Optimizing Real-World Problems with Differential
Evolution and Particle Swarm Optimization

Dem Fachbereich Physik, Elektrotechnik und Informationstechnik

der Universitat Bremen

zur Erlangung des akademischen Grades einer
DOKTOR-INGENIEURIN (Dr.-Ing.)

vorgelegte Dissertation

von
Dipl.-Ing. Karin Zielinski

aus Bremen

Referent: Professor Dr.-Ing. R. Laur
Korreferent: Professor Dr. phil. nat. D. Silber
Eingereicht am: 11.12.2008

Tag des Promotionskolloquiums: 12.02.2009

Acknowledgements

This work was produced while I was working as a research assistant at the Institute
for Electromagnetic Theory and Microelectronics (Institut fiir Theoretische Elektrotech-
nik und Mikroelektronik, ITEM) at the University of Bremen. Many people helped and
supported me during this time, and here I want to take the opportunity to express my
gratitude.

First, I thank my thesis committee. Special thanks to Prof. Dr.-Ing. Rainer Laur for
giving me a lot of freedom for my research. Although he sometimes joked about me going
to so many conferences and spending his money, he always encouraged me to continue.
Also many thanks to Prof. Dr. phil. nat. Dieter Silber for being interested in my work
and for having so much fun discussing it. Furthermore, I thank Prof. Dr.-Ing. Karl-Dirk
Kammeyer and Prof. Dr.-Ing. Rolf Drechsler for being my examiners.

I thank my colleagues for good discussions but also for having fun together. Special
thanks to Dr.-Ing. Detmar Westphal and Dipl.-Ing. Ole Bischoff for reading my thesis
and providing valuable comments. Also many thanks to the people who supplied me with
real-world optimization problems, especially to Dipl.-Ing. Petra Weitkemper who has en-
dured all the seemingly endless revisions of our mutual journal paper. Two students also
contributed to this thesis, so thanks to Dipl.-Ing. Xinwei Wang and to Benjamin Begandt
for working with me.

Last but not least I want to thank my family, my boyfriend Jakob and my friends for
supporting and encouraging me.

Bremen, February 2009

Karin Zielinski

Contents

1 Introduction
1.1 Motivation and Contributions
1.2 Organization

2 Basic Principles of Optimization
2.1 The General Optimization Problem
2.2 Optimization Algorithms
2.3 Terminology and Concepts

3 Evolutionary Algorithms
3.1 Genetic Algorithm
3.2 Evolution Strategy
3.3 Evolutionary Programming oL
3.4 Genetic Programming oL
3.5 Differential Evolution 0o
3.5.1 General Procedure 0.

3.5.2 Variants of Differential Evolution
3.5.3 Control Parameters
3.5.4 Comparison with other Evolutionary Algorithms
3.6 Particle Swarm Optimization
3.6.1 General Procedure
3.6.2 Neighborhood Topologies
3.6.3 Control Parameters
3.6.4 Comparison with other Evolutionary Algorithms

Constrained Optimization

4.1 Boundary Constraints
4.1.1 Methods for the Handling of Boundary Constraints
4.2 Constraint Functions00
4.2.1 Constraint-handling methods
4.2.2 Differential Evolution for Constrained Optimization

4.2.3 Particle Swarm Optimization for Constrained Optimization

4.2.4 Application: Power Allocation Problem
4241 Background oo
4.2.4.2 Solutions for Parallel Interference Cancellation and Suc-

cessive Interference Cancellation

26
29
29
30
31
34
36
38

CONTENTS

4.2.4.3 Comparison of the Death Penalty and the Modified Re-

placement Method 59
4.3 Equality Constraints 65
4.3.1 Related Literature 0L 65
4.3.2 Application: Worst Case Methods for Yield Analysis 67
4.3.2.1 Backgroundo 67
4.32.2 Test Case 69
4.4 Comparison of Differential Evolution and Particle Swarm Optimization
with Blind Random Search and Brute Force Search 72
4.5 Summary and Future Work L. 77
5 Multi-Objective Optimization 79
5.1 Performance Measures 82
5.1.1 Metrics Evaluating Closeness to the Pareto-Optimal Front 82
5.1.2 Metrics Evaluating Diversity among Non-Dominated Solutions . . . 83
5.1.3 Metrics Evaluating Closeness and Diversity 84
5.2 Non-dominated Sorting Genetic Algorithm I1T. 85
5.3 Multi-Objective Differential Evolution 87
5.3.1 Adaptation of Concepts from NSGA-II for Multi-Objective Differ-
ential Evolutiono 88
5.3.2 Related Literature 90
5.3.3 Analysis of Convergence Behavior and Diversity for Different Vari-
ants of Multi-Objective Differential Evolution 92
5.4 Multi-Objective Particle Swarm Optimization 94
5.4.1 Related Literature 95
5.5 Application: Operational Amplifier 97
5.6 Summary and Future Work o000 103
6 Stopping Criteria 105
6.1 Single-Objective Optimization 108
6.1.1 Classification 108
6.1.1.1 Reference Criteria 109
6.1.1.2 Criteria based on Limited Resources 109
6.1.1.3 Improvement-based Criteria 110
6.1.1.4 Movement-based Criteria 113
6.1.1.5 Distribution-based Criteria 114
6.1.1.6 Combined Criteria 118
6.1.2 Assessment of Performance 118
6.1.2.1 Experimental Settings 119
6.1.2.2 Results 120
6.2 Multi-Objective Optimization 125
6.2.1 Suitability of Performance Measures for Stopping Criteria 125
6.2.2 Suitability of Internal Mechanisms for Stopping Criteria 127
6.2.3 Classification L 129
6.2.3.1 Reference Criteria 129
6.2.3.2 Criteria based on Limited Resources 130
6.2.3.3 Improvement-based Criteria 130

IT

CONTENTS

6.2.3.4 Movement-based Criteria 132

6.2.3.5 Distribution-based Criteria 132

6.2.3.6 Combined Criteria 134

6.2.4 Assessment of Performance 134
6.2.4.1 Experimental Settings 134

6.2.4.2 Results 135

6.3 Summary and Future Work oL 139
7 Adaptive Strategies for Setting Control Parameters 141
7.1 Related Literature 143
7.1.1 Adaptive Differential Evolution in the Literature 143
7.1.2 Adaptive Particle Swarm Optimization in the Literature 146

7.2 Design of Experiments for Adaptive Parameter Control 147

7.2.1 Adaptive Differential Evolution based on Design of Experiments . . 150
7.2.2 Adaptive Particle Swarm Optimization based on Design of Experi-

ments e e 152

7.3 Evaluation of Adaptive Variants for Differential Evolution 153
7.4 Summary and Future Worko 157

8 Summary and Future Work 159
8.1 Summary 159
8.2 Future Work 161

A Test Problems for Multi-Objective Optimization 163

B Results for Different Variants of Multi-Objective Differential Evolution167

C Results of Stopping Criteria for Multi-Objective Optimization 175
C.1 Results for Differential Evolution 176
C.2 Results for Particle Swarm Optimization 193

References 211

I1I

CONTENTS

IV

List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.13

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10

4.11

Search space and feasible space 8
[lustration of the dominance relation 10
Dependence of deterministic algorithms on starting positions 11
Convergence 14
Convex function 14
Roulette wheel selection 19
Two-point crossover 19
Tree data structure used in Genetic Programming 21
Schematic for the tree in Figure 3.3 21
Flowchart for Differential Evolution 23
Mutation for D =2 24
Recombination for D=2 25

Final objective function value for the optimization of a PI cascade control . 27
Number of generations for reaching f(z) < 1 for the optimization of a PI

cascade control oL Lo 27
Flowchart for Particle Swarm Optimization 32
Update according to Equation 3.8 for a particle in two dimensions 33
Update according to Equation 3.10 for a particle in two dimensions 33
Neighborhood topologies (with NP =16) 35
Handling of boundary constraints 43
Differences between DE and PSO when applying the modified replacement

procedure (shaded area: feasible space) 50
Transfer function and trajectory 53
Optimized power profile for PIC with D =16 (=4) 57
Transfer characteristic of PIC for equal and optimized power profile, D = 16 57
Optimized power profile for SIC with D =16 (8=4) 58
Trajectory of SIC for equal and optimized power profile, D =16 58

Results for DE (light gray: death penalty; dark gray: modified replacement) 61
Results for PSO (light gray: random numbers refreshed for every compo-
nent of the velocity; dark gray: random numbers recalculated only once for

every particle) 63
Solutions at the end of optimization runs for DE (light gray: death penalty;
dark gray: modified replacement) oo L 63
Solutions at the end of optimization runs for PSO (the different colors are
explained in the text) o o o o 64

LIST OF FIGURES

4.12 Development of €.(G) for different ecpo o 0oL 66
4.13 Exemplary optimization problem from yield analysis. 69
4.14 Convergence rate with fixed €c finat - - - - - -o 70
4.15 Convergence rate with varying allowed constraint violation ¢, and NP =50 71
5.1 Goals in multi-objective optimization00 81
5.2 Calculation of hypervolume 85
5.3 Non-dominated fronts 86
5.4 Calculation of crowding distanceo 87
5.5 Fronts Frand F, 89
5.6 Operational amplifier00 98
5.7 Circuit configurationo 99
5.8 Non-dominated solutions for the operational amplifier in Figure 5.6 101
5.9 Two-dimensional plots of the solutions using Differential Evolution 102
6.1 Exemplary optimization run Lo 107
6.2 Reference criteria 109
6.3 Improvement-based criteria 110
6.4 Movement-based criteriao 113
6.5 Distribution-based criteriao Lo 115
6.6 Non-dominated solutions oL 127
7.1 Two-level factorial designs with two and three factors 148
7.2 Flowchart for adaptive adjustment of Fand CR 151
A.1 Pareto-optimal front of ZDT1 163
A.2 Pareto-optimal front of ZDT2 164
A.3 Pareto-optimal front of ZDT3 165
A4 Pareto-optimal front of ZDT4o 165
A.5 Pareto-optimal front of ZDT6 166
B.1 Non-dominated solutions for ZDT1, 167
B.2 Non-dominated solutions for ZDT2 168
B.3 Non-dominated solutions for ZDT3 168
B.4 Non-dominated solutions for ZDT6, 169
B.5 Comparison of variants 1A and 1B as well as 2A and 2B based on the
average set coverage metric o000 169
B.6 Comparison of variants 1B and 2A as well as 1A and 2A based on the
average set coverage metric.o 170
B.7 Comparison of variants 1B and 2B as well as 1A and 2B based on the
average set coverage metric. 0oL Lo 170
B.8 Comparison of variants 1A and 1B as well as 2A and 2B based on the set
coverage metric of combined solutions 0 0L 171
B.9 Comparison of variants 1B and 2A as well as 1A and 2A based on the set
coverage metric of combined solutions 171
B.10 Comparison of variants 1B and 2B as well as 1A and 2B based on the set
coverage metric of combined solutions 172

B.11 0%, 50% and 100% attainment surfaces for ZDT1 after 100 generations . . 172

VI

LIST OF FIGURES

B.12 0%, 50% and 100% attainment surfaces for ZDT2 after 100 generations . .
B.13 0%, 50% and 100% attainment surfaces for ZDT3 after 100 generations . .
B.14 0%, 50% and 100% attainment surfaces for ZDT6 after 100 generations . .

C.1 RefCritER using DE with egg =0.015
C.2 RefCritER using DE with egg =0.01
C.3 RefCritC using DE o
C.4 RefCritGD using DE
C.5 RefCritHV using DE
C.6 ImpCusing DE
C.7 ImpGD using DEo
C.8 ImpHV using DE with tpy =0
C.9 ImpHV using DE with ¢, =0.0001o
C.10 NoAce. MO using DE
C.11 IdParetoRank using DE
C.12 DomlInd using DEo
C.13 DistSpacing using DE with ¢, =0
C.14 DistSpacing using DE with ¢, =0.001
C.15 DistSpread using DE with t,, =0
C.16 DistSpread using DE with ¢, = 0.0001
C.17 MaxCD using DE 0o
C.18 RefCritER using PSO with egr =0.015
C.19 RefCritER using PSO with egr =0.01.
C.20 RefCritC using PSO
C.21 RefCritGD using PSO
C.22 RefCritHV using PSO
C.23 ImpC using PSO
C.24 ImpGD using PSO o
C.25 ImpHV using PSO with gy =0 0 0 0 o 0o
C.26 ImpHV using PSO with tz5, =0.0001o
C.27 NoAce. MO using PSO
C.28 IdParetoRank using PSO
C.29 DomlInd using PSO
C.30 DistSpacing using PSO with ¢, =0
C.31 DistSpacing using PSO with ¢, =0.001
C.32 DistSpread using PSO with ¢, =0
C.33 DistSpread using PSO with 5, = 0.0001
C.34 MaxCD using PSO

VII

LIST OF FIGURES

VIII

List of Tables

3.1

4.1
4.2

4.3
4.4
4.5

4.6

5.1
0.2

6.1
6.2
6.3

7.1
7.2
7.3

C.1

Strategies of Differential Evolution 26
Ratio of feasible space to search space p 60
Convergence rate (in %) for PSO using the death penalty with random

numbers refreshed for every component of the velocity 62
Number of points per axis with FFE,,,, = 500,000 73
Details of the test functions from [LiaO6a] 74
Feasible rate and success rate for blind random search, brute force search,

Differential Evolution and Particle Swarm Optimization 75
Success cost and distance to f(2*) for blind random search, brute force

search, Differential Evolution and Particle Swarm Optimization 76
Crowding distance using variant A and variant B 89
Extreme solutions for Differential Evolution 101

Details of examinations concerning stopping criteria for single-objective DE 119
Details of examinations concerning stopping criteria for single-objective PSO120

Stopping criteria used in different examinations 120
Degrees of freedom 149
Success rate in % 155
Average number of function evaluations for convergence 156
Parameters for the stopping criteria 175

IX

LIST OF TABLES

List of Acronyms and Symbols

Co
CR

DE
EA
EC
EP
ES

f(@)

FE
FEmaa:
FEconv
(@)
GA
GP
h(7)

J

K

M
MOEA
NP

NSGA-II
pi

Py

PSO

SI

u;

Ui

Accuracy for the distance to the global optimum in objective space
Accuracy for the violation of equality constraints

Ratio of feasible space to search space

Control parameter of Particle Swarm Optimization, influences the cognitive
component of the velocity update equation

Control parameter of Particle Swarm Optimization, influences the social
component of the velocity update equation

Control parameter of Differential Evolution, influences recombination
Dimension, i.e. number of variables of an optimization problem
Differential Evolution

Evolutionary algorithm

Evolutionary computation

Evolutionary Programming

Evolution Strategy

Vector of objective functions

Control parameter of Differential Evolution, influences mutation
Number of function evaluations

Maximum number of function evaluations

Number of function evaluations for reaching convergence

Vector of inequality constraints

Genetic Algorithm

Genetic Programming

Vector of equality constraints

Number of inequality constraints

Number of equality constraints

Number of objective functions

Multi-objective evolutionary algorithm

Number of individuals, control parameter of e.g. Differential Evolution and
Particle Swarm Optimization

Non-dominated Sorting Genetic Algorithm II

Personal best position, used in Particle Swarm Optimization
Neighborhood best position, used in Particle Swarm Optimization
Particle Swarm Optimization

Swarm intelligence

Trial vector, used in Differential Evolution

Mutated vector in Differential Evolution, velocity in Particle Swarm
Optimization

XI

LIST OF ACRONYMS AND SYMBOLS

v(%) Sum of constraint violation

Umaz Maximum velocity for Particle Swarm Optimization

w Inertia weight, control parameter of Particle Swarm Optimization
T Parameter vector, also called target vector in Differential Evolution
Trnag Upper limit of the search space

Lonin Lower limit of the search space

X Parameter space, search space

Y Objective space

XII

Chapter 1

Introduction

Considering today’s competitive markets, the time for the development of technical sys-
tems should be as short as possible. Simultaneously, systems become very complex due to
manufacturing at the limits of technical feasibility. Furthermore, a high functionality is
desired with low power consumption, small size and high reliability. However, the devel-
opment of a system, e.g. in circuit design, is normally an iterative trial-and-error process.
After the basic structure of the design has been established, parameters are repeatedly
adjusted by the designer and the system is simulated to verify its performance. Due to
the complex interactions of parameters, this is a time-consuming process. The success
depends on the experience and knowledge of the designer. From this follows that the goal
of a short time-to-market becomes hard to achieve. Therefore, the need arises for fast,
easy-to-use optimization algorithms which can be integrated in design processes. Thus,
the time-consuming iterative trial-and-error process can be substituted by a structured
automated approach for finding optimal parameter settings.

However, a vast variety of optimization algorithms exists, making it difficult to choose
a suitable technique. If no (or only little) information is available about the properties
of an optimization problem, the application of optimization algorithms from the class of
evolutionary algorithms (EAs) and swarm intelligence (SI) has many advantages. They
are generally applicable methods which have almost no requirements concerning the op-
timization problem, e.g. no derivatives of the objective functions are needed. Thus, they
can also be applied if the objective functions are not given in analytical form, even if
the objective functions have to be simulated for every set of variables separately. The
algorithms are inspired by natural phenomena like evolution and swarm behavior which
makes them robust search methods for many problems because of the adaptation processes
that also characterize nature. In contrast to many other optimization algorithms, EAs
as well as algorithms from SI have the capability of finding the global optimum even of
highly multimodal functions because of their population-based structure and the involved
randomness. The general applicability of these algorithms also means that they can be
employed for problems from virtually any field of engineering or science. In this work the
focus concerning applications is on problems from electrical engineering.

Developers of optimization algorithms are mostly mathematicians or computer scientists
whereas users of optimization algorithms are often engineers or natural scientists because
many optimization problems arise in these disciplines. From this follows that the users are
often experts from their corresponding fields but not experienced concerning optimization
(see also [Lob00| where it is argued that the users actually should not be required to be

CHAPTER 1. INTRODUCTION

optimization experts because toasters can also be used without knowing Ohm’s Law). As
a result, an important property of optimization algorithms should be ease of use. Because
one of the most significant sources of difficulties is the adjustment of control parameters
of the optimization algorithms, methods with a low number of control parameters should
be preferred. Furthermore, several algorithms require a coding of parameters (usually
binary, see Section 3.1). The need for coding also creates difficulties for users because a
suitable coding scheme has to be found. This necessity contradicts the demand of easy
applicability and should therefore be avoided.

Differential Evolution (DE) and Particle Swarm Optimization (PSO) are two relatively
new optimization algorithms which are well suited for many technical problems. One
advantage is their ease of use due to the presence of only few control parameters. Another
benefit is the real-valued representation that omits the need for coding of parameters.
Differential Evolution can be seen as a typical evolutionary algorithm because it closely
follows the "survival of the fittest" principle. In contrast to other EAs, DE relies on a
simple principle that nevertheless causes automatic adaptation of the step sizes during an
optimization run. This property leads to a high convergence speed and DE’s successful
use in many applications [Pri05].

Because Particle Swarm Optimization is derived from swarm intelligence, it has a different
background. Nevertheless, PSO has several similarities with evolutionary algorithms like
DE, thus it is also often regarded as an EA. In PSO the behavior of social groups is
simulated, hence optimization is achieved by cooperation of individuals and sharing of
information. Due to the incorporation of past experiences into the search, the step size
is also adapted during an optimization run. Many practical optimization problems have
already been successfully solved using PSO |[Eng06].

1.1 Motivation and Contributions

Real-world problems are optimization problems which arise in an application, e.g. in en-
gineering or science, instead of being artificially created (see also Section 2.3). Real-world
problems are often difficult to optimize because they have characteristics that complicate
the application of optimization algorithms. In this work it is discussed which features are
associated with real-world problems and how optimization algorithms can be adjusted to
handle them.

It is not possible to regard every existing optimization algorithm due to the large number of
algorithms. Therefore, the examination must be limited to a small number of promising
algorithms which can be robustly used in many applications. Due to the advantages
discussed above, Differential Evolution and Particle Swarm Optimization are used in
this work. For both algorithms adaptations will be shown which enable them to cope
with the difficulties associated with real-world problems. Meanwhile explicit focus on
easy applicability is maintained due to the already mentioned discrepancy in knowledge
between developers and users of optimization algorithms. Although there are certain
similarities, there are also fundamental differences between these algorithms which arise
from the different background. Thus, they are compared here regarding their ability to
solve real-world problems.

For the application of DE and PSO to real-world problems, a software tool has been
developed that was used for conducting the experiments described in this work. The

1.1. MOTIVATION AND CONTRIBUTIONS

software tool has been programmed in C++ because the structure of both Differential
Evolution and Particle Swarm Optimization suggests using object-oriented programming.
For some special applications the software tool has been coupled with Spectre (circuit
design, see Section 5.5) and Matlab (optimization of a PI cascade control [Zie0O8b, Zie08a],
not regarded further here). The software tool has been extended based on the demands
of the respective problems, with emphasis on easily applicable methods.

One of the most commonly regarded problematic features of real-world optimization prob-
lems is the presence of constraints which occur e.g. due to physical limitations. Thus,
an efficient method for handling constraints must be found for DE and PSO. Several
methods have already been presented in the literature but often they introduce new pa-
rameters. Preferably these techniques should also be easy to use, e.g. they should include
as few control parameters as possible. This applies to the death penalty and the modified
replacement method which do not need any control parameters to be set, so they are
especially easy to apply. Furthermore, no comprehensive comparisons are available for
DE and PSO with focus on easily applicable methods. For other optimization algorithms
some examinations can be found in the literature but generally results are not transfer-
able. Therefore, the death penalty and the modified replacement method are compared
for DE and PSO in this work. As basis for the examination a power allocation problem is
used that occurs in a communication system. Because of the high demands concerning the
accuracy of fulfilling an equality constraint that arise in yield analysis, it is demonstrated
how a further adjustment for the handling of equality constraints improves the results of
DE and PSO.

Another aspect associated with real-world problems is that often multiple objectives
should be optimized simultaneously. The extension of evolutionary algorithms for multi-
objective optimization is not a trivial task because the goals in multi-objective optimiza-
tion differ significantly from the ones in single-objective optimization. Decisions about
many implementation details have to be made and their influence is often still not clear.
Especially in the context of DE and PSO, multi-objective optimization still is a rather
young field that requires more research for finding effective and efficient algorithms. In
this work an overview about the issues connected with extending DE and PSO for multi-
objective optimization is given. As an exemplary test case, the optimization of several
characteristics of an operational amplifier is shown. Multi-objective variants of both DE
and PSO are used, and it is shown that they can be successfully applied for this task.
Many real-world problems contain computationally expensive constraint and objective
functions, e.g. because the performance of a system must be evaluated via simulations.
This property leads to the need of reliable stopping criteria which are able to detect
when convergence has been reached. This is especially important if the algorithms should
be applied in automatic design processes, meaning an interactive combination of tools
for developing systems and optimizing them, e.g. for circuit design. Stopping criteria
are seldom examined in the literature although for practical applications the choice of
stopping criteria can significantly influence the duration of an optimization run. In the
literature the discussion is mostly limited to Genetic Algorithms and it is not clear if the
results are also valid for DE or PSO. Furthermore, a systematic classification considering
a large variety of stopping criteria is missing.

Therefore, in this work a detailed presentation and classification of stopping criteria is
shown. Stopping criteria from literature are regarded but also new approaches for ter-
minating optimization runs are introduced. It is shown that the same classification can

CHAPTER 1. INTRODUCTION

be used for both single-objective optimization and multi-objective optimization although
the underlying mechanisms are different. Furthermore, the performance of the stopping
criteria is analyzed for DE and PSO. For this examination a real-world problem has been
used but also several test functions. The reason is that an extensive evaluation of many
stopping criteria was desired. Due to the computational cost of real-world problems, usu-
ally they cannot be used for such a study. Instead, a large number of test functions with
varying characteristics has been employed. These test functions contain many features
which can also be found in real-world problems, thus they are considered to be an ade-
quate substitute. This consideration holds also for some other parts of this work where
extensive studies have been done, e.g. the examination of adaptive approaches described
in the last paragraph of this section.

The choice of control parameter settings considerably influences the results of optimization
runs, regarding both the convergence probability and the convergence speed. Although
the number of control parameters is rather low in DE and PSO and some recommendations
regarding standard settings can be found in the literature, still some experimentation is
usually necessary to find suitable settings. The pursuit of easy applicability leads to
the examination of methods which set parameters adaptively, thus the user is relieved
from searching for appropriate settings. Several approaches have already been presented
in the literature but they usually neglect interactions of parameters. In this work a new
method is shown that does not only regard the performance of different control parameters
separately but that also considers interaction effects.

A problem in the optimization literature is that new algorithms are developed constantly
but there are not enough comparisons in the literature to assess which algorithms are
actually superior. Particularly, a disadvantage in comparisons from the literature is that
several components are changed at a time. Thus, it cannot be distinguished between
features that are useful and other components that only complicate the algorithm without
contributing to its performance. This especially holds for adaptive approaches because
they usually contain multiple individual components. Therefore, a detailed examination
of adaptive algorithms and their individual components is shown for DE that leads to a
deeper understanding of their effects.

1.2 Organization

In Chapter 2 the basic principles of optimization are presented. First, the general opti-
mization problem is defined mathematically. A classification of optimization algorithms is
given, and the motivation for using evolutionary algorithms is explained. Furthermore, for
readers who are inexperienced concerning optimization, a list of terminology and impor-
tant concepts is given that should simplify the reading and understanding of the following
chapters.

The most commonly used representatives of evolutionary algorithms are presented in
Chapter 3: Genetic Algorithms, Evolution Strategies, Evolutionary Programming and
Genetic Programming. As the focus of this work is on Differential Evolution and Particle
Swarm Optimization, the introduction of DE and PSO is the largest part of this chapter.
Both algorithms are introduced in their basic form for unconstrained single-objective
optimization whereas extended versions for constrained and multi-objective optimization
will be covered later.

1.2. ORGANIZATION

After the basics for this work have been explained in Chapters 2 and 3, the own con-
tributions are given in the following chapters. In Section 1.1 several aspects have been
identified which must be considered when optimizing real-world problems: Constraints,
multiple objectives, stopping criteria and adaptive parameter setting. These topics all
have their own unique problems and can be regarded independently from each other.
Thus, they are discussed in separate chapters in this work. The related literature is also
given separately for each part. Each of the following chapters contains a literature re-
view that is supplemented by own contributions where necessary for the optimization of
real-world problems.

Constrained optimization is discussed in Chapter 4. It is distinguished between boundary
constraints and constraint functions, and the constraint functions are further divided
into inequality and equality constraints. Several approaches from literature for dealing
with constraints using DE and PSO are given where the focus is on easily applicable
methods. Two of these methods are tested for an application example that consists of
optimizing a power allocation problem for a CDMA system with interference cancellation.
Specific methods for handling equality constraints from literature are also given, and the
optimization of a problem from yield analysis that requires an equality constraint to be
fulfilled very precisely is shown using DE and PSO. Because evolutionary algorithms are
stochastic methods for which it is difficult to obtain a convergence proof, the superiority
of DE and PSO in contrast to two simple random methods is shown on the basis of an
extensive set of constrained single-objective test problems.

Multi-objective optimization is introduced in Chapter 5. Evaluating solutions is con-
siderably more difficult in multi-objective optimization in contrast to single-objective
optimization, thus performance measures for the different goals in multi-objective opti-
mization are given. These will also be used for the definition of stopping criteria for multi-
objective optimization in Chapter 6. Additionally, the NSGA-IT (Non-dominated Sorting
Genetic Algorithm II) is described because the adaptation of concepts from NSGA-II for
multi-objective DE is discussed afterwards. Literature surveys are given for both multi-
objective DE and multi-objective PSO. Furthermore, an application example is presented.
The model of an operational amplifier is introduced that can be simulated to verify its
performance. It is shown how DE and PSO can be used for the optimization of its char-
acteristics.

Stopping criteria for single-objective as well as multi-objective optimization are presented
in Chapter 6. Stopping criteria are sorted into classes based on the feature that they
operate on, and an evaluation of their performance is given.

The adaptive setting of control parameters is discussed in Chapter 7. Besides a literature
survey, a new approach considering interactions of control parameters is presented. Several
individual components of adaptive algorithms are examined and compared separately, and
it is indicated which methods result in superior performance for DE.

In Chapter 8 a summary of the most important results of this work is given. Additionally,
it is stated which further extensions may be desirable for future work.

In Appendix A some test problems for multi-objective optimization used in Section 5.3.3
as well as Section 6.2 are specified. Results of these examinations are shown in Appendix B
and C, respectively.

CHAPTER 1. INTRODUCTION

Chapter 2

Basic Principles of Optimization

In this chapter the general optimization problem is defined. A short overview about dif-
ferent kinds of optimization algorithms is given, and the choice of evolutionary algorithms
for this work is explained. To simplify the reading of the following chapters, some gen-
eral terms and concepts are given for optimization in general as well as for evolutionary
algorithms in particular.

2.1 The General Optimization Problem

In this work an optimization problem is defined as the minimization! of one (single-
objective) or several (multi-objective) objective functions:

—

Minimize f(Z) (2.1)

where
= (r,19,...,2p) € X CRP (2.2)

is the parameter vector, X is called parameter space (or search space) and D is
the dimension of the problem.

(@) = (f1(D), fo(@),..., fu(@): X > Y CRM (2.3)

is the objective function vector, Y is called objective space and M is the number
of objective functions. Other names used for objective functions in the literature are
cost functions (which are usually used for minimization problems) or fitness functions
(which are generally used for maximization problems). However, these terms are not
clearly defined, e.g. in [Run00| the fitness function is defined as the sum of the objective
function and penalty terms depending on the constraints. Several sets of parameters will
be introduced in this work, thus in the following it must be clearly distinguished between
the parameters which are the variables of the objective function, the control parameters
of the algorithms and also the parameters of the stopping criteria which will be introduced
in Chapter 6.

A general optimization problem also contains constraints. In this chapter constraints
are only mentioned shortly where needed to define the general optimization problem.
Further explanations will be provided in Chapter 4. Constraints are usually divided into

'Maximization is included in this formulation as max (f (%)) = — min (- f(%)).

7

CHAPTER 2. BASIC PRINCIPLES OF OPTIMIZATION

boundary constraints as well as constraint functions. Boundary constraints (also called
parametric constraints [Run00]) are of the form

Tin,d S Td S Tmax,d (24)

where %54 and T4, 4 are the lower and upper boundary for parameter d. Thus, the
boundary constraints define the search space X. Boundary constraints like given in Equa-
tion 2.4 are also sometimes called box constraints [Eng06| because this formulation leads
to a search space in the form of a hypercube. Theoretically, boundaries might also be
given in other formulations than a hypercube. Boundaries may be somehow curved, e.g.
resulting in a spherical search space. However, in the literature generally only search
spaces in the form of hypercubes can be found.

If an optimization problem contains only boundary constraints without additional con-
straint functions, it is referred to as an unconstrained problem [Eng06|. This expression
may be confusing due to the term "boundary constraints". The reason is that bound-
ary constraints are present in nearly every optimization problem, and they are relatively
easy to fulfill in contrast to constraint functions. Nevertheless, in this work boundary
constraints are discussed in Chapter 4 because of the formal similarity with constraint
functions. Theoretically, boundary constraints might even be handled like any other con-
straints although this might not make sense, see Section 4.1.

In contrast to the boundary constraints which define the search space, the constraint
functions define the feasible space (see Figure 2.1 where the gray area indicates the
search space and the shaded area indicates the feasible space). Constraint functions are
usually divided into inequality constraints

g (D) <0 j=1,2...,J (2.5)

and equality constraints

(@) =0 k=12 K (2.6)

where J is the number of inequality constraints and K is the number of equality con-
straints. Some authors write Equation 2.5 as ¢;(Z) > 0 (e.g. |Deb0la, Gol89]) while
others prefer it like given here (e.g. [Pri05, Eng06|; actually this seems to be the most
common form in the literature) but these formulations are equivalent. Only when actu-
ally implementing constraints and constraint-handling techniques in a computer program,
attention has to be paid that the same formulation is used consistently.

721 %f)

xmam,Z -
search space ~— |

Lmin,2 —

91(7)

Lmin,1 xmax,l €

Figure 2.1: Search space and feasible space

0 ¢)

2.1. THE GENERAL OPTIMIZATION PROBLEM

Because of numerical problems each equality constraint is usually transformed into an
inequality constraint of the form

(@) —e. <0 k=1,2,... K (2.7)

where €, defines the accuracy for fulfilling the equality constraint. If a solution ¥ € X
satisfies all constraints it is called feasible. Thus, feasible space is defined as

F = {# € X|g;(£) < 0 and |h(F)| — €. < 0 Vk}. (2.8)

If the equation g;(Z) = 0 holds for an inequality constraint, it is said that constraint g; is
active at . From this follows that equality constraints are always active at all points of
the feasible space F.

In single-objective optimization the global optimal solution ¥* is defined by

Vie X f(@) > f(7), (2.9)

meaning that there does not exist another solution with a smaller objective function value
in the search space. For a local optimal solution 7’ this condition holds only in a certain
vicinity of the solution (see also Figure 2.3):

Je>0:VZ e X : p(@, @) <e= f(Z) > f(&) (2.10)

where p is a distance measure in parameter space X |Bac97|. This common definition of a
local optimum (see also [Bro00|) does not prohibit that e may be chosen in a way that the
vicinity of 2’ comprises the whole search space. Thus, the local optimum would become
a global optimum. However, in this work this case is excluded. Whenever mentioning a
local optimum, it is assumed that still a better solution exists in the search space.

If not one but several objective functions should be minimized, the definition of an optimal
solution is less obvious. Generally, the dominance relation is used to be able to com-
pare two solutions in multi-objective optimization. A solution @ € X dominates another
solution b € X (@< E) if no objective function value of @ is worse than the corresponding
objective function value of g, and @ is better than b in at least one objective:

-

Vm e {1,...,M}: fu(@) < fon(b) (2.11)
Im e {1,..., M} : fu(@) < fin(b).

A solution @ € X is called non-dominated regarding a set X’ C X if no other solution
exists that dominates a’:

(2.12)

Aie X' :a<d. (2.13)

If @' is non-dominated regarding the whole search space X, it is called Pareto-optimal.
Because in multi-objective optimization usually conflicting goals are optimized (see Chap-
ter 5), generally several or even an infinite number of mutually non-dominated solu-
tions exist. These Pareto-optimal solutions correspond to the global optimum in single-
objective optimization. They are trade-off solutions from which the so-called decision
maker (usually a human being) selects the final solution to be used. The set of Pareto-
optimal solutions in objective space is referred to as the Pareto-optimal front whereas
the corresponding set of vectors in parameter space is called the Pareto-optimal set.

CHAPTER 2. BASIC PRINCIPLES OF OPTIMIZATION

Because multi-objective optimization algorithms do not necessarily find the (complete)
Pareto-optimal front, the results of an optimization algorithm will be referred to as the
approximation set (as in [Kno06|, the term approximation set is also used synonymously
for the generated front here) or simply as non-dominated solutions.

In Figure 2.2 the dominance relation is illustrated: b dominates ¢ and d because b is
better than & regarding both objectives, and fo(b) = fo(d) but f1(b) < fi(d). @ and b are
mutually non-dominated because @ is better concerning f; but b is better concerning fo. If
there are no other solutions in the search space which dominate them, they correspond to
the Pareto-optimal solutions. Examples of Pareto-optimal fronts with an infinite number
of solutions are shown in Appendix A.

fo A

@ @

"f) (d)

Figure 2.2: Hlustration of the dominance relation

2.2 Optimization Algorithms

A large variety of optimization algorithms exists which have been developed for different
kinds of problems. Thus, there are many ways for classifying optimization algorithms
based on the problems that they were designed for but also based on characteristics of
the algorithms themselves. In the following the main characteristics are given to define
what kinds of problems and algorithms will be examined in this work (other possibilities
for classifying optimization algorithms can be found in [Men0O4a, Pet01]). The first two
properties are related to the optimization problems whereas the latter two attributes refer
to the optimization methods.

e Static «» dynamic: Dynamic optimization means that an optimum should be found
while environmental conditions are varying, i.e. the optimum might be moving
[Sch95]. An example is constructing an optimal traffic lights schedule [Rak08| but
also the optimization of vehicle routing and scheduling problems [Sch07]. In con-
trast, the here regarded problems are static, meaning that the optimum is non-
changing. Therefore, dynamic optimization is not regarded here further.

e Continuous « discrete: Depending on the nature of the parameters, discrete and
continuous problems are distinguished. An interesting discussion about the differ-
ences between discrete and continuous optimization can be found in [Cle06] but
here only the major differences are given to define the scope of this work. Discrete
problems may be combinatorial problems like the travelling salesman problem or

10

2.2. OPTIMIZATION ALGORITHMS

vehicle routing and scheduling problems [Sch07| where a large but finite set of pa-
rameter combinations exists. Optimizing the performance of a circuit that is built
from discrete electronic components may also be seen as a discrete problem if only
certain sizes are available and it should be avoided to connect a large number of
components in series or in parallel to reach the desired value. Additionally, prob-
lems with integer or binary representation of the parameters are subsets of discrete
problems [Lam04]. In contrast, all optimization problems examined in this work
have continuous variables. Of course the use of computers for conducting the opti-
mization process actually leads to a limited precision but in practice the restrictions
are negligible.

e Deterministic «» stochastic (local < global): Local optimization algorithms use
deterministic methods to find the optimum of a function. Because of their deter-
ministic nature they are generally not able to escape from local minima because they
try to move in the direction of descending values of the objective function. Hence,
they are dependent on the starting position and have problems with multimodal
functions [Jak04] (see Figure 2.3). In contrast, global optimization algorithms use
stochastic operators. Thus, they are generally able to find the global optimum of a
function regardless of the number of local minima. Due to this advantage, global
optimization algorithms are considered in this work.

f(x) 4

A Global optimum

A Local optimum

® “Good” starting position
o “Bad” starting position

Figure 2.3: Dependence of deterministic algorithms on starting positions

e Population-based «+» one individual per generation: In this work methods are used
that regard more than one individual at the same time (generation). An advantage
of population-based methods over techniques with one individual per generation is
that information can be shared among the individuals, leading to a better coverage
of the search space.

To sum up, in this work population-based stochastic global optimization algorithms are
regarded which operate on continuous variables, and the objective function does not
change with time.

Evolutionary algorithms are the most widely used global optimization algorithms. They
are general methods which have almost no requirements concerning the optimization prob-
lem, e.g. they do not need derivatives of the objective function. They can be applied to
all problems which can be expressed as given in Section 2.1. Thus, it is sufficient that the

11

CHAPTER 2. BASIC PRINCIPLES OF OPTIMIZATION

values of constraint and objective functions can be computed for individual parameter
sets but the functions do not have to be given in analytical form. The only assumption is
that there is a certain coherence in the objective function, meaning that objective function
values of parameters which are close to each other are similar. If an objective function
is flat and only contains one peak somewhere, evolutionary algorithms do not have an
advantage over a pure random search [Jak04]|. However, real-world optimization prob-
lems generally exhibit some correlation between nearby parameter values, so evolutionary
algorithms are preferable in contrast to random search. In Section 4.4 this property is
empirically demonstrated based on an extensive set of test functions which are assumed to
include several features that also occur in real-world problems. The comparison of blind
random search and brute force search with Differential Evolution and Particle Swarm
Optimization indeed shows the superiority of evolutionary algorithms over pure random
search methods.

In recent years optimization algorithms have been developed which have similar function-
ality as evolutionary algorithms but do not necessarily apply the principles of evolution
(mutation, recombination, selection). Instead, other biological mechanisms are used as
inspiration. Some of these new fields are swarm intelligence (with its main representa-
tives Particle Swarm Optimization and Ant Colony Optimization) and artificial immune
systems. For these algorithms generally the same advantages hold as discussed above for
evolutionary algorithms.

A general term which includes all these methods would be bio-inspired optimization algo-
rithms. However, due to the advantages already mentioned in Chapter 1, the emphasis lies
on Differential Evolution and Particle Swarm Optimization in this work. Both methods
may be classified as EAs, thus the term "evolutionary algorithms" is kept here.

2.3 Terminology and Concepts

As evolutionary algorithms are inspired from nature, the terminology is also mostly de-
rived from biology, especially genetics. For readers who are unfamiliar with EAs (and
optimization in general), an overview about important terms and concepts is given in the
following. First, some basics are explained which are absolutely necessary for understand-
ing an evolutionary algorithm. Afterwards, more specific terms are given which will also
be used in this work.

e Individual: Individuals may be seen as points in the search space. Besides the
position in the search space, they are also associated with information about the
violated constraints and the objective function value. Each of them represents a
solution of the optimization problem but not necessarily a good one. The term
solution is also used as a synonym for individual in the following.

e Population: A group of individuals which usually interact with each other.

e Parent: An individual that participates in the creation of a new individual which is
called its offspring.

e Child/offspring: Newly generated individual that is compared to its parent or to
some members of the parent population (depending on the algorithm) to determine
if it receives a place in the successive generation.

12

2.3.

TERMINOLOGY AND CONCEPTS

Generation: Discrete time unit. In each generation the evolutionary operators are
applied either to all individuals of the current population or to a selected subset,
depending on the algorithm. The term "iteration" is often used synonymously,
especially in Particle Swarm Optimization where the individuals are not replaced
by their offspring but rather move in the search space.

Evolutionary operators: The operators which are used in evolutionary algorithms
to produce new individuals. The operators are named like their counterparts in
natural evolution: Crossover/recombination, mutation and selection.

Crossover /recombination: Evolutionary operator. Several individuals (parents) in-
teract to produce an offspring. This is in contrast to the evolutionary operator
mutation that only operates on one individual. Crossover is a specific form of re-
combination in biology but in the literature of evolutionary algorithms these terms
are usually used synonymously.

Mutation: Ewvolutionary operator. Mutation is generally applied after recombination
to further perturb the offspring. An exception is the DE algorithm where first
mutation and afterwards recombination is applied. In contrast to recombination
that exchanges components from already existing individuals, mutation is generally
used to bring new characteristics into the population. In the case of binary-coded
individuals, this may be the change of a bit from 0 to 1 or vice versa. For real-
coded individuals mutation may be implemented as a random change in a vector
component.

Selection: Fvolutionary operator. In EAs usually it has to be distinguished between
parent selection (selecting the solutions that participate in creating a new individ-
ual) and survivor selection (selecting the individuals which are part of the next
generation). In this work usually survivor selection is meant when mentioning the
term selection. It is indicated where the term is used with different meaning.

In the following several terms and concepts are clarified which are less basic. Most of
them do not occur throughout this work but only in limited areas. To simplify the search
for specific terms, they are given in alphabetical order.

e Adaptation: See (Self-) Adaptation.

e Convergence: Approaching of a stationary state is referred to as convergence. Usu-

ally, this means that the diversity of the population decreases, so that the population
is located in a small area of the search space. Convergence to the global minimum is
desired but also convergence to local minima may happen. The latter case is often
termed premature convergence although premature convergence might also mean a
loss of diversity without reaching any kind of optimum. In the literature it is often
not checked if a population has actually converged but rather if the optimum was
found with a specified accuracy €,. Using the given definition, convergence of the
population has not necessarily been reached (see Figure 2.4). For the comparison of
algorithms this approach is sufficient but it will be shown in Chapter 6 that conver-
gence must be regarded in its original meaning for the definition of stopping criteria.

13

CHAPTER 2. BASIC PRINCIPLES OF OPTIMIZATION

Fla) [t

>
-

v

i T

(a) The optimum has been found but the popula- (b) The population is nearly converged.
tion is not converged.

Figure 2.4: Convergence

e Convex optimization problem: An optimization problem is convex if all objective
functions as well as the feasible region are convex [Deb0la]. A function is convex if
the following holds for any two solutions xy # x5 and ¢ € [0, 1]:

flt-zy+ (1 —t)-x9) <t-fla)+ (1 —1) f(z2). (2.14)

This means that the value of the function f between the points x; and x5 is always
below the connecting line of f(z1) and f(z9) (see Figure 2.5). It follows that a local
optimum is also a global optimum.

e Deceptive: An optimization problem is called deceptive if features of the problem
tend to lead optimization algorithms away from its global optimum, e.g. by a
gradient in the direction of a local optimum. A deceptive problem is usually difficult
to optimize.

e Diversity: Expresses how different individuals are, i.e. gives the degree of disper-
sion. Diversity usually refers to differences in parameter space. For example, in
Figure 2.4(a) a high diversity is present in the population whereas in Figure 2.4(b)
the diversity is low. Some ideas how to measure diversity are given in [Olo08, Shi08|.

f(x)lk

>

X1 T2 T

Figure 2.5: Convex function

14

2.3.

TERMINOLOGY AND CONCEPTS

Elitist/elitism: Elitist methods ensure that the previously found best population
member(s) survive to the next generation without being changed. Elitism can be
implemented in different ways, see e.g. Sections 3.5 and 5.3.1. Elitist strategies
generally result in faster convergence but the risk of converging to a local optimum
increases.

Exploration vs. exploitation: Exploration means visiting previously unexplored
regions of the search space. In contrast, exploitation means using already gathered
information about good points in the search space in order to find other good or
preferably even better solutions. In an optimization run, early stages are typically
characterized by exploration whereas in later stages the task changes to exploitation
to fine-tune the solution.

Feasible: A solution is called feasible if it satisfies all constraints.

Flat region: A part of the search space where the objective function value does
not change. Flat regions make an optimization problem more difficult because
algorithms may have problems crossing it (see e.g. Section 3.5.1).

Heuristic: In contrast to an algorithm which gives exact solutions to a problem and
which can be proven to succeed, a heuristic is able to yield approximate solutions
but usually no convergence proof exists. In other words, there is a risk of obtaining
a suboptimal solution. As for most evolutionary algorithms there is no convergence
proof, they can be classified as heuristics.

Landscape: This term refers to properties, i.e. the shape, of the objective function
because of the resemblance with hills and valleys.

No free lunch theorem: This theorem states that the performance of all optimization
algorithms is equivalent when averaged over all possible functions [Wol97|. At first
glance it may seem that the statement of this theorem is that all effort in designing
optimization algorithms is futile because a pure random search will have the same
performance on average. In fact it has to be distinguished between different classes of
problems. For random functions the performance of evolutionary algorithms will not
be better than the performance of random search (probably even worse because the
EA might get stuck in a local optimum). However, if functions contain regularities
that might guide a search algorithm towards regions with better function values,
evolutionary algorithms do have an advantage (see also Section 2.2, Section 4.4 or
[Men0O4a]). For multi-objective optimization a discussion about the validity of the
no free lunch theorem can be found in [Cor03].

Real-world problem: In contrast to test functions which are usually artificially cre-
ated and do not have any meaning in the "real world", optimization problems en-
countered in various disciplines of e.g. engineering or science are called real-world
problems. They are often characterized by a large number of parameters and ad-
ditionally they commonly exhibit several constraint and objective functions. The
constraint and objective functions are often computationally expensive to evaluate,
e.g. because complex systems have to be simulated. Even the definition of objective
functions for real-world problems is not necessarily trivial [Sch95].

15

CHAPTER 2. BASIC PRINCIPLES OF OPTIMIZATION

e Rotational invariance: A desired property of optimization algorithms (or its opera-
tors, respectively). In [Pri05] a rotationally invariant search algorithm is defined as
an algorithm whose performance is not dependent on the orientation of the coordi-
nate system.

e (Self-)Adaptation: If a control parameter is not fixed but it is varied according to
the state of the optimization run, it is called adaptive. If control parameters are
subject to the evolutionary process, they are called self-adaptive [Eib99].

e Step size: Distance between parent and offspring, usually measured in parameter
space.

e Stopping criterion (also called stopping rule, stopping condition or termination cri-
terion): Determines when the execution of an optimization algorithm is terminated.

16

Chapter 3

Evolutionary Algorithms

Evolutionary computation is a subfield of computational intelligence in which evolution-
ary algorithms are used for solving optimization problems. Computational intelligence
itself is a part of artificial intelligence. Besides evolutionary computation, computational
intelligence comprises two other biologically motivated fields which are neural networks
and fuzzy systems.

The reason for using principles derived from evolution for optimization purposes is the
success of natural evolution. In nature, complex organisms have been created that are
adapted to all sorts of environments. Similarly, evolutionary algorithms use evolutionary
operators to handle different types of complex optimization problems.

The oldest representatives of this class are Genetic Algorithms (from the 1960s), Evolution
Strategies (from the 1970s) and Evolutionary Programming (from the 1960s). A kind of
subfield of Genetic Algorithms is the Genetic Programming. It was developed later than
the before-mentioned algorithms (from the 1980s) but it also belongs to the most famous
evolutionary algorithms. In recent years Differential Evolution which was first published
in 1995 also received growing attention, among others due to its favorable convergence
characteristics.

A commonality of these evolutionary algorithms is the use of the evolutionary opera-
tors recombination, mutation and selection to evolve a population of individuals towards
better values of the objective function. Differences exist in the representation, the im-
plementation of the operators and the importance of the different operators. Most of
the methods were developed independently from each other but in the meantime there
is much exchange between the different fields. The borders between the algorithms be-
come fluid, e.g. the classical Genetic Algorithm uses binary coding but variants with
real-valued parameters have also been developed in the meantime. Furthermore, concepts
like constraint-handling are exchanged.

A rather new class of optimization algorithms can be summarized under the name "swarm
intelligence". Slis an artificial intelligence technique that uses populations of agents which
interact with one another. The two most popular methods of this class are Ant Colony
Optimization (from the early 1990s) and Particle Swarm Optimization (first published
in 1995). While Ant Colony Optimization is only applicable to combinatorial problems
(and is therefore not discussed further here; the interested reader is referred to [Dor02|),
PSO operates on real numbers and is a global optimization technique. Some researchers
regard PSO as an evolutionary algorithm but this classification is controversial and will
be discussed in more detail in Section 3.6.

17

CHAPTER 3. EVOLUTIONARY ALGORITHMS

In the following first a short introduction to Genetic Algorithms, Evolution Strategies,
Evolutionary Programming and Genetic Programming is given. These algorithms can be
seen as kind of predecessors of Differential Evolution and Particle Swarm Optimization
in whose context DE and PSO have been developed. Because the focus of this work is
on DE and PSO, the subsequent introductions of these algorithms contain more details.
In this chapter only unconstrained single-objective optimization is described. Extensions
for constraints and multiple objectives are covered in Chapters 4 and 5.

3.1 Genetic Algorithm

Genetic algorithms (GAs) are probably the most famous evolutionary algorithms. They
were developed by John H. Holland, firstly introduced in the 1960s, and especially a book
of Holland from 1975 received much attention [Hol75]. Other commonly cited textbooks
that can be used for obtaining further knowledge beyond the basic information that is
given here are [Gol89, Deb0lal. There have been attempts to formulate a convergence
proof for GAs [Deb01a| but generally they can be seen as heuristics like the other evolu-
tionary algorithms presented here.

In natural individuals, the genetic material consists of chromosomes which themselves are
composed of several genes. These genes can have different states which are called the
alleles. In classical GAs the same principle is used. The chromosomes are modelled by
binary strings where each bit corresponds to a gene. The different alleles of a gene are
represented by the two states of a bit (0 or 1).

Optimization problems mostly have real-valued parameters. Thus, the parameters must
be converted into bit strings in order to apply a classical GA. In analogy to natural
systems, the chromosome in GAs is also called the genotype whereas the corresponding
phenotype consists of the objective function parameters. Each parameter is transformed
into a binary number, and the whole chromosome is built by linking these binary numbers
together. For example, if there is a parameter with the value z; = 9 and another parameter
with the value zo = 5, the first one might be represented as 01001 and the second one
as 00101, making the whole chromosome to 01001 00101. It follows that the precision
as well as the search space is determined by the coding. As it will be shown in the
following, recombination and mutation operate on the genotype. For the evolutionary
operator selection the performance of a solution must be evaluated. For this purpose
the phenotype is used to compute the value of the so-called fitness function (which is
often equal to the objective function but may also include a dependence on the constraint
functions). In the example, the fitness function may be f(z1,25) = z7 + 23, thus the
performance would be represented by f(9,5) = 106.

In GAs a selection mechanism is employed both for choosing individuals for reproduction
as well as for selecting survivors for the next generation. For these purposes usually a
fitness-based selection operator is used, e.g. tournament selection, proportionate selection
or ranking selection [Deb0Olal. Using tournament selection, two solutions are compared
and the better performing one wins, e.g. the one with the smaller fitness for minimization
tasks. With proportionate selection, the individuals are selected proportional to their
fitness. This is also termed "roulette wheel selection". It is depicted in Figure 3.1 where
the probability p; to select individual i is proportional to its fitness f;: p; = ZNL%J‘] where
NP is the number of individuals. In ranking selection a similar operator is used but first

18

3.1. GENETIC ALGORITHM

Ps

Ps P>

P, ps

Figure 3.1: Roulette wheel selection

the individuals are sorted based on their fitness value and then they are assigned a rank
that equals their new fitness.

Recombination is the main operator in GAs whereas mutation is a secondary operator
that is applied with less probability. There are several ways to conduct crossover. The
most commonly used variants employ two parents and are given in the following:

e n-point crossover: n points define which part of the chromosome of parent 1 or
parent 2 is given to the offspring. In Figure 3.2 two-point crossover is illustrated.
Offspring 1 is based on parent 1 but it also receives several bits from parent 2 (light
gray). Two points characterize the beginning and the end of the bit sequence that
originates from parent 2. Similarly, offspring 2 is based on parent 2 but the bit
sequence shown in dark gray comes from parent 1.

Parent 1 Offspring 1
1jofif1loljo 1]0] 1jojoj1/1/0/1]0]
1 p p

Parent 2 —> Offspring 2
oj1{o/1/1/0/1]1] o/1[1f1lolo 1]1]
1 p p

Figure 3.2: Two-point crossover

e Uniform crossover: Bits are taken from each parent with a certain probability.

Recombination is not applied to all members of the mating pool. Instead, it is used with
a given probability p..

In contrast to recombination, the bit-wise mutation operator does not operate on two
parents. Instead, it is applied to a single individual. It is used for bringing diversity into
the population by changing a bit with a certain probability p,,.

A drawback of binary-coded GAs is that an unsuitable coding may produce bad results
[Deb01c, Ama97]. Problems are for example the existence of Hamming cliffs (the transi-
tion to a neighboring solution requires the alteration of more than one bit, e.g. from 01111
to 10000 [Deb0la]) and the need to predefine the precision before conducting the opti-
mization run. Therefore, GAs using real-valued parameters have been developed. These
algorithms are able to use the same selection operators as binary-coded GAs because only
the fitness of solutions is considered during selection. However, the crossover and mutation
operators had to be newly designed because they regard the genotype [Deb0lal. In the lit-
erature indications can be found that real-coded GAs perform well [Ama97, Ali04, Wu05],
supporting the decision to concentrate on algorithms using real-valued representation here.

19

CHAPTER 3. EVOLUTIONARY ALGORITHMS

3.2 Evolution Strategy

The evolution strategy (ES) was developed in 1963 by two German students: Ingo Rechen-
berg and Hans-Paul Schwefel [Sch95]. In contrast to GAs that traditionally employ binary
strings as parameter representation, ESs use real-valued parameters. In the original form
of ESs, only mutation and selection were applied as evolutionary operators, and only one
parent and one offspring was used. Later work employed crossover as well, and multi-
membered ESs were developed.
In ESs the notation (u/p + A)-ES is used to indicate the form of the algorithm. Here
1 denotes the number of parents, p gives the number of parents that participate in the
recombination process and A is the number of offspring. Two different selection types
are used: The (u/p + A)-ES combines all parents and offspring and selects the p best
individuals while the (1/p, A)-ES regards only the offspring for selection. Therefore, it is
required for the (u/p, \)-ES that A > u. It should be noted that the (u/p + A)-ES is an
elitist algorithm whereas the (p/p, A)-ES is not elitist.
For mutation a Gaussian operator is used. A mutated vector y; is created from a vector
i = 7 + N(0,0) (3.1)

where o is the mutation length and the components of vector N (0, 0) are generated using
a zero-mean normal distribution with standard deviation o. As it was discovered that it is
beneficial to vary the mutation strength during the optimization run, adaptive strategies
were developed so that not only the parameters are evolved but the mutation strength
as well. Implementations exist that use the same mutation strength for all population
members but also variants have been developed that assign different values of the mutation
strength to each individual [Deb01a].

Two different kinds of recombination operators exist: Intermediate or discrete. Using the
intermediate recombination operator, an average of the p selected solutions is computed.
Using the discrete recombination operator, each component of the parameter vector is
chosen randomly from one of the p parents (similar to the uniform crossover operator in
GAs).

The general procedure of ESs is typical for an EA: An initial population is randomly
initialized, recombination is performed, the resulting solutions are mutated, survivors
for the next generation are selected, and the iterative procedure is terminated if some
stopping criterion is fulfilled.

Some convergence proofs for ESs can be found in the literature but as discussed in [Jak04|
the practical usefulness is rather low due to the many assumptions made in the process.
This is a general problem for evolutionary algorithms because (especially for more so-
phisticated versions than the basic methods) too many aspects have to be neglected for
a convergence proof due to the complexity of the algorithms.

3.3 Evolutionary Programming

Evolutionary programming (EP) was developed by Lawrence J. Fogel in the early 1960s
[Deb01al. Like the ESs, it operates on real-valued parameters. It employs the evolution-
ary operators mutation and selection but recombination is not used. There are many
similarities between ESs and EP but they were developed independently.

20

3.4. GENETIC PROGRAMMING

Vin L,

—C, D R, Vout

Figure 3.4: Schematic for the tree in Figure 3.3

Like in ESs, offspring are generated by conducting mutation using a normal distribution,
and the mutation strength is evolved over time. A difference lies in the selection proce-
dure: First, all parents and offspring are combined. Every solution Z; of this combined
population is compared with a subset of randomly chosen solutions from the combined
population. It is computed how many solutions of the selected set are inferior to Z; by
evaluating the objective function values. A score is assigned to Z; that is proportional to
the number of inferior solutions. After this procedure has been done for every solution
Z; of the combined population, the solutions are sorted due to their score. The solutions
with the best scores are selected for the next generation, making EP an elitist algorithm.

3.4 Genetic Programming

Genetic programming (GP) [Koz92| is newer than GAs, ESs and EP as it was developed
in the 1980s. It is a variant of GAs where a major difference exists in the data structures:
In GP, data is commonly represented as trees instead of the binary-coded or real-coded
parameters in GAs. An example is given in Figure 3.3 which is a representation of the
circuit shown in Figure 3.4. Otherwise, the process of GP is similar to GAs: In the
beginning of an optimization run the individuals are randomly generated, and a fitness
is assigned to all of them by comparing the outcome of the solutions with the desired
outcome. The crossover operator exchanges subtrees (see Figure 3.3), and the mutation
operator replaces an object with another one from a given set.

Among others, GP is successfully applied in circuit design [Koz04]. Using GP, not only
the parameter values of existing designs can be optimized but as shown in Figure 3.3 the
whole topology itself, i.e. the connection of components, can be created by GP, parallel
to optimizing parameter values [Hou05].

21

CHAPTER 3. EVOLUTIONARY ALGORITHMS

3.5 Differential Evolution

In comparison to other evolutionary algorithms, Differential Evolution is a relatively new
technique. It was first described by Storn and Price in 1995 [Sto95|. The objective of
the authors was to design a method that is easy to use, robust and fast. The first goal
is achieved by the small number of user-defined parameters as DE only includes three
control parameters. Two of these parameters have rather small ranges of suitable values
which contributes to the robustness of DE. Fastness is obtained by the characteristic use of
vector differences from the current population for the generation of step sizes. Therefore,
an adaptive scaling of step sizes is produced that leads to a high convergence speed (see
Section 3.5.1). Moreover, the algorithm is elitist which is a property that is commonly
associated with fastness. Some authors also stress that DE is inherently parallel and can
be easily executed on parallel computers [Zah03b, Tas04, Pri05]. A convergence proof
for DE is missing so far. However, it can be seen in the literature that DE has been
successfully applied to many different optimization problems [Pri05].

In the following first the procedure of DE is described for the most commonly used variant
DE/rand/1/bin (the notation of the variants is explained in Section 3.5.2). Afterwards,
different variants of DE are introduced and recommendations for setting control param-
eters are given. At the end of this section differences and commonalities of DE with
other EAs are summarized. This chapter concentrates on unconstrained single-objective
optimization. Extensions for the handling of constrained problems will be discussed in
Section 4.2.2, and modifications for multi-objective problems will be addressed in Sec-
tion 5.3.

3.5.1 General Procedure

The process of Differential Evolution is similar to other evolutionary algorithms: After a
random initialization of the population, the individuals are evolved using the evolutionary
operators mutation, recombination and selection until a stopping criterion is satisfied (see
Figure 3.5).

In contrast to classical Genetic Algorithms that use binary coding for the individuals, the
population members in DE consist of real-valued vectors. Their dimension D is equivalent
to the number of parameters of the objective function. The number of individuals in each
generation G is denoted by the user-defined control parameter NP. The population size
NP is usually kept constant during an optimization run (see Section 7.1.1 for exceptions).
Thus, each generation contains the individuals 7; ¢ with ¢ € {1, ..., NP}. The components
of an individual are referred to as z; ;¢ with j € {1,..., D}. Sometimes the index G for
the generation number is omitted where irrelevant for the issue that is currently discussed.
The use of real-valued vectors as individuals contributes to the easiness of DE because
no binary coding is necessary for continuous optimization problems (see also [Pri99] and
[Fog00] for discussions about advantages of encoding as floating-point numbers).

In the beginning of an optimization run, the DE individuals are usually randomly initial-
ized within the search space:

TijG=0 = Tming + rand; - (Tmazj — Tmin,j) (3.2)

where i € {1,..., NP}, j € {1,..., D}, Tyinj and T, ; are the lower and upper limit for
parameter j, and rand; € [0, 1] is a random variable from a uniform distribution. If there is

22

3.5. DIFFERENTIAL EVOLUTION

Random initialization of individuals X, with
ie{l,..,NP}

-
A

Mutation: Create v, for every i€ {1,..., NP}

4
Recombination: Generate #, using v,and X, for
everyie{l,..., NP}

4

Selection: Compare X; and u, and insert the better
performing solution into the next generation

no

Stopping criterion reached?

Termination: Best individual is the solution

Figure 3.5: Flowchart for Differential Evolution

some a priori knowledge about the location of the global optimum, it is also possible to use
another distribution for initialization to increase the convergence speed, e.g. a Gaussian
distribution [Pri05]. Because normally no knowledge about the location of the optimum
is available, generally the uniform distribution is used. If parameter bounds cannot be
estimated reliably, it is also possible to use the estimated bounds only for initialization
whereas the individuals’ location is not restricted after initialization [Lam04].

Mutation is performed for each population member #;. In that context, the solution ¥; is
also commonly called the target vector in the DE literature because it denotes the solution
that is currently the target of the evolutionary operators. To familiarize the reader with
the general procedure of DE, here only the mutation process of the variant DE /rand/1/bin
is described because it is one of the easiest and most commonly used variants. There are
also other forms of mutation which will be presented in Section 3.5.2. In DE/rand/1/bin
mutation is executed by adding the weighted difference of two randomly chosen population
vectors to another individual. It has to be noted that the target vector 7; that is later
used for comparison with the newly created individual is not involved in the mutation
process using this DE variant:

U’i,G - fTLG + F- (fT'Q,G - f’r‘g,G) (33>

with ¢ € {1,...,NP}. F is one of the control parameters of DE. It is a real number
that is sometimes called the amplification constant or scale factor as it scales the vector
difference of 7, ¢ and 7, ¢. F' is mostly chosen from the interval [0, 1] but some authors
also use larger numbers up to 2 [Hua06]. The indices r1, o, 73 denote three mutually
different, randomly chosen members of the current generation which are also different

23

CHAPTER 3. EVOLUTIONARY ALGORITHMS

$2 A

Figure 3.6: Mutation for D = 2

from the target vector Z;. In Figure 3.6 the procedure of generating a mutated vector is
shown for D = 2.

This mutation operation might look like crossover at first glance because several popu-
lation members are involved. However, crossover refers to the exchange of vector com-
ponents which does not happen here. Instead, 7,, ¢ and Z,, ¢ are only used to compute
a vector difference, i.e. to generate a step size. Thus, indeed only 7, ¢ is perturbed by
adding a random variation to it. This operation is similar to the mutation in ESs (see
Equation 3.1), just the origin of the random variation is different.

The use of population members to generate the random variation during the mutation
process is the reason for the automatic adaptation of the step length: An individual is
mutated by adding a vector difference, and the magnitude of vector differences changes
during the optimization run. In the initial stages of the search, the individuals are scat-
tered throughout the search space. As a result, vector differences are large, and the
individuals make large steps to explore the search space. Towards the end of the opti-
mization run, the individuals gather in the vicinity of the optimum. Vector differences are
small, and the individuals move in small steps, so the solution will be fine-tuned. Hence,
the DE individuals automatically vary their search behavior from emphasizing exploration
in the beginning to stressing exploitation towards the end of an optimization run.

In the recombination process a trial vector w; is built for each population member ;. In
contrast to mutation, the target vector ¥; is part of the recombination process because
the trial vector u; receives components from #; and the mutated vector v;:

Vi i if rand; < CRor j =k
ui,j,G = { 3G J J (34)

T;jc otherwise

where i € {1,..., NP} and j € {1,...,D}. CR is the crossover constant. It is a control
parameter of the DE algorithm that has to be user-defined in the interval CR € [0, 1]. To
ensure that the trial vector is different from the target vector in at least one component
j =k, k is chosen randomly from the interval k£ € {1,..., D}, and k is newly chosen for
each population member in every generation. This recombination operation is slightly
different from the usual definition of an exchange between several population members
because one of the participating solutions is not directly a population member but a
mutated solution derived from a population member. In Figure 3.7 recombination is

24

3.5. DIFFERENTIAL EVOLUTION

shown for D = 2. In this case only three trial vectors are possible for a given mutated
vector (i, U;,, ;). The number of possible trial vectors increases with the dimension
and also with the number of possible mutated vectors which may be achieved by a larger
population size [Lam00, Pri05].

I‘Q A

1 N
=

Ty

Figure 3.7: Recombination for D = 2

The reason for the enforced difference between target vector and trial vector is that they
are compared when applying the operator selection. For minimization problems like in
this work (see Section 2.1), the vector with the smaller objective function value is inserted
into the subsequent generation G + 1:

N {’Ji,G if f(dic) < [(@ic)
TiGg+1 =

N . (3.5)
Z; otherwise

with i € {1,..., NP}. This selection scheme contains another difference to other EAs
because the trial vector is compared to only one pre-specified member of the population,
meaning that the selection process is deterministic.

Especially for functions with flat regions (see Section 2.3), it might be advantageous to
prefer the trial vector over the target vector if f(u;) < f(7;) instead of f(u;) < f(&;).
That way, crossing of flat regions is easier for the individuals [Lam02, Hua06|.

The selection operator results in two properties of DE: Because the selection scheme does
not allow to replace a population member with an individual that performs worse, so the
objective function value cannot deteriorate, it is called greedy [Sto97]. Moreover, the best
objective function value cannot get lost when moving from one generation to the next.
Thus, DE is an elitist algorithm which is a property that is usually associated with fast
convergence behavior [Pri05].

There are two ways of substituting individuals: One possibility is to generate the whole
child population first and then apply the selection operator to build the next generation
G +1, so there is no influence of the child population in generation G'. Another possibility
is to instantly substitute a parent by the respective offspring if the offspring performs
better, meaning that the offspring immediately participates in the evolutionary process
in generation G. In [Rob05b] the latter variant is recommended for a multi-objective DE
algorithm as it emphasizes elitism. In contrast, in [KukO4a] it is reported that the same
results are obtained with both formulations. Thus, in this work the instant substitution
is omitted.

25

CHAPTER 3. EVOLUTIONARY ALGORITHMS

3.5.2 Variants of Differential Evolution

Several variants of DE have been developed that differ in the way mutation and recombi-
nation are executed |Onw04b, Mez06a, Pri05]. They are specified using the notation

DE/z/y/z (3.6)

where = denotes the vector to be mutated (also called base vector), y is the number of
difference vectors and z is the crossover scheme [Pri99|. The vector to be mutated might
be a randomly chosen vector (notation: 'rand’), the best vector that was found so far
(notation: ’best’) or a vector that is located on the connecting line between two solutions,
e.g. between the target vector and a random vector (notation: ’current-to-rand’) or
between the target vector and the best vector (notation: ’current-to-best’). The number
of difference vectors is normally set to one or two. Concerning the crossover scheme, a
binomial or exponential process can be used (notation: ’bin’ or ’exp’; respectively). In
the binomial process a random variable is compared to CR for every vector component to
decide if the respective component should be copied from @; or Z; [Pri99|. This is equivalent
to the uniform crossover in GAs (see Section 3.1). In contrast, in the exponential process
the vector components are taken from Z; until the random variable is smaller or equal
to CR for the first time. After this, the remaining vector components are copied from vj;
[Pri99]. This is equivalent to one-point crossover in GAs. The exponential process may
also be implemented slightly differently which results in a similarity to two-point crossover
[Pri05]. In [Pri99] the use of binomial crossover is recommended but in [Pri08] it is stated
that there are no significant differences between the crossover methods.

With the notation given in Equation 3.6, the variant specified in Section 3.5.1 can be
described as DE /rand/1/bin. It is one of the earliest DE schemes [St095, Sto97] and it is
used frequently in the literature [Bab02, Bec05, Lam02, Lam04, Lam00, Onw04a, Rob05b].
In [Bab03b] it is stated that DE/rand/1/bin is the most successful and most widely used
DE scheme. [Pri05] refers to this strategy as "classic DE".

There are also variants of DE which are given without the crossover scheme z from Equa-
tion 3.6 because recombination is not used, i.e. DE/current-to-rand/1. In contrast to
DE/rand/1/bin, this is a rotationally invariant approach [Pri99| (see also Section 2.3).
In Table 3.1 some commonly used DE strategies are given (showing only the mutation
process). K is an additional control parameter and #* denotes the best solution found so
far. The abbreviation given in the second column is only used in this section.

Table 3.1: Strategies of Differential Evolution

‘ Notation ‘ Abb. ‘ Equation for mutated vector
DE/rand/1 rl Uy =Zp, + F - (2, — Zry)
DE /rand/2 r2 Uy =Tp, + F - (Zp, — Zrg) + F - (B, — Try)
DE/current-to-rand/1 | crl U=+ K- (Zp, — %)+ F - (Zr, — Try)
DE/current-to-rand/2 | cr2 | Oy =& + K - (T, — T3) + F - (T, — Zpy) + F - (T, — Try)
DE/best/1 bl U =2+ F - (%, — Try)
DE /best/2 b2 U =8+ F - (%, — Tr,) —|— F - (%, —%r,)
DE/current-to-best/1 | cbl | oy =& + K - (&* — &) + F - (%, — Tp,)
DE/current-to-best/2 | ¢cb2 | oy =& + K- (& — &) + F - (%, — Zpy) + F - (Zpy — Zy,)

26

3.5. DIFFERENTIAL EVOLUTION

fte
o
0
[N
ey

after 80 generations

7 0.82f
fa
* (0.819¢

0.825¢
0.8241
0.823y
0.8227

+
0

=

m4444{+++ +

Lo

g

—

Ed

=

=

=

rl

r2 crl cr2 bl

b2

cbl c¢b2

Figure 3.8: Final objective function value for the optimization of a PI cascade control

The strategies from Table 3.1 (using binomial recombination) have been compared within
the scope of this thesis for the optimization of a PI cascade control for a multi-mass
system [Zie08a|. The results are given in Figures 3.8 and 3.9 in the form of boxplots to
permit a clear overview about the data beyond the information that a simple average and
standard deviation is able to provide. The lines of the box represent the lower quartile,
median and upper quartile of the data. The lines extending from the box show the extent
of the rest of the data. By definition, the maximum length of these so-called whiskers is
1.5 times the interquartile range. All data beyond this measure is considered as outliers
which are shown as crosses in the plot.

Concerning the final objective function value at the end of the optimization runs, strategies
employing one vector difference always performed better than strategies using two vector
differences (see Figure 3.8). Besides, methods using the best solution found so far as base
vector showed better performance than methods with a randomly chosen base vector.
The best final objective function value was obtained by DE /best/1/bin and DE/current-
to-best/1/bin. Both strategies also showed a very robust performance, meaning a low
range of solutions. Regarding the number of generations for obtaining a robust controller
(characterized by f(x) < 1), again the strategies employing the best vector found so far

—

VvV o35F ‘ ‘ M

B

L.\?)O’ N

S

5 .

O T

EMBHEE 1o

1) N - ‘

2 101 | ‘ ‘8‘

Rt | : : | g

B R
rl 12 crl cr2 bl b2 cbl cb2

Figure 3.9: Number of generations for reaching f(z) < 1 for the optimization of a PI
cascade control

27

CHAPTER 3. EVOLUTIONARY ALGORITHMS

as base vector performed better than their counterparts with a random base vector (see
Figure 3.9).

In [ZieO8a| only one (real-world) optimization problem has been used for the examination.
Another study of DE strategies can be found in [Mez06a| where the performance of eight
DE strategies has been checked for 13 test problems with varying features. In contrast
to the study in [ZieO8al, also exponential crossover was tested in [Mez06a|. The following
strategies were used in this paper:

e DE/rand/1/bin

e DE/rand/1/exp

e DE/best/1/bin

e DE/best/1/exp

e DE/current-to-rand/1

e DE/current-to-best/1

e DE/current-to-rand/1/bin
e DE/rand/2/dir

where DE /rand /2 /dir is a rather new variant that incorporates information about the ob-
jective function values by calculating 0; = Z,, +£(Z,, =, + @, — @,) with f(Z,,) < f(Z,,)
and f(Z,,) < f(#,,) |[Feo04]. A similar mechanism is employed in [Bre08| where one vec-
tor difference is used, and its direction is adjusted with a probability of 0.75 so that the
gradient is directed towards the better performing solution. In [Mez06a| DE/best/1/bin
performed best. An additional interesting result of this examination is that for DE /rand/1
and DE/best/1 the variants with binomial recombination consistently performed better
than the strategies with exponential recombination. However, studies like this are always
complicated by the dependence on control parameters. In [Mez06a] a random F' € [0.3,0.9]
was generated anew for every generation of each strategy. Because it is assumed that the
performance of the algorithm is more sensitive to the choice of CR, CR was tuned for
every strategy and each optimization problem separately. That way, the computational
effort was high but the best possible performance of each strategy was achieved, enabling
a fair comparison.

Apart from the choice of the DE strategy, several other modifications to the basic DE are
discussed in the literature. For example, there are attempts to hybridize DE with other
optimization techniques to further improve the convergence speed like in [Rog00| where
a hybrid of DE and a local search technique is built. To improve the speed but also the
search behavior, parallel versions of DE are presented in [Tas04] and also in [Zah03b].
Several subpopulations are developed on different machines and the subpopulations share
information by exchanging individuals. This way, optimization problems with expensive
objective and constraint functions can be solved faster by employing several machines.

28

3.5. DIFFERENTIAL EVOLUTION

3.5.3 Control Parameters

The basic DE algorithm contains three control parameters: F' influences the mutation
process, CR is used for recombination, and NP is the population size. Depending on the
strategy, also parameter K might have to be set (see Table 3.1). In the literature often
K = F is used, e.g. in [Sto99a]. The choice of the DE strategy can also be interpreted
as the selection of an additional control parameter which has only some discrete settings.
However, in this section the focus is on the setting of ', CR and NP. For these parameters
recommendations for single-objective optimization from the literature will be given in the
following.

For the population size, settings like NP € [5-D,10- D] [Sto97] or NP € [3-D,8- D]
|[GAmO02] are recommended. For DE/rand/1/bin there must be at least NP = 4 individuals
while for versions with two vector differences at least five population members are needed.
In a parameter study conducted within the scope of this work (published in [Zie06f]) it was
shown for a power allocation problem with dimension D = 16 (which will be described in
detail in Section 4.2.4) that a population size of NP = 30 ~ 2 - D is sufficient for reliable
convergence behavior.

The optimal setting of CR is dependent on the decomposability of the objective function.
If there are no dependencies between the parameters, a low value of CR € [0,0.2] should
be selected. High settings of CR € [0.9, 1] should be chosen if the parameters cannot be
optimized independently [Pri05].

It is stated in [Pri05] that values of F' < 0.4 and F' > 1 are usually not used. In [Lam04]
it is suggested that experiments with unknown optimization problems should be started
with 7= 0.9 (and CR = 0.9). In [Zie06f] F' = 0.7 showed better results, and in [GAmO02|
an initial choice of F' = 0.6 is recommended.

As described in [Lam00| there are two similar processes that can prevent the DE algo-
rithm from converging to the global optimum: Premature convergence and stagnation.
In contrast to premature convergence (see Section 2.3), stagnation is marked by no con-
vergence to any point, diversity in the population and occasionally new individuals in
the population. According to [Lam00|, the reason for stagnation is that only a limited
number of new vectors can be built. To overcome this problem, it is suggested that F
and CR should not be exactly equal to 1 and NP should not be smaller than 20.

To sum up, for DE some recommendations exist for the setting of control parameters
but they are not always in agreement with each other. Thus, some experimentation is
usually necessary to find suitable settings for an unknown optimization problem. This
holds especially for multi-objective optimization. It has been shown in the literature that
good settings for multi-objective optimization may differ considerably from recommended
settings for single-objective optimization [KukO4a|. For example, F' and CR may have to
be chosen considerably lower to obtain good results. As a consequence, several variants of
DE have been developed which use adaptive parameter setting. These will be discussed
in Section 7.1.1.

3.5.4 Comparison with other Evolutionary Algorithms

Like other evolutionary algorithms, Differential Evolution follows the "survival of the
fittest" principle. Nevertheless, there are some differences in contrast to other EAs. These
differences consist of

29

CHAPTER 3. EVOLUTIONARY ALGORITHMS

the selection of individuals for procreation,

the order of applying the evolutionary operators,

the representation of parameters,

the implementation of the operators and

the selection scheme.

In DE, every population member is allowed to procreate in each generation whereas
in other EAs the parents are often selected using fitness-based operators. One child is
generated for every parent in DE, using first mutation and afterwards recombination
whereas in GAs the order of applying these operators is reverse. In some variants of e.g.
ESs the recombination is even omitted. The real-valued representation is also used in ESs
and EP whereas (at least classical) GAs use binary-coded individuals. The difference in
the implementation of the operators becomes obvious when comparing Section 3.5.1 and
Section 3.5.2 with Sections 3.1, 3.2, 3.3 and 3.4. The DE selection operator compares a
parent (target vector) with its child (trial vector) and deterministically determines which
one of them is inserted into the next generation. In other EAs the individuals to be
compared are not necessarily pre-defined. Furthermore, the decision which individuals to
include in the next generation is often done stochastically, even though the fitness of the
individuals is also regarded. In [Xu08]| this difference is summarized in the statement that
DE adopts a greedier and less stochastic approach than other EAs.

DE is similar to ESs [Mad02, Xue05| but DE is less complicated because the self-adjusting
capability is derived from differences between population members that are used to gen-
erate new vectors (see also Section 3.5.1). Therefore, it is unnecessary to specify external
mechanisms which may also include new parameters [Deb01la].

In GAs mutation is applied with a low probability, so more emphasis is placed on recom-
bination. In contrast, in DE (as well as in ESs) mutation is also an important operator.
In general, DE can be seen as farther away from natural evolution than other EAs (es-
pecially GAs). This is reflected in the terminology (target vectors and trial vectors in
contrast to chromosomes and genes) but the operators are also more abstract. For exam-
ple, the selection operator that deterministically chooses the better performing solution
is unrealistic in nature: As argued in [Ken0l|, an individual with better characteristics
has a higher probability to survive but chance also has an influence. For example, a black
animal in a snowy environment might just be lucky that no predator comes along.

A further in-depth discussion of DE properties and DE dynamics can be found in [Pri99].

3.6 Particle Swarm Optimization

Same as Differential Evolution, the Particle Swarm Optimization algorithm was firstly
introduced in 1995 [Ken95|, so it is also a rather new optimization algorithm. It simulates
social behavior of groups like bird flocks or fish swarms where individuals adjust their
behavior based on own successes but also on successes of other group members.

Like other evolutionary algorithms, PSO was initially developed for unconstrained single-
objective optimization problems. In this section first the general procedure of the PSO
algorithm is discussed. FExtensions of PSO for constrained single-objective as well as

30

3.6. PARTICLE SWARM OPTIMIZATION

unconstrained and constrained multi-objective optimization are discussed in Sections 4.2.3
and 5.4. Additionally, some of the most commonly used neighborhood topologies are
presented and the control parameters of PSO are described in this section. Because PSO
is derived from swarm intelligence but it is often regarded as an evolutionary algorithm, a
discussion of similarities and differences with typical evolutionary algorithms is also given.

3.6.1 General Procedure

Due to the origin of PSO, some concepts and terms exist which differ from typical EA ter-
minology. The PSO individuals are also called particles, and they contain some additional
information apart from the current position 7;. Because the individuals are regarded as
particles flying through the search space, they also include a current velocity v;. To model
the behavior of social groups, each particle receives the information about the neighbor-
hood best position p,. This is the position that yields the best objective function value
found so far in a certain neighborhood (neighborhood topologies will be discussed in the
subsequent subsection). Because in social groups the members tend to rely not only on
information from the group but also on their own experience, additionally every particle
has the knowledge of the personal best position p;. This is the position with the best
objective function value found so far by the respective particle. All positions and veloci-
ties are real-valued vectors with D components where D is the dimension that equals the
number of objective function parameters. The population size is denoted by NP, and as
for other evolutionary algorithms it is a user-defined parameter.

In the first generation the positions and velocities have to be initialized. Mostly, the
current position is set to a random value within the given boundaries 7,,,, and Z,,;, as
described in Equation 3.2 for DE. The personal best position of a particle is initialized
with the respective current position. There are also other possibilities for initialization
[Val08| but this is the most common form. Furthermore, the neighborhood best position
is initialized by determining the particle with the lowest objective function value in the
respective neighborhood.

Concerning the initialization of velocities, different strategies are possible. Either they
can be set to zero in the beginning or they can be assigned some random value, e.g. in
dependence on the size of the search space. Up to now, there is not much research on
this matter. In this work the setting of the velocity is chosen randomly from the interval
[—Umaz i, Umaz,j] Where 7 € {1,..., D} and the maximum velocity is one half of the search
space in each dimension:

Umaz,j = (xmax,j - xmin,j) /2 (37)

In contrast to the usual definition of a velocity as distance divided by time, in PSO
the velocity is defined as difference of positions (see also Equation 3.9). A different
interpretation is that each position difference is implicitly divided by one generation which
corresponds to a discrete time unit here. It is ensured that velocities do not exceed ;44 ;
during the optimization run by resetting larger velocities to vy,4,,;. The reason is that
there are cases reported in the literature where oscillations with increasing magnitude
occurred [Ken01].

After initialization in the first generation, update equations for velocity and position are
applied to each particle in every generation until a stopping criterion is fulfilled (see
Figure 3.10). The update equations compute a new velocity v;(t+ 1) based on the current

31

CHAPTER 3. EVOLUTIONARY ALGORITHMS

Random initialization of NP individuals X,,
random initialization of velocities v,
setting of personal best positions p, = X,
determination of neighborhood best positions ﬁg

-

4
Application of update equations to generate new
velocity v, and new position X, for every individual

4

Update of personal best position p, and
neighborhood best position i)g for every individual

no

Stopping criterion reached?

Termination: Best individual is the solution

Figure 3.10: Flowchart for Particle Swarm Optimization

velocity as well as a cognitive and a social component, and the position is updated by
adding the new velocity to the current position:

Uit +1) = w-G(t) + ear[pi(t) — Ti(t)] + cora[py(t) — (1))
Ti(t+1) = Ti(t)+v(t+1)

with i € {1,..., NP}. In Equation 3.8 the first term on the right-hand side represents the
inertia of the particle, i.e. the tendency to fly in the same direction as in the previous time
step. Therefore, the parameter w is called inertia weight. The second term is the cognitive
component that causes movement towards the personal best position. The third term is
the social component that draws the particle towards the neighborhood best position.
The cognitive and social components are weighted with the control parameters ¢; and c,.
A stochastic element is provided by the random numbers r; and 7, which are randomly
chosen from [0, 1]. More detailed information about the control parameters w, ¢; and ¢,
will be provided in Section 3.6.3.

In the original formulation of the update equations given in the first paper written about
PSO |Ken95|, it does not become exactly clear how often the random numbers should
be refreshed. Because in that paper the random numbers are simply written as “rand()”,
it might mean that they should be recalculated once for every particle or once for each
component of the velocity. In order to emphasize the second option, the velocity update
equation should be reformulated. This can be done by giving the equation for the j-th
component of the i-th particle (j € {1,...,D}, i € {1,..., NP}):

Vit + 1) = w - v 5(t) + cirypi(t) — i ()] + cara lpe;(t) — @i (1)) (3.10)

The difference can also be seen in Figures 3.11 and 3.12 where the movement of a particle

32

3.6. PARTICLE SWARM OPTIMIZATION

T2 A
710N
VA /
\ (t)=2i(t) |
it o Py t) — Zi(t))

T2 A
AR 72, [Pg,t) =i (t)]
&l),,, Jeryjlpi g6 =i,;(t)]
w - T;(t)\
v (t)

Figure 3.12: Update according to Equation 3.10 for a particle in two dimensions

from 7;(t) to @;(t + 1) according to the update equations given in Equation 3.8 and Equa-
tion 3.10 is shown, respectively. In Figure 3.11 the vector cir[p;(t) — #;(t)] is parallel
to [pi(t) — Z;(t)], and corse[p,(t) — Z;(t)] is parallel to [p,(t) — #;(t)]. In contrast, these
vectors are not parallel in Figure 3.12 because each component is scaled independently.

For several years nothing has been published about this ambiguity but in recent years
emphasis of this difference begins to appear [Ken07, Wil05, Cle06, Zie09]. In [Wil05] it is
concluded that refreshing the random numbers only once for every particle might result
in limitations of the particle trajectories. Consequently, a loss of diversity would occur if
the personal and neighborhood best