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ABSTRACT OF THE DISSERTATION
GADO: A Genetic Algorithm for Continuous DesignOptimizationby Khaled Mohamed RasheedDissertation Director: Haym HirshGenetic algorithms (GAs) have been extensively used as a means for performing globaloptimization in a simple yet reliable manner. However, in some realistic engineeringdesign optimization domains a general purpose GA is often ine�cient and unable toreach the global optimum. In this thesis we describe a GA for continuous design-space optimization that uses new GA operators and strategies tailored to the structureand properties of engineering design domains. Empirical results in several realisticengineering design domains as well as benchmark design domains demonstrate thatusing our system can greatly decrease the cost of design space search, and can alsoimprove the quality of the resulting designs.
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1
Chapter 1Introduction1.1 The engineering design optimization problemIn a very general form, the engineering design optimization problem can be stated asfollows: given a computer tool that can evaluate a design, the goal is to use this tool tocome up with the best design according to some measure of merit and subject to someconstraints, on condition that this is done within time limits.The tool is usually a simulator or a piece of analysis code. The measure of meritmay be a function of manufacturing cost, quality, stability or any combination of theseand/or similar properties. The \thing" to be designed may be a machine or a process.The constraints may be performance related or modeling related.For example, the problem may be to design a supersonic aircraft capable of carrying70 passengers from Chicago to Paris in 3 hours. The goal may be to minimize the takeo�mass of the aircraft. The constraints may include something like \the wings must bestrong enough to hold the plane in all expected ight conditions". The time limits forthe design optimization may be a few hours (as in a quick feasibility study) or a fewmonths (in the case of �nal product design).In its most general form, the design problem is extremely complicated. The word\design" may be taken to mean any kind of decision making regarding the shape orcomposition of some artifact. More formally, it could mean structural design or para-metric design or both. Structural design involves making high level decisions about theoverall shape of the artifact (for example how many wings the aircraft should have).Most variables involved in structural design are discrete. Parametric design involvesmaking more detailed decisions about numerical aspects of the design (for example what







2the length of the aircraft should be). Most variables involved in parametric design arecontinuous.In this thesis we limit our view of the design process to the parametric design phase.In this phase the structure of the thing to be designed is already well known, subjectto assigning values to a �nite set of parameters. We also limit our attention to the caseof continuous parameters because this is the type of parameters that usually remain tobe set once the structure is de�ned.Once we make these assumptions, the problem becomes a general constrained non-linear programming problem in which the objective function and (often) the constraintsare the outcome of a program. In other words, the problem may be stated as:minimize f(�x)subject to :gi(�x) � 0 i = 1; :::; lhj(�x) = 0 j = 1; :::;m�x(L) � �x � �x(U) j = 1; :::;mwhere� �x is a vector of real numbers representing the parametric description of the objectbeing designed. The vectors �x(L) and �x(U) represent the lower and upper boundsof the design parameters respectively.� f(�x) is called the objective function. It represents a numerical property of theobject being designed, which needs to be minimized (such as production cost).� gi(�x) and hj(�x) are called the inequality constraints and the equality constraintsrespectively.1 These constraints are a means of quality control. Some of theseconstraints ensure that the design is physically realizable, others ensure adequateperformance and the rest ensure that the design is within the limits of the modelbeing used.1In practice, equality constraints are usually converted to inequalities by introducing a numericalthreshold. For example, hj(�x) = 0 may be replaced by jhj(�x)j � � where � is a small constant







3Constraints are usually handled in one of two ways:� Direct methods use the gradients (usually their numerical approximations) of theconstraints to compute a direction that satis�es all constraints. Once a feasiblepoint is found (i.e. one that satis�es all the constraints), direct methods usuallyuse the gradient of the objective function and the active constraints to compute adirection that improves the objective function while not violating any constraints.� Penalty methods do not work directly on the constraints but instead they add apenalty term to the objective function to account for constraint violations if anyand then unconstrained optimization is performed using the augmented objectivefunction. The penalty term is usually the product of a (large) positive penaltycoe�cient times the sum of the constraint violations.The problem of proving that a point is a local optimum of a general nonlinear pro-gramming problem is undecidable [Schwabacher 1996]. Therefore there is no analyticalsolution to the above problem. On the other hand there is a large amount of literatureon how to solve the nonlinear programming problem in practice. Most such techniquesdo not take into consideration the special properties of engineering design optimizationspaces. As a consequence, their performance is not acceptable in such domains, as willbe demonstrated in the remainder of this thesis.1.2 Di�culty of optimization in engineering design domainsSome of the problems faced in the application of optimization techniques to continuousparameter engineering design optimization problems are:� Unevaluable and infeasible points/regions: Not all points in the space arelegitimate designs | some points in the search space (\unevaluable points") causethe simulator to crash, and others (\infeasible points"), although evaluable bythe simulator, do not correspond to physically realizable designs. We have seendomains in which more than 99% of the space is like this.







4� Expensive evaluations: The simulator will often take a non-negligible amountof time to evaluate a point. The simulation time ranges from a fraction of a secondto, in some cases, many days.� Badly structured spaces: The structure of the space of good designs may bevery di�cult to search. For example, when evaluable points form thin slab-likeregions that are not parallel to any of the principal axis, it may become verydi�cult to do optimization.� Multiple local optima: The search space may well have a large number of localoptima. These local optima will certainly trap gradient based local optimizers andmay also trap global optimizers such as GAs. The multiple local optima may be:True local optima: There can be multiple physical local optima.Apparent local optima: These are caused by numerical noise. Noise canhave many reasons, such as roundo� errors, approximations in the model andgridding.2 It can also result from using inexact equation solvers and numericalintegration.� Non-smoothness: This often results from table look-up in empirical tables ornumerical problems. The non-smoothness can take the form of discontinuity inobjective function or in �rst derivative.1.3 Current methodsIn this section we present a brief survey of the existing design optimization methods.Our goal is to demonstrate the inadequacy of these methods and the need for bettermethods.2Gridding is the process of partitioning a surface or a volume into small regions in order to applysome methods of analysis (such as �nite element analysis).







51.3.1 Manual designIn manual design the design engineer uses his intuition and experience, as well as somecomputer tools to do the design. The computer tools used are mostly computer aideddesign (CAD) tools and numerical simulators. The CAD tools are used to visualize andmodify the design. The numerical simulators are used to evaluate the design, providinginformation about its merit and limitations. The process usually works as follows:1. Initial design: The designer obtains an initial design using intuition and expe-rience or by referring to similar previous designs by himself or his company.2. Design-evaluate-redesign loop: The designer then repeatedly does the follow-ing:� Modify the design to make it more suitable for the problem at hand. TheCAD tools are usually used at this stage.� Evaluate the design using the numerical simulator.� Decide on how to modify the design to further achieve the design goalsthrough the interpretation of the information returned by the simulator.This is the most critical step in this loop. Success in this step depends onthe experience, intelligence and creativity of the designer.This Design-evaluate-redesign loop is usually repeated until either:� An adequate design is found.� The designer concludes that the speci�cations and/or goals could never besatis�ed. In this case the speci�cations may need to be changed and thewhole design process is repeated.� The designer runs out of time.The manual design process is slow, mainly because a human designer is in the loop.Humans tend to use satis�cing rather than optimization in design. They stop whenthey �nd an adequate design (for example, a design that beats the competition) rather







6than an optimal design. The use of computer resources is usually ine�cient. Thequality of the �nal design as well as the time it takes to �nd it depend heavily on theexperience of the human designer. This dependency is detrimental to innovation. Thedesigner usually has some intuition and qualitative rules that bias his decisions. He willprobably try to imitate the good designs that worked in the past. It is possible thatthis will lead him to explore good regions of the design space that are not necessarilyoptimal. It is also unlikely for one designer to be able to make decisions about allthe design aspects. Therefore, the design problem is usually decomposed to multiplesub-problems, possibly handled by di�erent designers or even di�erent groups. If thisdecomposition does not correspond to a natural decomposition in the design space, theoverall design may not be optimal.Despite these de�ciencies, it is unfortunate that most engineering design is still beingdone manually. The design-evaluate-redesign loop described above seems like it couldbe automated and can bene�t from optimization. Some engineers have tried to useautomated optimization, but were unhappy with the results; others have heard aboutthese failures, and have therefore decided not to use automated optimization [Knight1994]. We believe that the inadequacy of most existing \o�-the-shelf" optimizationtechniques (as will be demonstrated in the rest of this thesis) is one of the main reasonsfor this.1.3.2 Existing optimization methodsConventional numerical optimization methodsConventional numerical optimization methods (mostly gradient-based) have been ap-plied with limited success to some engineering design optimization problems. Theyusually work well in problems with low dimension and smooth search spaces. In orderfor these methods to succeed, a relatively good starting point must be used. The im-provement over the starting point is usually minimal as the optimizer is likely to moveto the nearest local optimum or stop if it encounters a numerical hurdle.







7Sandgren [Sandgren 1977] applied 35 nonlinear optimization algorithms to 30 en-gineering design optimization problems and compared the performance. Sandgren'sgeneral conclusion was that no single optimization technique among the ones he testedperformed reasonably well in all the test cases. He noted, however, that the generalizedreduced gradient methods were reliable across a large number of test cases (we will dis-cuss his work further in Chapter 4). Several research e�orts used conventional numericaloptimization methods for aircraft design [Vanderplaats 1984, Sobieszczanski-Sobieski etal. 1985, Bramlette et al. 1990, Kroo et al. 1994, Sobieszczanski-Sobieski and Haftka1996]. [Bramlette et al. 1989] compared the application of di�erent methods includinggradient based numerical optimization to the design and manufacture of aeronauticalsystems. All of these works describe the application of \o�-the-shelf" techniques todesign optimization problems with no serious e�ort to adapt them to the particularproperties of these problem domains.Stochastic optimization methodsGenetic algorithmsGenetic Algorithms (GAs) [Goldberg 1989] are search algorithms that simulate theprocess of natural selection and survival of the �ttest [Holland 1975]. GAs attemptto �nd a good solution to some problem (e.g., �nding the maximum of a function)by randomly generating a collection of potential solutions to the problem and thenmanipulating those solutions using what is called genetic operators. Genetic operatorsuse existing solutions to produce new solutions. Each solution is assigned a �tnessvalue which is a numerical assessment of how well it solves the problem. The key ideais to select for reproduction the solutions with higher �tness and apply the geneticoperators to these to generate new individuals. Through mutation and re-combinationoperations, better solutions are hopefully generated out of the current set of potentialsolutions. This process continues until an acceptable solution is found. GAs have manyadvantages over other search techniques in complex domains. They tend to avoid beingtrapped in local sub-optima and can handle di�erent types of optimization variables







8(discrete, continuous and mixed).The success of a GA depends on its ability to perform a balanced amount of ex-ploration of the space as well as exploitation of the promising regions. A good GAusually favors exploration in the beginning of the search and gradually shifts attentionto exploitation. A more detailed description of GAs is provided in Chapter 2.Several research e�orts have applied traditional genetic algorithms to engineeringdesign optimization problems in a variety of domains, including control system design[Kundu and Kawata 1996], architectural and civil engineering design [Gero et al. 1997,Rosenman 1997], VLSI design [Lienig and Thulasiraman 1993], mechanical design[Chapman and Jakiela 1996] and aircraft design [Obayashi et al. 1997].Deb [Deb and Goyal 1997, Deb 1997] developed a GA called GeneAS for engineeringdesign optimization with mixed variables (both discrete and continuous). He demon-strated the merit of his GA in the domain of mechanical component design. Deb alsoused a binary-coded GA to design car suspension for comfort [Deb and Saxena 1997].Deb's research represents a signi�cant e�ort to adapt the GA to the engineering de-sign optimization problem. Deb did not, however, address the problem of unevaluablepoints.Simulated annealingSimulated Annealing methods (SAs) [Kirkpatrick et al. 1983] are based on an analogywith thermodynamics, speci�cally the way in which metals cool and anneal. SAs at-tempt to solve a problem by starting from an initial point in the solution space and thenmoving from one point to another until they hopefully reach an optimum. At everyiteration the SA generates a potential new point (using the current point). The SAthen moves to the new point (making it the current point) with probability P where:� P = 1 if the new point is better than the current point.� 0 � P � 1 if the new point is not better than the current point.The probability P with which the SA moves to a worse point is large in the initialstages of the search and decreases as the search progresses. SAs are similar to GAs in







9their tendency to avoid being trapped in local optima. The main di�erences betweenSAs and GAs are:� SAs are path following methods (i.e. they move from one point to another in thesearch space over the course of the optimization). At any iteration, the history ofthe entire optimization is summarized in a single point (the current point). GAs,on the other hand, maintain a much more thorough representation of the searchspace through a whole population of points that collaborate with each other to�nd better regions.� SAs have the ability to quickly switch their attention from one region of the searchspace to another. GAs on the other hand have a high inertia and take longer toswitch attention.Simulated Annealing has been used in several engineering design domains includingcommunication network design [Chardaire and Lutton 1993, Andersen et al. 1993] andmechanical design [Jain and Agogino 1988, Malhotra et al. 1991, Jain et al. 1992,Cagan and Kurfess 1992].There has been a long philosophical argument about which is better: SAs or GAs.We believe that this is problem dependent. In the case of engineering design optimiza-tion, however, GAs are more likely to win because of the fact that they maintain a wholepopulation of points rather than one. The collaboration between the many points of theGA population makes it easier to �nd small evaluable/feasible regions. The GA alsotakes advantage of the decomposability of many engineering design domains throughthe crossover operation (as will be discussed further in the following chapter).Hybrid methodsPowell [Powell 1990, Tong et al. 1992] has built a module called Inter-GEN, part ofthe ENGINEOUS system [Tong 1988]. It contains a genetic algorithm and a numericaloptimizer, and uses a rule-based expert system to decide when to switch between thetwo. Powell tested his system on a realistic design task (jet engine design). He doesnot, however, address the issue of unevaluable points. He also assumed that injecting







10human knowledge in the form of rules improves performance, ignoring the potentiallydetrimental e�ect this has on innovation. Combining GAs and knowledge-based systemswas also done in [Rogers et al. 1996].Gage [Gage 1994, Gage et al. 1995] has also combined genetic algorithms withgradient-based optimization. He combined GA's with SQP3 in two domains. The �rstdomain was aircraft wing design. He used a GA to search a space of wing con�gurationsthat is described using a grammar, and then used SQP to optimize the size of thewings. The second domain was truss design. He used the GA to search a space of trusscon�gurations that is described using a grammar, while using SQP at each iteration ofthe GA to optimize the size of the members. Using the GA to search a con�gurationspace before using SQP to optimize the sizes in a particular con�guration seems to bea plausible way to save time (as opposed to direct optimization of the combined space).However, this approach is more vulnerable to being trapped in local sub-optima thana global method which optimizes con�guration and parameters simultaneously. LikePowell, Gage does not directly address the issue of unevaluable points. Combining GAsand local search methods was also done in [Land et al. 1997].Schwabacher [Schwabacher 1996] proposed various methods to improve numericaloptimization in engineering design through the use of arti�cial intelligence and machinelearning techniques. He used a state of the art gradient-based SQP method calledCFSQP4 and augmented it with AI techniques to over come some of its limitationswhen used in engineering design. He successfully applied his methods to several realisticengineering design domains, including aircraft design and missile inlet design, the twoprincipal domains used in this thesis. He addressed several of the problems speci�cto engineering design domains described in Section 1.2. For example, he used rules tocompute gradients numerically in the presence of unevaluable points. His success waslimited, however, because his base method (CFSQP) was very sensitive to problems likenon-smoothness and discontinuities in the design space. Despite Schwabacher's e�orts,3SQP is an acronym for Sequential Quadratic Programming, a quasi-Newton method that solves anonlinear constrained optimization problem by �tting a sequence of quadratic programs to it.4CFSQP will be described in detail in Chapter 3.







11his method performed poorly in some of the domains he explored (the missile inletdesign domain for example). We used his work, among other techniques, for comparisonwith our new method in Chapter 3. Work on augmenting numerical optimizationtechniques with AI methods also includes the use of expert systems [Bouchard et al.1988, Orelup et al. 1988] and machine learning [Hoeltzel and Chieng 1987].Finally, Ogot [Ogot and Alag 1995] combined Simulated Annealing and heuristicsearch to create an algorithm called MAH.5 He demonstrated the e�ectiveness of MAHvia three problems in kinematic synthesis.Except for Schwabacher's work, none of these hybrid methods is focused directly onthe problems of the search spaces addressed in this thesis.1.4 The proposed approachWe present GADO,6 a GA speci�cally designed to be used in design optimization do-mains. It combines existing techniques from the GA literature (and the optimizationliterature in general) that are proper for these domains with novel ideas. It is a highlyadaptive GA that focuses on exploration in the beginning of the search and shifts at-tention to exploitation towards the end.GADO is described in detail in Chapter 2. It includes many novel ideas, some ofwhich are:� The Screening Module: The screening module was motivated by the fact thatthe evaluation of the objective function entails a simulation run that takes arelatively long time. The idea of the screening module is to predict the merit of aproposed design before the simulator is used to actually evaluate it. To do this thescreening module accumulates a large sample of the designs evaluated so far anduses this sample to predict the merit of a proposed design. The nearest neighborsof the proposed design are found and if all of them are bad the proposed designis rejected. Otherwise, the proposed design is fully evaluated using the simulator.5MAH is an acronym for Mixed Annealing/Heuristic algorithm.6GADO is an acronym for Genetic Algorithm for Design Optimization.







12� The Diversity Maintenance Module: The goal of the diversity maintenancemodule is to ensure that the GA population stays representative of the searchspace (i.e. the population includes points from many di�erent parts of the searchspace). This is very important for the success of the optimization and to avoidbeing trapped in local optima. The idea is to monitor the degree of diversity ofthe GA population. If at any stage it is discovered that the population elementsbecame very similar to one another, thus losing track of most of the search space,the diversity maintenance module rebuilds the population using previously eval-uated points in a way that restores diversity. The diversity maintenance modulealso rejects proposed points that are extremely similar to previously evaluatedpoints in the belief that they contain redundant information and will promoteloss of diversity. The rejection happens before the expensive simulator is used toevaluate these points.� Guided Crossover: This is a new crossover operator which endows the GA withgradient-like capabilities without actually computing any gradients. The idea isto form di�erent search directions by joining pairs of previously evaluated points,rank these directions and take a small step in the best direction. The directionsare ranked by the ratio of the di�erence in objective values between the two endpoints to the distance between them. This operation can viewed as a very crudeway of computing gradients which does not, however, use the expensive simulatorto evaluate any new points.� Dynamic Penalty: GADO uses a penalty approach for handling constraints. Ituses a novel technique for computing penalties which makes sure that the penaltycoe�cient is neither too large nor too small at any stage of the optimization.The idea is to start with a relatively small penalty coe�cient and increase itwhenever the search seems to give too little attention to feasibility (if the pointwith highest �tness in the GA population is infeasible). The penalty coe�cientmay also decrease if the search seems to give too much attention to feasibility (if allthe points in the GA population are feasible). This is done to insure proper search







13of the regions adjacent to constraint boundaries as in many cases the optima maylie there.We claim that engineering design optimization in domains that have the featuresdescribed in Section 1.2 can be done more reliably and e�ciently using GADO thanusing other optimization techniques. By more reliably we mean GADO is most likelyto produce acceptable solutions than other techniques. By e�ciently we mean:� Given a �xed amount of time GADO is most likely to obtain a better design thanthe other methods� GADO is most likely to need less time than the other methods to obtain a designwith a speci�c quality.We intend to support these claims with empirical results in the remainder of thisthesis.1.5 Thesis organizationThis thesis focuses on describing GADO and presenting evidence for its strength asa tool for design optimization in engineering domains. Chapter 2 describes in detailthe architecture and operation of GADO. Chapter 3 presents an experimental com-parison between the performance of GADO and several \o�-the-shelf" state-of-the-arttechniques for optimization, in two di�erent realistic engineering design domains. Theresults demonstrate the superiority of GADO to these other techniques. Chapter 4presents more analysis of the scope of applicability of GADO by applying it to severalbenchmark design optimization problems. It also presents an analysis of the contribu-tion of some of the novel components of GADO, and an analysis of the performancesensitivity to parameter variation and problem structure. Chapter 5 concludes witha summary of the thesis. It also reviews the major contributions and discusses thelimitations and future work. Appendix A lists all the external parameters that controlthe operation of GADO and their default values. Appendix B describes some of thebenchmark design domains used in this thesis. Finally, Appendix C includes a casestudy in which GADO was used by a design engineer to design a missile inlet.
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Chapter 2Architecture of GADOThis chapter provides a detailed description of GADO, a genetic algorithm speci�callydesigned and tailored to be used for global optimization in engineering design spaceswith the characteristics described in Chapter 1. At a very high level of description,GADO is a highly adaptive system in the sense that it gradually changes its focus frompure exploration in the beginning of the search to exploitation towards the end. GADOwas made by combining existing techniques from literature with new ideas inspired bythe characteristics of the domains for which it is designed.2.1 Overview of genetic algorithmsGenetic Algorithms (GAs) [Goldberg 1989] are search algorithms that simulate the pro-cess of natural selection and survival of the �ttest. GAs attempt to �nd a good solutionto some problem (e.g., �nding the maximum of a function) by randomly generating acollection of potential solutions to the problem and then manipulating those solutionsusing genetic operators. In GA terminology, we say that we generate a population ofsolutions and refer to each solution as an individual. Each solution is assigned a scalar�tness value which is a numerical assessment of how well it solves the problem. Thekey idea is to select for reproduction the solutions with higher �tness and apply thegenetic operators to these to generate new solutions. Again, in GA terminology thesenew solutions are called newborn individuals. Through mutation and re-combination(crossover) operations, better newborn solutions are hopefully generated out of the cur-rent set of potential solutions. This process continues until some termination conditionis met.In the case of numerical optimization, each solution is a vector of numbers (real







15or integer). The GA attempts to �nd the vector with maximum �tness in a speci�edhypercube.1 In the remainder of this section we describe the main components of agenetic algorithm in the context of numerical optimization.22.1.1 Representation (genotype)In order to use GAs it is necessary to map the solutions of the problem to �xed lengthstrings of some alphabet. The resulting strings are called the representation (geno-type in GA terminology). The most common representations are binary and oatingpoint. In a binary representation, each component of a solution vector is converted to abinary encoding and then these encodings are concatenated (in order) to form a binarystring which becomes the genotype of the solution. In the case of integer components,the conversion to binary is straightforward while in the case of real vectors the com-ponents should be converted to integers �rst. The most common method of convertingreal components to integers is to use their range information. For example, if we havea real component whose value is x with lower bound l and upper bound u and we wantto convert it to an integer i between 0 and 2n � 1 then i = b 2n � x�lu�l c. In oatingpoint representation the component vector is represented with a one-dimensional array(i.e. a vector) of oating point numbers.2.1.2 The initialization strategyIn order to start the GA evolution process, an initial population of solution vectorsmust be generated. The most common method of initialization in GAs is randominitialization in which the initial population consists of random vectors uniformlydistributed in the search space hypercube. Most GAs generate one random vector toinitialize each population member. A few others [Bramlette et al. 1990] generate morethan one vector (usually 2 or 3), compute their �tnesses, then use the �ttest of themto initialize one population member.1The user must specify the lower and upper bound of each vector component. This is a limitationin GAs.2The use of GAs is far from being limited to optimization. The reader is referred to [Back et al.1997] for a recent general survey.







162.1.3 The selection strategyThe selection strategy decides how to select individuals to be parents for newborns.Usually the selection applies some selection pressure by favoring the individuals withbetter �tness. The most common selection methods are:� Fitness proportional (roulette wheel) selection: Each individual's proba-bility of being selected is proportional to its �tness value.� Rank-based selection: Each individual's probability of being selected dependson its �tness rank in the population rather than the actual �tness value. Themost common rank-based selection methods are:{ Tournament selection: To select an individual for reproduction, multiplecandidates (usually two) are selected with uniform probability. The �ttestof these candidates (the winner of this virtual tournament) is then selectedfor reproduction.{ Weight series selection: In this method, each individual is assigned aweight that depends on its �tness rank in the population. Proportionalselection is then done using the weights rather than the actual �tnesses.The weights are usually taken to be a decreasing arithmetic or geometricseries.Rank-based selection methods are more appropriate for use in domains where the�tness range is extremely wide. In these domains it is feared that the �rst individualswith high �tness values to be discovered will dominate the population and prevent othergood individuals in other regions of the search space from being found.2.1.4 Genetic operatorsThese operators use the parent(s) to create newborn(s). These operators are usuallyeither:� Binary (crossover) operators, which take two parents and produce a newbornthat resembles both, or







17� Unary (mutation) operators, which take one individual and produce a per-turbed version of it.Crossover operatorsThe basic operation in a genetic algorithm is crossover. It combines the merits ofindividuals to hopefully produce better ones. Some of the common crossover operatorsare:� Point crossover: The point crossover operator aligns the genotypes of the par-ents. A crossover position is then randomly selected with uniform probability andthe part of the �rst parent's genotype before the crossover position is copied tothe corresponding part of the newborn. The rest of the newborn comes from itscorresponding place in the second parent's genotype.For example, if a oating point representation is used, the space is 5 dimensional,the �rst parent's genotype is (x1; x2; x3; x4; x5) and the second parent's genotypeis (y1; y2; y3; y4; y5) and the crossover point was selected to be 3, the newbornwill be (x1; x2; y3; y4; y5) or (x1; x2; x3; y4; y5).� Arithmetic crossover: The arithmetic crossover operator is speci�c to oatingpoint representation. It produces a newborn whose components are the averagesof the corresponding components in its parents.For example, if the space is 5 dimensional (like above), the �rst parent's genotypeis (x1; x2; x3; x4; x5) and the second parent's genotype is (y1; y2; y3; y4; y5), thenewborn will be (x1+y12 ; x2+y22 ; x3+y32 ; x4+y42 ; x5+y52 ). In vector form, if the �rstparent is �X and the second parent is �Y then the newborn is �X+�Y2 .� Linear crossover: The linear crossover operator is speci�c to oating point rep-resentation. It produces a newborn whose components are convex combinationsof the corresponding components in its parents.For example, if the �rst parent is �X and the second parent is �Y then the newbornis a � �X + (1� a) � �Y where a is a random value selected uniformly in the interval







18[0; 1].3� Heuristic crossover: The heuristic crossover operator is also speci�c to oatingpoint representation. It is a greedy operator that attempts to exploit the searchspace. The heuristic crossover operator works as follows: let the parents be �Xand �Y such that �Y is not worse in �tness than �X . The newborn is �Y +r � ( �Y � �X)where r is a random value selected uniformly in the interval [0; 1].� Random crossover: The random crossover operator can be applied to anytype of representation. If applied to oating point representation, each vectorcomponent of the newborn is selected randomly (with equal probability) fromeither parent. In the case of binary representation, each bit in the newborn isselected randomly from the corresponding position in either parent. This operatorintroduces a lot of variability (diversity).Mutation operatorsMutation introduces new genetic material to the GA population in order to maintaindiversity and explore new regions. Some conservative mutation operators also help inexploiting the good regions of the space. Some of the common mutation operators are:� Uniform mutation: Uniform mutation replaces each component of a solutionvector with a random value uniformly selected from the component range.� Non-uniform mutation: Non-uniform mutation takes the stage of optimizationinto consideration. At the beginning of the optimization it acts just like uniformmutation. It then becomes more and more conservative about the amount ofchange it makes to a vector component as the optimization progresses.Let the component's value be x with lower bound l and upper bound u andassuming the search is at iteration t and the maximum number of iterations is T ,3Linear crossover degenerates to arithmetic crossover in the case in which a = 0:5.







19then the mutant value isxnew = 8><>: x+ (u� x) � r � (1� tT ) � scale with probability 0.5x� (x� l) � r � (1� tT ) � scale with probability 0.5where r is a random value selected uniformly in the interval [0; 1] and scale is anumber between 0 and 1 that decides how conservative the mutation should be.2.1.5 The replacement strategyIn a steady state GA, the generation of each new individual is accompanied by thedeath of one individual of the current population to make room for it. Another typeof GAs is generational GAs in which the entire population (or a large fraction ofit) is simultaneously replaced. Steady state GAs are likely to converge faster thangenerational GAs. The argument is that if each newborn is on average better than theelements of the existing population (this is a necessary condition for convergence), thenit should be introduced to the population immediately.The replacement strategy is unique to steady state GAs. It decides how to makespace for the newborn when the population is full. Some of the most common replace-ment strategies are:� Elitist replacement: selects for replacement a random individual, on conditionthat the best elite fraction of the population is not replaced. The elitist fractionmay be constant or dynamic.� Crowding replacement: This is a family of more sophisticated replacementstrategies that take into consideration other factors in addition to �tness (such aspreserving diversity in the population for example). Each such strategy is calleda crowding heuristic and the reader is referred to [Mahfoud 1995] for a detaileddiscussion of these methods.2.2 System structureGADO is a novel GA that is tailored for the speci�c task of optimization in designspaces. It combines existing techniques which are proper for this task with new ideas.







20A steady state GA model is used, in which operators are applied to two parents selectedfrom the elements of the population via some selection scheme, one o�spring point isproduced, then an existing point in the population is replaced by the newly generatedpoint via some replacement strategy (from now on we use the term \iteration" to denotean actual evaluation of the objective function, which is usually a call to a simulator oran analysis code). The user is required to specify a number of external parameters (forexample the maximum number of iterations). Appendix A lists all external parametersand their default values. In the remainder of this section we describe the system inmore detail. For ease of description we de�ne the following two terms:� goup: The proportion of iterations that have been done thus far during an op-timization. This is initially zero and increases linearly to one at the very end ofthe optimization.� godown: The proportion of iterations that remain to be done thus far during anoptimization. This is initially one and decreases linearly to zero at the very endof the optimization.Note that the following equation always holds at any stage of the optimization:goup+ godown = 12.2.1 RepresentationEach individual in the GA population represents a parametric description of an artifact,such as an aircraft or a missile. All parameters have continuous intervals. GADOuses a oating point representation (genotype), the reason being the demonstratedsuperiority of the oating point representation to binary representation in continuousvariable optimization problems [Janikow and Michalewicz 1991]. The �tness of eachindividual is based on the sum of a proper measure of merit computed by a simulatoror some analysis code (such as the takeo� mass of an aircraft), and a penalty functionif relevant (such as to impose limits on the permissible size of an aircraft). The penaltyfunction is the product of an adaptive penalty coe�cient and the sum of the constraintviolations if any.







212.2.2 Dynamic penalty functionOne of the novel and very convenient features of GADO is its ability to adjust themagnitude of the penalty coe�cient depending on situation. If this feature did notexist, the user would have to specify a single penalty coe�cient to be used over theentire course of optimization and it is di�cult to come up with a penalty coe�cient thatis good for all stages of optimization. It is better to use a modest penalty in the initialstages to insure adequate sampling of the search space and then gradually increase thepenalty to force the optimization to converge to a feasible solution. This is exactlywhat GADO does, by dynamically changing the penalty coe�cient on demand. Theinitial penalty coe�cient is one of the external parameters. Its default value should becomputed as follows: if the measure of merit is expected to range between V and 10�Vwhere V is a power of ten, then the initial penalty coe�cient will be set to V100 .4GADO keeps track of two key individuals of the population:1. The point that has the least sum of constraint violations.2. The point that has the best �tness value.If both points are the same then the penalty coe�cient is assumed adequate, otherwisethe penalty coe�cient is increased to make the two points have equal �tness values. Thisincrease is important in order to force the search towards feasibility, or else the searchmay wander deeply into an infeasible region with tempting objective function values.We impose a multiplicative limit on the allowed increase of the penalty coe�cient ateach increment to prevent abrupt changes that may be unnecessary. This limit is oneof the parameters, its default value is two.Another optional feature is to let GADO decrease the penalty coe�cient if at somestage the population contains no infeasible points. The intuition behind this feature isthat sometimes the best solutions are at the border of constraint violations. If in thecoarse of pushing the optimization towards feasibility the penalty coe�cient gets too4It is assumed that the numerical magnitude of the constraints is comparable to that of the measureof merit. If this is not true then it may be useful to use a di�erent method for computing the initialpenalty coe�cient to reect this fact. The goal is to make the product of the initial penalty coe�cientand the sum of constraint violations small compared to the measure of merit.







22high, these points will be very hard to reach as the search will approach them singlesided. If the penalty coe�cient is to be decreased, it is divided by the fourth root ofthe multiplicative limit described above. Thus, if the penalty coe�cient gets too small,it can grow back to a reasonable value relatively fast.2.2.3 InitializationGADO uses a novel initialization strategy. If the population size is P, GADO willgenerate a much larger number of random individuals (this number is one of the externalparameters; its default value is 10*P). These individuals are then inserted into thepopulation using the replacement strategy described below. This method provides amore representative initial sample of the search space as opposed to just using P randomindividuals. The presence of many unevaluable and infeasible points in the search space(the majority of points are like this) makes it very important to use a method like this,to ensure having an adequate number of evaluable points in the initial population.2.2.4 SelectionHere selection was performed by rank because of the wide range of �tness values causedby the use of a penalty function. Rank selection prevents the �rst discovered evalu-able/feasible points from dominating the search and causing premature convergence.Each individual is assigned a weight depending on its �tness rank in the population.The weights form an arithmetic series as follows: if the population has P individuals,the best individual is given a weight of P, the second best is given a weight of P-1and so on until the worst individual gets a weight of 1. This approach results in anaverage amount of selection pressure which promotes convergence without endangeringdiversity. In the �nal stages of the optimization (in the last 25% of the iterations) amore greedy form of selection is used. Instead of using weights, the individual selectedfor reproduction is the one whose �tness rank is 1+ r1 � r2 � (population size� 1) wherer1 and r2 are two random values selected uniformly in the interval [0; 1]. This greedyform is used in order to promote exploitation in the �nal stages of the search (notethat the product of 2 numbers, each of which is less than one, is usually a very small
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Figure 2.1: Line Crossover behaviornumber).2.2.5 Crossover operatorsGADO uses �ve di�erent crossover operators. Three of these operators are novel (guidedcrossover, line crossover and double line crossover). The other two are point crossoverand random crossover. At every iteration, GADO randomly decides which crossovermethod to use as follows: with probability guided crossover factor*goup GADO will doguided crossover (as will be described in more detail below). Otherwise, GADO willrandomly choose one of the other four crossover methods with equal probability. Thequantity guided crossover factor is one of the external parameters and its default valueis 0.25.
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Figure 2.2: Point Crossover behaviorPoint crossoverThe point crossover operator was described in detail in the previous section. It basicallydoes a cut and paste operation on the genotypes of the parents to produce a newborn.It was also given other names in the literature, such as real crossover [Wright 1990].In design optimization, point crossover is a valuable tool in decomposable spaces.It can combine the merits of two designs to produce a design that is better than both.The user is thus encouraged to arrange the design parameters in an order that groupsthe parameters pertaining to the same component/discipline together.55Our experience suggests that in fact most users do this naturally.







25Line crossoverLine Crossover (LC) is a new operator introduced in this research. It resembles severalgenetic operators (such as arithmetic crossover, linear crossover and heuristic crossover[Michalewicz 1996]). Line crossover works by joining a line between the two parentpoints, extending it from both sides and randomly picking a point on that line or itsextensions (with uniform probability) to be the newborn. The amount of extensiondepends on the side and the stage of the search. Suppose the length of the line segmentbetween the parents is L. Then the amount of extension from the side of the worseparent is set to 2*L regardless of the stage of the search. The amount of extension fromthe side of the better parent starts at 2*L and increases linearly to 4*L at the end ofthe search. More formally the amount of extension from the side of the better parentis equal to (2+2*goup)*L.The use of line crossover is motivated by the fact that many design spaces have goodregions which resemble very thin hyper-ellipsoids such as that in Figure 2.1. The �gureillustrates the operation of line crossover in a hypothetical two dimensional space. Inthese spaces, other crossover techniques such as point crossover will have a great dealof di�culty searching the space. Unless both parents are close to each other, pointcrossover may well start with two good parents and produce a bad newborn. Figure 2.2illustrates this situation in the same hypothetical two dimensional space.Double line crossoverThis is a novel operator introduced by GADO with the goal of combining the merits ofboth point and line crossover. The double line crossover does the following:� Selects a random crossover point with uniform probability (like point crossover).� Performs 2 line crossover like operations, one on the pre�xes of the parents andthe other on their su�xes. The only di�erence between these operations and theline crossover operation is that they join a line between the parent points andextend it by twice its length from both ends (as opposed to extending the linemore on the side of the better point, which is what line crossover does).







26We decided to include this operator (rather than just relying on the point crossoverand line crossover) because sometimes the line crossover forces some of the parametersto move in a direction that degrades performance in order to move others in the rightdirection. By disengaging the parameters before doing line crossover we have a goodchance of avoiding this problem, especially in decomposable spaces.Guided crossoverThis is a novel operator introduced in GADO. Its aim is to improve the �nal performance(i.e. to make the �nal solution as close as possible to an optimum).Guided Crossover (GC) works as follows:1. One candidate point is selected from the GA population using the normal selectionrule (by rank) and called candidate1.2. The second candidate point is also selected from the GA population but in adi�erent way: for each point X in the GA population other than candidate1 aquantity Mutual �tness(X,candidate1) is computed, whereMutual fitness(A;B) = (fitness(A)� fitness(B))2Euclidean distance(A;B)2A choice for X that maximizes Mutual �tness(X,candidate1) is taken to be candidate2.63. candidate1 and candidate2 are swapped if necessary, to make candidate1 the pointthat has the higher �tness among the two.4. The result of the crossover is a point along the line joining candidate1 to candidate2which is selected at random from the small region around candidate1 (the betterpoint) as follows:Result = L � candidate1 + (1� L) � candidate26In the last 5% of the iterations, the point with the best �tness in the current GA population istaken to be candidate2 (unless this is candidate1, in which case the point with the second best �tnessis taken to be candidate2). This is an e�ort to force the best point at the end of the optimization tobe locally optimum.







27where L is a uniformly distributed random number in the interval [1-0.2*x,1+x]and x is a function of the number of elapsed iterations and the total allowednumber of iterations such that:x = 0:75 � godown + 0:25In words, GC examines all the directions that can be formed by joining the randomlyselected �rst candidate point to all other points in the current GA population. Thedirections are ranked based on the contribution they give to the objective function whenmoving between the two end points relative to the distance between the end points.The best direction according to this ranking is chosen, and a small step is taken in thisdirection in the vicinity of its best end point. The magnitude of the step decreases asthe GA optimization progresses.The guided crossover operator should not be used as the only crossover operator ina GA architecture, because it is greedy in nature. We propose using it as a substitutecrossover operator only a fraction of the time. In the current implementation, a randomchoice is made in every iteration between GC and more conventional crossover operators.The probability of choosing GC is increased linearly from 0 to its maximum value asthe number of iterations increases to its maximum allowed value. The maximum valueis one of the external parameters. Its default value is 0.25.The intuition behind guided crossover is that it endows the GA with a way to getvery close to the optimum once it is already near it | an advantage usually claimed forgradient-based methods over GAs | without the costly computation of gradients usingpotentially expensive evaluations in high-dimension spaces. Instead, the quantity Mu-tual �tness(A,B) used to rank directions serves as a crude form of gradient calculationand does not entail a single additional evaluation of �tness.2.2.6 Mutation operatorsGADO does a mutation operation following each crossover, before the newborn is usedany further. GADO uses three mutation operators, two of which are new (shrink-ing window mutation and greedy mutation) and the third is non-uniform mutation







28(the scale of the non-uniform mutation is set according to a formula that will be de-scribed below). They are used with the following probabilities: Greedy mutation (0.1),shrinking-window mutation (0.4) and non-uniform mutation (0.5). Mutation is doneat the parameter level (i.e. each parameter of the mutated individual can be mutatedusing a di�erent mutation operator). Each parameter has an equal probability of beingmutated. This probability starts at 0.5 and decreases quadratically to 0.1 over thecourse of the optimization (i.e. the probability is equal to 0:1 + 0:4 � godown2 at anyiteration).Shrinking window mutationShrinking-window mutation is done by randomly perturbing a parameter of the new-born. The perturbation window shrinks as the optimization progresses. The pertur-bation window size also depends on the type of crossover method that was used togenerate the newborn. The reason for this dependency is that di�erent crossover meth-ods introduce di�erent amounts of diversity. For example, a newborn resulting formrandom crossover is likely to be quite di�erent from either of its parents and thus it islogical to apply a more conservative perturbation in this case than in the case of pointcrossover.If the parameter's value is x with lower bound l and upper bound u, then the mutantvalue is randomly selected with uniform probability from the interval [x � godown �(u� l) � scale2 ; x+ godown � (u� l) � scale2 ].7 The scale value is set as follows:scale = 8>>>>><>>>>>: 0:15 �mutation factor if point crossover was used0:10 �mutation factor if random crossover was used0:05 �mutation factor if line crossover or double line crossover was usedwhere mutation factor is one of the external parameters, with a default value of2.8 The major di�erence between shrinking window mutation and non-uniformmutation7If the mutant value is out of bounds, it is forced to the nearest bound.8The same formula is used to compute scale in the case of non-uniform mutation.







29is that the latter discriminates against the portions of the space near the borders of thehypercube. These portions are likely to contain optima and should be searched verycarefully.Greedy mutationUnlike the non-uniform mutation and the shrinking window mutation, this mutationoperator does not vary its behavior with the stage of optimization.If the component's value is x with lower bound l and upper bound u, then themutant value is xnew = 8><>: x+ (u� x) � r1 � r2 with probability 0.5x� (x� l) � r1 � r2 with probability 0.5where r1 and r2 are two random values selected uniformly in the interval [0; 1].The purpose of this mutation operator is to maintain reachability of the entire searchspace in all stages of the optimization. This is done conservatively in order not to wastetime (the product of 2 numbers, each of which is less than one, is usually a very smallnumber).2.2.7 Replacement strategyThe replacement strategy used here is a crowding technique [Mahfoud 1995], whichtakes into consideration both the �tness and the proximity of the points in the GApopulation. When a new point is introduced, the closest point to this new point fromamong a certain \group" is selected for replacement. The \group" includes those pointswhich are:� worse (in �tness) than the point being introduced, and� among the worst (in �tness) fraction of the points in the current populationThe worst fraction of points among which a point has to be to become a candidatefor replacement is called the crowding factor. For example, if the crowding factor hada value of 0.25 at some iteration, then the worst quartile of the current population is







30eligible for replacement at that iteration. Both the initial and the �nal value of thecrowding factor are external parameters. The crowding factor changes linearly with thenumber of iterations from its initial to its �nal value. The default is that the crowdingfactor's initial value is one (i.e. the entire population is eligible for replacement, this is apure crowding situation) and drops linearly to its �nal value of zero (i.e. replacement ofthe worst) at the end of the optimization. The user can override the default and specifydi�erent values for these. In a multi-modal situation in which the user is interested in�nding as many solutions as possible rather than only the best solution, both initialand �nal values of the crowding factor can be set to one. On the other hand, if for lackof time or whatever reason the user wants a local solution as soon as possible, the twovalues can be set to zero.2.2.8 Search controlThe search control modules are among the completely novel ideas in GADO. The mainreason for this is that they entail a great deal of timing overhead. In most optimizationtasks to date, the functions to optimize were analytical expressions that take a negligibleamount of time to compute. In the case of realistic engineering design, however, theoptimization function in these cases is more often than not an expensive piece of code.We encountered cases in which one evaluation of the optimization function takes CPUhours on a powerful workstation. Consequently, search control became an appropriatetool and in fact - as we will demonstrate in subsequent chapters - search control provedto be one of the major contributers to the success of GADO.Screening moduleEvaluating an individual can be time consuming, and thus it can be bene�cial to onlyselect for evaluation points that seem promising. The screening module (SM) decideswhether a point is likely to correspond to a good design without invoking any simulatorto do this by extrapolating from points evaluated earlier in the search. In particular, thescreening module uses a simple K-nearest neighbor approach that maintains a relativelylarge random sample of the points encountered in the search so far (the sample size is one







31of the external parameters with a default value of 30 times the size of the GA population| the size of the sample should in general be selected based on the speed of the simulatorand domain knowledge, if available). Before a candidate point generated by crossoverand possibly mutation is evaluated, the module �nds the K nearest neighbors of thepoint among the sample (K is one of the external parameters with a default value oftwo | in general, the value should increase if the space is suspected to have needle-likeoptima or a large number of local optima and should decrease if the space is known to bewell behaved or the evaluation function is too expensive to permit thorough explorationof the space). If at least one of those nearest neighbors has a �tness that is better thansome threshold, the candidate point is evaluated and added to the GA population,otherwise the candidate point is just discarded.9 A good choice of the threshold is veryimportant for the success of the whole search. The default is to use the �tness of thesecond worst member of the current GA population as this threshold. In general, a moreexpensive evaluation function increases the need for the search to be more focused andtherefore a higher threshold may be more appropriate. The screening action starts onlyafter 25% of the maximum allowed number of evaluations have been done. This ensuresto some extent that the sample is representative of the search space and hopefully givesseveral of the regions containing good points a chance to be discovered.It is possible to imagine spaces in which the screening module may actually makethe global optimum harder to �nd. Figure 2.3 illustrates one such situation. The �gureshows a one-parameter search space with 2 local optima (assuming it is a maximizationproblem). Optimum A has a wide basin of attraction while optimum B, the globaloptimum, has a very narrow basin of attraction.10 It is therefore possible that all theexplorations done before the screening action starts will not encounter a single pointin the basin of attraction of optimum B. Thus, the sample used for screening will haveonly bad points in the vicinity of optimum B and will then prevent the optimizer from9In the actual implementation we evaluate the point with a very low probability (1%). This avoidsthe theoretical possibility of deadlock (if the screening module keeps rejecting every point) and givessmall regions of good points surrounded by bad points a chance to be discovered.10The basin of attraction of an optimum is de�ned here to be all the points in the search space whereif a hill climber is started it will converge to this optimum.
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Figure 2.3: Possibility of screening module failureevaluating more points in that vicinity. This may result in the optimization �nallyconverging to optimum A. However, in an engineering design optimization problem,optima like optimum B correspond to an unstable design (i.e. a design that will de-teriorate considerably due to a slight change in its parameters). In many domains, adesign like the one corresponding to optimum A may therefore be considered muchbetter than that corresponding to optimum B from a practical point of view. Finally,we note that if optimum A did not exist (i.e. the curve was at everywhere except forthe basin of attraction of optimum B), the screening module will have no e�ect on thesearch behavior until the basin of attraction of optimum B is discovered (if ever). Ifthe basin is discovered, the screening module will then help the search converge fasterto the optimum location.The idea of using the GA optimization history to guide further explorations wasstudied in [Ravise and Sebag 1996] where inductive learning was used to learn rulesdescribing bad points in a multi-dimension boolean space. The use of rules was ap-propriate in that research because the evaluation functions were not expensive enough







33to warrant the use of case-based learning. The main drawback in that research wasthat they had to do only negative screening. A point considered bad at any stageof the search will always be considered bad, whereas a point considered good in thebeginning of a search may be bad later in the search, as the average quality of the pop-ulation increases. Case-based learning implicitly allows the GA to vary the thresholdof acceptability over the course of the search, and makes a much weaker assumptionabout the shape of the boundary between good and bad regions than is the case fortraditional inductive learning methods. Also in the �eld of GA optimization [Louis1997] presented a method for using information about an entire GA optimization toguide another GA optimization in a similar domain. He presented his work in a designoptimization framework.Several research e�orts outside the GA �eld also focused on the idea of using searchhistory to guide future exploration. The examples include:� Tabu search [Glover 1989, Glover 1990] is a search method similar to simulatedannealing in the sense that it is a path following method that may allow move-ments to an inferior state in an e�ort to avoid being trapped in local optima. Tabusearch uses a list called the \Tabu list" which dynamically changes throughoutthe course of the search and contains a group of the most recently visited pointsof the search space. The search avoids going back to these states so as not to keepcycling.� Dependency-directed backtracking [Rich and Knight 1991] is a search methodsimilar to depth-�rst search which uses search history to decide which state tobacktrack to in case a search path proved fruitless.� Explanation-based learning (EBL) [Mitchell 1997] takes the outcome of a trainingprocess (such as a rule, a proof or a decision tree) and transforms it to a morecompact (and often more general) form. [Prieditis and Mostow 1987] proposedan adaptive Prolog interpreter called PROLEARN which reduces the time ofexecuting Prolog queries by referring to similar queries executed in the past.PROLEARN uses EBL to form generalizations of past proofs that are cached away







34and used in future problem-solving episodes. Soar [Laird et al. 1986] is a generalproblem-solving architecture that supports a broad variety of problem-solvingstrategies. Soar uses EBL to form rules that summarize the problem-solvingconducted in a problem space so that the same results can be reproduced in asingle step in similar situations. Since such new rules are added immediately tothe problem space, they can be used at later points within a single problem-solvingtask, as well as on new tasks using that problem space. PRODIGY [Minton 1988]is a domain independent planning system based on a means-ends planner thatdecomposes problems into subgoals, solves them, then combines their solutionsinto a solution for the full problem. PRODIGY uses EBL to form search-controlrules that help the PRODIGY planner make correct control decisions in situationsthat are similar to past decisions, both within a single overall task as well as acrosstasks.Diversity maintenance moduleOne of the worst things that can happen during a GA optimization is premature con-vergence to a non-global optimum. In a steady state GA, such as the one used in thisresearch, this happens when the current population loses diversity and all the pointsbecome very close to each other. The use of the screening module, unfortunately, doesnot protect the GA against premature convergence. In fact the SM, as described above,may even promote such undesirable behavior. To protect the GA against prematureconvergence the diversity maintenance module (DMM) does the following:� The DMM rejects points that are extremely close to points that have already beenevaluated (good or bad). The rationale behind this is that such points carry re-dundant information and there is no point in introducing them to the current pop-ulation. The amount of closeness to existing points that warrants rejection | therejection radius | is set based on the initial average distance between the points inthe starting population, the size of the population and the rejection tolerance. Theinitial value of the rejection radius is equal to reject tolerance�initial average distancepopulation size







35where reject tolerance is one of the external parameters. In addition, the rejec-tion radius decreases quadratically to zero with the number of iterations, so asnot to prevent the GA from converging to the global optimum towards the end ofthe search. Since the SM already determines the nearest neighbor for each newpoint, this operation does not add any signi�cant extra overhead to the search.� If severe loss of diversity is detected (i.e. the average distance between thepoints of the current population becomes less than reseed fraction � godown2 �initial average distance where reseed fraction is one of the external parameterswith a default value of 0.25) during the course of the optimization, a re-seedingoperation is done. All the points in the current population are discarded exceptfor the best one. The population is then rebuilt using the points accumulated bythe SM, with preference going to points that both have good �tness and are farfrom the retained best point. The way this is done is simply to insert all the pointsaccumulated by the SM into the GA population using the replacement strategydescribed above, except that the points that are too close to the best point arenot inserted. More precisely, we exclude the points that are closer in distanceto the best point than 2 � reseed fraction � godown2 � initial average distance.This technique restores diversity and gives the GA a second chance to avoid localsub-optima. On the other hand, re-seeding could never take the population awayfrom the global optimum if it is reached, because the best point is retained (in thiscase the global optimum) and the population will quickly re-converge thereafter.The user must specify the maximum number of times the reseeding may occur.The maximum number of reseeds is one of the external parameters. Its defaultvalue is 10. If the speci�ed maximum number of reseeds have already been done,the optimization proceeds without further reseeding until termination.2.2.9 Stopping criteriaThe GA stops when either the maximum number of evaluations has been exhaustedor the population loses diversity and practically converges to a single point in the







36search space. The user decides what level of diversity loss warrants stopping through aparameter called stopping tolerance in the parameters �le. If stopping tolerance is setto zero, the GA will only stop when it exhausts the maximum number of evaluations.On the other hand, the user can set GADO to continue beyond the maximum numberof evaluations - which he still has to specify as it is needed for some calculations - andstop only by diversity loss. This mode of operation may be useful for, say, an engineerwho needs a quick result for proof of concept or feasibility study and then a possiblybetter result for the practical design. Most GA optimization packages o�er only onestopping criterion, and that is number of iterations. Thus, this is a novel and usefulfeature in GADO.2.3 The e�ectiveness of GADO for engineering design optimizationGADO addresses the problems described in Section 1.2 as follows:� Unevaluable and infeasible points/regions: This is targeted by various fea-tures of GADO. The screening module avoids spending too much time exploringunevaluable regions. In addition, the adaptive penalty scheme makes e�cient useof the infeasible points.� Expensive evaluations: The search control methods (screening module anddiversity maintenance module) improve the time e�ciency of GADO by avoidingunnecessary evaluations of unpromising points and redundant points.� Badly structured spaces: GADO uses a collection of crossover and mutationoperators that are tailored for such cases (for example the line crossover operator).� Multiple local optima: GADO uses a replacement strategy that promotes nich-ing [Mahfoud 1995]. This promotes \species" formation and prevents any singlegood region from dominating the search. The diversity maintenance modules alsohelps in this regard. Maintaining diversity gives the algorithm a very good chanceof visiting the regions of many optima before converging on (hopefully) the best.







37� Non-smoothness: GAs in general are less sensitive to this problem than, say,gradient based methods. In addition, the search control methods in GADO helpin curing this problem.2.4 Concluding remarksThis chapter described GADO, a new genetic algorithm speci�cally designed for usein engineering design optimization. It described the di�erent components and the op-eration of the system. The chapter also provided an overview of genetic algorithms.The remainder of this thesis is devoted to demonstrating the strength of GADO andanalyzing its performance in di�erent engineering design domains. In the next chapterwe demonstrate the superiority of GADO to existing optimization methods when usedin design optimization. We compare GADO's performance to that of three state of theart optimizers representative of three di�erent paradigms of design optimization.







38
Chapter 3Empirical SupportIn this chapter we demonstrate the merit and strength of GADO by comparing its per-formance to that of four di�erent global optimizers in two di�erent realistic engineeringdesign domains.3.1 Baseline methodsThe selected optimizers are state of the art representatives of the di�erent classes ofoptimizers described in Chapter 1 as well as a very simple optimizer to serve as abaseline. These optimizers are:� Random Probes (RP): RP generates random points in the design space andevaluates them. Each design parameter is assumed to have a �xed range. RPforms design points by selecting a random value of each parameter uniformlydistributed over its range. The best point found in this process is the result.� Multi-start CFSQP: CFSQP [Lawrence et al. 1995] is a state-of-the-art im-plementation of the Sequential Quadratic Programming method, a quasi-Newtonmethod that solves a nonlinear constrained optimization problem by �tting a se-quence of quadratic programs. CFSQP is a gradient based local optimizer. Itis made into a global optimizer by restarting it from di�erent random points inthe search space. In the early stages of this research, a large number of con-ventional nonlinear programming methods were examined. CFSQP proved tobe the best in the domains under consideration and thus we chose it to rep-resent conventional nonlinear programming methods in this comparison. Theversion of CFSQP we used was tailored to design optimization spaces by Mark







39Schwabacher [Schwabacher 1996]. It was shown [Schwabacher and Gelsey 1997,Schwabacher 1996] that the modi�cations to this version of CFSQP made it con-siderably better in several design optimization spaces.� GENOCOPIII: This is a state of the art \o�-the-shelf" genetic-algorithm-basedglobal optimizer for constrained continuous optimization. It is speci�cally de-signed to be robust in domains with small, possible disjoint feasible regions. Thissystem has been launched only in 1996 and is described in detail in [Michalewicz1996]. It uses a repair method for handling constraints. The repair method worksas follows: whenever a point generated by the GA is infeasible, it is pushed towardsthe feasible region by joining a line from it to a feasible point and searching thisline until another feasible point is found. The algorithm maintains, in additionto a general purpose population of points (the search population), another popu-lation of strictly feasible points (the reference population). Both populations areevolved and the reference population provides points for repair. GENOCOPIIIwas able to solve very di�cult nonlinear optimization problems, �nding betteroptima than the ones that were thought to be global. GENOCOPIII must �nda feasible point to seed the reference population. This may be very di�cult indomains with extremely small feasible regions. If this is the case, GENOCOPIIIwill ask the user to supply a feasible point. This behavior may be unacceptablein some domains.� ASA: This is a state of the art \o�-the-shelf" implementation of the simulatedannealing paradigm. The version we used was launched in 1995. ASA1 is an im-plementation of the very fast simulated re-annealing algorithm (VFSR) proposedby Lester Ingber [Ingber 1996]. To the best of our knowledge, this is the onlysimulated annealing implementation that does not require the user to provide aninitial temperature or an annealing schedule. ASA proved to be a very strongglobal optimizer, especially in highly multi-modal problems (including problemswith 1012 local optima!). The main disadvantage is that ASA must start from1ASA is an acronym for Adaptive Simulated Annealing.







40a feasible point. If the user does not provide a feasible starting point, ASA willdo a randomized search for one, e�ectively defaulting to random probes. In thedomains where the feasible region is extremely small, ASA may not be usable.3.2 Evaluation methodologyWe ran each of the above optimizers, as well as GADO, many times in each domain.We used the default values for external parameters (i.e. we did no tuning for eachproblem) in the case of GADO, ASA and GENOCOPIII.2 In the case of CFSQP weused the data about runs that were done by other researchers, where the parameterswere tuned for each problem. This represents a higher challenge for GADO, especiallythat the version of CFSQP used was adapted to this class of problems. We compared theaverage performance, as well as the worst case performance of the methods. The worstcase performance is important in this context because the evaluation functions are veryexpensive. Very often the engineer will only have time to run the optimizer just once,so an optimizer with bad worst case performance but excellent average performancemay be undesirable.3.3 Results3.3.1 Application domain 1: Supersonic transport aircraft design do-mainDomain descriptionOur �rst domain concerns the conceptual design of supersonic transport aircraft. Wesummarize it briey here; it is described in more detail elsewhere [Gelsey et al. 1996b].Figure 3.1 shows a diagram of a typical airplane automatically designed by our softwaresystem. The GA attempts to �nd a good design for a particular mission by varying2The only exception to this rule was that we used a population size of 5 times the dimension (ratherthan the default of 10 times the dimension) in the missile design domain for GADO and GENOCOPIII.We did this so that the populations will be able to converge in a relatively small number of iterationsas the evaluation function in this domain was very expensive (6 CPU seconds).
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wing_aspect_ratio=1.57715
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Figure 3.1: Supersonic transport aircraft designed by our system (dimensions in feet)







42Table 3.1: Aircraft Parameters to OptimizeNo. Parameter1 exhaust nozzle convergent length(lc)2 exhaust nozzle divergent length(ld)3 exhaust nozzle external length(le)4 exhaust nozzle radius(r7)5 engine size6 wing area7 wing aspect ratio8 fuselage taper length9 e�ective structural t/c10 wing sweep over design mach angle11 wing taper ratio12 Fuel Annulus Widthtwelve of the aircraft conceptual design parameters in Table 3.1 over a continuous rangeof values.An optimizer evaluates candidate designs using a multidisciplinary simulator. Inour current implementation, the optimizer's goal is to minimize the takeo� mass ofthe aircraft, a measure of merit commonly used in the aircraft industry at the con-ceptual design stage. Takeo� mass is the sum of fuel mass, which provides a roughapproximation of the operating cost of the aircraft, and \dry" mass, which provides arough approximation of the cost of building the aircraft. A complete mission simulationrequires about 0.2 CPU seconds on a DEC Alpha 250 4/266 desktop workstation.The aircraft simulation model used is based on both implicit and explicit assump-tions and engineering approximations and since it is being used by a numerical optimizerrather than a human domain expert, some design parameter sets may correspond toaircraft that violate these assumptions and therefore may not be physically realizableeven though the simulator does not detect this fact. We refer to these designs as infea-sible points. For this reason a set of constraints has been introduced to safeguard theoptimization process against such violations. We also have the notion of unevaluablepoints. These are points that represent designs that violate the model assumptions somuch that the simulator cannot complete the simulation process to produce any signif-icant information. For such points a very large �ctitious takeo� mass is generated as
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lcld le
Figure 3.2: The \slab-shaped" evaluable region (We normally display this in color ona workstation screen, with di�ering colors indicating di�ering design quality.)the value of the objective function.Figure 3.2 shows a three dimensional projection of the search space on the �rst threeparameters (lc, ld and le) of Table 3.1. The blank regions of the curve are unevaluablepoints. The �gure illustrates the \slab-shaped" evaluable region in this three dimen-sional subspace. The �gure clearly shows how di�cult it is to do optimizations in thisdomain.In summary, the problem has 12 parameters and 37 inequality constraints. 0.6% ofthe search space is evaluable.3Experiments and resultsGADO vs. RP, GENOCOPIII and ASAWe �rst attempted to run all optimizers in this domain. It turned out that the feasibleregion was extremely small. An RP run of 50000 evaluations did not �nd a single feasiblepoint. Consequently, RP failed completely in this domain. Similarly, GENOCOPIIIand ASA were unable to start as they use random search to �nd the �rst feasible point.3No statistics exist regarding the fraction of the search space that is feasible because it is extremelysmall.
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Figure 3.3: Comparison of average performance of GADO and CFSQP in applicationdomain 1 (aircraft design)
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Figure 3.4: Trace of 15 GADO runs in application domain 1 (aircraft design)
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Figure 3.5: Trace of 15 multistart-CFSQP runs in application domain 1 (aircraft design)GADO vs. CFSQPThe only optimizers that were able to actually optimize without requiring any externalhelp were GADO and multi-start CFSQP. Each was run 15 times with di�erent randomseeds. CFSQP does random search until it �nds an evaluable (not necessarily feasible)point and then works from there in two phases:1. It �rst tries to move to a feasible point by using constraint gradients to minimizeviolation.2. If it succeeds in the �rst phase it then attempts to optimize in the feasible regionusing constraint projections to avoid stepping into infeasibility.The average performance of GADO and multi-start CFSQP is illustrated in Fig-ure 3.3.4 In order to plot meaningful curves for the average performance, in the presenceof unevaluable and infeasible points, we substituted a large number (375) for the take-o� mass for these points. We chose this number because it was larger than the take4We use the following rule for the legends of curves in all the �gures in this thesis: the label of eachcurve in the legend will have the form <optimizer name> <domain name> [comment if any].







46o� masses of all the feasible designs we have seen. The leading, almost vertical edgesof the curves represent the regions where all the runs found the feasible region. Onerun of CFSQP failed to reach the feasible region, despite restarting from 10 randompoints. To be able to draw the �gure we treated this run di�erently, substituting 375for the takeo� mass of all. Despite this, the �gure clearly demonstrates the superiorityof GADO. On average, the �nal best design of each GADO run had a takeo� massof about 164.9 tons. In all the experiments done by us and by other researchers usingmore than 10 di�erent optimizers and millions of evaluations, the best takeo� mass everfound was 161.7 tons (it was found by GADO).Figure 3.4 shows all 15 runs of GADO, and it is evident that all the runs are similarto each other except for the very early stages.5 The �nal standard deviation was about1.7 tons. The worst case run gave a �nal takeo� mass of 167.6 tons which is only 3.6%higher than the best optimum ever found. Compare this to not �nding any feasiblepoints, which is the worst case performance of CFSQP.Figure 3.5 shows all 15 runs of multi-start CFSQP.6 The �gure clearly demonstratesthe large variance between runs. Some runs were very lucky and got close to the bestoptimum in a few thousand iterations, others were very unlucky and never got close tothe best optimum.GADO vs. GENOCOPIII and ASA (revisited)As a �nal experiment to calibrate performance, we took the �rst found feasible pointof one GADO run and gave it to GENOCOPIII and to ASA so they could get started.Obviously this favors GENOCOPIII and ASA over GADO. We then compared theirprogress with that of the same GADO run. The result is shown in Figure 3.6. The�gure clearly demonstrates that the feasible starting point requirement was not the onlyproblem GENOCOPIII and ASA had in this domain. Their performance was still poor.Speci�cally, their performance was worse than the average performance of CFSQP.5Each curve starts from the iteration in which the corresponding run �rst found a feasible point.6Actually there are only 14 curves since, as mentioned earlier, one run never found any feasiblepoints so it had no curve.
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Figure 3.6: Comparison of GADO, GENOCOPIII and ASA in application domain 1(aircraft design)3.3.2 Application domain 2: Supersonic cruise missile inlet domainDomain descriptionOur second domain concerns the design of inlets for supersonic and hypersonic missiles.We summarize it briey here; it is described in more detail in [Zha et al. 1996].The missile inlet designed is an axisymmetric mixed compression inlet that cruisesat Mach 4 at 60000 feet altitude. Minimum manufacture cost for this inlet is critical,
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Figure 3.7: Supersonic missile inlet geometry model
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Table 3.2: Fixed ParametersNo. Parameter De�nition1 D cowl diameter2 rf centerbody radius of constant cross section region3 xg length of inlet for computation4 xl length of inlet for computation (= xg)5 xn length of inlet for computation (= xg)6 rm external diameter


Table 3.3: Inlet Parameters to OptimizeNo. Parameter De�nition1 �1 initial cone angle2 �2 �nal cone angle3 xd axial location of throat4 rd radial location of throat5 xe axial location of end of\constant" cross section6 �3 internal cowl lip angle7 Hej height at end of constantcross section8 Hfk height at beginning ofconstant internal cross section
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Figure 3.8: A cross section of the search space de�ned by NIDA.and therefore, techniques such as boundary layer bleed and variable geometry are notused | the performance of the inlet thus relies solely on the aerodynamic design ofthe rigid geometry, such as the extent of external and internal compression, contractionratio, inlet start throat area, throat location, shock train length, and divergence ofsubsonic di�user.Figure 3.7 shows the model of the missile geometry which is composed of six �xedparameters and eight design parameters given in Table 3.2 and Table 3.3, respectively.The missile inlet is axisymmetric and the coordinates are given in terms of axial (x)and radial (r) positions.The simulator used in this domain is a program called \NIDA" which was developedat United Technology Research Center (UTRC) as an inlet analysis/design tool [Haaset al. 1992]. It uses a 1D aerodynamic model with the method of characteristics for thesupersonic part upstream of the throat, and empirical correlations based on experimen-tal data downstream of the throat for the region of the terminal shock wave/turbulentboundary layer interaction and sub-sonic di�user. Unfortunately, NIDA su�ers froma number of serious shortcomings. There are numerous small discontinuities in the
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Figure 3.9: Comparison of average performance in application domain 2 (missile design)function it computes and in its �rst derivative, and there are numerous unevaluablepoints that cause NIDA to crash or print an error message. These discontinuities aresometimes in the middle of regions of good designs. Figure 3.8 shows a cross section ofthe search space de�ned by NIDA, which illustrates these problems. Each point alongthis curve is for a di�erent value of the axial location of the throat, xd. The blankregions of the curve are unevaluable points. The �gure clearly shows how di�cult it isto do optimizations in this domain.The eight design parameters (all continuous valued) are given in Table 3.3, withcoordinates given in terms of axial (x) and radial (r) positions. The goal of the opti-mization is to maximize the total pressure recovery, a quantity that is commonly usedto measure the performance of inlets.In summary, the problem has eight parameters and 20 inequality constraints. 3%of the search space is evaluable and 0.147% is feasible.
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Figure 3.10: Comparison of worst case performance in application domain 2 (missiledesign)Experiments and resultsAll �ve optimizers were able to run without external help in this domain. The feasibleregion was much larger than the case of application domain 1 above. Each optimizerwas run 5 times. All optimizations found feasible points. Figure 3.9 illustrates theaverage performance of the di�erent optimizers.7 In order to plot meaningful curvesfor the average performance, in the presence of unevaluable and infeasible points, wesubstituted the number zero for the total pressure recovery of unevaluable and infeasibledesigns (any feasible design must have a total pressure recovery larger than zero). Thebest total pressure recovery ever found in this domain was 0.415 (it was found byGADO). The average �nal total pressure recovery was 0.409 for GADO and 0.403 forASA. In general, the �gure clearly shows that GADO is superior to all the other methodsin this domain.We compared the worst case performance of the di�erent optimizers. The result is7Note that this is a maximization problem so higher curves are better.
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Figure 3.11: Trace of 5 GADO runs in application domain 2 (missile design)Table 3.4: Comparison of �nal performance in application domain 2 (missile design)Method Average Worst Best S.D.GADO 0.4092 0.4055 0.4125 0.00223ASA 0.4030 0.3933 0.4123 0.00627GCOPIII 0.3933 0.3905 0.3997 0.00327CFSQP 0.3755 0.3691 0.3856 0.00645RP 0.3688 0.3469 0.3848 0.01382shown in Figure 3.10. The worst case �nal total pressure recovery for GADO was 0.405where as for ASA (the best contender) it was only 0.393.Figure 3.11-3.15 illustrate the traces of all �ve runs of the di�erent methods inapplication domain 2 (missile design). It is clear from these �gures that the performanceof GADO was more stable than the performance of the other methods in the sense thatall the GADO runs look the same but the runs of other methods have a large degree ofvariation. This strongly suggests that GADO is more reliable than the other methods.Table 3.4 also demonstrates the reliability of GADO. The table presents informationabout the �nal performance (the measure of merit at the end of 4000 iterations) of the
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Figure 3.12: Trace of 5 ASA runs in application domain 2 (missile design)
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Figure 3.13: Trace of 5 GCOPIII runs in application domain 2 (missile design)
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Figure 3.14: Trace of 5 CFSQP runs in application domain 2 (missile design)
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Figure 3.15: Trace of 5 RP runs in application domain 2 (missile design)







555 runs of the di�erent optimization methods in application domain 2 (missile design).Column 2 reports the average �nal performance, column 3 and 4 report the worstand the best �nal performance respectively and the last column reports the standarddeviation of the �nal performance. The methods are listed in decreasing value of theaverage �nal performance. The table shows that GADO had the best average, best andworst �nal performance with respect to the other methods. The table also shows thatGADO had the lowest standard deviation among the methods.3.4 Concluding remarksIn this chapter we demonstrated the merit and strength of GADO by comparing its per-formance to that of four di�erent global optimizers in two di�erent realistic engineeringdesign domains. The optimizers are:� Random Probes: Random Probes generates random points uniformly in thedesign space and evaluates them.� Multi-start CFSQP: CFSQP is a state-of-the-art implementation of the Se-quential Quadratic Programming method, a quasi-Newton method that solves anonlinear constrained optimization problem by �tting a sequence of quadraticprograms. CFSQP is a gradient based local optimizer. It is made into a globaloptimizer by restarting it from di�erent random points in the search space.� GENOCOPIII: This is a state of the art \o�-the-shelf" genetic-algorithm-basedglobal optimizer for constrained continuous optimization.� ASA: This is a state of the art \o�-the-shelf" implementation of the simulatedannealing paradigm.We compared the average and worst case performance of these optimizers to thoseof GADO in the domains of aircraft design and missile inlet design. In the aircraftdesign domain, the density of feasible points was extremely low. As a result RandomProbes, GENOCOPIII and ASA failed to optimize without user intervention. CFSQP







56and GADO were able to optimize without user intervention but the performance ofGADO was superior to that of CFSQP. In the missile inlet design domain the densityof feasible points was very low but not as low as the previous case. As a result alloptimizers were able to perform in this domain but again the performance of GADOwas clearly superior to that of the other optimizers.In the next chapter we further investigate the scope of applicability of GADO aswell as the sensitivity of its performance to parameter variation and problem structure.We also demonstrate the utility of some of the novel components of GADO in thetwo domains described in this chapter as well as eight benchmark design optimizationdomains.
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Chapter 4Scope, Sensitivity and AnalysisIn this chapter we analyze the scope of applicability of GADO by testing it in furtherengineering design domains previously used in the literature. We also investigate therole of some of the key novel components of GADO. We show how these componentssigni�cantly improved the overall performance in several domains. Moreover, we showthat these components never degraded the performance signi�cantly in the domainsinvestigated. Finally, we analyze the e�ect of parameter variation and search spacestructure on performance.4.1 Scope of applicabilityIn order to further de�ne the scope of applicability of GADO, we examined its perfor-mance in a large group of engineering design domains that do not have all the propertiestargeted by GADO.In 1977, Eric Sandgren published his Ph.D. thesis by the title \The utility of non-linear programming algorithms" [Sandgren 1977]. He applied 35 nonlinear optimiza-tion algorithms to 30 engineering design optimization problems and compared theirperformance.1 Sandgren's general conclusion was that no single optimization techniqueamong the ones he tested performed reasonably well in all the test cases. He noted,however, that a group of methods (which he called the generalized reduced gradientmethods) were reliable across a large number of test cases. The 30 problems he used1It should be noted that his study did not include stochastic optimization methods such as geneticalgorithms or simulated annealing. This is not surprising because these methods hardly gained anypopularity until the late eighties. Genetic algorithms as optimization tools were introduced by Hollandin 1975 [Holland 1975] and simulated annealing as a search method was introduced by Kirkpatrick inthe early eighties [Kirkpatrick et al. 1983].







58were also used by other researchers before and after Sandgren's work [Powell and Skol-nick 1993]. These problems di�er from the problems previously described in Chapter 3in the following major ways:� There are no unevaluable points. The objective functions and the constraints arecomputed via computer programs that will yield a result for any input in theproper range.� The computation of objective functions and constraints is signi�cantly less ex-pensive than the domains described in Chapter 3. Roughly, they typically takearound one third the time the aircraft simulator takes on the same environment.Thus they are about 3 times faster than the aircraft simulator and 100 timesfaster than the missile design code (NIDA).Those problems have now become used in engineering design optimization domainsas benchmarks. The most recent experiment involving these domains was reportedin [Powell and Skolnick 1993], in which a GA package called OOGA and a numericaloptimization package called NumOpt were compared to each other in 10 of Sandgren'sdomains. The 10 domains were a representative sample of the original 30. We ranGADO in eight2 of these 10 domains and compared its performance to the resultsreported in [Powell and Skolnick 1993]. All eight were minimization problems. Adescription of the domains we used is given in Appendix B. Even though these problemsare not exactly the kind of engineering design domains that GADO was designed tohandle, GADO did extremely well in them nevertheless.For each problem GADO was run 5 times using di�erent random starting popula-tions and the default values for its parameters (these are the exact values used in theoptimizations of the more practical domains described in Chapter 3). The limit on thenumber of function evaluations was set to 50,000. This setup was the same one usedin [Powell and Skolnick 1993] and this allowed comparison of results. The research in2We were unable to do any comparison in 2 of the 10 domains because they had unbounded variables.The researchers did not report the bounds they imposed on the unbounded variables in [Powell andSkolnick 1993] and we were unable to get any clari�cation from them.







59Table 4.1: Results of optimization in benchmark domainsDomain Sandgren Dim. Constraints best OOGA NumOpt GADONo. No. inequ. equ. f f f f1 13 5 4 0 26.79 26.79 28.02 26.782 2 3 2 0 -3.3 -3.3 -3.3 -3.33 3 5 6 0 -3.06 -3.06 -3.06 -3.064 8 3 2 0 -5.68 -5.68 -5.68 -5.685 6 6 0 4 8.92 (8.93) 9.26 8.976 15 16 0 8 244.8 (2412) 244.8 (587.54)7 21 13 13 0 97.5 134.2 161.1 117.578 22 16 19 0 174.7 (537.1) 209.5 214.51[Powell and Skolnick 1993] only reported the worst case performance (i.e. the worstof the 5 runs) of OOGA so we also report the worst case performance of GADO forfair comparison. The research in [Powell and Skolnick 1993] was not clear about theexperiments with NumOpt. It mentioned however that a limit of 50,000 evaluationswas imposed on NumOpt and reported one number for each problem as its performancemeasure so we used it for comparison.The results are summarized in Table 4.1. The second column of the table shows theproblem numbers as they appeared in Sandgren's thesis. The third column shows theproblem dimensions (i.e. the number of design variables in each problem). The fourthand �fth columns show the number of inequality and equality constraints respectively.The sixth column shows the best known optima of the problems (excluding the �ndingsof this thesis). The seventh column shows the performance of OOGA reported in[Powell and Skolnick 1993]. The eighth column shows the performance of NumOptreported in [Powell and Skolnick 1993]. Finally, the last column shows the worst case�nal performance of GADO. Numbers in brackets represent infeasible points. The tabledemonstrates the following facts:� All three optimizers reached the best known optimum in three of the eight domains(2,3,4).� GADO outperformed OOGA in domains (1,5,7,8).







60Table 4.2: Results of optimization in benchmark domains (without screening)Domain Sandgren Dim. Constraints best OOGA NumOpt GADONo. No. inequ. equ. f f f f1 13 5 4 0 26.79 26.79 28.02 26.782 2 3 2 0 -3.3 -3.3 -3.3 -3.33 3 5 6 0 -3.06 -3.06 -3.06 -3.064 8 3 2 0 -5.68 -5.68 -5.68 -5.685 6 6 0 4 8.92 (8.93) 9.26 8.976 15 16 0 8 244.8 (2412) 244.8 (802.75)7 21 13 13 0 97.5 134.2 161.1 125.368 22 16 19 0 174.7 (537.1) 209.5 242.7� GADO outperformed NumOpt in three domains (1,5,7) but NumOpt outper-formed GADO in two domains (6,8).Since the evaluation functions were not expensive enough to justify the use of thescreening module (the total time spent on screening in some cases exceeded the totaltime spent running the evaluation code) we felt obligated to repeat the experimentswith the screening module turned o�. All the other parameters were kept at theirdefault values. The overhead for the GA bookkeeping in this setup was no more than10% of the total CPU time and thus we believe the comparison to OOGA and NumOptshould be fair. The results are summarized in Table 4.2. GADO's performance wasslightly worse in some cases - as expected in the absence of the screening module - butthe results were qualitatively the same as with the screening module.The reason why GADO did not do as well in benchmark domain 6 (Sandgren'sproblem 15) as it did in the other domains is the fact that there were eight nonlinearequality constraints. This is a very di�cult situation for any algorithm using a penaltyapproach to constraint satisfaction for the following reasons:� The penalty coe�cient has to increase tremendously to enforce feasibility. Thus,once a feasible (or near feasible) point is found it becomes extremely hard toexplore other regions of the space.� If the constraints are highly nonlinear (in this problem they were products of







61cubic functions) it becomes extremely hard to maintain the satis�ability of oneconstraint while trying to satisfy others. In other words, it is hard for a penaltybased method to walk on the nonlinear constraint boundary. Therefore the algo-rithm must satisfy all constraints at once which is extremely hard.NumOpt on the other hand uses a direct approach to satisfy and maintain satis�a-bility of constraints, using constraint gradients.Nevertheless, by changing the values of four parameters of GADO from their de-faults, we were able to tremendously improve the performance. Even though the perfor-mance was still inferior to that of NumOpt in this problem, all �ve runs found feasiblepoints and the worst run had a measure of merit value of 300.For the remaining experiments in this chapter we decided to limit our attention tothe two application domains (the aircraft design and the missile design) and bench-mark domain 7 (Sandgren's problem 21). We dropped the other benchmarks fromconsideration because:� Benchmarks 1, 2, 3 and 4 turned out to be extremely easy for GADO (the globaloptimum was reached in a few hundred to at most few thousand iterations!). Wedoubt that the component contribution or e�ect of parameter variation will benoticeable in these domains.� Benchmarks 5 and 6 had all equality and no inequality constraints at all. This is avery special case, considering that in all the modern practical design optimizationdomains we considered, there were no equality constraints.� Benchmark 8 is basically a more complex version of benchmark 7. The behaviorof these two benchmarks is expected to be qualitatively the same.4.2 Analysis of component contributionsIn this section we demonstrate the utility of some of the key components of GADO.We show how these components improved the performance in several domains. Theresults also show that these components never degraded the performance signi�cantly
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Figure 4.1: E�ect of the screening module on average performance in application domain1 (aircraft design)in the domains investigated. We conducted the experiments by running GADO withoutone component at a time and comparing the performance with that of the defaultparameters (which uses all components).4.2.1 Utility of the screening moduleTo demonstrate the utility of the screening module we turned it o� and kept all otherparameters intact. We compared the performance of GADO with this setup to itsperformance with the default parameters in several domains.Figure 4.1 demonstrates the utility of the screening module in domain 1 (aircraftdesign). The �gure shows the average of 15 runs of GADO both with and without thescreening module. All other parameters were kept at their default values. The �gureshows that the screening module improved the performance in all stages of the search.The feasible region was reached faster with the screening module (the almost verticalleading parts of the curves are where the feasible region was reached). Figure 4.2 showsthe e�ect of the screening module on worst case performance. The �gure is qualitatively
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Figure 4.2: E�ect of the screening module on worst case performance in applicationdomain 1 (aircraft design)the same as Figure 4.1.Figure 4.3 demonstrates the utility of the screening module in application domain2 (missile design). The �gure shows the average of 5 runs of GADO both with andwithout the screening module. All other parameters were kept at their default values.The screening module had very little e�ect on performance in this domain. Figure 4.4shows the e�ect of the screening module on worst case performance. The �gure isqualitatively the same as Figure 4.3.Figure 4.5 demonstrates the utility of the screening module in benchmark domain 7(Sandgren's problem 21). The �gure shows the average of 5 runs of GADO both withand without the screening module. All other parameters were kept at their defaultvalues. The �gure shows that the screening module improved the performance in allstages of the search. The feasible region was reached faster with the screening module.The �nal performance at the end of the search was signi�cantly better with the screeningmodule. Figure 4.6 shows the e�ect of the screening module on worst case performance.The �gure is qualitatively the same as Figure 4.5.
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Figure 4.3: E�ect of the screening module on average performance in application domain2 (missile design)
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Figure 4.4: E�ect of the screening module on worst case performance in applicationdomain 2 (missile design)
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Figure 4.5: E�ect of the screening module on average performance in benchmark domain7 (Sandgren's problem 21)
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Figure 4.6: E�ect of the screening module on worst case performance in benchmarkdomain 7 (Sandgren's problem 21)
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Figure 4.7: E�ect of guided crossover on average performance in application domain 1(aircraft design)4.2.2 Utility of guided crossoverTo demonstrate the utility of guided crossover we changed the parameters so that itis never used and kept all other parameters intact. We compared the performanceof GADO with this setup to its performance with the default parameters in severaldomains.Figure 4.7 demonstrates the utility of guided crossover in application domain 1(aircraft design). The �gure shows the average of 15 runs of GADO both with andwithout guided crossover. All other parameters were kept at their default values. The�gure shows that guided crossover improved the performance in all stages of the search,although the improvement was not very large. The feasible region was reached fasterwith guided crossover. It is noted however that the performance at the end of thesearch was almost identical. Figure 4.8 shows the e�ect of guided crossover on worstcase performance. The �gure shows that the e�ect of guided crossover on worst caseperformance was minimal.Figure 4.9 demonstrates the utility of guided crossover in application domain 2
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Figure 4.8: E�ect of guided crossover on worst case performance in application domain1 (aircraft design)
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Figure 4.9: E�ect of guided crossover on average performance in application domain 2(missile design)
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Figure 4.10: E�ect of guided crossover on worst case performance in application domain2 (missile design)(missile design). The �gure shows the average of 5 runs of GADO both with andwithout guided crossover. All other parameters were kept at their default values. The�gure shows that guided crossover improved the performance in most stages of thesearch, although the improvement was not very large.3 The feasible region was reachedfaster with guided crossover. Figure 4.10 shows the e�ect of guided crossover on worstcase performance. The �gure shows that the e�ect of guided crossover on worst caseperformance was minimal.Figure 4.11 demonstrates the utility of guided crossover in benchmark domain 7(Sandgren's problem 21). The �gure shows the average of 5 runs of GADO both withand without guided crossover. All other parameters were kept at their default val-ues. The �gure shows that guided crossover improved the performance in all stagesof the search. The feasible region was reached faster with guided crossover. The �nalperformance at the end of the search was signi�cantly better with guided crossover.3It should be noted that the numerical accuracy of the simulator (NIDA) is about 5%. Thus, fromthe engineering point of view, the two curves in Figure 4.9 are indistinguishable in the region beyond700 iterations.
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Figure 4.11: E�ect of guided crossover on average performance in benchmark domain7 (Sandgren's problem 21)
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Figure 4.12: E�ect of guided crossover on worst case performance in benchmark domain7 (Sandgren's problem 21)
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Figure 4.13: E�ect of dynamic penalty on average performance in application domain1 (aircraft design)Figure 4.12 shows the e�ect of guided crossover on worst case performance. The �gureis qualitatively the same as Figure 4.11.4.2.3 Utility of the dynamic penalty methodTo demonstrate the utility of the dynamic penalty method, we changed the parametersso that GADO uses a �xed penalty coe�cient of 106 times the default initial penaltycoe�cient and kept all other parameters intact. The coe�cient had to be so largeto insure that the feasible region could be reached in all domains. We compared theperformance of GADO with this setup to its performance with the default parameters.4Figure 4.13 demonstrates the utility of the dynamic penalty method in applicationdomain 1 (aircraft design). The �gure shows the average of 15 runs of GADO once withthe default parameters (which implies using the dynamic penalty method) and anothertime with the large �xed coe�cient. All other parameters were kept at their default4We also tried using a small �xed penalty coe�cient but this failed in several domains as there wereinfeasible regions with objective values that are much better than the global optimum.
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Figure 4.14: E�ect of dynamic penalty on worst case performance in application domain1 (aircraft design)
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Figure 4.15: E�ect of dynamic penalty on average performance in application domain2 (missile design)
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Figure 4.16: E�ect of dynamic penalty on worst case performance in application domain2 (missile design)
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Figure 4.17: E�ect of dynamic penalty on average performance in benchmark domain7 (Sandgren's problem 21)
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Figure 4.18: E�ect of dynamic penalty on worst case performance in benchmark domain7 (Sandgren's problem 21)values. The �gure shows that the dynamic penalty method improved the performancein all stages of the search. This should be expected since the dynamic penalty approachallows for better exploration in the beginning of the search. The fact that the penaltycoe�cient is actually allowed to decrease towards the end of the search { to allow forbetter examination of the constraint borders { also helps. Figure 4.14 shows the e�ectof the dynamic penalty method on worst case performance. The �gure is qualitativelythe same as Figure 4.13.Figure 4.15 demonstrates the e�ect of using the dynamic penalty method in appli-cation domain 2 (missile design). The �gure shows the average of 5 runs of GADO oncewith the default parameters (which implies using the dynamic penalty method) andanother time with the large �xed coe�cient. All other parameters were kept at theirdefault values. The �gure shows that the e�ect was minimal in this domain. The samecan be said about Figure 4.16 which shows the e�ect of the dynamic penalty methodon worst case performance.Figure 4.17 demonstrates the utility of the dynamic penalty method in benchmark







74domain 7 (Sandgren's problem 21). The �gure shows the average of 5 runs of GADOonce with the default parameters (which implies using the dynamic penalty method)and another time with the large �xed coe�cient. All other parameters were kept attheir default values. The �gure shows that the dynamic penalty method substantiallyimproved the performance in all stages of the search. Figure 4.18 shows the e�ect ofthe dynamic penalty method on worst case performance. The �gure is qualitatively thesame as Figure 4.17.4.3 Sensitivity analysisThe goal of the experiments reported in this section was to investigate the e�ect ofparameter variation and problem structure on GADO. This study is important forgaining a better understanding of the limitations of GADO as well as its degree ofrobustness and stability. The experiments demonstrated a great deal of stability.4.3.1 E�ect of parameter variationIn each of these experiments we varied one or two parameters from their default value(s)and compared the average performance. All other parameters were kept at their de-fault values. We concentrated on the average performance and dropped the worst caseperformance because the previous experiments suggested they usually give the sameresults. Note that Appendix A lists all the performance parameters and their defaultvalues.E�ect of the population sizeIt is well known that smaller populations converge faster [Goldberg 1989]. However,they have a higher tendency to converge to a local sub-optimum. Larger populationsdo more exploration and have a better chance of �nding the global optimum. However,they need more time to converge. Our default value for the population size is 10 timesthe dimension of the space. Our intuition is that this is an average value, that is likelyto strike a good balance between reliability and e�ciency.







75


170


180


190


200


210


220


230


240


0 2000 4000 6000 8000 10000 12000


T
ak


e 
of


f m
as


s(
to


n)


Evaluations


’GADO_Aircraft’
’GADO_Aircraft_small_population’
’GADO_Aircraft_large_population’


Figure 4.19: E�ect of the population size in application domain 1 (aircraft design)In the �rst experiment we compared the average performance of 15 runs of GADOin application domain 1 (aircraft design) with three di�erent population sizes:� Using the default value of 120.� Using a relatively large population of 240.� Using a relatively small population of 60.The results are shown in Figure 4.19. The �gure shows that the smaller populationwas the best in this domain. The �nal performance, however, was the same in all threesettings.We repeated the experiment in application domain 2 (missile design). The resultsare shown in Figure 4.20 and are very similar to the results in the previous domain.We also repeated the experiment in benchmark domain 7 (Sandgren's problem 21).The results are shown in Figure 4.21. In this domain, the smaller population did get alittle too greedy, despite its initial advantage.We conclude that the population size has a considerable e�ect on performance. Our
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Figure 4.20: E�ect of the population size in application domain 2 (missile design)


100


105


110


115


120


125


130


135


140


145


0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000


M
ea


su
re


 o
f m


er
it


Evaluations


’GADO_Sandgren21’
’GADO_Sandgren21_small_population’
’GADO_Sandgren21_large_population’


Figure 4.21: E�ect of the population size in benchmark domain 7 (Sandgren's problem21)
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Figure 4.22: E�ect of the initial penalty coe�cient in application domain 1 (aircraftdesign)choice of the default value is reasonable because it gave the best �nal performance inall three domains.E�ect of the initial penalty coe�cientIn the �rst experiment we compared the average performance of 15 runs of GADO inapplication domain 1 (aircraft design) with three di�erent values of the initial penaltycoe�cient:� Using the default value of 1.� Using a relatively high value of 1000.� Using a relatively low value of 0.001.The results are shown in Figure 4.22. The �gure shows that a higher initial penaltycoe�cient yields an initial advantage followed by a degradation of performance in thelate stages of the search. The reason for this is that the high coe�cient pushes the
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Figure 4.23: E�ect of initial penalty coe�cient in application domain 2 (missile design)search strongly towards the feasible region, at the expense of initial sampling of thespace. The �nal performance is likely to su�er as the search may be more di�cult ifthe feasible region was found in a sub-optimal part than if it was found in a region closeto the global optimum had the search been less hasty about achieving feasibility. On theother hand, a low initial penalty coe�cient will slow down the progress initially to domore sampling of the space but it pays towards the end of the search. The performancein the late stages of the search is better in this case. The �gure also shows that the�nal performance, however, was not signi�cantly di�erent in all three cases.In the second experiment we repeated the above experiment in application domain2 (missile design). The results are shown in Figure 4.23. In this case the performancewith the default and with the high initial penalty coe�cients were very similar. Theperformance with the low initial penalty coe�cient was inferior in all stages of thesearch. We believe that the low iteration limit used in this domain (4000 iterations)prevented the penalty coe�cient from getting high enough to drop the infeasible regionsfrom consideration and concentrate on the feasible regions soon enough. The �nalperformance, however, was not signi�cantly di�erent in all three cases.
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Figure 4.24: E�ect of the initial penalty coe�cient in benchmark domain 7 (Sandgren'sproblem 21)We also repeated the experiment in benchmark domain 7 (Sandgren's problem 21).The results are shown in Figure 4.24. The default value gave the best result, anda considerable degradation of performance happened when it was changed (especiallywith the low value).We conclude that our choice of the default value is reasonable.E�ect of the crowding factorsAs mentioned in Chapter 2, the crowding factors a�ect the level of diversity maintainedin the GA population. The default it to have an initial crowding factor of one and a �nalcrowding factor of zero. This shifts the replacement strategy from maximal crowdingto minimal crowding (replacement of the worst). In the following set of experimentswe compared our default strategy with the two pure strategies (maximal and minimalcrowding). More precisely, we ran the experiments and compared performance withthree setups:� Initial crowding factor=1 and �nal crowding factor=0 (the default).
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Figure 4.25: E�ect of the crowding factors in application domain 1 (aircraft design)
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Figure 4.26: E�ect of the crowding factors in application domain 2 (missile design)
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Figure 4.27: E�ect of the crowding factors in benchmark domain 7 (Sandgren's problem21)� Initial crowding factor=1 and �nal crowding factor=1 (maximal crowding).� Initial crowding factor=0 and �nal crowding factor=0 (minimal crowding).In the �rst experiment we compared the average performance of 15 runs of GADOin application domain 1 (aircraft design). The results are shown in Figure 4.25. The�gure shows that minimal crowding (replacement of the worst) was the best strategyin this domain, which is surprising considering its greedy nature. However, the resultsare conceivable because GADO uses several other diversity maintenance techniques(reseeding for example). The �nal performance, however, was the same for all threestrategies.We repeated the experiment in application domain 2 (missile design). The resultsare shown in Figure 4.26. The e�ect of the crowding factors was much less noticeablein this domain but still, minimal crowding was a little better than other 2 strategies.We also repeated the experiment in benchmark domain 7. The results are shown inFigure 4.27. In this domain, minimal crowding was the worst, the default strategy wasthe best and maximal crowding was average.
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Figure 4.28: E�ect of the K-nearest neighbor parameter K in application domain 1(aircraft design)Our general conclusion is that the default strategy is the most reliable in general.Minimal crowding could improve e�ciency in some cases (such as application domain1). In other case, however, it can severely degrade the performance (such as benchmarkdomain 7).E�ect of the K-nearest neighbor parameter KWe examined the e�ect of the K-nearest neighbor parameter K in application domain1 (aircraft design). We compared the average performance of 15 runs of GADO inapplication domain 1 (aircraft design) with four di�erent values of the parameters K:one, two (the default), three and �ve. The results are shown in Figure 4.28. The �guregenerally demonstrates that the sensitivity to change in this parameter is minimal inthis domain. For K=5 (loose screening), we start to see an increase in the time it takesto �nd the feasible region. Increasing K beyond 5 is likely to be similar to turning o�the screening module.We repeated the experiment in application domain 2 (missile design). The results
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Figure 4.29: E�ect of the K-nearest neighbor parameter K in application domain 2(missile design)
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Figure 4.30: E�ect of the K-nearest neighbor parameter K in benchmark domain 7(Sandgren's problem 21)







84are shown in Figure 4.29. The �gure shows that the sensitivity to the parameter K isminimal in this domain also, except that for K=1 the �nal performance was a littleworse than with all other values.We also repeated the experiment in benchmark domain 7 (Sandgren's problem 21).The results are shown in Figure 4.30. The �gure demonstrates a moderate e�ect ofthe parameter K on performance. The best �nal performance was achieved with thedefault value of 2.4.3.2 E�ect of the search space structureWe investigated the e�ect of the search space structure on GADO's performance. Wepursued this investigation in a synthetic domain rather than one of the realistic designdomains we previously used. The reason for this is to have more control over the searchspace structure. Nevertheless, we made sure that the synthetic domain used su�eredfrom all the structural problems described in Section 1.2. More precisely, we created asearch space that had:� many unevaluable and infeasible points.� many local optima.� a discontinuous objective function and/or �rst derivative.� a badly structured feasible region.For ease of visualization, we used a three-dimensional function. The optimizationproblem can be stated as:minimize f(x; y) where :f(x; y) = 8>>>>><>>>>>: (jxj+ jyj) � (1 + jsin(jxj � �)j+ jsin(jyj � �)j) if � 60 � x � 40and � 30 � y � 70Unevaluable Otherwise







85subject to :�300 � x � 700�400 � y � 600(x+2530 )2 + ( y1:5)2 � 1This search space has a very small evaluable region (only 1% of the space is evalu-able). Inside this small evaluable region lies a very small elliptic feasible region (only1.5% of the evaluable region is feasible). The feasible region is a thin ellipse with avery small ratio between its two radii (1:20). The local optima lie at the points whichhave integral values of both x and y. Therefore, there are 10000 local optima inside theevaluable region, of which 148 lie inside the feasible region. The use of absolute valuescauses a discontinuity in �rst derivative at every local optimum. The border betweenthe evaluable and unevaluable region results in a discontinuity of the objective func-tion. The global optimum is at the origin,5 with an objective value of zero. Figure 4.31illustrates the evaluable and the feasible regions. The feasible region is the ellipse nearthe middle of the �gure. Figure 4.32 illustrates the the objective function landscape inthe bounding rectangle of the feasible region.In the �rst experiment we used GADO to minimize the objective function under thegiven constraints, without any transformations. The limit on the number of evaluationswas set at 2000. The result is shown in Figure 4.33 (the solid curve). Each curve inFigure 4.33 represents the average of 10 runs of GADO. We also used GADO to �nd themaximum feasible value of the objective function (by changing the sign). The maximumfeasible value turned out to be 161.64. Thus, the vertical range of Figure 4.33 is only3% of the total objective range. The �gure clearly shows that GADO reached the globaloptimum very easily in this case.We then repeated the above experiment three times, each time with one of thefollowing three transformations:5This does not imply symmetry, however, as the parameter/evaluable/feasible ranges are not sym-metric around the origin.
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Figure 4.31: The evaluable and the feasible regions for the synthetic domain
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Figure 4.32: Surface plot of the objective function landscape for the synthetic domain
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Figure 4.33: E�ect of the search space structure on performance1. The number of local optima was increased approximately 10 times. This wasaccomplished by changing the function expression in the evaluable region to be:f(x; y) = (jxj+ jyj) � (1 + jsin(3 � jxj � �)j+ jsin(3 � jyj � �)j)2. The coordinate axis were rotated by 0.5 radian clockwise. This is equivalent torotating both the evaluable region and the feasible region by 0.5 radian anti-clockwise.3. The number of local optima was increased and the coordinate axis were rotated(i.e. the combination of 1 and 2 above).The results are also shown in Figure 4.33 (the dotted curves). The �gure showsthat the e�ect of all transformations on performance was minimal. This result suggeststhat unlike other GAs that degrade severely under coordinate rotation [Salomon 1996],GADO's performance degrades only slightly under these circumstances. The reason forthis is that three of the �ve crossover methods used by GADO are rotation independent.The increase in the number of local optima did not seem to have any signi�cant e�ecton performance.







884.4 Concluding remarksIn this chapter we analyzed the scope of applicability of GADO by testing it in furtherengineering design domains previously used in the literature. We also investigatedthe role of some of the key novel components of GADO. We demonstrated how thesecomponents signi�cantly improved the overall performance in several domains. Finally,we analyzed the e�ect of parameter variation and search space structure on performance.In the next chapter the thesis is concluded with a general summary and a discussion ofthe future research directions.
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Chapter 5Conclusion5.1 SummaryGADO is a highly adaptive GA that was designed with the goal of being suitable for usein engineering design. It uses new operators and search control strategies that targetthe domains which typically arise in such applications. GADO has been applied in avariety of optimization tasks which span many �elds. It demonstrated a great deal ofrobustness and e�ciency relative to competing methods.In GADO, each individual in the GA population represents a parametric descriptionof an artifact, such as an aircraft or a missile. All parameters have continuous intervals.The �tness of each individual is based on the sum of a proper measure of merit computedby a simulator or some analysis code (such as the takeo� mass of an aircraft), and apenalty function if relevant (such as to impose limits on the permissible size of anaircraft). A steady state GA model is used, in which operators are applied to twoparents selected from the elements of the population via some selection scheme, oneo�spring point is produced, then an existing point in the population is replaced by thenewly generated point via some replacement strategy. Here selection was performedby rank because of the wide range of �tness values caused by the use of a penaltyfunction. The replacement strategy used here is a crowding technique, which takes intoconsideration both the �tness and the proximity of the points in the GA population.The GA stops when either the maximum number of evaluations has been exhausted orthe population loses diversity and practically converges to a single point in the searchspace. Floating point representation is used. Several crossover and mutation operatorsare used, most of which were designed speci�cally for the target domain type. Themost innovative crossover method is guided crossover which emulates gradient based







90methods to improve the local convergence of the GA. GADO also uses some searchcontrol strategies such as a screening module which saves time by avoiding the fullevaluation of points that are unlikely to correspond to good designs.5.2 Review of contributionThis thesis presents a new method for design optimization in engineering domains withcomplex, expensive evaluation functions. In Chapter 3, the new method (GADO) wascompared to three state of the art optimizers in 2 modern engineering design domains.The superiority of GADO to the other techniques was clearly demonstrated. GADOincludes many novel features. In Chapter 4, the utility and signi�cance of some of thesewas demonstrated. The experiments described in Chapter 4 also show that GADO'sperformance is fairly stable with respect to parameter variation. Based on all theevidence reported in this thesis, we believe that GADO is a very reliable and e�cientoptimizer.GADO includes many new ideas. We list some of them here, in decreasing order ofnovelty:1. The guided crossover operator. This is an operator which endows the GAwith some of the e�ciency advantages of gradient-based methods without actuallycomputing any gradients.2. The screening module. This is a search control module that saves time byavoiding the expensive evaluation of points that are unlikely to be good.3. The reseeding module. This is a module that restores diversity to the GApopulation in an e�ort to prevent premature convergence to a local optimum.4. The dynamic penalty method. This methods ensures adequate sampling ofthe search space in the early stages of the optimization with a su�cient focus onfeasibility towards the end of the optimization.5. The line crossover operator. This is an operator that is particularly suitablefor slab-like evaluable/feasible regions, a type of region that is not uncommon in







91design optimization spaces.6. The double line crossover operator. This is an operator that combines themerits of line crossover and the classical point crossover operator.7. The initialization strategy. This strategy ensures that the GA starts from apopulation that contains an adequate number of evaluable points.8. The shrinking-window mutation operator. This is an operator that pro-motes exploration in the beginning of the optimization and exploitation towardsthe end. This operator also pays special attention to the borders of the searchspace.5.3 Limitations and future work5.3.1 Application of GADO to other application domainsWe are in the process of applying GADO to design optimization problems in variousdomains from di�erent engineering disciplines. These include:� Design of a nano-powder thermal reactor: This domain has an extremelyexpensive evaluation function (about 5 CPU minutes per evaluation on a work-station). Preliminary experiments were done using GADO, CFSQP and RandomProbes. The maximum number of iterations each method was allowed was only100. This is a very unusual setup for using a GA (or any global optimizer, asthese methods tend to require a large number of iterations to converge). However,GADO gave the best result.� Design of two dimensional high speed inlets: This is a collaborative e�ortwith Aerospatiale Missiles (France). Several inlets have been designed. See Ap-pendix C for details about the design process of one of these inlets. We are alsoin the process of using GADO for mission-based design of inlets. In mission-baseddesign, the goal is to optimize the performance of the inlet over an entire missionpro�le, rather than one ying condition, which is the conventional approach.







92� Design of potential energy functions: This has been a collaborative e�ortwith material scientists. The evaluation functions are quite expensive (about5 CPU seconds per evaluation on a workstation). Our preliminary results insimpli�ed versions of these problems suggest that GADO could be a very robustoptimizer in these domains.� Drug design: This work is still in the planning phase. The �rst item on theagenda is the design of force �elds (potential functions) for the modeling of theinteractions of drugs with their biological receptors. This is very similar to thematerial science collaboration. The most interesting feature about the searchspaces expected to arise in this domain is their very high dimensionality (300 orgreater). It is expected that many other problems will be investigated.5.3.2 Improvements in the screening moduleThe screening module proved to be one of the most important components of GADO(see Chapter 4 for details). We plan on investigating the possibility of using domainknowledge to dynamically con�gure the operation of the screening module. For exam-ple, the size of the sample used for screening could be set at run time based on theaverage cost of evaluating each point (i.e. more expensive evaluation functions warrantthe use of a larger sample size). The parameter K can also be set in an intelligent way,based on the search space structure that gets discovered at run time. For example, moreneighbors can be used to judge the potential of a point in regions where the objectivefunction is observed to change abruptly (like borders of the feasible region).At a higher level, it is not clear that the K-nearest neighbor approach is the bestapproach for screening. We plan on investigating the use of a classi�er system [Goldberg1989] which screens potential points by classifying them as promising or unpromising.We also plan to explore the use of more sophisticated machine-learning techniques toextrapolate from past evaluations as part of the screening module. The SM success isdependent on the choice of the distance function for �nding neighbors. The Euclideandistance was successful in this research, when the parameters were normalized to have







93equal ranges. In other domains it may become necessary to use a more complicateddistance function.5.3.3 Extensions to guided crossoverIt was shown that the guided crossover operator contributed a lot to the success ofGADO (see Chapter 4 for details). The idea of taking a little step in a promising direc-tion proved very powerful. In GC, the promising direction is selected by joining linesbetween points of the GA population and choosing the most promising line. However,a very interesting idea is to create new directions by combining several such lines. Weplan on exploring this method in the near future.5.3.4 Acquisition and utilization of domain knowledgeThe screening module can be thought of as a very simple approach for acquiring knowl-edge about the domain and using it to guide further explorations. We plan on investi-gating the use of more sophisticated methods to acquire knowledge about the domain inthe course of the GA optimization, such as neural networks. We can a�ord to use theserelatively expensive methods because the objective functions are even more expensive.We also plan on exploring methods for utilizing the acquired domain knowledge. Forexample, if we can acquire the knowledge that the objective function is decomposable(for example, it can be expressed as the product of two functions, each of which is afunction of a subset of the parameters, with the two subsets being disjoint), we canuse this knowledge to solve the problem more e�ciently by optimizing each subsetseparately. Domain knowledge can also be used to tailor GADO for a particular prob-lem. If domain knowledge is available beforehand (for example, if we know the spaceis unimodal or has a low modality) it is easy to set the performance parameters totake advantage of this knowledge (like using guided crossover more intensely in thisexample). The more interesting case is when the knowledge becomes available only atrun time. In this case the system needs to do some self-adaptation.
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Appendix AGADO parametersThe following is a list of the parameters used by GADO, together with their recom-mended (default) values:� maxpop: The number of individuals in the GA population. The default is 10times the dimension of the problem.� maxstore: The number of sample points stored for use in screening and reseed-ing. The default is 30 times maxpop.� minevalpop: The number of random individuals used to seed the initial popu-lation. The default 10 times maxpop.� maxevals: The maximum number of individual evaluations (actual calls to thesimulator) allowed. We recommend no less than 100 times maxpop but this islikely to vary signi�cantly from problem to problem, depending on the availabletime and complexity of the simulator.� maxevals increment: If this parameter is non-zero, then after maxevals eval-uations have been done, the maximum allowed number of evaluations will berepeatedly incremented by maxevals increment until the optimization stops dueto another stopping criterion (see for example stoptolerence below). The defaultis zero.� penaltycoef: The initial penalty coe�cient. The default is set as follows: if theaverage measure of merit is expected to have a numerical value between V and10 � V where V is a power of ten, then penaltycoef should be set to V100 .11Using the value 1 worked very well in several domains, but we decided to make the default relativeto the measure of merit rather than an absolute value because some domains may have very small







95� penaltymult: This is an upper bound on how much the penalty coe�cient canbe multiplied at one increment. For example, if the penalty coe�cient was 7and the program decided it should increase, the maximum value it can take is7*penaltymult. The default is 2.� stoptolerance: If the ratio between the average distance among points in thecurrent population and the average distance among points in the initial populationis less than stoptolerence, the optimization is terminated. The default value is zero(i.e. termination is based on number of evaluations).� rejecttolerance: If the distance between a proposed point and an existing pointin the sample used for screening is less than rejecttolerence�godown2maxpop the point isrejected by the diversity maintenance module. The default is zero (i.e. only exactduplicates are rejected).� maxreseeds: The maximum number of reseeding operations allowed. The de-fault is 10.� reseedfraction: If the ratio between the average distance among points in thecurrent population and the average distance among points in the initial populationis less than reseedfraction�godown2, reseeding is done (unless maxreseeds reseedshave already been done). The default is 0.25.� mutation factor: This controls the amplitude of mutation. A value of 1 isconservative, 2 is average and more than that is large. The default is 2.� GC factor: The �nal proportion of time guided crossover is done instead of theregular crossover techniques. The default is 0.25.� no penalty decrease: This will prevent the penalty coe�cient from ever decreas-ing, even if all the population became feasible. If it is known that the optimum isnot at the border of any constraint violations, then setting this option may savetime. The default 0 (meaning decrease is allowed).objective values which makes an initial penalty coe�cient of 1 extremely large.







96� no screen: If this is set to 1, no screening will be done. The default is 0.� K for K-nearest neighbor: The default is 2.� screening o�set: If the screening o�set is V then the �tness of the (1 + V )thworst individual in the GA population is used as the threshold for screening. Thedefault is 1 (i.e. the second worst).� initial crowding factor: The initial value of the crowding factor. The defaultis one.� �nal crowding factor: The �nal value of the crowding factor. The default iszero.
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Appendix BBenchmark domainsThe following is a brief description of the benchmark domains used in Chapter 4:1. Design gear ratios for a �ve speed automotive transmission in order to acceleratefrom rest to 100mph in minimum time.2. Design a rectangular box to maximize volume, subject to post o�ce restrictionson the length plus the girth and individual limits on the length, depth and heightof the box.3. Description not available.4. Design a solid disk ywheel for maximum energy storage subject to constraintson the weight, diameter, speed of rotation and width.5. Optimize an electrical network of two nodes.6. Description not available.7. Mathematical programming model of a three-stage membrane separation process.11 out of the 13 inequality constraints are active at the global optimum.8. Mathematical programming model of a �ve-stage membrane separation process.16 out of the 19 inequality constraints are active at the global optimum.
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Appendix CCase study: Redesign of a two dimensional high speedmissile inletC.1 Domain descriptionThis domain concerns the design of a two dimensional, mixed compression, high speedinlet to maximize total pressure recovery. This inlet was experimentally designed inMarch 1996 by the Institute of Theoretical and Applied Mechanics (ITAM), in Novosi-birsk (Russia). The total pressure recovery of the �nal design was 0.134. The maingoal of this part of the research was to redesign the inlet using GADO and comparethe resulting design to the experimental ITAM design in an e�ort to test and evaluateGADO. All the experiments in this domain were done by Mr. Michael Blaize, a designengineer with Aerospatiale Missiles (France) with only minimal guidance on the use ofGADO.The analysis code used in this research is a ow solver called OCEAS. OCEASwas developed at Aerospatiale Missiles to assist engineers in the aerodynamic design ofmissile inlets. It is a semi-empirical ow solver which uses simple but accurate physicalmodels that require little CPU time. Each run of OCEAS takes about 2 CPU seconds ona DEC ALPHA 2100 workstation. Evaluation of the objective and penalty values wasdone di�erently in this domain than all the other domains described in this thesis. Ineach evaluation, some preliminary constraint calculations are done (which takes about0.05 CPU seconds on the same workstation). Based on these calculations, it is decidedwhether the design is evaluable or unevaluable. OCEAS is run only if the design isevaluable, to calculate the total pressure recovery and the remaining constraints.







99C.2 Experiments and resultsC.2.1 Design optimization using GADOWhen GADO was used for the design optimization of the ITAM inlet, a 5000 iterationoptimization was done in which OCEAS was called 2246 times (i.e. 2246 feasible designswere examined). The total pressure recovery of the best found inlet was 0.194. Theentire optimization took about 1.25 CPU hours.C.2.2 Design optimization using CFSQPFurther experiments were conducted in which CFSQP was used for the design opti-mization of the same inlet.1 GADO did not need a starting point (and none was givento it) but CFSQP required a starting point. Several methods were used to provide thestarting point to CFSQP resulting in di�erent experiments as described below.CFSQP from the experimental ITAM inletIn this experiment the experimental ITAM inlet design was used as the starting pointfor CFSQP. CFSQP stopped after a very small number of iterations (less than 20 callsto OCEAS). The best design found by CFSQP in this experiment had a total pressurerecovery of 0.160.CFSQP from the best inlet found by GADOIn this experiment the best inlet found by GADO was used as the starting point forCFSQP. However, CFSQP failed to yield any improvement over the starting point. Thissuggests that the best inlet found by GADO may well be locally optimal.1The version of CFSQP used in this domain was also the one enhanced by Mark Schwabacher[Schwabacher 1996] (the one used in other domains in this thesis).







100Multi-start CFSQPIn this experiment a very long sequence of random probes were done and every time anevaluable \near-feasible"2 point was found, CFSQP was started from that point. Thisprocess was repeated for more than one CPU day. The best inlet found in this experi-ment had a total pressure recovery that is approximately the same as the experimentalITAM inlet.It was concluded that GADO is much more reliable than CFSQP for this class ofproblems.


2In an earlier version of this experiment, CFSQP was started from every evaluable point found. Itwas observed that CFSQP failed to �nd any feasible points under this setup. Thus the strategy wasmodi�ed so that CFSQP is started only whenever an evaluable point with a small sum of constraintviolations is found.
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