
evaluations and to evaluate the distance of the best individual to the optimum. This
approach works well for theoretical work when algorithm variants are tested against each
other but for real-world problems the situation is different because the optimum is usually
unknown.
A stopping rule for problems with unknown optimum that is widely used in the literature
is to terminate the execution of an algorithm after a given maximum number of function
evaluations FEmax (called LimFuncEval in the following). This approach is associated
with two problems: Suitable settings for FEmax vary considerably for different optimiza-
tion problems. Generally no correlation can be seen between features of an optimization
problem and the required number of function evaluations, so usually FEmax has to be
figured out by trial-and-error methods. Besides, features of the optimization problem
are not necessarily known, particularly for real-world problems. A further problem is
that the number of objective function evaluations FEconv that is needed for convergence
for one specific optimization problem may also be subject to large variations due to the
stochastic nature of EAs. This statement holds for many different implementations of
DE and PSO as can be seen in [Hua06, Tak06, Tas06, Bre06c, Kuk06c, Mez06b, Zie06a]
for DE and in [Lia06b, Muñ06, Zie06b] for PSO. All these papers have been presented
during the CEC06 Special Session on Constrained Real Parameter Optimization that has
already been discussed in Section 4.4. The range of FEconv can be assessed by regarding
the standard deviation of function evaluations for reaching a predefined error measure.
This measure was often in the range of 103 − 104 but also up to 105. As a consequence,
a considerable safety margin of function evaluations must be included to ensure that the
optimum is found before termination of the algorithm if criterion LimFuncEval should be
used.
Due to these reasons, it is important to examine other alternatives for stopping the ex-
ecution of evolutionary algorithms besides termination after a fixed number of function
evaluations. In order to deal with the problem that is caused by fluctuations of FEconv,
the stopping criteria have to be able to detect when convergence is reached. Thus, they
have to react adaptively to the current state of an optimization run. The stopping criteria
have to ensure that the algorithm is executed long enough to obtain convergence to the
global optimum but without wasting of computational resources. An example is shown
in Figure 6.1 where a typical development of the best objective function value f(�x∗) is
given over time (using a DE algorithm for function g02, see Section 4.4). Although the
best function value stagnates for some time around 30, 000 function evaluations, the op-
timization run should be continued because better results can still be achieved. An ideal
stopping time would be around 60, 000 − 70, 000 function evaluations when it is assured
that the best function value will not improve further. Stopping after 70, 000 function
evaluations could be considered as wasting computational resources in this case. These
problems with temporary stagnation are not limited to DE but may also arise using other
algorithms, e.g. in [Jak04] similar problems are reported for an EA.
Unfortunately, it seems to be impossible to define a stopping criterion without introducing
one or more parameters. The parameter settings generally depend on the given optimiza-
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Figure 6.1: Exemplary optimization run

tion problem. In the following it is investigated if there are stopping criteria for which
the parameter settings are robust for different optimization problems or if parameters
can be set depending on certain aspects of the problem. It is assumed that the general
behavior of different optimization problems to stopping criteria is similar. It should be
kept in mind that limiting the number of function evaluations as a stopping criterion also
incorporates the choice of a problem-dependent parameter FEmax. Even if a problem
with known optimum is regarded and an optimization run should be terminated when
the optimum is found with a certain accuracy, the accuracy has to be set by the user.
Therefore, it is favorable to examine other possibilities for stopping that contain the ad-
vantage of reacting adaptively to the state of the optimization run. In that case, a large
range of the number of function evaluations for convergence FEconv does not lead to a
high computational overhead because of a cautiously set safety margin.
Stopping criteria for single-objective optimization have to be different from the ones for
multi-objective optimization because the goals are also different. In single-objective opti-
mization usually one global optimum should be found (there are some exceptions where
all optima of multimodal functions are wanted [Tho04, Zah04] but that is not regarded
further here) whereas in multi-objective optimization usually several Pareto-optimal so-
lutions should be generated. Therefore, the populations develop differently, so stopping
criteria for multi-objective optimization have to rely on different measures than stopping
criteria for single-objective optimization.
Despite the importance of stopping criteria for real-world problems, not much information
about this topic is available in the literature. It is not a new topic as e.g. already in 1977
this topic was addressed for single-objective optimization in [Sch77]. Nevertheless, few has
been done in the meantime, and even less for multi-objective optimization. In particular,
an overview about stopping criteria is missing that evaluates the available literature and
classifies the stopping conditions based on the property that they observe.
It is stated in [Sch95] that the effectiveness of a stopping criterion is closely related to the
procedure of a certain optimization strategy and not automatically transferable to other
algorithms. Nevertheless, there is few effort in the literature to transfer former findings
from older optimization algorithms to new ones like DE and PSO and to compare the
outcomes.
Therefore, in the following a large variety of different implementations of stopping criteria
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is discussed for single-objective as well as multi-objective optimization. A classification is
shown that is based on the property that is considered for deriving conclusions about the
optimization run. This classification has been developed within the scope of this thesis.
Considering the focus of this work, stopping criteria will be regarded which can be used
for DE and PSO but the applicability for other EAs is also discussed. Because there is
not much literature concerning stopping criteria for DE and PSO, some references are also
given for other EAs, especially GAs. Furthermore, the performance of a large number of
stopping criteria is evaluated for both single-objective and multi-objective optimization.

6.1 Single-Objective Optimization
Different characteristics can be used for deriving conclusions about the current state of
an optimization run. In principle any phenomenon can be used that exhibits a definite
trend from the beginning to the end of an optimization run. For instance both the
improvement as well as the movement of individuals are typically large in the beginning
of an optimization run and both become small when approaching convergence. Another
property that may be regarded is the distribution of population members: The individuals
are scattered throughout the search space initially but usually converge to one point
towards the end of an optimization run. Consequently, each of these features is basically
usable for detecting convergence.
Any of the before-mentioned population characteristics like improvement, movement and
distribution can be used in various implementations for the creation of stopping conditions
but the performance of different implementations is not necessarily similar. Therefore,
different alternatives for measuring population characteristics are introduced in the fol-
lowing. The criteria are grouped into several classes based on the property which they
regard for detecting convergence. After the presentation of the criteria, an assessment of
their performance for DE and PSO is given. The performance assessment is a summary
of several examinations which were done within the scope of this thesis and which are
presented in [Zie05b, Zie05c, Zie06e, Zie06d, Zie07c, Zie08c].

6.1.1 Classification

The stopping criteria which are discussed in this work have been grouped into six classes:

• Reference criteria,

• criteria based on limited resources,

• improvement-based criteria,

• movement-based criteria,

• distribution-based criteria,

• combined criteria.

In the following these classes are described in detail. Where possible, the stopping criteria
are visualized for a simple case where the objective function is only dependent on one
parameter.
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6.1.1.1 Reference Criteria

Reference criteria refer to stopping conditions which make use of the information about
the global optimum. Thus, they are only applicable if the global optimum is known.
This is usually only the case for test functions but not for real-world problems. There
are exceptions where information about the optimum is available, e.g. due to physical
limits [Pri05]. Apart from these exceptions, reference criteria are mostly used for the
assessment of convergence properties of an optimization algorithm or for comparisons of
several algorithms.
If the optimum is known, an optimization algorithm may be terminated when the optimum
is reached with a specified accuracy εg. Mostly, it is regarded as sufficient if one individual
fulfills this condition, i.e. the difference of its objective function value to the global
optimum is ε < εg (see Figure 6.2). For constrained problems it must also be assured that
the respective individual is feasible.

x

x

x

f(x) Global optimum
Population members
Best population member

ε

Figure 6.2: Reference criteria

As it is possible that the optimum is found because an individual was initialized close to
it by chance, it might be argued that this condition makes no reliable statement about
convergence properties of the algorithm. In that case it might be demanded that a certain
percentage of the population is located near the optimum before terminating a run. Of
course this only makes sense when assuming that all or at least most of the population
members will converge to the optimum eventually but that is usually true for DE and PSO.
However, especially for increasing search space the probability of initializing a position
within the given accuracy of the optimum is very low.

6.1.1.2 Criteria based on Limited Resources

In the literature a commonly used termination criterion is to stop after reaching a specified
number of generations Gmax or a maximum number of objective function evaluations
FEmax (LimFuncEval). It is also possible to stop if a certain CPU time has been spent.
These criteria are often used for comparisons: Algorithms are executed several times using
a defined budget of e.g. function evaluations, and afterwards statistics like the average,
minimum and maximum objective function values are checked. Additionally, they are
often used for real-world problems. The disadvantages associated with stopping after a
fixed number of function evaluations have already been discussed in the beginning of this
chapter to motivate the use of adaptive stopping criteria, so they are only summarized
shortly here: The number of function evaluations needed for convergence FEconv is strongly
dependent on the objective function, thus a suitable setting for FEmax has to be found
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using trial-and-error methods, and it also has to be considered that FEconv may have a
large range.
There are also cases for which the use of this criterion makes sense (apart from algorithm
comparisons as described above), e.g. there may be applications where it is necessary
to terminate after a certain time has been spend. This may be the case for on-line
(real-time) applications or if computer time is limited [Pri05]. Furthermore, it might
be reasonable to use a maximum number of generations Gmax or a maximum number of
function evaluations FEmax in combination with the adaptive stopping criteria introduced
in the following to prevent the algorithm from running forever if a criterion is not able to
stop the run. In that case, a large setting should be used for Gmax or FEmax, respectively,
because it is only used as a precaution.
In the literature also stopping criteria based on a limited number of generations can
be found where an appropriate setting of Gmax has been theoretically determined. For
example, in [Ayt00] an upper bound on the number of iterations required to reach the
global optimum with a certain level of confidence is derived for a GA. Thus, depending
on the desired confidence, computational resources will be assigned to the algorithm.
However, in [Saf04] it is stated that this stopping criterion is of little practical interest
because for a purely random algorithm a bound can be calculated that corresponds to the
result for GAs. Even without this limitation this criterion would still exhibit the problem
that computational resources may be wasted due to fluctuations in the number of function
evaluations necessary for convergence because no attempt is made to adaptively detect
the time when convergence is obtained.

6.1.1.3 Improvement-based Criteria

In the beginning of an optimization run usually large improvement in terms of objective
function values is achieved by the individuals (see Figure 6.3(a)). In contrast, the improve-
ment becomes small during later stages of an optimization run when individuals converge
towards the global optimum (see Figure 6.3(b)). As a consequence, it can be assumed
that convergence has been obtained if the improvement of the objective function value
decreases to a small value. Because improvement and movement do not necessarily occur
continuously and there may be stages without any improvement although the optimum
has not yet been found like shown in Figure 6.1, these measures should be monitored for
several consecutive generations. Because improvement can be measured in different ways,
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(a) Beginning of an optimization run: Large im-
provement
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(b) End of an optimization run: Small improve-
ment

Figure 6.3: Improvement-based criteria
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three conditions are examined here:

• ImpBest : The improvement of the best objective function value ∆f ∗
G is monitored

for each generation G:

∆f ∗
G =

f(�x∗
G−1) − f(�x∗

G)

|f(�x∗
G−1)|

(6.1)

where f(�x∗
G) = min

i
f(�xi,G) is the best solution of the current generation G and

f(�x∗
G−1) is the best solution of the previous generation G−1. The improvement

is defined for minimization problems (see also Section 2.1), thus improvement will
be positive if f(�x∗

G) < f(�x∗
G−1). It has to be noted that the improvement cannot

be calculated if f(�x∗
G−1) = 0, so this case has to be handled differently. If also

f(�xG) = 0, the improvement can be set to 0. In other cases the absolute difference
f(�x∗

G−1) − f(�x∗
G) may be checked.

If the improvement falls below a user-defined threshold t for ∆G consecutive gener-
ations, the optimization run will be terminated:

∆f ∗
g < t ∀g ∈ {G−∆G, . . . , G}. (6.2)

In case of a constrained optimization problem, ImpBest must be modified because
the best solution might be infeasible. The modification can be done as follows: If the
best solution is feasible in the current generation but it was infeasible in the previous
generation, the improvement is assigned an arbitrary high number because there
was definitely an improvement, so the algorithm should not stop. If an individual
is infeasible in both the current and the previous generation, the improvement is
calculated based on the constraint violation according to Equation 4.3.

A similar approach is also discussed e.g. in [Ber01] for Particle Swarm Optimization
and furthermore in [Syr95] to determine a suitable switch-over point from a Genetic
Algorithm to a local optimization technique.

• ImpAv : Because the best objective function value might not correctly reflect the
state of the whole population, the average improvement ∆fG computed from the
whole population is examined for this criterion:

∆fG =
1

NP

NP∑
i=1

f(�xi,G−1) − f(�xi,G)

|f(�xi,G−1)| . (6.3)

Similar to ImpBest, the improvement is positive if the objective function values
decrease from generation G−1 to G and furthermore the case f(�xi,G−1) = 0 must be
intercepted. An optimization run is terminated if the average improvement is below
a given threshold t for ∆G generations:

∆f g < t ∀g ∈ {G−∆G, . . . , G}. (6.4)

For PSO either the current positions �xi or the personal best positions �pi can be
taken as basis for ImpAv. In early examinations that have been done within the
scope of this thesis, the current positions have been used [Zie05c]. In [Zie07c] the
personal best positions have been employed instead because the current positions
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have many fluctuations whereas the development of the personal best positions is
more smooth, so decisions about termination of an optimization run can be made
more reliably. This way the application of this criterion to PSO is also more similar
to its application to DE. Thus, it might be assumed that suitable parameter settings
are more alike.
For constrained optimization the same modification can be done as described for
ImpBest : The transition from infeasibility to feasibility is rewarded with an arbi-
trary high number and the improvement for infeasible individuals is calculated on
the basis of constraint violation.

This criterion is also used in [Esp03] to stop a local search procedure that is embed-
ded in a Genetic Algorithm. For the same purpose similar criteria as ImpBest and
ImpAv are also employed in [Vas97]. Generally, criteria like ImpBest and ImpAv
can be used for many optimization algorithms. They are frequently found in the
literature although sometimes it is not expressed clearly if the best or the average
fitness is regarded.

• NoAcc: This criterion is slightly different for DE and PSO because it is based on
the internal working of the algorithms. Therefore, it has to be checked whether it
can be adapted if it should be applied to different optimization algorithms.

Because DE incorporates a greedy selection scheme, the acceptance of trial vec-
tors means that there is improvement in the population. Based on this fact, it is
monitored if at least one trial vector has been accepted in a specified number of
generations ∆G. The optimization run is terminated if this condition is violated:

|{�xi,g|i ∈ {1, . . . , NP} and �xi,g �= �xi,g−1}| = 0 ∀g ∈ {G−∆G, . . . , G}. (6.5)

For PSO NoAcc is adapted by observing if at least one new personal best position
has been found in a predefined number of generations [Zie07c]. Note that in early
work that was done within the scope of this thesis, it has been checked for PSO
if there is still improvement in any neighborhood [Zie05c]. The formulation based
on personal best positions has the advantage that it is more similar to the DE
formulation.

NoAcc uses the information whether an individual has been accepted for DE or if a
personal best position has been updated for PSO. Because the constraint-handling
method is included in the selection scheme and in the update of best positions, for
constrained optimization no explicit adjustment has to be done for NoAcc.

An advantage of NoAcc is that only one parameter has to be set whereas most other
stopping conditions that are presented here require the setting of two parameters.

NoAcc is also described for DE in [Pri05]. It is recommended to set ∆G not too low
because long periods without improvement may occur during optimization runs. It
is assumed that this behavior might be more common in DE than in other EAs.
In [Jak04] two similar criteria are used for determining a suitable time for switch-
ing from an EA to a local search technique. A neighborhood structure is defined,
and the number of consecutive generations in which no improvement was found
in any neighborhood is checked. For another criterion the number of consecutive
generations in which no individual was accepted in any neighborhood is monitored.
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There are some stopping criteria in the literature which are different from the ones pre-
sented here but may also be regarded as improvement-based. For example, in [Rim07]
the similarity between the decision when to terminate an optimization run of a GA and
the decision when to exercise a call option in economics and finance is utilized to derive a
so-called cost-benefit stopping criterion. A stopping boundary is built that considers the
termination payoff (the fitness reached) and the cost for continuing the optimization run,
thus it can be seen as improvement-based criterion. A disadvantage is that a model of
the algorithm behavior must be built for every optimization problem, meaning that the
algorithm must be run many times for collecting statistics about the fitness.
Another variant of an improvement-based criterion is presented in [Fal01]. An algorithm is
used that represents a type of GA but with a problem-dependent data structure consisting
of a vector of integer numbers. A linear function is approximated using the solutions of
the last ∆G iterations, and the execution of the algorithm is terminated if the slope of
the function approaches zero. ∆G = 100 is used in [Fal01], and the slope must be less or
equal to 0.01.

6.1.1.4 Movement-based Criteria

In the beginning of an optimization run the individuals are randomly scattered in the
search space. As a result, large step sizes are generated in mutation and recombination
for DE because they are dependent on vector differences (see Figure 6.4(a)). Because
the neighborhood best solutions might be far away from the current positions, the PSO
particles will also have a large velocity. Towards the end of an optimization run the
population generally converges to one point in the search space. Thus, step sizes become
small because the individuals are close to each other (see Figure 6.4(b)). Consequently,
the movement of individuals in parameter space can also be used to derive a stopping
criterion:

• MovPar : If the average movement of the population members

∆xG =
1

NP · D
NP∑
i=1

D∑
j=1

|xi,j,G−1 − xi,j,G| (6.6)

is below a threshold t for a given number of generations ∆G, the optimization run
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(a) Beginning of an optimization run: Large move-
ments

x

x

x

f(x) Global optimum (not known!)
Population members
Members of previous generation

(b) End of an optimization run: Small movements

Figure 6.4: Movement-based criteria
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is terminated:
∆xg < t ∀g ∈ {G−∆G, . . . , G}. (6.7)

In contrast to ImpBest and ImpAv, it does not make sense to define the movement
in relation to the previous value (see Equations 6.1 and 6.3) because parameter
space is regarded here.

Similar as for ImpAv, this criterion was calculated using current positions for PSO
in [Zie05c] but personal best position have been regarded in [Zie07c] because it
is assumed that their development is more smooth and therefore better suited for
defining stopping conditions.

Criterion MovPar does not need any adjustment for constrained optimization be-
cause only the changes in positions of individuals are observed, regardless of their
feasibility. It is possible to expand this criterion by demanding a certain percentage
of the individuals (or at least the best one) to be feasible.

MovPar is also usable for other evolutionary algorithms with real-coded variables. It
might be possible to adapt it also for binary-coded individuals if a suitable distance
measure can be found. Moreover, stopping criteria like this are used in classical
optimization algorithms like hill climbing techniques [Sch77, Sch95].

Movement of individuals can be measured both in parameter and in objective space (see
also [Saf04] where for GAs it is distinguished between genotypical and phenotypical ter-
mination criteria). Because of the greedy selection scheme of DE, the objective function
value can only improve but not deteriorate. As a result, a stopping criterion based on
movement in objective space would be equal to an improvement-based criterion. In con-
trast, a criterion MovObj could be used for other evolutionary algorithms, e.g. PSO,
which permit deterioration of objective function values. This holds only if current posi-
tions are regarded as done in [Zie05c]. If personal best positions are used as in [Zie07c],
MovObj is also the same as ImpAv for PSO.

• MovObj : If the average movement of the population members in objective space

|∆fG| =
1

NP

NP∑
i=1

∣∣∣∣f(�xi,G−1) − f(�xi,G)

f(�xi,G−1)

∣∣∣∣ (6.8)

is below a threshold t for ∆G generations, the optimization run is stopped:

|∆f g| < t ∀g ∈ {G−∆G, . . . , G}. (6.9)

For criterion MovObj the same adjustment for constrained optimization problems
can be done as for ImpBest and ImpAv.

6.1.1.5 Distribution-based Criteria

In single-objective optimization the DE and PSO population members usually converge
to one point in the search space towards the end of an optimization run whereas they
are scattered throughout the search space in the beginning of a run due to the random
initialization. As a result, the distribution of individuals can be used to derive conclusions
about the state of an optimization run. In contrast to criteria based on improvement
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or movement, the distribution of individuals does not need to be checked for several
consecutive generations because oscillations are considerably less likely to appear.
Several possibilities exist to measure the distribution of individuals. One of the easiest
alternatives is the following:

• MaxDist : The maximum distance of any population member to the individual with
the best objective function value is monitored in parameter space:

∆xmax−best,G = max
i

√√√√ D∑
j=1

(
xi,j,G − x∗

j,G

)2
. (6.10)

Criterion MaxDist is visualized in Figure 6.5(a) where the dashed arrows indicate
that the distances of all population members to the best individual have to be
calculated but only the largest distance (solid arrow) is used for MaxDist. It should
be noted that the largest distance does not need to be between the best and the
worst individual (as it is the case in the figure incidentally) because the shape of
the objective function might be different.
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Figure 6.5: Distribution-based criteria

If the maximum distance falls below a threshold m, the optimization run is termi-
nated:

∆xmax−best,G < m. (6.11)

For PSO this criterion has been checked using current positions in [Zie05c] whereas
personal best positions have been used in [Zie07c] to avoid fluctuations.

For MaxDist no adjustment for constraint-handling is needed because only positions
are examined, same as for criterion MovPar.

Two similar criteria based on the maximum swarm radius and based on a cluster
analysis are also discussed in [Ber01] for PSO. In [Pri05] a slightly different stopping
condition is suggested for DE. It ends the execution of the algorithm if the longest
vector difference is several orders below the desired accuracy of the optimum. In
contrast to MaxDist the best solution is not used for this criterion. Instead only the
largest distance between two population members is regarded. As a result, MaxDist
needs less computational effort because the best member is identified anyway, and
only differences to the best member are calculated.
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If more information should be included than only observing the maximum distance to the
best individual, the positions of all population members might be regarded as follows:

• StdDev : The standard deviation of positions of all population members is examined:

σx,G =

√√√√ 1

NP − 1

NP∑
i=1

(ri,G − r̄G)2 (6.12)

with the distance ri,G of population member �xi to the origin

ri,G =

√√√√ D∑
j=1

(xi,j,G)2 (6.13)

and the average position

r̄G =
1

NP

NP∑
i=1

ri,G. (6.14)

The optimization run is stopped if the standard deviation of positions drops below
a given threshold m:

σx,G < m. (6.15)

This criterion has also been checked using current positions for PSO in [Zie05c]
whereas personal best position were regarded in [Zie07c].

Same as for MaxDist and MovPar no adjustment for constrained optimization is
necessary because only positions are considered.

In [Zah03b] a similar criterion is used for DE. In [Pri05] it is also suggested to monitor
the standard deviation of population vectors. For termination of the algorithm it
is recommended that the standard deviation should be several orders of magnitude
smaller than the desired accuracy of the optimum.

In [Olo08] several measures of particle swarm diversity are given. An evaluation
showed that the most suitable one is the average distance around the swarm center.
This is very similar to the standard deviation defined here, with the exception that
the normalization is slightly different.

Especially the observation of PSO individuals during optimization runs has inspired the
following generalization of MaxDist in [Zie05c]:

• MaxDistQuick : During an optimization run a state may occur where most popu-
lations members have already converged to the vicinity of the optimum but some
individuals are still searching in regions which are far away. Therefore, instead of
examining the maximum distance of all population members to the current best
individual, only a subset of the current population is used. For this purpose, the
population members are sorted due to their objective function value using a Quick-
sort algorithm. Only for the best p ·NP (with 0 < p ≤ 1) of the population members
it is checked if their distance to the best member is below a threshold m.

In contrast to MaxDist that does not need to be adjusted for constrained optimiza-
tion because only positions are considered, MaxDistQuick needs to be adapted. The
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reason is the sorting procedure that regards objective function values which cannot
necessarily be calculated for infeasible individuals. There are basically two possibil-
ities how to adjust MaxDistQuick : Either it is also checked if the best p ·NP of the
individuals are feasible (this method is used in this work) or the sorting is adjusted,
so that feasible individuals are always regarded better than infeasible individuals,
and infeasible individuals are sorted according to their constraint violation.

MaxDist can be derived from MaxDistQuick by setting p to 100%.

A generalization of StdDev can be defined as follows:

• StdDevQuick : Similar to MaxDistQuick, the population is first sorted due to their
objective function value using a Quicksort algorithm. The standard deviation of
positions is then calculated for the best p · NP of the population and compared to
the user-defined threshold m.

For StdDevQuick the same adjustment for constrained optimization can be done as
for MaxDistQuick.

Similar to the relationship between MaxDist and MaxDistQuick, StdDev is a special
case of StdDevQuick with p = 100%.

All distribution-based criteria that have been mentioned so far are calculated in parameter
space. Another possibility to evaluate the distribution of the population members is to
regard objective space:

• Diff : The difference between best and worst objective function value

∆fmax−min,G = max
i

f(�xi,G) − min
i

f(�xi,G) (6.16)

is tested in each generation if it is below a given threshold d (see Figure 6.5(b)):

∆fmax−min,G < d. (6.17)

For constrained optimization it may also be reasonable to demand that at least p·NP
of the individuals are feasible. Otherwise Diff could lead to early termination of
an optimization run if e.g. only two individuals are feasible and they are close to
each other by chance but the population has not converged yet. Fortunately, it will
be discussed later (see Section 6.1.2) that parameter p may be omitted as there
was no dependence on p to be seen in any of the conducted examinations. In the
actual implementation it only has to be assured that there are at least two feasible
individuals in the population to avoid access to possibly non-initialized memory.

A similar implementation of this criterion without parameter p is described in [Pri05]
and [Bab03a] for DE, and in [Sch77, Sch95] for ESs. Same as for the criteria based
on the longest vector difference and the standard deviation, it is recommended in
[Pri05] to set d to a value that is several orders of magnitude lower than the desired
accuracy of the optimum.

Apart from the already mentioned distribution-based criteria from literature which are
similar to the criteria examined during the scope of this work, another stopping criterion
that can be regarded as a distribution-based criterion but follows a different approach can
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be found in [Her05] for a so-called generic EA. The distribution is not measured in one
population but several optimization runs are conducted in parallel using the same random
numbers but different initial populations. It is stopped when the populations are equal
for all parallel optimization runs (where the search space is restricted to a limited number
of discrete points). It is an interesting stopping criterion because in practical applications
it is also common to perform multiple runs of an optimization algorithm and to choose
the best solution of all runs as the result. However, again the fact is not taken into
account that optimization runs might require different numbers of function evaluations
for convergence, thus computational resources are wasted.
No specific information about DE or PSO is used for the distribution-based criteria, so
in principle they can be used for other algorithms also. Only if another representation
than real-coded vectors is used for the positions of the individuals, the distribution-based
criteria in parameter space have to be adapted.

6.1.1.6 Combined Criteria

Because functions have different features, it might be concluded that a combination of
different stopping criteria may result in good performance. Besides, this is exactly what
a human observer would do: Check several characteristics to obtain an overview about
the state of the population that is as comprehensive as possible. Therefore, for example
an criterion like Diff that is easy to check can be tested first. Because the first criterion
might fail for certain characteristics of the objective function (e.g. it was shown in former
work [Zie05c] that Diff fails for functions with a flat surface; this will also be discussed in
Section 6.1.2), a second criterion that is based on another mechanism might be evaluated
after the stopping condition of the first criterion has been fulfilled. In former work the
following combined criteria were tested:

• ComCrit : First, the improvement-based criterion ImpAv is evaluated. If ImpAv in-
dicates that the optimization run should be stopped, the distribution-based criterion
MaxDist is regarded additionally.

• Diff_MaxDistQuick : In this case, distribution-based criteria in objective and pa-
rameter space were joined (Diff and MaxDistQuick). MaxDistQuick is only checked
if the stopping condition of Diff has been fulfilled.

This criterion was suggested in [Zie05c] because Diff resulted in reliable stopping
behavior for all functions except for one with a flat surface. The combination with
a distribution-based criterion in parameter space should avoid this behavior.

The combined criteria are composed of several already presented stopping criteria. The
same adjustments for constrained optimization can be done for them as for the individ-
ual criteria, and the same comments regarding the applicability for other optimization
algorithms hold.

6.1.2 Assessment of Performance

Several examinations of stopping criteria for single-objective optimization have been done
within the scope of this thesis [Zie05b, Zie05c, Zie06e, Zie06d, Zie07c, Zie08c]. In this
section the results of these studies are summarized and evaluated. When reviewing the
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results, it must be kept in mind that the conditions were not the same in all examina-
tions. Thus, in the following first some details about the examinations are given before
summarizing the findings.

6.1.2.1 Experimental Settings

The first examination about stopping criteria for single-objective optimization that was
done within the scope of this thesis has regarded eight unconstrained test problems. The
results were published in [Zie05b] for DE and PSO. The examination was extended by a
run time analysis of the stopping criteria [Zie05c]. A constrained real-world problem con-
sisting of the power allocation problem with parallel interference cancellation described
in Section 4.2.4 has been regarded in [Zie06d] and [Zie07c] for PSO ([Zie07c] is an ex-
tended version of [Zie06d] that has been published in a journal) and in [Zie06e] for DE.
Furthermore, 16 constrained test problems have been examined in [Zie08c] for DE.
All examinations have been conducted using the variant DE/rand/1/bin but different
parameter settings have been applied for DE (see Table 6.1). For PSO not only different
parameter settings but also different neighborhood topologies were used (see Table 6.2).
Besides the parameter settings, in Tables 6.1 and 6.2 also details of the test problems are
specified (from left to right): Number of test problems used in the respective examination,
presence of constraints, dimension of test functions, characteristics. Furthermore, the
desired accuracy of the global optimum εg (see also Section 2.3) and some remarks are
given. In some of the cited papers not all details of the results could be given due to
space limitations. Some of them are presented here for the first time where useful for the
thorough evaluation of stopping criteria. This especially applies to [Zie05c].
Not every stopping criterion has been used in each examination, either because it was
shown earlier that it does not provide good results or because it was developed later (or
because criteria are equal to each other, e.g. ImpAv and MovObj for DE). Table 6.3
provides an overview which criterion has been used in which examination.

Table 6.1: Details of examinations concerning stopping criteria for single-objective DE

DE parameters Test problems
Citation NP F CR # Constr. D Characteristics εg Remarks
[Zie05c],
[Zie05b]

20 0.9 0.5 8 No 2 3 unimodal (1 with
flat surface), 5 multi-
modal

10−3 Results for PSO were also
shown in [Zie05c] and
[Zie05b] (see Table 6.2)

[Zie06e] 30 0.7 0.9 1 Yes 16 Power allocation
problem from Sec-
tion 4.2.4

0.07 Parameters set according
to parameter study in
[Zie06f]; results for PSO in
[Zie06d] and [Zie07c]

[Zie08c] 50 0.7 0.9 16 Yes 2-
15

Different features,
functions chosen
based on [Zie06a]

10−4,
10−2

Similar examination for
PSO not yet done; allowed
remaining constraint vi-
olation for equality con-
straints is εe = 10−4
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Table 6.2: Details of examinations concerning stopping criteria for single-objective PSO

PSO parameters Test problems
Citation Neigh. NP w c1 c2 # Constr. D Characteristics εg Remarks
[Zie05c],
[Zie05b]

lbest 20 0.8 1.8 1.7 8 No 2 3 unimodal (1
with flat sur-
face), 5 multi-
modal

10−3 Results for DE were also
shown in [Zie05c] and
[Zie05b] (see Table 6.1);
�xi used for stopping
conditions

[Zie06d],
[Zie07c]

von-
Neu-
mann

64 0.6 0.4 1.4 1 Yes 16 Power alloca-
tion problem
from Sec-
tion 4.2.4

0.07 Parameters set according
to parameter study in
[Zie09]; results for DE
in [Zie06e]; [Zie07c] is an
extended version (journal)
of [Zie06d]; �pi used for
stopping conditions

Table 6.3: Stopping criteria used in different examinations

Stopping criterion [Zie05b] [Zie05b] [Zie05c] [Zie05c] [Zie06e] [Zie06d, Zie07c] [Zie08c]
(DE) (PSO) (DE) (PSO) (DE) (PSO) (DE)

ImpBest x x x x x
ImpAv x x x x x
NoAcc x x x x x

MovPar x x x x x x
MovObj x
MaxDist x x x x x x x

MaxDistQuick x x x x x x x
StdDev x x x x x x x

StdDevQuick x
Diff x x x x x

ComCrit x x x x x x
Diff_MaxDistQuick x x

6.1.2.2 Results

ImpBest The results of ImpBest are clearly the worst in almost all examinations (an
exception is [Zie07c] where a high convergence rate could be found for some parameter
combinations using PSO). The reason can already be seen in Figure 6.1: The decrease
of the best objective function value may stagnate for some time during an optimization
run although the optimum has not been found yet. If only the improvement of the best
solution is regarded, wrong conclusions may be derived that lead to early termination
of the optimization run. It might be tried to balance the effect of the stagnation of the
best function value by using a large setting for the number of consecutive generations ∆G
which are regarded for ImpBest. This might also mean that many function evaluations
are wasted when convergence has been obtained.
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ImpAv The performance of ImpAv is always better than the performance of ImpBest.
This result confirms the assumption that a more reliable statement about the state of
the population can be given when regarding the improvement of all population members
instead of only monitoring the best one. For PSO this criterion still had a very bad per-
formance in [Zie05c] whereas in [Zie07c] it was considerably better. This result supports
the assumption that the personal best positions and not the current positions should be
regarded for stopping criteria. Using DE convergence rates of 100% could be found for
several parameter combinations in the examinations of [Zie05c] (not shown in the paper
due to space limitations), [Zie06e] and [Zie08c]. Unfortunately, it is difficult to choose
parameter settings. The influence of parameter t is larger than the influence of g, and
suitable parameter settings vary considerably for different functions. Besides, it is not
clear how parameter settings should be modified for varying demands concerning the ac-
curacy of the result. A connection between parameter settings and the desired accuracy
cannot be seen, thus trial-and-error methods have to be used for figuring out suitable
parameter settings.

NoAcc Naturally, all improvement-based stopping criteria exhibit problems for func-
tions with a flat surface [Zie05c] because improvement is low for a large part of the search,
so the stopping criteria terminate the optimization runs too early. Apart from that, NoAcc
showed relatively good results for DE in [Zie05c, Zie06e]. However, the missing scalabil-
ity to values smaller than 1 led to late detection of convergence and thereby to a high
additional computational effort in [Zie08c]. Furthermore, appropriate parameter settings
vary for different functions. For PSO NoAcc had a poor performance in [Zie05c] and even
worse results in [Zie07c]. Consequently, this criterion cannot be recommended for PSO.
It is usable for DE if appropriate parameter settings can be found. An advantage is that
it is easy to check because only the number of accepted individuals has to be counted.
On the other hand, NoAcc cannot be recommended without hesitation due to the already
mentioned disadvantages (scalability, late detection of convergence), together with the
missing connection between parameter settings and the desired accuracy of the result.

MovPar Criterion MovPar had a good performance for DE and PSO in [Zie05c]. The
only exception was a function with a flat surface for which DE was constantly terminated
too early. This result can be explained by DE’s greedy selection scheme. For PSO differ-
ent behavior was noticed because the current positions and not the personal best positions
were monitored for calculating stopping conditions. Choosing of suitable parameter set-
tings is again difficult as can be seen in [Zie06e, Zie08c] for DE and in [Zie07c] for PSO.
With appropriate parameter settings good results may be achieved. Same as for ImpAv,
the dependence on t is larger as the dependence on g although the influence of g cannot
be neglected. It is unclear how parameter settings must be modified for different demands
concerning accuracy.

MovObj An examination of MovObj was only done in [Zie05c] for PSO using current
positions for the calculation of stopping criteria because this criterion equals ImpAv for
DE as well as for PSO using personal best positions for stopping criteria. The results were
bad for a function with a flat surface but for six out of seven other functions convergence
rates of 100% have been reached reliably, and for the remaining function the convergence
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rate was also above 90% (not all of these results have been published in [Zie05c] due to
space limitations). Therefore, this criterion may be used for PSO but the same limitations
hold as already discussed for ImpAv and MovPar : Suitable parameter settings can only
be found with trial-and-error methods, and a connection between parameter settings and
the demanded accuracy cannot be seen.

MaxDistQuick In contrast to the before-mentioned criteria, for the distribution-based
criteria some relation could be seen between the desired accuracy of the result εg (see also
Section 6.1.2.1) and the parameter settings. In the following an overview about parameter
settings which showed a good performance is given for DE using MaxDistQuick :

• [Zie05c]: m = {10−3, 10−4} (with a demanded accuracy of εg = 10−3). For smaller
m, the dependence on p decreased.

• [Zie06e]: m = {10−1, 10−2} (with a demanded accuracy of εg = 0.07). Again, only
a negligible dependence on p could be seen.

• [Zie08c]: In this examination the results are less clear because of the broad range of
functions. For several functions convergence rates of 100% have already been found
with m = 10−2 but for the majority of functions m = 10−4 provided better results
for an accuracy of εg = 10−4. For an accuracy of εg = 10−2 most functions were
terminated at a suitable time with m = 10−2. For the functions that could not even
be terminated reliably using m = 10−5 for an accuracy of εg = 10−4, smaller settings
had to be used. Only for function g18 no suitable parameter settings could be found,
neither for εg = 10−4 nor for εg = 10−2. The dependence on p was again minor.
Because the number of function evaluations increased only slightly with growing p,
large values of p may be used. Keeping in mind the additional computational effort
associated with the sorting in MaxDistQuick, it is sufficient to use MaxDist.

For PSO the following results were obtained:

• [Zie05c]: A larger dependence on p could be seen than for DE. This behavior was
already noticeable when examining a reference criterion that led to termination when
a certain percentage p of the population has converged. While for DE the number
of function evaluations for convergence increased linearly with growing p, for PSO
linear behavior was noticed for small p whereas the behavior changed to a quadratic
function for p > 0.6. The reason is that often a situation occurs where the majority
of particles has converged to the optimum while some particles still wander through
the search space. This behavior generally does not occur that distinctly for DE due
to the greedy selection scheme. A similar behavior was also noticed in [Olo08] where
the authors state that outliers are a characteristic of PSO. Therefore, in [Zie05c] it
was recommended to use 0.3 ≤ p ≤ 0.6 and m = {10−3, 10−4} for an accuracy of
εg = 10−3 for MaxDistQuick (p should not be chosen too small because otherwise
premature convergence may occur). The computational effort increases due to the
incorporated Quicksort algorithm [Zie05b] but it is assumed that this computational
effort is negligible when optimizing computationally expensive real-world problems.

• [Zie07c]: Similar conclusions as in [Zie05c] were reached: 0.3 ≤ p ≤ 0.5 and
m = 10−2 showed the best performance for an accuracy of εg = 0.07.
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In summary, MaxDistQuick is an interesting criterion that leads to reliable termination
when proper parameter settings have been found. Mostly, parameter m should be set to
values of the same order of magnitude or one order lower than the desired accuracy of the
result. In that case reliable termination is obtained after the algorithm has converged but
without wasting many computational resources. As there are functions that need different
settings of m, still some test runs are necessary when applying MaxDistQuick but this is
also the case for LimFuncEval.

StdDevQuick The criterion StdDevQuick has been introduced in [Zie08c] for DE. In
previous examinations only the special case StdDev has been examined. As StdDev and
MaxDist rely on similar mechanisms, similar results have been obtained. StdDev some-
times yielded slightly better results than MaxDist [Zie06e]. Furthermore, a difference for
DE is that suitable parameter settings were shifted. Generally, smaller settings of m were
needed to achieve the same convergence rates (m = 10−4 for an accuracy of εg = 10−3 in
[Zie05c] and m = {10−2, 10−3} for an accuracy of εg = 0.07 in [Zie06e]). The dependence
on p was negligible but for MaxDistQuick the influence was also more noticeable when
using PSO.
For PSO the shift of suitable parameter settings in comparison to MaxDist could not be
seen in [Zie05c] (m = 10−1 had to be used for both MaxDist and StdDev). In [Zie07c] the
same effect appeared as for DE in [Zie06e]: Suitable parameter settings were shifted and
StdDev yielded better results than MaxDist. The best results were reached for m = 10−2

in [Zie07c] for an accuracy of εg = 0.07 (for MaxDist the best setting was m = 10−1

although for MaxDistQuick with smaller p the setting m = 10−2 was better).
Recapitulating, similar conclusions can be derived as for MaxDistQuick : Reliable detec-
tion of convergence is obtained if suitable parameter settings are used. Often a connection
can be seen between appropriate parameter settings and the desired accuracy but this does
not hold for every function. Parameter settings which yield good results are often one
order of magnitude lower than for MaxDistQuick. This can be explained by the fact that
not actual vector differences are regarded here but only the standard deviation of posi-
tions. Furthermore, the results of StdDev (or StdDevQuick, respectively) are often better
in terms of convergence rate than the results of MaxDist or MaxDistQuick, respectively.
Convergence is also detected more quickly. Because the results for MaxDistQuick varied
considerably more with p for PSO than for DE, in future work the generalized criterion
StdDevQuick should also be tested for PSO.

Diff For criterion Diff difficulties were noticed for a function with a flat surface in
[Zie05c] for both DE and PSO. This can be explained by the fact that when all indi-
viduals yield the same objective function value, the algorithm terminates using criterion
Diff regardless of the distribution in parameter space. This criterion only has a chance
for termination at a reasonable time if at least one objective function value is initialized
differently from the other ones. For the other test functions in [Zie05c], criterion Diff
resulted in reliable convergence behavior for d ≤ 10−3 (DE) or d ≤ 10−1 (PSO), respec-
tively. In [Zie06e] the new parameter p was introduced into Diff for constrained problems
using DE. The performance was relatively constant concerning p, and reliable convergence
behavior was found for 10−2 ≥ d ≥ 10−4 (where the number of function evaluations in-
creased for decreasing d, thus d = 10−2 gave the best result). For PSO also no trend could
be seen regarding p in [Zie07c] for a constrained problem, and the best result was shown
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for d = 10−2. In [Zie08c] the clearest indication was found that there is a connection
between parameter settings and the desired accuracy of the result: Convergence rates of
100% have been achieved for all 16 functions for d ≤ 10−5 when demanding an accuracy of
εg = 10−4. For εg = 10−2 a similar result has been obtained as convergence rates of 100%
have been achieved for all functions with d ≤ 10−3 which is again one order of magnitude
smaller than the desired accuracy. It can be concluded that choosing suitable settings
of parameter d is easier than for other stopping criteria because a connection to the de-
manded accuracy can be made (at least for DE; for PSO still more extensive examinations
are necessary). As no dependence on p could be seen in any examination, this parameter
can be omitted.

Combined Criteria The combined criteria ComCrit and Diff_MaxDistQuick always
needed more function evaluations for detecting convergence than the individual criteria
in all examinations. Besides, selecting appropriate parameter settings was complicated
because three parameters have to be set for both stopping criteria in contrast to one or
two parameters for the individual criteria, respectively. Moreover, the connection between
parameter settings and problem features like the desired accuracy which could be seen for
some of the individual criteria was obliterated. Although the idea of combined criteria
seemed promising, these disadvantages discourage from using them.

Summary In summary, criterion Diff is the most advantageous from all stopping cri-
teria which were tested within the scope of this thesis. In most cases convergence was
detected reliably and quickly. Furthermore, setting of parameters is easy. Parameter p
could be omitted as no dependence on it could be seen. Thus, only one parameter has to
be set whereas most of the other criteria include two parameters. In addition, parameter
d seems to be closely linked to the desired accuracy of the results (this conclusion holds
mainly for DE whereas for PSO more examinations have to be done). A limitation of Diff
is that it yields bad results when an optimization problem contains an objective function
with a flat surface. Fortunately, it can be argued that this is a special case that rarely
occurs. Moreover, it can be discovered easily when the optimization run is monitored, so
in that case another stopping criterion could be employed.
Additionally, Diff is advantageous in contrast to the distribution-based criteria in pa-
rameter space if several parameter combinations yield the same objective function value,
especially if the positions are in different regions of the search space. In this case the
distribution-based criteria in parameter space would waste computational resources while
the algorithm tries to converge to one point in the search space, with no or only little
improvement of the objective function value. In contrast, the optimization run would be
terminated earlier using Diff.
Although it was shown in [Zie05b] that the time complexity is similar for most stopping
criteria (except for the additional effort for the Quicksort algorithm), the absolute time
for calculating stopping conditions may still vary. For real-world problems with computa-
tionally expensive constraint and objective functions it can generally be assumed that the
computational effort for calculating stopping conditions is negligible but there may also be
applications where this effort is noticeable. Apart from the advantages discussed above,
Diff has the additional benefit that it is easy to calculate: The best objective function
value is usually monitored anyway, meaning that only the worst objective function value
has to be found, and the difference between best and worst value has to be computed.
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Thus, a stopping criterion like Diff can be applied to unknown optimization problems, and
it is expected to need very little computational effort for determining a suitable setting for
its parameter. Afterwards, it can adaptively detect a suitable time for termination even
for problems with large fluctuations in the number of function evaluations for convergence.

6.2 Multi-Objective Optimization

It was shown in the previous section that distribution-based stopping criteria provide the
best results for single-objective optimization. For multi-objective problems this concept
cannot be transferred in the same way because usually multiple Pareto-optimal solutions
exist, meaning that the individuals will not converge to one point in the search space.
Monitoring the movement of individuals as done for single-objective optimization may also
lead to false conclusions because the individuals may still move along the Pareto-optimal
front after the population has converged to it. If the improvement of individuals should
be taken as basis for stopping criteria, the problem arises how to define improvement in
the presence of several objectives.
Therefore, stopping criteria based on other mechanisms have to be found for multi-
objective optimization. One possibility is to use performance measures like the ones
presented in Section 5.1. The performance measures usually reduce the complexity of
assessing the performance of multiple non-dominated solutions to evaluating single num-
bers which may be compared easily, thus enabling the definition of stopping criteria. Not
all performance measures are suitable for this task. Therefore, in Section 6.2.1 the per-
formance measures from Section 5.1 will be discussed regarding their applicability for
stopping criteria.
Multi-objective optimization algorithms often contain internal mechanisms which may
also be exploited for the definition of stopping conditions. In Section 6.2.2 it is discussed
which mechanisms may be used for terminating optimization runs of DE and PSO. Ad-
ditionally, stopping criteria that have been presented in the literature for NSGA-II but
that may also be applied for DE and PSO are given.
Although the mechanisms used for determining stopping conditions are different from
the ones employed in single-objective optimization, it is possible to make a similar clas-
sification like shown for single-objective optimization in Section 6.1.1. A comprehensive
classification has not yet been published in the literature, so it is presented here for the
first time. The classification of the stopping criteria based on performance measures as
well as internal mechanisms is shown in Section 6.2.3, and in Section 6.2.4 an evaluation
of their performance is shown.

6.2.1 Suitability of Performance Measures for Stopping Criteria

In this section the performance measures presented in Section 5.1 are discussed regard-
ing their suitability for defining stopping criteria. The same order is used as in Sec-
tion 5.1: First, the metrics evaluating closeness to the Pareto-optimal front are reviewed,
followed by the metrics considering diversity among non-dominated solutions, and last
the metrics regarding both closeness to the Pareto-optimal front and diversity among the
non-dominated solutions are discussed.
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The error ratio counts the number of solutions which are not members of the Pareto-
optimal front. Thus, knowledge of the Pareto-optimal front is needed. Therefore, this
performance measure can only be used as reference criterion for functions with known
Pareto-optimal front. For problems with real-valued parameters it should be adapted
to avoid accuracy problems by allowing a small deviation from the Pareto-optimal front
because the probability is low that it will be met exactly.
The set coverage metric can be used in different ways: If the Pareto-optimal front is
known, it can be used as reference criterion by comparing the non-dominated solutions of
the current generation with the Pareto-optimal front and terminating if a certain threshold
has been reached. On the other hand, it is also possible to compare non-dominated
solutions generated in consecutive generations and stop an optimization run when reaching
a threshold. Thereby, the set coverage metric can also be used for optimization problems
with unknown Pareto-optimal front.
The generational distance is defined as the average distance of a set of non-dominated so-
lutions to the Pareto-optimal front. Thus, again a reference criterion can be developed for
which the Pareto-optimal front must be known. Similar as for the set coverage metric, it is
also possible to derive conclusions about the state of the optimization run by calculating
the generational distance between non-dominated solutions of consecutive generations.
However, the calculations necessary for checking this criterion add considerable compu-
tational effort because for each solution of the current generation the nearest solution
of the Pareto-optimal front (or the non-dominated solutions of the previous generation,
respectively) has to be found.
Using the maximum Pareto-optimal front error as basis for a stopping criterion is unfa-
vorable. The computational effort for checking it is similar to the generational distance
because the distance of all population members to the reference set must be calculated to
determine the largest distance but it gives less information. As a consequence, it will not
be regarded further in the following.
The before-mentioned performance measures evaluate the closeness to the Pareto-optimal
front. It is also possible to extract information about the state of the optimization run
by monitoring diversity measures like spacing. In the beginning of an optimization run,
usually there will be only few non-dominated solutions that are unequally spaced (see Fig-
ure 6.6(a) which was generated using a DE algorithm for function ZDT1, see Section 5.3.3
and Appendix A). Because most multi-objective optimization algorithms contain internal
mechanisms for ensuring a good diversity of non-dominated solutions, the non-dominated
solutions will become more evenly distributed towards convergence to the Pareto-optimal
front (see Figure 6.6(b)). As a consequence, the variation of the spacing can be moni-
tored. If the variation decreases to a small value, it can be concluded that convergence is
reached. For the example in Figure 6.6, the spacing is S = 8.69 · 10−2 for Figure 6.6(a)
whereas it is S = 2.02 · 10−3 for Figure 6.6(b).
Because the performance measure spread considers (among others) the distance to the
outermost solutions of the Pareto-optimal front, it is only applicable if the Pareto-optimal
front is known. Therefore, it is less favorable for the definition of stopping criteria than
spacing.
The maximum spread gives less information about the state of the optimization run in
contrast to spacing because only the distance between the extreme solutions is regarded.
Thus, it is not considered here further, although theoretically it might also be used as
basis for a stopping criterion.
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Figure 6.6: Non-dominated solutions

The chi-square-like deviation measure may be used as basis for a stopping criterion but
it can only be used as reference criterion because the Pareto-optimal front is needed.
Besides, it is similar to the error ratio if a small deviation from the Pareto-optimal front
is allowed for the error ratio as described above. Thus, it is not considered further.
Hypervolume considers both the closeness to the Pareto-optimal front and the diversity
of the non-dominated solutions. It can be used for the definition of stopping criteria in
different ways: One possibility is to compare the hypervolume of the current generation
with the hypervolume of the Pareto-optimal front, creating a reference criterion. Another
option is to compare the hypervolume of the current and the previous generation and to
terminate an optimization run if the variation of the hypervolume becomes small. Thus,
the Pareto-optimal front is not needed. For all calculations of hypervolume it has to be
kept in mind that the same reference point must be used for comparability reasons.
Attainment surfaces are a means for summarizing several runs of an algorithm to statis-
tically evaluate its performance. They are basically a visual aid that is very useful for
comparing algorithms but they cannot be used for defining stopping criteria.
In principle it is possible to use combined performance measures for stopping criteria.
However, the influence of the individual measures cannot be assessed anymore using the
weighted metric, making it difficult to reach decisions about terminating optimization
runs. The non-dominated evaluation metric is rather difficult to quantify into one scalar
number that may be checked for a stopping condition. Consequently, these combined
performance measures are not considered further.

6.2.2 Suitability of Internal Mechanisms for Stopping Criteria

Stopping criteria may also be defined based on algorithm-specific mechanisms. In contrast
to stopping conditions derived from performance measures, the internal mechanisms often
vary for different algorithms. Hence, their applicability will be less general.
Criterion NoAcc can be used for multi-objective optimization in basically the same way as
presented for single-objective optimization in Section 6.1.1.3: The number of generations
is counted in which at least one new individual was generated that is better than a
previously found solution. Only the measure for determining which solution is better has
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to be changed. In single-objective optimization it is checked if trial vectors are accepted for
DE or if personal best positions are updated for PSO. The decision about the acceptance
and the update is based on objective function values, feasibility and constraint violation.
For multi-objective optimization, the consideration of the objective function values is
substituted by regarding dominance. It is also possible to include crowding distances in
the case of non-dominated solutions. Furthermore, it has to be decided if the population
of current solutions or the archive (see Sections 5.3.1 and 5.4) should be regarded for the
stopping criterion.
For multi-objective optimization even less literature about stopping criteria is available
than for single-objective optimization. For DE and PSO not a single reference could be
found. The only work that evaluates stopping criteria for multi-objective optimization
which has been found is [Rud04] where three stopping criteria are presented for NSGA-II.
Because the multi-objective DE and PSO algorithms used here rely on concepts from
NSGA-II, these stopping criteria can be applied for DE and PSO as well. They are
described in the following:

• Identical Pareto rank: In the beginning of an optimization run usually many non-
dominated fronts of different Pareto rank are generated (see Section 5.2). The num-
ber of fronts decreases when approaching convergence until all individuals have the
same Pareto rank of 1. Thus, an optimization run may be terminated when all indi-
viduals have a Pareto rank of 1. In [Rud04] it is argued that checking this condition
is not a suitable stopping criterion for NSGA-II because still some progress towards
the Pareto-optimal front is noticed after all individuals have become non-dominated.
Because different algorithms may react differently to the same mechanisms, it was
nevertheless decided to test this criterion for DE and PSO in this work.

• Creation of dominating individuals: The number of newly generated individuals
that dominate at least one previously non-dominated individual may be counted to
derive a stopping criterion. In [Rud04] it is stated that no tendency regarding this
number can be seen for NSGA-II as it continuously varies between 0% and 20% of
the population. Again, it can be argued that this relation might be different for DE
and PSO.

This criterion is similar to NoAcc as it is also based on the number of newly generated
individuals which are better than previously non-dominated solutions. Instead of
checking if at least one improved solution was generated in a specified number of
generations, it counts the number of improved solutions.

• Stabilization of crowding distance: Similar to regarding spacing as a performance
measure (see Section 6.2.1), the crowding distance may be monitored to derive
information about the state of the optimization run because it gives information
about the distribution of individuals. Different implementations are possible as
it is stated in [Rud04] that the minimum, the average as well as the maximum
crowding distance stabilize towards reaching convergence. According to [Rud04]
the maximum crowding distance is most suitable for defining a stopping condition
because it stabilizes last, and a better distribution of solutions is achieved than at
the time when the minimum or the average crowding distance stabilizes.
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6.2.3 Classification

Although different mechanisms are used for the stopping criteria, the same classification as
presented for single-objective optimization in Section 6.1.1 can be done for multi-objective
optimization. In the following, criteria based on performance measures as discussed in
Section 6.2.1 and criteria based on internal mechanisms as given in Section 6.2.2 are
grouped according to the classification in Section 6.1.1. Except for the stopping criteria
from [Rud04] which have been discussed in Section 6.2.2, all of these criteria are pre-
sented here for the first time. The classification of stopping criteria for multi-objective
optimization is also newly developed.
When a multi-objective algorithm is regarded that uses an archive to store non-dominated
solutions (as it is the case here, see Sections 5.3.1 and 5.4.1), it must be decided if the
stopping criteria should be applied for the current population or for the archive because
mostly both cases are possible. Generally, it makes sense to use the archive because
it is the archive that will be given to the decision maker as the final solution of the
optimization problem. For DE there may not be a large difference between the archive
and the population due to the greedy selection scheme (mainly the number of solutions
might vary). In contrast, for PSO the population members are able to deteriorate and for
the personal best positions no method for ensuring diversity is applied. Hence, for PSO
it is especially important to use the archive wherever possible. Therefore, in this work
always the archive is used for the definition of stopping criteria, with the exception of the
criterion based on identical Pareto rank because dominated solutions will never be able
to enter the archive.

6.2.3.1 Reference Criteria

As presented in Section 6.1.1.1, reference criteria for single-objective optimization can
be defined by measuring the difference in objective function values. In contrast, more
complicated performance measures have to be applied for multi-objective optimization
which transform a set of non-dominated solutions into a measure that is easier to evaluate.
As discussed in Section 6.2.1, several performance measures can be used for creating
reference criteria in dependence on the knowledge of the Pareto-optimal front (see also
Section 5.1):

• RefCritER: If the error ratio ER decreases to or below a certain value ERstop, the
optimization run is terminated:

ER ≤ ERstop. (6.18)

As discussed in Section 6.2.1, the application of this criterion for problems with
real-valued representation requires an additional parameter εER for the threshold up
to which distance a solution is regarded to be on the front.

• RefCritC : If the set coverage metric C (P ∗, Q) calculated using the non-dominated
front Q of the current generation and the Pareto-optimal front P ∗ decreases to a
value Cstop, meaning that only few members of Q are dominated by solutions of the
Pareto-optimal front, the optimization run is terminated:

C (P ∗, Q) ≤ Cstop. (6.19)
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• RefCritGD : An optimization run is stopped if the generational distance GD falls
below a pre-defined value GDstop:

GD ≤ GDstop. (6.20)

• RefCritHV : The algorithm might be terminated if the ratio of the hypervolume
HV of the current generation to the hypervolume HVP of the Pareto-optimal front
reaches a certain value pHV (with 0 < pHV ≤ 1):

HV

HVP
≥ pHV . (6.21)

When implementing this criterion, it has to be assured that always the same ref-
erence point is used for both fronts. Thus, it might be necessary to recalculate
the hypervolume of the Pareto-optimal front if non-dominated solutions have been
generated in the current generation which exceed the reference point in at least one
dimension.

Each of the discussed reference criteria can be used for other multi-objective optimization
algorithms as well because no reference to specific characteristics is done but only generally
applicable performance measures are used as basis.

6.2.3.2 Criteria based on Limited Resources

There is no difference between single-objective and multi-objective optimization concern-
ing the criteria based on limited resources (which might also have contributed to their
popularity, besides their simplicity). Therefore, stopping after a certain number of func-
tion evaluations, generations or CPU time can be done for multi-objective optimization
as described in Section 6.1.1.2 for single-objective optimization.

6.2.3.3 Improvement-based Criteria

Same as for single-objective optimization, an optimization run should be terminated if the
improvement becomes so low that no noticeable variation in the results can be expected
anymore if the algorithm is allowed to continue. Improvement-based criteria for multi-
objective optimization can be created in different ways. In the following first the criteria
derived from the discussion about performance measures in Section 6.2.1 are given:

• ImpC : The set coverage metric is used for evaluating the improvement achieved
when moving from one generation to the next:

C (Qg−1, Qg−2) − C (Qg, Qg−1)

C (Qg−1, Qg−2)
≥ tC ∀g ∈ {G−∆G, . . . , G}. (6.22)

A large value of C (Qg, Qg−1) indicates good performance because many solutions
from the previous generation are dominated by solutions of the current generation.
If C (Qg, Qg−1) becomes small in contrast to C (Qg−1, Qg−2), the improvement is low.
If this condition holds for ∆G consecutive generations, the optimization run will be
terminated.
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• ImpGD : Instead of calculating the generational distance in dependence on the Pareto-
optimal front, it is calculated between the fronts generated in two consecutive gen-
erations, respectively, so that GDG is the generational distance calculated between
the solutions from generation G and the solutions from generation G−1. If the
improvement of the generational distance is equal to or below a threshold tGD for
∆G generations, the execution of the optimization algorithm is stopped:

GDg−1 − GDg

GDg−1
≤ tGD ∀g ∈ {G−∆G, . . . , G}. (6.23)

In Equation 6.23 it is considered that smaller values indicate better performance for
GD, thus the improvement will be positive if GD decreases from one generation to
the following.

• ImpHV : The optimization run is terminated if the improvement of the hypervolume
is equal to or below a threshold tHV for a specified number of generations ∆G:

HVg − HVg−1

HVg−1
≤ tHV ∀g ∈ {G−∆G, . . . , G}. (6.24)

With this definition, the improvement will be positive if HV increases from one
generation to the next because HV indicates better performance with increasing
values.

Because in generation G a solution might be found that exceeds the reference point
in at least one dimension, the archive of the previous generation G − 1 must be
saved. If necessary, it may be scaled with the new value and its hypervolume may
be recalculated.

Same as for the reference criteria, the improvement-based criteria discussed so far may also
be applied for other multi-objective optimization algorithms due to the use of generally
applicable performance measures.
As already discussed in Section 6.2.2, a stopping criterion may be defined that is based
on internal mechanisms of the algorithms and that is very close to an improvement-based
criterion for single-objective optimization:

• NoAcc_MO : An optimization run is terminated if in ∆G consecutive generations
not a single solution was generated that dominates a solution from the archive. This
criterion is equal for DE and PSO in contrast to single-objective optimization.

Other multi-objective evolutionary optimization algorithms may work differently
but some kind of selection is usually present, meaning that this criterion will gen-
erally be applicable although slight adjustments may be necessary.

In Section 6.2.2, stopping criteria from [Rud04] which are based on internal mechanisms
have been given. Two of them can be classified as improvement-based:

• Identical Pareto rank (IdParetoRank): The optimization run is terminated when
all individuals have the same Pareto rank of 1. In this case it is reasonable to
regard the population and not the archive for the stopping criterion because only
non-dominated solutions are allowed to enter the archive.
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Naturally, this criterion makes most sense for algorithms which calculate the Pareto
rank anyway as it is the case for Differential Evolution here. For other algorithms,
including the Particle Swarm Optimization algorithm employed here, the calculation
of the Pareto rank is possible but it adds additional computational effort.

• Creation of dominating individuals (DomInd): The number of individuals is counted
which dominate at least one archive member. An optimization run is stopped if the
number is below or equal to a threshold N .

For multi-objective optimization algorithms which do not use an archive this crite-
rion must be adapted. Same as for NoAcc_MO a similar criterion should be possible
to define for most algorithms.

6.2.3.4 Movement-based Criteria

In single-objective optimization usually all population members eventually converge to one
point in the search space. Towards convergence, the DE individuals and the PSO particles
will have decreasing step sizes. The reason is that the DE individuals create movement
via vector differences which will become small. The PSO particles rely on the difference
between current position and the personal and neighborhood best positions which will also
decrease (the influence of the velocity of the previous time step also decreases because
usually the inertia weight is below 1, see Section 3.6.3). Consequently, it can be concluded
that convergence has been reached when the movement of individuals becomes small.
In contrast, in multi-objective optimization usually convergence to the Pareto-optimal
front is desired. There will be multiple solutions, and the population members are still
able to move along the Pareto-optimal front after it has been found. Therefore, movement
of the individuals like defined for single-objective optimization in Section 6.1.1.4 is not
suitable for the definition of stopping criteria in multi-objective optimization.
Theoretically, it may be possible to define equivalents to movement-based criteria in ob-
jective space for multi-objective optimization by adjusting the improvement-based criteria
based on performance measures so that the absolute value of change of the performance
measures is monitored. Because this modification is not expected to result in a large
difference in performance, movement-based criteria are not considered further for multi-
objective optimization.

6.2.3.5 Distribution-based Criteria

It must be clearly distinguished between distribution-based stopping criteria for single-
objective optimization and for multi-objective optimization because different principles
are used. Distribution-based criteria in single-objective optimization rely on the assump-
tion that the population members will be close to each other eventually when approaching
convergence. In contrast, in multi-objective optimization goals are generally in conflict
to each other, thus the individuals should not converge to one point in the search space.
Instead, a distribution along the Pareto-optimal front is required that is as equally spaced
as possible. It can be assumed that in the beginning of an optimization run the distri-
bution changes frequently because often new solutions are found which are maybe even
located in different parts of the search space than the solutions which have been found
before. In contrast, the changes in the distribution will be smaller towards the end of
the optimization run. Although the individuals will not necessarily stop moving along
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the Pareto-optimal front, meaning that there will always be small variations in the dis-
tribution, it is assumed that the distribution will stabilize in contrast to the beginning of
the optimization run. Consequently, it is possible to monitor performance measures that
evaluate the distribution of individuals for the definition of stopping criteria:

• DistSpacing : The change of spacing from one generation to the next is regarded.
If it is equal or below a threshold ts for ∆G generations, the optimization run is
terminated:

Sg−1 − Sg

Sg−1
≤ ts ∀g ∈ {G−∆G, . . . , G}. (6.25)

• DistSpread : Similar to DistSpacing, the change of spread from one generation to the
next is checked. An optimization run is stopped, if the change of spread is equal or
below a threshold tsp for ∆G generations:

∆g−1 − ∆g

∆g−1

≤ tsp ∀g ∈ {G−∆G, . . . , G}. (6.26)

Because spread includes the distance to the outermost solutions of the Pareto-
optimal front, it can only be applied if these solutions are known. Nevertheless,
it is not classified as reference criterion here because its main task is to evaluate the
distribution of a non-dominated set.

In Section 6.2.2 a stopping criterion introduced in [Rud04] was discussed that relies on
an internal mechanism of NSGA-II that reflects the distribution of individuals:

• Stabilization of maximum crowding distance (MaxCD): Because oscillations may
still occur even after stabilization of the maximum crowding distance dl, in [Rud04]
it is suggested to use the standard deviation σL of the maximum crowding distance
over L generations for the definition of a stopping criterion. If it falls below a
threshold δlim, the optimization run is terminated:

σL =

√√√√ 1

L

L∑
l=1

(dl − d̄L)2 < δlim (6.27)

where d̄L is the average of dl over L generations. It is furthermore noted in [Rud04]
that all crowding distances are normalized. In [Rud04] the parameters are set to
L = 40 and δlim = 0.02 with a population size of 100, and it is recommended to
change δlim when varying the population size. It is also noted that the parameters
were chosen in a way that stopping would rather occur a little too late than too
early because priority is given to convergence to the Pareto-optimal front in contrast
to computational cost.

Similar as for the improvement-based criteria, the stopping criteria based on performance
measures are generally applicable for any multi-objective optimization algorithm. The
criterion based on maximum crowding distance may theoretically also be applied for
algorithms which do not internally make use of the crowding distance but in that case
the additional computational effort has to be considered.
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6.2.3.6 Combined Criteria

Same as for single-objective optimization, it is possible to combine several criteria to
account for functions with varying features. To save computational effort, it would again
be advisable not to check several criteria in every generation but to examine one criterion
first, and only if its termination condition is fulfilled, a second criterion might be evaluated.
Stopping criteria which rely on different mechanisms should be chosen for generating
combined criteria. Many combinations are possible, e.g. it might be beneficial to combine
ImpC with DistSpacing, so one criterion relies on improvement based on dominance and
the other on the distribution of solutions.
However, for single-objective optimization it was shown that combined criteria are more
difficult to handle than the individual criteria. They usually contain a larger number of
parameters, furthermore a dependence of parameter settings on the desired accuracy of
the results could not be established anymore, and generally no advantage for combined
criteria could be seen (see [Zie06e, Zie07c] and also Section 6.1.2). Therefore, combined
criteria are not tested for multi-objective optimization here.

6.2.4 Assessment of Performance

The stopping criteria defined in Section 6.2.3 have been examined in [Beg08] (which is
a student research project developed within the scope of this thesis) based on the test
functions given in Appendix A. In the following the experimental settings, the main
results and a short summary are given.

6.2.4.1 Experimental Settings

The control parameters of DE have been set to F = 0.7, CR = 0.9 and NP = 100,
and the archive size has also been set to 100. An exception had to be made for ZDT4
because convergence has not been reached with these settings (see also Section 5.3.3).
Therefore, F = 0.1 and CR = 0.05 have been used for ZDT4. To avoid wasting of many
computational resources in the case of an unsuitable stopping criterion, the number of
generations has been limited to Gmax = 2000.
For PSO the control parameters w = 0.73, c1 = 1.5, c2 = 1.5, NP = 100 and a gbest
neighborhood topology have been used. The size of the gbest archive was restricted to
100 solutions. For ZDT2 and ZDT4 the generated diversity seemed to be too low because
PSO repeatedly had only one member in the gbest archive. Variation of the parameters
did not lead to better results, thus all optimization runs have been done with the same
parameter settings (additional operators for generating diversity like described in 5.4.1
might have helped but here a basic multi-objective PSO algorithm should be examined).
Therefore, the results for ZDT2 and ZDT4 are only discussed for stopping criteria that
terminated at least one run before reaching the maximum number of generations. Ac-
tually, also important conclusions can be derived for these test problems because the
ability of stopping criteria to terminate optimization runs with bad performance is also
interesting. Because PSO converged faster than DE in preliminary test runs for ZDT1,
ZDT3 and ZDT6 and computational resources should be saved, the maximum number of
generations has been set to Gmax = 1000 for PSO.
To further limit the computational effort for this study, three representative settings have
been regarded for the main parameter of every stopping criterion whereas one or two

134



6.2. MULTI-OBJECTIVE OPTIMIZATION

settings have been considered for thresholds (see Table C.1 in Appendix C). Suitable
settings have been found in preliminary test runs. 25 optimization runs have been done
for every parameter combination.
The results are evaluated based on boxplots (see also Section 3.5.2) of the generational
distance which show the distance to the Pareto-optimal front for the final result. Addi-
tionally, the numbers of generations at which termination of the runs was induced are
displayed as boxplots. Furthermore, the numbers of runs which were terminated before
reaching the maximum number of generations are given. All of these results can be found
in Appendix C.
Based on these performance measures, it will be discussed if all runs could be stopped be-
fore reaching the maximum number of generations, the robustness concerning parameter
settings, scalability of the stopping criteria parameters, the computational effort for com-
puting the stopping criteria (even a stopping criterion that reliably terminates all runs at
a suitable number of generations might become unreasonable if its computational effort is
too high), differences between the behavior of stopping criteria for Differential Evolution
and Particle Swarm Optimization and if runs experiencing premature convergence can be
stopped.
For several stopping criteria, especially the improvement-based and distribution-based
criteria, the beginning of an optimization run was problematic because erratic changes
occurred that might sometimes have induced termination. To avoid this undesirable
behavior, additionally it was checked for these criteria if 95% of the desired size of the
archive has been reached. This condition might be disadvantageous if the algorithm finds
only few solutions, so that e.g. in the case of convergence to one point in the search space
the algorithm would not be terminated. Thus, this condition should be substituted in
future work. One possibility is to check the stopping criteria only after the initial phase
is over but this would again burden the user with the choice of a suitable number of
generations. In the course of this work another possibility was discovered that will be
discussed in the following subsection.

6.2.4.2 Results

For single-objective optimization the reference criteria have been omitted in the evalua-
tion of stopping criteria performance because the definition of reference criteria can be
easily done in dependence on the difference between the objective function value of the
global optimum and the best objective function value found so far in an optimization
run. In contrast, reference criteria for multi-objective optimization have to rely on more
complicated measures. Thus, a discussion of results for reference criteria is also included
here although their use is generally limited to test problems.
RefCritER yields good results for DE by consistently terminating all optimization runs
(with the exception of ZDT4 but this is due to problems of the algorithm that did not
converge close enough), see Figures C.1 and C.2. The threshold parameter εER influences
the number of generations at which the optimization run was terminated more than
the parameter ERstop, and the quality of the results in terms of generational distance
improves for a smaller εER. The same dependence can be seen for PSO (see Figures C.18
and C.19). For PSO this criterion also shows reliable termination of optimization runs
(with the exception of ZDT2 and ZDT4 due to algorithm problems).
The worst results of the reference criteria have been obtained with RefCritC. The reason is
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that at least some solutions from the generated approximation set must be non-dominated
with the Pareto-optimal front. This is difficult to achieve because often a small deviation
is still existing. Although there is a parameter Cstop that may be changed, scalability
is bad because at least one solution must be non-dominated with the Pareto-optimal
front. Therefore, for DE this criterion was not able to terminate any optimization run
(see Figure C.3). For PSO several runs could be stopped but the termination occurred
quite late (see Figure C.20). As a consequence, RefCritC cannot be recommended for
either DE or PSO. It is assumed that the same problems will be experienced with other
optimization algorithms.
For RefCritGD even small changes in the parameter GDstop lead to large variations in
the number of generations at which termination occurred as well as in the generational
distance for DE (see Figure C.4). This behavior is not noticeable for PSO for which the
results are very similar for all settings of GDstop (see Figure C.21). Thus, this stopping
criterion is applicable for both DE and PSO but while the performance is quite robust
for PSO, for DE some experimentation might be necessary to find a suitable setting for
GDstop.
For RefCritHV the same behavior concerning parameter pHV is noticed as for GDstop when
using RefCritGD : For DE small changes in the parameter lead to large variation in the
results (see Figure C.5) whereas for PSO the difference of results is not that distinct (see
Figure C.22).
For ImpC there is a considerable variation in the number of generations at which the
optimization runs are stopped for different settings of ∆G using DE (see Figure C.6). This
means that the performance of the stopping criterion is not robust regarding ∆G (with
the exception of ZDT4 for which the number of generations as well as the generational
distance is more similar for different settings of ∆G). For PSO a similar behavior can be
found (see Figure C.23).
For ImpGD an even larger difference in the number of generations can be seen for varying
settings of ∆G for DE and for PSO (see Figures C.7 and C.24). The generational distance
also varies strongly, especially for DE. Thus, for the application of this stopping criterion
some effort for tuning the parameter tGD will be necessary.
The criterion ImpHV has been examined for the case tHV = 0 (see Figures C.8 and
C.25), meaning no improvement has been found concerning this performance measure,
as well as a small threshold of tHV = 0.0001 (see Figures C.9 and C.26). For both
DE and PSO there is a large difference concerning the number of generations at which
termination occurred for these different settings of tHV whereas the difference in the
results regarding generational distance are noticeable but not that distinct. There is also
a noticeable difference in the results for different settings of ∆G (with exception of PSO
with tHV = 0.0001 where the differences are smaller) which means that some effort may
be required to find suitable settings for a specific problem. In contrast to most other
stopping criteria, ImpHV was able to induce termination for ZDT2 and ZDT4 several
times using PSO although the global optimum has not been found. This is a desirable
effect that runs are also terminated when it is apparent that the global optimum will not
be found. Unfortunately, termination occurred for only some optimization runs whereas
it would be better to have reliable termination also in this case.
Applying NoAcc_MO, for DE all runs are reliably terminated (with exception of ZDT3
where some runs are not stopped). The difference between the different settings of ∆G
is noticeable but not very distinct (see Figure C.10). The generational distance is similar
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for all settings of ∆G for DE except for ZDT1 and ZDT2 where the first setting (∆G = 5)
showed a considerably higher generational distance. For PSO there are noticeable differ-
ences in the number of generations at which termination occurred but the generational
distance is mostly quite similar (see Figure C.27). An advantage of NoAcc_MO in com-
parison to other criteria is that the computational effort for computing it is very low, so
its application is favorable for both DE and PSO.
Examinations with IdParetoRank confirm the results of [Rud04] for DE: The optimization
runs are constantly stopped too early (see Figure C.11). The missing scalability of the
criterion might generally be seen as advantage because no parameter has to be set but
as the criterion stops the optimization runs before convergence has been reached, the
missing scalability is a disadvantage here. For PSO a different result is obtained due to
the different selection scheme (see Figure C.28): DE’s greedy selection scheme reduces the
number of ranks quickly whereas for PSO also dominated individuals may be generated,
thus the stopping criterion is often fulfilled very late. As a consequence, it is not suitable
for either DE or PSO. However, for DE this criterion does not add computational effort
because the Pareto rank is calculated anyway for this algorithm in its present form.
Thus, it could be used in combination with a more computationally expensive criterion.
A possibility would be to check the Pareto rank first and only if IdParetoRank is fulfilled,
another criterion is used for the rest of the optimization run. This way, computational
resources can be saved.
Using DomInd as stopping criterion, the optimization runs are usually terminated when
there is still a large difference to the Pareto-optimal front, i.e. the runs are terminated
too early (see Figures C.12 and C.29). There is also not much possibility for adjusting
the parameter N (the number of individuals that dominate at least one archive member)
because N = 2 which is the lowest number that was used here is already very small, and
setting the number of individuals to N = 0 would be the same as using NoAcc_MO with
∆G = 1. Thus, it might be better to use NoAcc_MO which is a similar criterion but that
regards the number of generations without generating dominating individuals instead of
the number of dominating individuals. As a result, DomInd cannot be recommended for
both DE and PSO which is the same result that was reached in [Rud04] for NSGA-II.
With only few exceptions for ZDT3 and ZDT4, all optimization runs of DE have been
successfully terminated using DistSpacing (see Figures C.13 and C.14). In almost all
cases there is a noticeable difference between the results for different parameter settings,
meaning that there will be some effort required for finding a suitable setting. A similar
result is obtained for PSO (see Figures C.30 and C.31). It might be speculated that
a criterion like DistSpacing should also be suitable to terminate runs with insufficient
convergence towards the Pareto-optimal front. The reason why this behavior was not
noticed for ZDT2 and ZDT4 using PSO here might be the additional condition that 95%
of the archive must be occupied that was inserted due to misleading results in the initial
phase of the optimization run. Therefore, in future work it should be checked if another
condition for the initial phase leads to better results.
As expected because DistSpread is very similar to DistSpacing, the results are also nearly
identical for both DE and PSO (see Figures C.15, C.16, C.32 and C.33). It must be noted
that computing the spread requires the knowledge of the Pareto-optimal front (or at
least the outermost solutions of the Pareto-optimal front). As a consequence, DistSpacing
should be preferred, especially for real-world optimization problems.
Regarding MaxCD as stopping criterion, all DE optimization runs are successfully ter-
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minated (see Figure C.17). There are significant differences in the results for different
settings of the parameter δlim, thus there will be some effort for finding suitable settings.
Using PSO, the optimization runs for ZDT1, ZDT3 and ZDT6 are almost always success-
fully terminated. Even for ZDT2 and ZDT4 termination before reaching the maximum
number of generations sometimes happens (see Figure C.34). In summary, it can be con-
cluded that this criterion is suitable for DE and PSO as it was also stated for NSGA-II
in [Rud04]. A difference is that in [Rud04] δlim = 0.02 has been recommended whereas
for DE as well as PSO considerably smaller values had to be used (see Table C.1).

Summary Reference criteria can usually only be used for test problems because the
Pareto-optimal front has to be known. Besides, for these criteria it is assumed that the
algorithm will converge to the Pareto-optimal front with a given precision, i.e. optimiza-
tion runs with premature convergence will not be terminated (or only if the distance to the
Pareto-optimal front is below the demanded accuracy of the results). Apart from these
disadvantages, RefCritER, RefCritGD and RefCritHV yielded good results for both DE
and PSO although some tuning of the parameters may be necessary when applying them,
especially for RefCritGD and RefCritHV using DE. All of these criteria are scalable, so
runs which reach the vicinity of the Pareto-optimal front may be terminated. In contrast,
RefCritC requires solutions to be non-dominated with the Pareto-optimal front which is
a criterion that is much harder to fulfill. Thus, it is concluded that it is less suitable than
the other criteria. It has to be noted that some computational effort is required to check
the criteria, especially for a higher number of objectives.
The improvement-based criteria terminate an optimization run if only little improvement
is noticed. For the criteria ImpC, ImpGD and ImpHV reasonable behavior was found
for both DE and PSO although again some tuning of the parameters may be necessary.
It must be kept in mind that computational effort is added that may be considerably
large, especially if the number of objectives increases. For NoAcc_MO good performance
has been found for both DE and PSO. Regarding the computational effort, NoAcc_MO
is also favorable because only a variable has to be added that counts the number of
accepted solutions. As also observed in [Rud04] for NSGA-II, IdParetoRank as well as
DomInd are not suitable as stopping criteria for neither DE nor PSO. However, checking
for an identical Pareto rank may be conducted before switching to a computationally
more expensive stopping criterion for DE: The algorithm in its present form calculates
this information anyway and IdParetoRank is usually fulfilled before the algorithm reaches
the vicinity of the Pareto-optimal front.
Interestingly, the distribution-based criteria showed good results. Although the use of
them for stopping criteria may not seem very intuitive because there is no obvious con-
nection to the convergence towards the Pareto-optimal front, it should not be forgotten
that multi-objective optimization has several goals in contrast to single-objective opti-
mization (see Chapter 5). The distribution of individuals will only stabilize, i.e. the
change in the distribution will become small, if the population approaches convergence.
For real-world optimization problems, DistSpread is generally not suitable in contrast to
DistSpacing or MaxCD because information about the Pareto-optimal front is needed.
Regarding the computational effort, these criteria are similar to each other. Because the
crowding distance is used internally by the DE and PSO algorithms employed in this
work, it might seem computationally more efficient to use MaxCD instead of DistSpac-
ing as stopping criterion. It must be kept in mind that the crowding distance is used

138



6.3. SUMMARY AND FUTURE WORK

to choose which solutions to keep in the case that the maximum population or archive
size is exceeded, meaning that the crowding distance will change after its calculation.
Efficient tracking of the deleted solutions and their neighbors might help by adding only
small additional computational effort, thus indeed making MaxCD preferable in contrast
to DistSpacing.

6.3 Summary and Future Work

When humans observe the development of an optimization run, they usually have a good
idea about the correct time for ending the optimization run because they consider dif-
ferent features like the improvement of objective function values or the distribution of
the population. However, to be able to use optimization algorithms in automatic design
processes, the goal is to automatically terminate an optimization run without human
intervention. In this chapter stopping criteria have been presented which also consider
information about the optimization run to decide a proper time for terminating a run.
Different measures have been applied and evaluated for this purpose, and it also had to
be distinguished between single-objective and multi-objective optimization.
Several implementations of improvement-based and movement-based stopping criteria
provided good results for single-objective optimization in some cases but it is difficult
to adjust the parameters accordingly. Furthermore, no connection could be seen between
the desired accuracy of the result and the parameter settings. In general, it is better to
monitor the whole population instead of only the best solution.
For distribution-based stopping criteria operating in parameter space it is easier to guess
suitable parameter settings but still different settings may be needed for different func-
tions. If suitable parameter settings have been found, termination of the optimization
run is carried out reliably. Finding appropriate settings for a distribution-based stopping
criterion in objective space (Diff ) seems even easier. For a large range of functions it is
sufficient to use settings of one order of magnitude smaller than the desired accuracy of
the result. Further advantages of this criterion are that it contains only one parameter
(after omitting one parameter because no dependence on it could be seen), it is easy to
calculate, and it also terminates a run if the same objective function value is yielded by
different parameters. For DE it has shown good performance in an extensive examination
using different accuracies. For PSO a similarly thorough investigation is left for future
work.
For multi-objective optimization the definition of appropriate stopping criteria is even
more important because real-world problems usually contain multiple objectives. It is also
even more challenging because instead of a single solution a whole set of non-dominated
solutions is desired. Consequently, it becomes more difficult to find suitable measures
for defining stopping criteria. In this work performance measures as well as internal
mechanisms of the algorithms have been used for deriving stopping conditions. Despite
the different underlying mechanisms, these stopping criteria can be categorized in the same
way as for single-objective optimization. A classification of stopping criteria for multi-
objective optimization has been shown for the first time in this work. Because especially
the calculation of performance measures may require considerable computational effort
that will increase even to a greater extent if more objectives are regarded, attention has
to be paid that the advantage gained by using suitable stopping criteria is not outweighed
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by the computational effort for calculating the stopping criteria. The estimation of the
required effort in relation to the gained advantage is strongly dependent on the application,
i.e. on the ratio between the computational effort for calculating the stopping criteria
to the computational effort for determining the values of the constraint and objective
functions. It is beneficial to exploit internal variables that are calculated for the algorithm
anyway, if possible. One promising criterion is to terminate if in a certain number of
consecutive generations no solution has been generated that is better than an archive
member (NoAcc_MO), thus the improvement of the algorithm is evaluated. Another
option is to regard the distribution by checking the stabilization of the maximum crowding
distance (MaxCD).
In future work emphasis should be placed on finding stopping criteria that are able to end
optimization runs with insufficient convergence towards the Pareto-optimal front. This
also includes the case of convergence to one point in the search space. In this work a
thorough investigation regarding this was complicated by the condition that 95% of the
desired archive size must be reached. This condition should ensure that the algorithm is
not terminated in the initial phase of optimization runs because of misleading information.
For DE this condition could be substituted by checking IdParetoRank that was shown
to terminate optimization runs before sufficient convergence has been reached. For PSO
IdParetoRank is not applicable, thus other measures have to be found, e.g. DomInd
could be used that also ended optimization runs rather early. It can be expected that
new performance measures will be developed in the future which may also be examined
regarding their applicability for stopping criteria.
It is not clear if control parameter settings have an influence on stopping criteria. Thus,
based on the results of this work, the impact of parameters like F and CR for DE as well
as w, c1 and c2 for PSO should be examined in future work. Furthermore, the influence
of the population size should be analyzed. Features of the optimization problems might
also change results, e.g. the dimensionality, the number of local optima or the presence
of constraints (particularly because several criteria have to be modified for constrained
optimization).
Except for the power allocation problem, the stopping criteria introduced in this work
have mostly been used for test problems. The reason is that an extensive evaluation of
stopping criteria was needed. That is only possible for problems which are not too compu-
tationally expensive. For future work it would be interesting to test at least some criteria
which showed good performance for test functions for more real-world problems. One
example where stopping criteria will definitely be useful is in circuit design as described
in Section 5.5 due to the computationally expensive objective and constraint functions
which have to be evaluated via simulation.
Many of the stopping criteria that are examined in this work may also be employed for
other evolutionary algorithms but the performance will not necessarily be equal. There-
fore, in future work these stopping criteria should also be tested for other algorithms, and
the performance should be compared with the results for DE and PSO.

140



Chapter 7

Adaptive Strategies for Setting Control
Parameters

Optimization algorithms usually contain several control parameters which have to be set
by the user and which influence the convergence behavior. The convergence probability
is affected, e.g. certain settings might lead to premature convergence because not enough
diversity is generated. Furthermore, especially for real-world problems with computation-
ally expensive objective functions, optimization algorithms are required to spend as few
function evaluations as possible for reaching convergence, and the convergence speed is
also dependent on parameter settings.
In the literature attempts can be found to identify parameter settings which yield good
results, e.g. in [Lam04, Gäm02, Kuk06d] for DE and in [Tre03, Cle02, Car01] for PSO.
The results of these examinations are often contradicting, especially for PSO, showing
that it is generally difficult to find settings which work well for a large range of optimiza-
tion problems. Finding suitable parameter settings is not only difficult for users who are
inexperienced concerning optimization but also for optimization experts this is not neces-
sarily a trivial problem. Sometimes it is tried to establish a connection between settings of
parameters and features of the problem but this attempt is seldom successful. There are
some exceptions, e.g. in [Lam04] a low setting for CR is recommended for problems with
a low degree of interaction between the function parameters. In contrast, CR should be
large for rotated non-decomposable functions and also for multimodal functions for which
the local optima are not aligned with the coordinate axes [Pri05]. However, connections
like these can rarely be seen. Additionally, especially for real-world problems generally
not much information is available about features of the problem landscape. Thus, even if
a connection between features and parameter settings can be made, this knowledge can
not necessarily be applied.
Another problem is that results for single-objective optimization can not necessarily be
transferred to multi-objective optimization. This is not surprising because there are dif-
ferent goals in single-objective and multi-objective optimization. For example, it is stated
in [Kuk04b] that although a high crossover rate is generally recommended for single-
objective optimization using DE, in multi-objective optimization a high crossover rate
might cause one objective to be optimized faster than others, leading to convergence to a
single point of the Pareto-optimal front.
If optimal parameter settings for a specific optimization problem are not known, generally
trial-and-error methods are applied to identify suitable parameter settings. For most
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parameters in EAs a range of applicable settings is given. If that range is small, it might
be assumed that finding good parameter settings is not difficult. However, there are
often interaction effects between different parameters, increasing the effort for parameter
tuning. Furthermore, due to the randomness involved in EAs, it might not be sufficient to
conduct only one trial run for every parameter combination because the results might vary
considerably for different runs (this is also documented in the beginning of Chapter 6).
Especially for real-world problems with computationally expensive objective functions,
the resulting computational effort might prohibit this time-consuming process.
Because optimal parameter settings are problem-dependent, a better approach is to adap-
tively set parameters. In that case, suitable settings are found during optimization runs.
It is usually assumed that different parameter settings are optimal in different stages of
the optimization run [Eib99] because the tasks are also different: In early phases a good
coverage of the search space must be ensured (exploration) whereas towards the end of an
optimization run the search must concentrate on the vicinity of the best solution for fine-
tuning the results (exploitation). From this follows an additional advantage of adaptively
setting parameters because the parameters are able to vary over time.
Methods for adaptive parameter setting can be categorized due to different criteria. The
approaches can work on different levels of an EA: Parameters can be adapted for the whole
population (population level) or for each individual separately (individual level) or also
independently for every component of individuals (component level) [Ang95]. Besides,
parameter control can be classified as deterministic, adaptive or self-adaptive [Eib99].
Deterministic parameter control modifies parameter settings according to a pre-defined
rule without considering feedback from the search. An example is linearly decreasing the
inertia weight in Particle Swarm Optimization as described in Section 3.6.3. In contrast,
adaptive parameter control uses feedback from the search to determine in which way
parameter settings should be modified. In self-adaptive parameter control usually each
individual has a separate set of control parameters which are subjected to the evolutionary
process. This way the parameters evolve towards better settings while the individuals
search for better objective function values.
In [Eib99] it is stated that most studies about parameter control concentrate on only one
parameter at a time. Because parameters often interact, this approach may not be able
to identify optimal parameter settings. Unfortunately, tuning several parameters simulta-
neously generally leads to a strong increase in computational cost compared to examining
one parameter at a time. In this chapter it will be shown how these disadvantages can be
avoided by applying methods from Design of Experiments for parameter control. Thus,
interactions of parameters are regarded but without generating large computational cost.
The use of Design of Experiments in optimization is not new as it is already employed as
an optimization method in [Deb05] and it is used for off-line parameter tuning in [Bar05]
but up to now its advantages have not been exploited for on-line parameter tuning as it
is suggested in this work.
A general problem in the optimization literature is how to conduct comparisons. One
aspect is that comparing algorithms is complicated due to the influence of control pa-
rameter settings which make a comprehensive comparison very time-consuming (see e.g.
[Zie06f] and [Zie09] which have been generated within the scope of this work, but also
[Mez06a]). Another aspect is that more sophisticated algorithms, e.g. algorithms using
parameter control, usually consist of several components. Generally, it is not clear which
of these components are effective means for improving the performance and which ones
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only complicate the algorithms without contributing substantially to a good performance,
i.e. they could also be omitted. In the literature this aspect is usually not considered.
Therefore, an extensive comparison of several adaptive algorithms will be shown in the
following where individual components are regarded separately to allow conclusions about
their performance.
In this chapter first a discussion of literature about adaptive parameter control for Dif-
ferential Evolution and Particle Swarm Optimization is given. Afterwards, it is described
how methods from Design of Experiments may be applied for adaptive parameter control.
Furthermore, for DE a comparison of several adaptive variants is shown which regards
the individual components of these methods. The chapter ends with a short summary
and indications for future work.

7.1 Related Literature

Because in this work the focus is on DE and PSO, the literature review will concentrate
on adaptive strategies used for these algorithms. For other EAs also methods for adap-
tive parameter tuning have been developed (in fact, self-adaptive parameter control is a
characteristic of ESs), and an overview can be found in [Lob07].

7.1.1 Adaptive Differential Evolution in the Literature

In [Hua06] the so-called "Self-adaptive Differential Evolution" algorithm (SaDE) is de-
scribed. Not only the parameter settings but also the DE strategy (see Section 3.5.2)
is changed during an optimization run. Four different strategies are used which are
DE/rand/1, DE/current-to-best/2, DE/rand/2 and DE/current-to-rand/1. In a previ-
ous paper only the two firstly mentioned strategies were used [Qin05]. All strategies have
the same probability to be selected in the beginning of an optimization run. Later, the
probabilities are modified by calculating the ratio rs of the number of trial vectors which
successfully entered the next generation divided by the number of generated trial vectors
for every strategy. This number is sampled for 20 generations (which is called learning
period). It should be noted that the learning period is a newly introduced parameter for
which no further information is given regarding its sensitivity to changes. In a previous
paper the learning period was set to 50 generations [Qin05]. No attempt was made to
adapt NP . Settings for F are randomly taken from a normal distribution with mean 0.5
and standard deviation 0.3 where F is limited to F ∈ (0, 2]. The mean and the standard
deviation are kept constant over the run. As a result, F is not constant but there is
no feedback from the search. This means that one parameter is substituted by two new
parameters (mean and standard deviation). However, it can be expected that the settings
of the new parameters will work for a larger range of functions (but maybe at the expense
of longer optimization runs). Because the authors assume that the setting of CR is more
sensitive to the optimization problem (in a previous paper they also stated that F is
more related to the convergence speed [Qin05]), CR is adapted based on feedback from
the search. Like F , it is also selected from a normal distribution with a fixed standard
deviation (0.1) but the mean CRm does not stay constant. In the beginning CRm = 0.5
is used. Each individual is randomly assigned a CR value that is kept constant for five
generations and then a new value is calculated using the same distribution. After 20
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generations, CRm is recalculated based on rs, and the described procedure is repeated.
Although CR is adaptively chosen, some new parameters are introduced: The standard
deviation of the normal distribution, the number of generations for which CR stays con-
stant and the period after which CRm is changed (in a previous paper, it has been 25
generations [Qin05]). Values are given for these parameters but the effects of changing
them is not discussed. To speed up convergence, in [Hua06] a local search method (Se-
quential Quadratic Programming) is used every 500 generations on several individuals
including the best one found so far.
In [Liu05] the DE parameters F and CR are dynamically adjusted based on fuzzy logic
controllers. The resulting algorithm is called "Fuzzy Adaptive Differential Evolution"
(FADE). Knowledge from empirical examinations regarding the connection between con-
trol parameter settings and the performance of the algorithm is used to generate the fuzzy
rules. Only one DE variant is selected (DE/rand/1/bin) without discussing the influence
that a change of the variant may have. In a comparison with a DE algorithm with static
parameter settings of F = CR = 0.9 the authors conclude that for problems with a low di-
mensionality of D = 3 no advantage of the adaptive method is noticeable but for a higher
dimensionality of D = 50 it outperforms the method with static parameter settings. Of
course a considerable amount of knowledge of the algorithm designer has to be included
to derive the fuzzy rules. No attempt was made to change the population size, instead it
is set to 10 · D.
Another approach to adapt control parameters of DE using fuzzy logic is described in
[Xue05] for multi-objective optimization. The algorithm is called "Fuzzy Logic Con-
trolled Multi-Objective Differential Evolution" (FLC-MODE). In the mutation operator
two vector differences are used which are both scaled by parameter F . Furthermore, the
best individual is added weighted with parameter γ. These two parameters are adaptively
controlled by considering the population diversity (which is calculated as the number of
non-dominated solutions divided by the population size in [Xue05]) and the generation
percentage (which equals the ratio of the number of already performed generations to
the maximum generation). Initial values are set to γ = 0.7 and F = 0.5, ranges are
γ ∈ [0.05, 1] and F ∈ [0.1, 3], and the fuzzy logic controller is evaluated every five genera-
tions. Because of the fuzzy logic controller new parameters are introduced which can be
manually tuned or optimized by a GA. Nothing is mentioned in [Xue05] about the effort
to tune these parameters, so it might be assumed that the algorithm does not become
easier but the tuning of parameters is only shifted.
A self-adaptive DE algorithm called jDE is described in [Bre06a], and its extension jDE-2
is presented in [Bre06c, Bre06b]. Here each individual �xi,G (with i ∈ {1, . . . , NP}) has its
own settings of control parameters, denoted Fi,G and CRi,G, so the self-adaptive mecha-
nism is conducted at the individual level. The control parameters are updated using the
following equations:

Fi,G+1 =

{
Fl + rand1 · Fu if rand2 < τ1

Fi,G otherwise
(7.1)

CRi,G+1 =

{
rand3 if rand4 < τ2

CRi,G otherwise
(7.2)

where τ1 = τ2 = 0.1, Fl = 0.1, Fu = 0.9, and the random numbers randj ∈ [0, 1] (with
j ∈ {1, 2, 3, 4}) are from a uniform distribution. Thus, F ∈ [0.1, 1.0] and CR ∈ [0, 1]
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are adapted based on the probabilities τ1 and τ2. NP is a fixed parameter for jDE that
is set to 100 in [Bre06a] whereas NP = 200 is used in [Bre06c, Bre06b]. In [Bre06c]
the jDE-2 algorithm sets boundary-violating individuals with equal probability either to
the boundary that they are violating or reflects them from the bound (in [Bre06a] the
respective component is set to the boundary). Furthermore, in contrast to the jDE algo-
rithm that uses only strategy DE/rand/1/bin [Bre06a], in jDE-2 three strategies are used
(DE/rand/1/bin, DE/current-to-best/1/bin, DE/rand/2/bin) and each strategy has its
own control parameter settings. Every strategy is used by an equal part of the population
in each generation, and every individual changes its strategy in each generation. To im-
prove the diversity, a further modification of the jDE-2 algorithm is that the k worst indi-
viduals are replaced every l generations with randomly chosen individuals where l = 1000
and k = 70 in [Bre06c]. Unfortunately, no comparison is available that evaluates the
effect of the different procedures to improve the jDE algorithm. For constraint-handling,
the modified replacement method as described in Section 4.2 is used in [Bre06c, Bre06b]
whereas in [Bre06a] unconstrained optimization problems are regarded. In [Bre06b] the
values of the control parameters are shown for some functions of the CEC06 Special Ses-
sion on Constrained Real Parameter Optimization (see Section 4.4). It can be seen that
the values chosen by the algorithm vary considerably for different functions.
In [Ali04] a constant setting of CR = 0.5 is used and the population size is set dependent
on the dimension (NP = 7 · D as well as NP = 12 · D have been tried). F is adaptively
controlled based on the maximum and minimum objective function values fmax and fmin

of the current generation:

F =

⎧⎪⎪⎨
⎪⎪⎩

max

(
lmin, 1 −

∣∣∣∣fmax

fmin

∣∣∣∣
)

if
∣∣∣∣fmax

fmin

∣∣∣∣ < 1

max

(
lmin, 1 −

∣∣∣∣ fmin

fmax

∣∣∣∣
)

otherwise
(7.3)

where lmin = 0.4 is used in [Ali04]. As a result, in early stages of the optimization run
when the maximum and minimum objective function values usually differ considerably
from each other, a relatively large value of F is used. In contrast, in later stages of the run
when objective function values are similar to each other, a small value of F will result.
The authors do not give any indication how this method can be applied for constrained
optimization problems. Apart from adapting F , the authors also include several other
new techniques in their DE algorithm, e.g. the use of an auxiliary population, the use
of pre-calculated differentials and also local search, but here the focus is on adaptive
parameter setting, thus the other mechanisms are not further discussed.
In [Abb02] a self-adaptive variant of the multi-objective DE algorithm presented in [Abb01]
(see Section 5.3.2) is given, called "Self-adaptive Pareto Differential Evolution" (SPDE).
F is taken from a normal distribution N(0,1) with mean 0 and standard deviation 1. In
contrast, CR is self-adapted on the individual level, i.e. each individual has its own value
CRi. The corresponding value for a newly generated individual is calculated as follows:

CRi = CRr1 + N(0,1) · (CRr2 − CRr3) (7.4)

where r1, r2 and r3 are randomly chosen indices (see also Section 3.5.1). Furthermore, an
additional mutation operation is inserted that is conducted in dependence on a mutation
rate MRi that is determined in the same way as CRi. The crossover operation is done
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differently than in DE/rand/1/bin (see Equation 3.4) as no target vector is included:

ui,j,G =

{
vi,j,G if randj ≤ CRi or j = k

xr1,j,G otherwise
(7.5)

where i ∈ {1, . . . , NP} and j ∈ {1, . . . , D}.
In [Zah02] theoretical results about the expected variance after the application of the
variation operators as well as empirical knowledge is used to adapt control parameters
on the component level based on population diversity. The goal is not to get the fastest
possible convergence but to avoid premature convergence. In further work [Zah03a] also
subpopulations are used which increase the diversity and also allow an easier execution of
the algorithm on parallel machines. A new parameter still has to be chosen but parameters
F and CR are adaptively set.
Most adaptive versions of DE try to tune F and/or CR but in [Teo06] the focus is on
adapting the population size. Thus, the developed algorithm is called "Differential Evo-
lution with Self-Adapting Populations" (DESAP). The author tests two different versions
where the corresponding parameter is encoded in each individual and the population size
is determined by building an average over the population. It is not clear which advantage
is achieved by giving each individual an additional parameter because the population size
is a parameter on the population level. Different trends of the population size are found
for the different versions, and often the population size hardly changes from its initial
value NP = 10 ·D. For five test functions a similar performance is found as for a DE with
fixed population size.

7.1.2 Adaptive Particle Swarm Optimization in the Literature

For PSO it is harder to find adaptive approaches. Descriptions of adaptive approaches are
often restricted to one single paper without further development like it was done e.g. for
jDE or SaDE. The only method that gained some popularity up to now is a parameterless
PSO algorithm called TRIBES developed by Maurice Clerc [Cle06]. This algorithm starts
with only one particle and adds (and removes) particles based on the performance of par-
ticles. The particles are organized in so-called tribes which are subsets of the population
that share their personal best positions with each other while the information flow be-
tween tribes is more restricted. The author concludes based on several test functions that
TRIBES has a competitive performance with several state-of-the-art algorithms [Cle06].
The author also points out that the gain in ease of use might sometimes mean a loss in
effectiveness.
In contrast to Clerc’s algorithm that does not need any parameters to be set, other
approaches mostly concentrate on eliminating some of the parameters but often at the
expense that new parameters are introduced. These algorithms might still be easier to
use than a standard PSO algorithm if the number of parameters is reduced and/or the
new parameters are more robust, meaning that the performance of the algorithm varies
less with changing parameter settings. Unfortunately, there do not exist any comparisons
concerning the effectiveness of the algorithms (it has to be noted that in this case the effort
for parameter tuning would have to be considered [Cle06]). In [Zha07] parameters c1 and
c2 are adaptively assigned based on a clustering analysis. No attempt is made to also set
the inertia weight w adaptively although e.g. in a parameter study conducted within the
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scope of this work it is shown that the inertia weight might have a considerable influence
on the performance of PSO [Zie09]. The value of w is adaptively controlled in [Iwa06b]
based on the average velocity of all particles but no attempt is made to adaptively tune
c1 and c2 as well. In [Hsi08] the population size is adaptively changed based on the fact
if the global best position has been updated in previous generations.
Approaches for adaptive parameter setting still need to be developed further for PSO.
Because many ideas used in PSO are derived from other EAs, inspiration might again
also be taken from works like [Ang95, Eib99, Bey01, Liu06, Zam07, Hua07b, Lob07].

7.2 Design of Experiments for Adaptive Parameter Con-
trol

For both DE and PSO it has been shown that there are interactions between the control
parameters [Kuk06d, Zie09]. Unfortunately, most of the adaptive approaches discussed
in the previous section do not consider this problem. Similarly, when conducting pa-
rameter studies often only one parameter at a time is varied, neglecting the possibility
of interaction effects [Eib99]. In contrast, methods from Design of Experiments (DoE)
[Mon01, Mye02] can be used to adaptively tune parameters while also regarding inter-
action effects. In the following a short introduction to Design of Experiments is given.
Afterwards the application of DoE methods for adaptive parameter control for DE as well
as PSO is presented.
Design of Experiments comprises statistical techniques for model building and optimiza-
tion. It is applicable for identifying the most influential factors in an experiment with
many factors (screening) and it is also useful for reliability analysis and robust design
optimization [Sim04]. Using DoE it can be determined statistically if changing a certain
parameter yields a significant effect or if performance variations are caused by random-
ness. Not only the influence of single parameters can be analyzed but also the interaction
of parameters. Due to sophisticated designs (settings of input variables) less test runs
are necessary as if only one of the parameters is regarded at a given time. DoE can be
used for optimization purposes [Deb05] but in this work DE and PSO are used for the
actual optimization while the ability of DoE methods to draw conclusions from only little
information is employed for the adaptive setting of control parameters.
DoE was developed in the 1930s for agricultural experiments [Kle04]. Early applications
of DoE were based on real (non-simulated) systems while later problems also included
simulations. A difference between these two variants is that in real systems random com-
ponents exist that are accounted for by taking the same data multiple times (replicates)
while simulations are often deterministic. This is also termed design and analysis of com-
puter experiments (DACE) [Sim04] and it is used e.g. for building surrogate models in
optimization [Ong04, Jin05]. Although the problem examined here is based on computer
experiments, the analysis is done with DoE methods instead of considering DACE. This
is due to the fact that the experiments involve randomness because the process of gener-
ating new solutions is observed which contains a stochastic component for evolutionary
algorithms. In each generation a performance measure is calculated that is regarded as
one replicate.
The problem examined here can be characterized more specifically as evolutionary oper-
ation (EVOP) [Mye02]. It is a method for continuous monitoring and improvement of a
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process that equals the optimization run here. It is especially suitable for processes with
varying performance. This is usually the case for an optimization run as the task changes
from exploration in the early stages to exploitation in the later stages.
The first step in applying DoE is the choice of an appropriate design. The most simple
designs are called two-level factorial designs, meaning that for every factor (parameter)
two settings are examined at a given time. Figure 7.1 shows a graphical representation of
two-level factorial designs where on the left two factors A and B are regarded whereas on
the right a third factor C is also included. All of these factors have a low and a high setting
(indicated by "-" and "+", respectively). It can be seen that four design points have to be
checked for two parameters whereas eight design points are involved for three parameters.
Half of the design points use the upper and the lower level of each parameter, respectively.
If more information is needed, e.g. if it is necessary to correctly reflect the curvature of
a function, response surface designs are used [Mye02]. Usually two-level factorial designs
are employed for EVOP. An alternative is the use of a simplex design [Mye02] because
less runs are required but the determination of interaction effects is complicated. Because
control parameters of DE and PSO are expected to have interactions, a two-level factorial
design is used here.

A−A− A+A+

B−B−

B+B+

C−
C+

Figure 7.1: Two-level factorial designs with two and three factors

Results are evaluated using a statistical method called ANOVA [analysis of variance]. In
the following some basics of ANOVA are given. A detailed introduction can be found in
[Mye02].
If a two-level factorial design with factors A and B is assumed, the main effect E(A) of
factor A is calculated by computing the average process outcome ȲA+ with high setting
of A and subtracting the average outcome with low setting ȲA−:

E(A) = ȲA+ − ȲA− (7.6)

=
1

2n
(YA+,B+ + YA+,B− − YA−,B+ − YA−,B−)

where n is the number of replicates. YA+,B+ is the sum of the process outcome y of all
replicates with high level of factor A and high level of factor B:

YA+,B+ =

n∑
i=1

yA+,B+,i. (7.7)

YA+,B− , YA−,B+ and YA−,B− are calculated in the same way.
Similar to the main effect of factor A, the interaction effect of factors A and B is calculated:

E(AB) =
1

2n
(YA+,B+ + YA−,B− − YA+,B− − YA−,B+) . (7.8)
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Using the calculated effects, the sum of squares is calculated for main effects and interac-
tions. This is shown for factor A in the following:

SSA = n · (E(A))2. (7.9)

Additionally, the sum of squares for the model error is needed. First, the total sum of
squares is calculated according to

SST =

(
a∑

i=1

b∑
j=1

n∑
k=1

y2
ijk

)
− 1

4n

(
a∑

i=1

b∑
j=1

n∑
k=1

yijk

)2

(7.10)

where a and b are the numbers of levels for factor A and B, respectively, and a = b = 2
is used in this work.
The result can be used to determine the sum of squares of the model error:

SSE = SST − SSA − SSB − SSAB. (7.11)

With the sum of squares and the degrees of freedom df for each component, the mean
square MS can be calculated:

MS =
SS

df
. (7.12)

The degrees of freedom are given in Table 7.1 [Mon01]. The mean square for the error
can only be calculated if n ≥ 2 holds for the number of replicates.

Table 7.1: Degrees of freedom

Effect Degrees of freedom
A a − 1
B b − 1
AB (a − 1) · (b − 1)

Error a · b · (n − 1)
Total a · b · n − 1

A value F0 can be calculated for every main effect and interaction using the corresponding
mean square as well as the mean square of the error MSE. The following equation shows
the calculation of F0 for factor A:

F0 =
MSA

MSE
. (7.13)

F0 is used for checking the hypothesis that the corresponding effect is significant by
comparing F0 to a reference value. Reference tables are given in dependence on the
confidence coefficient α [Mon01]. If the calculated F0 is larger than the reference value,
the associated effect is significant, e.g. with a confidence of 95% if α = 0.05 is used.
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7.2.1 Adaptive Differential Evolution based on Design of Exper-
iments

Differential Evolution basically contains three control parameters: F , CR and NP . In
this work the application of DoE methods for the adaptive adjustment of the control
parameters F and CR is shown. First, single-objective optimization is discussed as also
presented in [Zie06c]. Later a variant applicable for multi-objective problems is shown as
introduced in [Zie07b] (both of these papers have been generated within the scope of this
thesis).
For a two-level factorial design two settings of each parameter are regarded, respectively.
One possibility for initializing would be to use random values but usually it is beneficial
to incorporate available information. Therefore, the initial values are set according to
guidelines from literature: F− = 0.5, F+ = 0.9, CR− = 0.2 and CR+ = 0.9 (see Sec-
tion 3.5.3). Every combination of F and CR is applied to one fourth of the population.
Instead of using fixed subpopulations, it is chosen randomly in each generation which
parameter settings are used for which individuals. Otherwise, a different development of
the subpopulations might influence the results.
For the calculation of effects the percentage of successful trial vectors (successful means
that the solution entered the next generation) to generated trial vectors is computed for
every parameter combination. If this percentage is used for the calculation of effects,
successful trial vectors are rewarded regardless of the amount of change. As a result,
parameter values might be favored that induce small improvements of many individuals.
Other parameter settings might lead to larger improvements but for fewer individuals.
Because these settings might be essential to escape from local optima, the ratio of suc-
cessful trial vectors to all trial vectors is weighted with the average improvement for the
respective parameter combination. The improvement is based on objective function val-
ues for feasible individuals and based on constraint violations for infeasible individuals.
If an individual was infeasible in the previous generation but it is feasible in the current
generation, no improvement can be calculated. Thus, the individual is assigned the aver-
age improvement of the other individuals with the same parameter combination. Another
possibility would be to assign an arbitrary high number.
The flowchart in Figure 7.2 gives an overview about the adaptive adjustment of CR and
F . After a new generation has been generated, it is checked if there is a significant effect of
the parameters. If not, the next generation is built that is regarded as a further replicate
in the DoE analysis. Because the magnitude of effects may change over time which may
complicate the detection of significant effects, the DoE measures are reset after some
time if no significant effect has been found. Several ways of determining a suitable time
for resetting the DoE analysis have been tested in [Wan07] (which is a student project
developed within the scope of this thesis):

• If the average improvement of the current generation is only a small fraction (1%,
10%) of the improvement averaged over all generations that participate in the cur-
rent DoE analysis.

• If the average improvement of the current generation is only a small fraction (1%,
10%) of the average improvement of the first generation of the current DoE analysis.

• After a predetermined number of generations (5, 10, 20, 30).
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Figure 7.2: Flowchart for adaptive adjustment of F and CR

In [Mye02] it is suggested to restart the DoE calculations if after five to eight cycles
(generations) no significant effects are detected. At first this restriction seemed to be
too strict for the regarded problem whereas the first two possibilities seemed to be more
promising due to their adaptive nature. However, it was found out in [Wan07] based on the
test functions from [Lia06a] that resetting after a predetermined number of generations
yields the best results. More specifically, resetting after 10 generations showed the best
performance.
If a significant main effect is detected, the corresponding parameter is adjusted. If the
interaction effect is also significant, it is checked additionally if both main effects are
significant and have the same sign. In this case a definite decision in which direction set-
tings should be changed is difficult, so a random change is made. A random modification
is also done if an interaction effect is significant but the corresponding main effects are
not. Instead of making a random change, in both cases it is also possible to disperse the
parameter settings by decreasing the lower setting and increasing the higher setting, if
possible without crossing the limits of the respective parameter.
In the present implementation of adaptive control it is concluded from the statistical
analysis which parameter should be changed but no statements are derived about the
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preferable amount of change. Instead, fixed step sizes of 0.05 and 0.1 are used. Based
on the limits of parameters that were taken from literature (F ∈ [0, 2] and CR ∈ [0, 1],
see Section 3.5.3), if the calculation of effects suggests to increase parameter settings, the
lower value is increased by 0.1 to adapt it towards better settings. The higher value is
increased by 0.05 to check if larger settings give even better results without moving too
far from an already discovered good setting. Similarly, the lower value is decreased by
0.05 and the higher value is decreased by 0.1 if lowering of parameter settings is desired.
In this process it is avoided that high and low settings have the same value because this
would prevent further calculations of effects. Additionally, it is ensured that neither F
nor CR will be equal to or below zero and that the parameters do not increase over the
specified limits.
If this adaptive parameter control should be applied for multi-objective optimization, the
basic structure can remain identical. Only the performance measure that is the basis
of the DoE analysis must be varied because the same formulation as for single-objective
optimization is not possible. Again, it should be based on the results of the selection
operation. Therefore, a performance value is introduced for each parameter combination:
If a trial vector dominates the corresponding target vector, the performance value of the
respective parameter combination is increased by 2. If both vectors are non-dominated,
the performance value is raised by 1. If the trial vector is dominated by the target vector,
the respective parameter combination did not lead to an improved solution, so it does not
get an increase in the performance value.
Apart from the performance measure, it might also be reasonable to change the initial
settings of F and CR for multi-objective optimization. Thus, the result from [Kuk04a]
would be reflected that suitable parameter settings for multi-objective optimization often
differ from good settings for single-objective optimization.
An evaluation of the proposed adaptive approach for single-objective optimization has
been shown in [Zie06c] based on the power allocation problem described in Section 4.2.4.
The adaptive approach is compared with a DE algorithm using fixed parameter settings
which have been tuned as shown in [Zie06f]. It is concluded that the adaptive approach
needs a higher population size of NP ≥ 52 to reach convergence rates of 100% in contrast
to the algorithm with tuned fixed settings that achieves the same convergence rate with
NP ≥ 30. The average number of function evaluations is higher for the adaptive approach
than for tuned fixed settings but the computational cost for parameter tuning has to be
considered also, so the newly introduced adaptive approach is considered promising.
The multi-objective variant of this method has been tested in [Zie07b] based on the test set
for the Special Session on Performance Assessment of Multi-Objective Optimization Algo-
rithms at the Congress on Evolutionary Computation 2007 (see also Section 4.4). Despite
the difficulty of the test set, the Pareto-optimal fronts have been found in most cases.

7.2.2 Adaptive Particle Swarm Optimization based on Design of
Experiments

Similarly as described for Differential Evolution, an adaptive parameter control based on
DoE can be implemented for Particle Swarm Optimization. For DE the parameters F
and CR which influence the mutation and recombination processes have been chosen to
be adaptively controlled. Here their equivalents w, c1 and c2 are selected for the adaptive
control because they determine the creation of new solutions (see Section 3.6.1). The
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adaptive parameter control has been tested for multi-objective optimization in [Zie07a]
(which is a paper that was generated within the scope of this thesis), and a variant for
single-objective optimization is newly described here.
Due to the increased number of parameters, it is possible to calculate interaction effects
of higher order. Because they are usually of secondary importance [Mon01], these terms
are neglected here. As a result, the general procedure is very similar to the one described
for Differential Evolution in the previous section.
The main difference is the choice of the performance measure for the DoE analysis. For DE
the performance measure is based on the selection procedure. Because in PSO selection
is not applied, the performance measure may be calculated in dependence on the update
of the best positions. Similar to the case of multi-objective DE, in [Zie07a] a performance
value is introduced for every parameter combination that is increased by 2 if a newly
generated solution dominates a member of the gbest archive, and it is increased by 1 if it
only dominates its previous personal best position.
For single-objective optimization, the performance measure can be constructed analogous
to the one for single-objective DE. The number of newly accepted personal best positions
divided by the number of all generated new positions for each parameter combination
is regarded, multiplied with the achieved improvement in objective function values or
constraint violations, respectively.
Another difference to DE is that because three parameters are subject to the adaptive
control here, 23 = 8 parameter combinations have to be regarded which are applied to
one eighth of the population, respectively (randomly chosen in every generation). Conse-
quently, it might be reasonable to choose a rather high setting for the population size to
have a larger basis for determining the significant effects.
Ranges and initial settings of the parameters should be selected based on recommenda-
tions from literature. Thus, e.g. w ∈ [0, 1], c1 ∈ [0, 4] and c2 ∈ [0, 4] might be chosen
(see Section 3.6.3) but settings of 0 should be excluded. As initial settings the values
�w = {0.4, 0.8}, �c1 = {1.2, 1.9} and �c2 = {0.5, 1.2} have been chosen in [Zie07a]. The rea-
sons are that most authors use values of 0.5 ≤ c1, c2 ≤ 2 [Par02a, Xie04b], exploration
should be emphasized in the beginning (meaning that c1 should be larger than c2), and
for the inertia weight often values around w = 0.7 produce good results [Tre03, Cle02]
(see also Section 3.6.3).
Same as the adaptive approach for multi-objective DE, the multi-objective PSO algorithm
with adaptive parameter setting has been tested based on the demands for the Special
Session on Performance Assessment of Multi-Objective Optimization Algorithms at the
Congress on Evolutionary Computation 2007 [Zie07a]. The results of PSO are worse
than the performance of DE but it must be noted that a rather basic multi-objective PSO
algorithm has been taken as basis. As discussed in Section 5.4.1, it seems to be necessary to
include additional operators in multi-objective PSO to enhance its exploratory capability.
Thus, the results are expected to improve if suitable operators are added.

7.3 Evaluation of Adaptive Variants for Differential Evo-
lution

The evaluation of optimization algorithms and especially the analysis of adaptive variants
is often complicated because several features are modified concurrently. For Differential
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Evolution these features may be adaptation of parameters, adjustment of the strategy and
addition of local search or other special operators. Thus, it is difficult to analyze which
of these procedures is actually responsible for changes in the performance and which ones
only complicate the algorithm without contributing anything to its performance. There-
fore, in the following a detailed analysis of several adaptive approaches from literature
is shown by regarding individual components of these algorithms separately to examine
their effectiveness. This study has also been published in [Zie08e].
As specified in Section 7.1.1, several adaptive DE algorithms have been presented in the
literature. For this study some of the most promising algorithms have been selected
which were also presented in the CEC06 Special Session on Constrained Real Parameter
Optimization (see Section 4.4): jDE and SaDE. To limit the complexity of the study, only
jDE and not jDE-2 is considered. Both jDE and SaDE assign an individual setting for
F and CR to each individual and adapt these settings during the optimization run. A
difference is that SaDE considers feedback from the search whereas jDE uses self-adaptive
adjustment of parameters. Additionally, in SaDE several DE strategies are used and the
probabilities for selecting a specific strategy are adapted. Furthermore, the adaptive
DE based on DoE introduced in Section 7.2.1 is tested. To simplify the analysis, the
same constraint-handling according to the modified replacement method described in
Section 4.2 and the same handling for boundary constraints according to Equation 4.2 is
used for all algorithm variants here, and local search is omitted.
More precisely, in order to examine which components of the adaptive approaches are
especially effective, the following algorithm variants are considered:

• V1: DE_DoE

• V2: jDE’

• V3: SaDE’

• V4: jDE’ with strategy control as in SaDE’

• V5: SaDE’ with adaptive F

• V6: SaDE’ without strategy control

• V7: SaDE’ with eight strategies

• V8: DE_DoE with strategy control as in SaDE’

Here, V1 is the DE_DoE algorithm presented in [Zie06c] and Section 7.2.1. V2 and
V3 are close to the original jDE and SaDE algorithms given in [Bre06a] and [Hua06],
respectively (as described above, the same handling for constraint functions as well as
boundary constraints is used for all algorithms and local search is omitted). In V4 the
jDE’ algorithm is used for parameter control while a strategy control as in SaDE’ is also
employed. In V5 SaDE’ is used as basis and F is adaptively controlled in the same way
as CR (with an initial mean of Fm = 0.5 and a standard deviation of 0.3, like suggested
in [Hua06]). To examine the influence of strategy control on SaDE’, V6 only uses the
parameter control of SaDE’ without strategy control. Because several more strategies
exist besides the ones employed in SaDE’ (see Section 3.5.2), in V7 all strategies given in
Table 3.1 are used. In V8 the strategy control of SaDE’ is employed in DE_DoE.
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For all experiments a population size of NP = 52 has been used (for DE_DoE the
population size must be divisible by four). The maximum number of function evaluations
is 500,000, and the same test set is used as described in Section 4.4 (where results for g20,
g22 and g23 are not shown because none of these algorithms was able to find the global
optimum).
The success rate of all algorithm variants is given in Table 7.2 and the average number of
function evaluations for convergence is shown in Table 7.3.

Table 7.2: Success rate in %

Problem V1 V2 V3 V4 V5 V6 V7 V8
g01 100 100 100 100 100 100 100 100
g02 76 72 44 88 20 28 16 84
g03 0 0 16 0 92 100 92 0
g04 100 100 100 100 100 100 100 100
g05 44 32 100 88 100 92 64 84
g06 100 100 100 100 100 100 100 100
g07 60 96 100 100 100 100 4 72
g08 100 100 100 100 100 100 100 100
g09 96 100 100 100 100 100 100 100
g10 28 40 100 96 100 100 0 76
g11 92 100 100 100 100 100 100 100
g12 100 100 100 100 100 100 100 100
g13 0 0 16 0 44 4 24 0
g14 52 0 100 100 44 4 0 72
g15 92 60 100 100 100 100 48 92
g16 100 100 100 100 100 100 100 100
g17 4 0 36 4 32 4 8 8
g18 68 84 84 80 72 72 60 80
g19 28 24 48 100 60 4 0 72
g21 20 60 68 80 92 68 36 40
g24 100 100 100 100 100 100 100 100

To evaluate the different methods of parameter control, the strategy control of SaDE’
has been disabled for V6, and results for V6 are compared with jDE’ (V2) and DE_DoE
(V1). The success rate of V6 is better than for V1 and V2 for many functions although
there are also exceptions (g02, g14, g19). The average number of function evaluations
for convergence is also often comparable to or better than the results for V1 and V2. It
is concluded that the parameter control of SaDE’ is generally superior to the methods
employed in jDE’ and DE_DoE. This may be explained by the use of different control
parameters for each individual and the adjustment of CRm based on feedback from the
search. For future work it could be tried to improve the performance of DE_DoE by also
using different settings for each individual.
Furthermore, it is tested if advantages can be gained by controlling F adaptively in the
same way as done for CR (V5), therefore variants V3 (SaDE’) and V5 are compared.
Regarding the success rate, it depends on the function if a better performance is reached.
For g03, g13, g19 and g21 the performance is better with adaptive F whereas for g02,
g14 and g18 the performance becomes worse. The average number of function evaluations
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Table 7.3: Average number of function evaluations for convergence

Problem V1 V2 V3 V4 V5 V6 V7 V8
g01 28180 20605 24277 22902 24005 20221 18039 25165
g02 194869 68767 447694 62372 37901 206936 325195 182247
g03 - - 327083 - 280131 151734 151789 -
g04 37488 27761 15868 29775 14792 16782 11345 17789
g05 255793 228783 102745 239549 171724 250927 176413 247343
g06 16858 13521 9416 16348 9238 8530 6827 12061
g07 199319 210108 51793 128084 97990 159242 64946 172512
g08 1356 1277 1491 1415 1445 1286 816 1338
g09 127950 49097 16077 43141 14200 19637 11662 46958
g10 233591 325477 60265 224051 164689 244380 - 171405
g11 41082 29114 22542 45232 21391 24357 10154 63000
g12 2313 2041 2002 2333 2044 1822 1448 2182
g13 - - 247711 - 316994 373682 281284 -
g14 284388 - 47177 163763 321290 439743 - 126777
g15 173911 270119 60450 162129 98147 164098 280830 216409
g16 18812 15368 24880 16064 10777 25068 18222 15286
g17 406848 - 255101 431151 331256 443380 154002 275375
g18 111613 87950 40206 115294 31143 43680 17171 100533
g19 318225 351489 83244 246529 218128 396186 - 241520
g21 266365 151667 108141 174406 139919 171408 131463 185859
g24 4484 4823 4119 5321 3814 3767 3260 4124

for convergence is better for g02, g03, g09, g16 and g18 with adaptive F , and it is worse
for g05, g07, g10, g13, g14, g15, g17, g19 and g21 (functions for which the results are
similar are not specified here). Although the success rate averaged over all functions can
be slightly improved by using an adaptive F (from 78% to 80%), the overall performance
tends to become worse when considering the average number of function evaluations for
convergence. For future work it would be interesting to observe the development of CRm
and Fm over time to achieve more detailed insight in the way the adaptive parameter
control interacts with the optimization problem.
To analyze the influence of strategy control, a comparison of each algorithm with and
without strategy control is done. For the jDE’ algorithm (V2 without strategy control
and V4 with strategy control) the strategy control clearly results in improved performance
concerning the success rate as it is always equal to or higher than the results for V4 (with
exception of g18 where the success rate is slightly better without strategy control). The
average number of function evaluations for convergence is often in a similar range. For
some functions V2 is better (g06, g11, g18, g21, g24) and for other functions V4 is better
(g02, g07, g09, g10, g15, g19), so no definite conclusion can be given regarding this
performance measure.
Comparing SaDE’ with and without strategy control (V3 and V6, respectively), the suc-
cess rate with strategy control is better than or equal to the variant without strategy
control except for function g03. Concerning the average number of function evaluations
for convergence, V3 is also mostly better than V6 (for g05, g07, g09, g10, g13, g14, g15,
g17, g19 and g21 whereas V3 was worse for g02 and g03).
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For DE_DoE the variant V1 is compared with V8 that uses the strategy control of SaDE’.
The success rate of V8 is always better than or equal to the results of V1. Concerning
the average number of function evaluations for convergence, also an improvement can be
seen for nearly every function when using strategy control (exceptions are only functions
g11 and g15).
It is concluded that strategy control is able to improve the results for all regarded algo-
rithms, especially concerning the success rate. To analyze the effect of using more than
the four strategies given in [Hua06], variant V3 (SaDE’) is compared to variant V7 that
uses the parameter and strategy control described in SaDE’ but with eight instead of
four strategies. However, the results using V7 deteriorate for many functions concerning
the success rate (exceptions are g03 and g13). Interestingly, the average number of func-
tion evaluations for convergence improves for several functions using eight instead of four
strategies (exceptions are only g05, g07, g13, g15 and g21). The reason for this behavior
is not yet clear. For future work the probabilities of the strategies should be monitored
during optimization runs to develop a theory for this behavior.
In future work also the local search procedure employed in SaDE and the random substi-
tution used in jDE-2 should be analyzed. Besides, in Section 7.1.1 many other adaptive
approaches are mentioned which may also be examined.

7.4 Summary and Future Work
Several approaches for adaptive parameter control of Differential Evolution and Parti-
cle Swarm Optimization have already been presented in the literature but usually the
influence of interactions between parameters is neglected. Thus, an approach based on
Design of Experiments has been shown here that regards interactions without adding
much computational complexity.
In general, more comparisons are needed that evaluate performance differences of adap-
tive approaches. In particular, it is often not clear which components of an adaptive
algorithm are mainly responsible for an improved performance and which operators only
add complexity but without contributing to the performance. Therefore, an extensive
analysis of three adaptive approaches of DE was conducted. It showed that adapting the
strategies yields good results. Furthermore, adaptive parameter control on the individual
level showed favorable behavior. For future work these results can be used to further
improve the adaptive approach using Design of Experiments presented in this chapter by
employing strategy control as well as developing a method to introduce different param-
eter settings for each individual. Besides, there are still many operators from literature
which may be tested for future work.
Similar mechanisms for adjusting the control parameters might also be used for PSO.
Because the choice of the strategy for DE is similar to the selection of the neighborhood
topology for PSO, it might also be experimented with different neighborhood structures.
Some work about this is already described in [Men04b] where several topologies have
been examined and the promising "Fully Informed Particle Swarm" has been presented
(see also Section 3.6.2). It might also be possible to adaptively assign guides based on
performance (e.g. it might not only be considered if the solution has the best performance
in a certain neighborhood but also if it improved its performance recently) but this is left
for future work.
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Chapter 8

Summary and Future Work

In this chapter the most important findings of this work are summarized. Based on these
results, indications for future work are given.

8.1 Summary
In science and engineering often tasks arise which can be stated as optimization prob-
lems: One or several measures should be maximized or minimized in dependence on some
variables which themselves may be subject to certain constraints. Mostly, the users of
optimization algorithms are not experts concerning optimization, leading to the need of
easy-to-use optimization algorithms.
The application of optimization algorithms is often more complex than a user would
assume. The problems begin with the definition of the objective function(s) which may
be straightforward in some optimization problems but it is not necessarily simple to
specify. A further problem may be the determination of the constraints because often
users implicitly make some assumptions and do not insert them into the optimization tool.
Additionally, reasonable boundaries should be set which encompass the global optimum
and which limit the search space to reduce the computational effort.
The next question is which optimization algorithm to use. A vast amount of optimization
algorithms exist, thus it is difficult to choose. Because in this work the focus is on easily
applicable algorithms which should have global search capability, Differential Evolution
and Particle Swarm Optimization have been selected. Both algorithms have a relatively
low number of parameters, real-valued representation, fast convergence behavior and al-
most no requirement concerning properties of the objective function(s).
Besides these problems which are related to the definition of the optimization problem
and the choice of optimization algorithms, especially real-world problems often include
additional difficulties which is the main topic of this thesis.
Because real-world problems usually contain constraints, a suitable constraint-handling
technique is necessary. As the focus of this work is on easily applicable methods, it should
contain as few parameters as possible. This holds for the modified replacement method
that does not need any parameter to be specified. Despite its simplicity, it was shown in
this work that the modified replacement method achieves good results for both DE and
PSO for the optimization of a power allocation problem from communications.
Furthermore, it was shown that the constraint-handling technique should be adjusted for
optimization problems with equality constraints. Because the feasible space becomes very
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small which interferes with the movement of the individuals (especially using DE), either
techniques should be used which do not necessarily evaluate feasible solutions as better
than infeasible solutions or which vary the allowed constraint violation during the run.
In this work a method adhering to the latter principle has shown very good performance
for a problem from yield analysis that requires an equality constraint to be fulfilled very
precisely.
Multi-objective optimization is a very active research area that has a high relevance
for real-world problems because mostly several objectives should be regarded simulta-
neously. In this work multi-objective extensions for DE and PSO have been presented.
The optimization of an exemplary operational amplifier has been shown considering the
gain, bandwidth and current consumption as objectives whereas the stability and the
desired form of the signal have been formulated as constraints. Similar results have been
reached as in a reference design that has been tuned by hand by an experienced designer.
Moreover, the optimization algorithms offer the advantage of suggesting several trade-off
solutions from which a decision maker may select the design to be manufactured.
Stopping criteria considerably influence the computational cost associated with an op-
timization problem. Especially for real-world problems with computationally expensive
objective and constraint functions it is crucial to stop the execution of an optimization al-
gorithm at a reasonable time. Despite their importance, examinations of stopping criteria
for evolutionary algorithms are surprisingly rare in the literature. Sometimes it is men-
tioned that there are also other stopping criteria besides terminating after a predefined
number of function evaluations but neither a detailed discussion and classification nor an
evaluation of different implementations is available. In this work a large variety of stop-
ping criteria has been presented and classified based on the property that they regard. It
was shown that a similar classification is possible for single-objective and multi-objective
optimization although the underlying measures are different. A thorough examination
revealed that a distribution-based criterion that regards objective space by terminating a
run if the difference of objective function values between the best and worst individual of a
generation falls below a threshold yields the best results for single-objective optimization.
Only one additional parameter has to be set for this stopping criterion. Especially for
Differential Evolution it was sufficient for a large range of functions to set this parameter
to one order of magnitude lower than the desired accuracy of the result, thus the effort for
parameter tuning is low. Furthermore, only few computations are necessary for checking
the criterion.
For multi-objective optimization performance measures may be used for defining stopping
conditions but the evaluation often causes considerable computational cost. Therefore, it
is better to rely on internal mechanisms of the algorithms for deriving conclusions about
the state of the optimization run. Good results have been reached for both DE and PSO if
an optimization run was terminated when in several consecutive generations no solutions
have been generated which dominate an archive member. Furthermore, distribution-based
criteria showed a good performance. In contrast to single-objective optimization, it is not
checked whether the individuals are close to each other but rather the uniformity of the
distribution of the solutions. For algorithms which internally calculate crowding distances,
this measure can be taken as basis for a stopping criterion without much additional
computational effort.
To simplify the application of optimization algorithms, especially for users who are inex-
perienced concerning optimization, adaptive approaches for the setting of control param-
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eters have been examined. Because in the literature interactions between parameters are
usually neglected, an approach for adaptive parameter setting based on Design of Exper-
iments was presented that allows to regard both main effects and interaction effects of
the parameters. Often it is difficult to compare different approaches with each other be-
cause several mechanisms differ, thus for Differential Evolution an extensive examination
regarding individual components of adaptive algorithms was conducted. It was indicated
that it is beneficial to use local control parameter settings depending on information about
the state of the optimization run. A further result was that especially strategy control is
very effective for improving the performance.

8.2 Future Work

Although many aspects of DE and PSO and especially their application to real-world
problems have been examined here, there are still details which might be examined further.
In Sections 4.5, 5.6, 6.3 and 7.4 already some indications for future work have been given,
thus here only some of the most important ones are summarized.
Both Differential Evolution and Particle Swarm Optimization are heuristics which have
been shown to work for many problems but there is no formal convergence proof. In the
PSO community there are some efforts to derive a convergence proof (see Section 3.6.3) but
mostly simplified versions are used for which it is questionable if results can be transferred
to more sophisticated variants. For DE even less theoretical work is available. For future
work it would be desirable to gain more theoretical insight.
For several problems Differential Evolution is superior to Particle Swarm Optimization
which might be caused by its greedy selection scheme (see Section 4.4 or [Zie06a, Zie06b]).
It was also shown that PSO might result in better performance if the control parameters
are carefully tuned (see Section 4.2.4.2 or [Zie06f, Zie09]). Furthermore, PSO has an
advantage in heavily constrained search spaces as the PSO particles are able to search
them more efficiently than the DE individuals. Therefore, it cannot be said generally
which of these algorithms performs better. This is also in accordance with the no free
lunch theorem (see Section 2.3). For future work it should be examined which features
exactly make an optimization problem more suitable for DE or PSO, as already started
in [Lan07].
Concerning that topic, comparisons should also be conducted more carefully in the op-
timization literature. Because different settings of the control parameters may result in
highly different performances, it is generally unfair just to compare implementations with
one fixed set of parameters.
Another possibility is to build hybrid algorithms that combine favorable features from
different algorithms. In [Cle06] it is stated that one of the most promising hybrids of
PSO is a combination with DE. Hence, it might be interesting to further examine hybrid
algorithms in future work. Some works can already be found in the literature, e.g. the
neighborhood concept from PSO is used for a DE algorithm in [Wan08b] and a mixture of
DE and PSO is presented in [Xu08]. For other EAs also several hybrids can be found in
the literature where a local search procedure is used for fine-tuning of solutions. Thus, the
possibly missing fine-tuning capability of one algorithm can be compensated by another
algorithm that lacks the ability for global search. The discussion of a suitable time for
switching from the global to the local technique is closely related to the topic of stopping
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criteria, and similar mechanisms can be used for this task [Syr95, Jak04]. Because of the
adapting step sizes of both DE and PSO, such hybrids might not be as necessary as for
other evolutionary algorithms but advantages may still be gained as e.g. in [Hua06] a
local search procedure is used to speed up convergence of DE.
Many aspects have to be considered for the successful optimization of real-world prob-
lems. In this work the presence of constraints of various types was discussed, and it was
shown that especially for equality constraints there is still some work necessary. Among
others, methods do not currently exist for optimizing problems with a mixture of several
inequality constraints and equality constraints where the equality constraints might also
have differing magnitude.
Multi-objective optimization is a topic that still poses problems for optimization tools,
especially if the number of objectives increases above two or three which is also termed
many-objective optimization in the literature. Not only the visualization techniques have
to be improved to allow a better overview about results but also the algorithms them-
selves might be further enhanced, especially the method for efficiently estimating the
crowdedness of solutions.
The stopping criteria shown in this work have mostly been evaluated on the basis of test
problems. It would be interesting to examine their behavior for more real-world problems
in future work.
The creation of adaptive methods for setting control parameters is difficult because an
optimization problem within the optimization problem is generated. In fact optimization
algorithms have been used in the literature for the tuning of parameters of another op-
timization algorithm that solves the actual optimization problem, e.g. in [Par02b] DE is
used to tune the parameters of PSO. Many adaptive approaches eliminate the need for
setting certain parameters but introduce some new parameters. If these new parameters
are more robust than the substituted ones or the number of new parameters is smaller
than the original number, this is already an improvement. Nevertheless, in future work
these methods should still be enhanced.
A topic that has not been discussed in this work but that may be a source of difficulty
for an optimization algorithm is a large number of variables of the objective function.
This is also termed large scale optimization (there has also been a special session on this
topic at the Congress on Evolutionary Computation 2008, indicating the interest of the
community). The complexity of a problem usually rises with a large number of variables,
and the size of the search space quickly increases which is also referred to as "curse of
dimensionality". As a consequence, optimization algorithms are needed which sample the
search space very efficiently in order to deal with these problems which may also arise in
real-world problems. Both DE [Bre08, Zam08] and PSO [Hsi08] have already been tested
for this kind of problems but it is apparent that still mechanisms need to be developed
which explore large search spaces more efficiently.
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Appendix A

Test Problems for Multi-Objective
Optimization

In the following five test problems from [Zit00] are shown that are commonly used in
multi-objective optimization. All of these test problems are bi-objective and require the
minimization of functions f1 and f2 where f2 = g ·h is the multiplication of two functions
g and h. The Pareto-optimal front can be calculated analytically for all of the following
optimization problems by setting g = 1.
ZDT1 has a dimension of D = 30 and the variables are in the range xi ∈ [0, 1]. The
Pareto-optimal front is convex (see Figure A.1).

f1(x1) = x1 (A.1)

g(x2, . . . , xD) = 1 + 9 ·
D∑

i=2

xi

D − 1

h(f1, g) = 1 −
√

f1/g
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Figure A.1: Pareto-optimal front of ZDT1
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ZDT2 has a non-convex Pareto-optimal front (see Figure A.2), a dimension of D = 30
and variables from xi ∈ [0, 1].

f1(x1) = x1 (A.2)

g(x2, . . . , xD) = 1 + 9 ·
D∑

i=2

xi

D − 1

h(f1, g) = 1 − (f1/g)2
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Figure A.2: Pareto-optimal front of ZDT2

ZDT3 also has a dimension of D = 30 and variables in the range xi ∈ [0, 1]. The Pareto-
optimal front is discontinuous (see Figure A.3).

f1(x1) = x1 (A.3)

g(x2, . . . , xD) = 1 + 9 ·
D∑

i=2

xi

D − 1

h(f1, g) = 1 −
√

f1/g − (f1/g) · sin(10πf1)
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Figure A.3: Pareto-optimal front of ZDT3

The dimension of ZDT4 is D = 10. The variables are in the range x1 ∈ [0, 1] and
x2, . . . , xD ∈ [−5, 5]. ZDT4 is hard to solve because of 219 local Pareto-optimal fronts.
The Pareto-optimal front is given in Figure A.4.

f1(x1) = x1 (A.4)

g(x2, . . . , xD) = 1 + 10 · (D − 1) +

D∑
i=2

(
x2

i − 10 cos(4πxi)
)

h(f1, g) = 1 −
√

f1/g
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Figure A.4: Pareto-optimal front of ZDT4
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ZDT6 is a 10-dimensional problem with variables xi ∈ [0, 1]. It has a non-convex Pareto-
optimal front (see Figure A.5) that creates difficulty by a non-uniform distribution of
Pareto-optimal solutions. Furthermore, the density of solutions decreases towards the
Pareto-optimal front.

f1(x1) = 1 − exp(−4x1) sin6(6πx1) (A.5)

g(x2, . . . , xD) = 1 + 9 ·
((

D∑
i=2

xi

)
1

D − 1

)0.25

h(f1, g) = 1 − (f1/g)2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

f1

f 2

Figure A.5: Pareto-optimal front of ZDT6
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Appendix B

Results for Different Variants of
Multi-Objective Differential Evolution

In this appendix the results of the study described in Section 5.3.3 are shown.
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Figure B.1: Non-dominated solutions for ZDT1
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Figure B.2: Non-dominated solutions for ZDT2
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Figure B.3: Non-dominated solutions for ZDT3
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Figure B.4: Non-dominated solutions for ZDT6
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Figure B.5: Comparison of variants 1A and 1B as well as 2A and 2B based on the average
set coverage metric

169



APPENDIX B. RESULTS OF VARIANTS OF DIFFERENTIAL EVOLUTION

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Generations

C

C(1B,2A)
C(2A,1B)
C(1A,2A)
C(2A,1A)

(a) Results for ZDT1

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Generations

C

C(1B,2A)
C(2A,1B)
C(1A,2A)
C(2A,1A)

(b) Results for ZDT2

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Generations

C

C(1B,2A)
C(2A,1B)
C(1A,2A)
C(2A,1A)

(c) Results for ZDT3

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Generations

C

C(1B,2A)
C(2A,1B)
C(1A,2A)
C(2A,1A)

(d) Results for ZDT6

Figure B.6: Comparison of variants 1B and 2A as well as 1A and 2A based on the average
set coverage metric
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Figure B.7: Comparison of variants 1B and 2B as well as 1A and 2B based on the average
set coverage metric
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Figure B.8: Comparison of variants 1A and 1B as well as 2A and 2B based on the set
coverage metric of combined solutions
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Figure B.9: Comparison of variants 1B and 2A as well as 1A and 2A based on the set
coverage metric of combined solutions
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Figure B.10: Comparison of variants 1B and 2B as well as 1A and 2B based on the set
coverage metric of combined solutions
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Figure B.11: 0%, 50% and 100% attainment surfaces for ZDT1 after 100 generations
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Figure B.12: 0%, 50% and 100% attainment surfaces for ZDT2 after 100 generations
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Figure B.13: 0%, 50% and 100% attainment surfaces for ZDT3 after 100 generations
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Figure B.14: 0%, 50% and 100% attainment surfaces for ZDT6 after 100 generations
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Appendix C

Results of Stopping Criteria for
Multi-Objective Optimization

In this appendix the results of the stopping criteria defined in Section 6.2 for multi-
objective optimization are shown. The stopping criteria and the corresponding parameters
are given in Table C.1. For each stopping criterion (and for each setting of the threshold)
a figure has been generated, consisting of five subplots showing the results for the different
functions that are given in Appendix A. Each of the subplots is itself divided into six
separate figures (an exception is IdParetoRank because only one setting of its parameter
exists): The first three show the non-dominated fronts from all runs for the three values
of the stopping parameter given in Table C.1, together with the Pareto-optimal front (in
red). The fourth figure shows the number of generations at which the optimization runs
have been terminated, the fifth shows the number of runs which have been terminated
before reaching the maximum number of generations, and the sixth gives the generational
distance of the generated non-dominated fronts to the Pareto-optimal front.

Table C.1: Parameters for the stopping criteria

Stopping Threshold Parameter
criterion Name Value 1 Value 2 Name Value 1 Value 2 Value 3
RefCritER εER 0.015 0.01 ERstop 0.2 0.1 0.05
RefCritC - - - Cstop 0.9 0.7 0.3
RefCritGD - - - GDstop 0.02 0.015 0.01
RefCritHV - - - pHV 0.9 0.95 0.98
ImpC tC 0.01 - ∆G 6 8 10
ImpGD tGD 0.01 - ∆G 4 6 8
ImpHV tHV 0 0.0001 ∆G 3 5 7
NoAcc_MO - - - ∆G 5 6 7
IdParetoRank - - - - - - -
DomInd - - - N 5 3 2
DistSpacing ts 0 0.0001 ∆G 6 7 8
DistSpread tsp 0 0.0001 ∆G 7 8 9
MaxCD - - - δlim 0.002 0.0009 0.0002
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C.1 Results for Differential Evolution
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Figure C.1: RefCritER using DE with εER = 0.015
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Figure C.2: RefCritER using DE with εER = 0.01
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Figure C.3: RefCritC using DE
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Figure C.4: RefCritGD using DE
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Figure C.5: RefCritHV using DE
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Figure C.6: ImpC using DE
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Figure C.7: ImpGD using DE
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Figure C.8: ImpHV using DE with tHV = 0
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Figure C.9: ImpHV using DE with tHV = 0.0001
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Figure C.10: NoAcc_MO using DE
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Figure C.11: IdParetoRank using DE

186



C.1. RESULTS FOR DIFFERENTIAL EVOLUTION

0 0.5 1
0

1

2

0 0.5 1
0

1

2

0 0.5 1
0

1

2

1 2 3
250
300
350
400

G
en

er
at

io
ns

Value

1 2 3
0

10

20

30

Value

N
um

be
r 

of
 r

un
s

1 2 3

0.012

0.014

0.016

G
D

Value

f1

f1f1

f
2

f
2

f
2

(a) ZDT1

0 0.5 1
0

1

2

0 0.5 1
0

1

2

0 0.5 1
0

1

2

1 2 3

300
350
400
450

G
en

er
at

io
ns

Value

1 2 3
0

10

20

30

Value

N
um

be
r 

of
 r

un
s

1 2 3

0.011

0.012

0.013

G
D

Value

f1

f1f1

f
2

f
2

f
2

(b) ZDT2

0 0.5 1
−2

0

2

0 0.5 1
−2

0

2

0 0.5 1
−2

0

2

1 2 3

350

400

450

G
en

er
at

io
ns

Value

1 2 3
0

10

20

30

Value

N
um

be
r 

of
 r

un
s

1 2 3

0.023

0.024

0.025

0.026

G
D

Value

f1

f1f1

f
2

f
2

f
2

(c) ZDT3

0 0.5 1
0

2

4

0 0.5 1
0

2

4

0 0.5 1
0

2

4

1 2 3

300

400

500

G
en

er
at

io
ns

Value

1 2 3
0

10

20

30

Value

N
um

be
r 

of
 r

un
s

1 2 3
0

5

10

x 10
−3

G
D

Value

f1

f1f1

f
2

f
2

f
2

(d) ZDT4

0.2 0.4 0.6 0.8 1
0

1

2

0 0.5 1
0

1

2

0.2 0.4 0.6 0.8 1
0

1

2

1 2 3

300

400

500

G
en

er
at

io
ns

Value

1 2 3
0

10

20

30

Value

N
um

be
r 

of
 r

un
s

1 2 3
0.01

0.011

0.012

G
D

Value

f1

f1f1

f
2

f
2

f
2

(e) ZDT6

Figure C.12: DomInd using DE
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Figure C.13: DistSpacing using DE with ts = 0
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Figure C.14: DistSpacing using DE with ts = 0.001
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Figure C.15: DistSpread using DE with tsp = 0
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Figure C.16: DistSpread using DE with tsp = 0.0001
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Figure C.17: MaxCD using DE
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C.2 Results for Particle Swarm Optimization
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Figure C.18: RefCritER using PSO with εER = 0.015
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Figure C.19: RefCritER using PSO with εER = 0.01
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Figure C.20: RefCritC using PSO
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Figure C.21: RefCritGD using PSO
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Figure C.22: RefCritHV using PSO
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Figure C.23: ImpC using PSO
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Figure C.24: ImpGD using PSO
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Figure C.25: ImpHV using PSO with tHV = 0
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Figure C.26: ImpHV using PSO with tHV = 0.0001
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Figure C.27: NoAcc_MO using PSO
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Figure C.28: IdParetoRank using PSO

203



APPENDIX C. RESULTS OF STOPPING CRITERIA

0 0.5 1
0

2

4

0 0.5 1
0

2

4

0 0.5 1
0

2

4

1 2 3

40

60

G
en

er
at

io
ns

Value

1 2 3
0

10

20

30

Value

N
um

be
r 

of
 r

un
s

1 2 3
0

0.01

0.02

G
D

Value

f1

f1f1

f
2

f
2

f
2

(a) ZDT1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

1 2 3
−0.5

0

0.5

G
en

er
at

io
ns

Value

1 2 3
0

10

20

30

Value

N
um

be
r 

of
 r

un
s

1 2 3
−0.5

0

0.5

G
D

Value

f1

f1f1

f
2

f
2

f
2

(b) ZDT2

0 0.5 1
−5

0

5

0 0.5 1
−5

0

5

0 0.5 1
−5

0

5

1 2 3

50

100

G
en

er
at

io
ns

Value

1 2 3
0

10

20

30

Value

N
um

be
r 

of
 r

un
s

1 2 3
0.02

0.03

0.04

G
D

Value

f1

f1f1

f
2

f
2

f
2

(c) ZDT3

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

1 2 3
−0.5

0

0.5

G
en

er
at

io
ns

Value

1 2 3
0

10

20

30

Value

N
um

be
r 

of
 r

un
s

1 2 3
−0.5

0

0.5

G
D

Value

f1

f1f1

f
2

f
2

f
2

(d) ZDT4

0.2 0.4 0.6 0.8 1
0

5

10

0.2 0.4 0.6 0.8 1
0

5

10

0.2 0.4 0.6 0.8 1
0

5

10

1 2 3

60

80

100

G
en

er
at

io
ns

Value

1 2 3
0

10

20

30

Value

N
um

be
r 

of
 r

un
s

1 2 3
0.01
0.02
0.03
0.04
0.05

G
D

Value

f1

f1f1

f
2

f
2

f
2

(e) ZDT6

Figure C.29: DomInd using PSO
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Figure C.30: DistSpacing using PSO with ts = 0
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Figure C.31: DistSpacing using PSO with ts = 0.001
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Figure C.32: DistSpread using PSO with tsp = 0
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Figure C.33: DistSpread using PSO with tsp = 0.0001
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Figure C.34: MaxCD using PSO
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